1
|
Zhu Y, Zhao X, Li X, Hu C, Zhang Y, Yin H. Epigallocatechin gallate improves oleic acid-induced hepatic steatosis in laying hen hepatocytes via the MAPK pathway. Poult Sci 2024; 103:104204. [PMID: 39190994 PMCID: PMC11396070 DOI: 10.1016/j.psj.2024.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fatty liver disease in laying hens, characterized by excessive lipid accumulation in hepatocytes, poses significant challenges to poultry health and production efficiency. In this study, we investigated the therapeutic potential of epigallocatechin gallate (EGCG), a bioactive compound found in green tea, in mitigating oleic acid (OA)-induced hepatic steatosis in primary chicken hepatocytes. Treatment with EGCG effectively attenuated lipid deposition by downregulating lipid synthesis-related genes. Moreover, EGCG mitigated oxidative stress, inflammation, DNA damage, and apoptosis induced by OA, thereby preserving hepatocyte viability. Mechanistically, EGCG exerted its protective effects by modulating the p38 MAPK signaling pathway. Our findings suggest that EGCG holds promise as a therapeutic agent for managing fatty liver disease in poultry, offering insights into novel strategies for improving poultry health and production outcomes.
Collapse
Affiliation(s)
- Yifeng Zhu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xinyan Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Chengfang Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
2
|
Li J, Jiang L, Zhao K, Tang Y, Yuan X, Xu Y. MYELOID-DERIVED TLR4-TRIF SIGNALING PATHWAY MEDIATES OXIDATIVE STRESS IN LPS/D-GALN-INDUCED ACUTE LIVER FAILURE. Shock 2024; 62:582-587. [PMID: 39158930 DOI: 10.1097/shk.0000000000002438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
ABSTRACT Background: Acute liver failure (ALF) is a severe clinical syndrome characterized by massive hepatocyte death in a short time due to viruses, drugs, alcohol, or other factors. Oxidative stress is an important pathogenic mechanism of ALF. LPS-induced internalization of toll-like receptor 4 (TLR4) and the subsequent activation of the toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) signaling pathway widely mediate inflammatory responses in a series of diseases. However, whether the TLR4-TRIF signaling pathway contributes to ALF by mediating oxidative stress processes remains unclear. Methods: An ALF mouse model was induced by lipopolysaccharide (LPS)/D-galactosamine (D-GalN). TLR4-TRIF systemic knockout mice and TLR4 conditional knockout mice were used to determine the role of the TLR4-TRIF signaling pathway in ALF. The effects of TLR4 or TRIF deficiency on oxidative stress were investigated. In addition, we examined the protective role of the clodronate liposomes (macrophage scavengers) and the antioxidant N-acetylcysteine (NAC) in ALF. Results: TLR4 or TRIF deficiency significantly alleviated LPS/D-GalN-induced lethality, hepatic dysfunction, and hepatic pathologic injury, which was dependent on myeloid-derived TLR4. Hence, macrophage clearance exhibits a similar protective effect. Mechanically, TLR4 or TRIF deficiency was observed to inhibit oxidative stress by increasing glutathione, while decreasing malondialdehyde, 8-hydroxy-2-deoxyguanosine, and γ-H2AX. Therefore, the pharmacologic antioxidant NAC exhibited significant hepato-protective effects. Conclusions: Targeting myeloid-derived TLR4-TRIF signaling pathway or antioxidant therapy may be a potential therapeutic direction to treat ALF.
Collapse
Affiliation(s)
| | | | - Kai Zhao
- Department of Hematology and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | | | | |
Collapse
|
3
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
4
|
Deng Q, Yang Y, Liu Y, Zou M, Huang G, Yang S, Li L, Qu Y, Luo Y, Zhang X. Assessing immune hepatotoxicity of troglitazone with a versatile liver-immune-microphysiological-system. Front Pharmacol 2024; 15:1335836. [PMID: 38873410 PMCID: PMC11169855 DOI: 10.3389/fphar.2024.1335836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug-induced liver injury is a prevalent adverse event associated with pharmaceutical agents. More significantly, there are certain drugs that present severe hepatotoxicity only during the clinical phase, consequently leading to the termination of drug development during clinical trials or the withdrawal from the market after approval. The establishment of an evaluation model that can sensitively manifest such hepatotoxicity has always been a challenging aspect in drug development. In this study, we build a liver-immune-microphysiological-system (LIMPS) to fully demonstrate the liver injury triggered by troglitazone (TGZ), a drug that was withdrawn from the market due to hepatotoxicity. Leveraging the capabilities of organ-on-chip technology allows for the dynamic modulation of cellular immune milieu, as well as the synergistic effects between drugs, hepatocytes and multiple immune cells. Through the LIMPS, we discovered that 1) TGZ can promote neutrophils to adhered hepatocytes, 2) the presence of TGZ enhances the crosstalk between macrophages and neutrophils, 3) the induction of damage in hepatocytes by TGZ at clinically relevant blood concentrations not observed in other in vitro experiments, 4) no hepatotoxicity was observed in LIMPS when exposed to rosiglitazone and pioglitazone, structurally similar analogs of TGZ, even at the higher multiples of blood drug concentration levels. As an immune-mediated liver toxicity assessment method, LIMPS is simple to operate and can be used to test multiple drug candidates to detect whether they will cause severe liver toxicity in clinical settings as early as possible.
Collapse
Affiliation(s)
- Quanfeng Deng
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Youlong Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuangui Liu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Mengting Zou
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Guiyuan Huang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Shiqi Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lingyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yueyang Qu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Xiuli Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Wang R, Shen H, Zhang J, Li X, Guo Y, Zhao Z, Wang P, Xie N, Li Y, Qu G, Xie S. Dimethyl Bisphenolate Ameliorates Carbon Tetrachloride-Induced Liver Injury by Regulating Oxidative Stress-Related Genes. Molecules 2023; 28:7989. [PMID: 38138479 PMCID: PMC10746066 DOI: 10.3390/molecules28247989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Liver disease accounts for millions of deaths per year all over the world due to complications from cirrhosis and liver injury. In this study, a novel compound, dimethyl bisphenolate (DMB), was synthesized to investigate its role in ameliorating carbon tetrachloride (CCl4)-induced liver injury through the regulation of oxidative stress-related genes. The structure of DMB was confirmed based on its hydrogen spectrum and mass spectrometry. DMB significantly reduced the high levels of ALT, AST, DBIL, TBIL, ALP, and LDH in a dose-dependent manner in the sera of CCl4-treated rats. The protective effects of DMB on biochemical indicators were similar to those of silymarin. The ROS fluorescence intensity increased in CCl4-treated cells but significantly weakened in DMB-treated cells compared with the controls. DMB significantly increased the content of oxidative stress-related GSH, Nrf2, and GCLC dose-dependently but reduced MDA levels in CCl4-treated cells or the liver tissues of CCl4-treated rats. Moreover, DMB treatment decreased the expression levels of P53 and Bax but increased those of Bcl2. In summary, DMB demonstrated protective effects on CCl4-induced liver injury by regulating oxidative stress-related genes.
Collapse
Affiliation(s)
- Rong Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Yantai 264000, China
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Huanhuan Shen
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Jiaxiang Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Xiyan Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Zhenjun Zhao
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Pingyu Wang
- Department of Epidemiology, Binzhou Medical University, Yantai 264003, China;
| | - Ning Xie
- Department of Breast and Thyroid Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264000, China;
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Guiwu Qu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, China; (R.W.); (H.S.); (J.Z.); (X.L.); (Y.G.); (Y.L.)
- Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Yantai 264000, China
- College of Life Sciences, Yantai University, Yantai 264005, China;
| |
Collapse
|
6
|
Ge S, Lian W, Bai Y, Wang L, Zhao F, Li H, Wang D, Pang Q. TMT-based quantitative proteomics reveals the targets of andrographolide on LPS-induced liver injury. BMC Vet Res 2023; 19:199. [PMID: 37817228 PMCID: PMC10563216 DOI: 10.1186/s12917-023-03758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Andrographolide (Andro) is a diterpenoid derived from Andrographis paniculate, which has anti-inflammatory, antibacterial, antiviral and hepatoprotective activities. Gram-negative bacterial infections can cause varying degrees of liver injury in chickens, although Andro has been shown to have a protective effect on the liver, its underlying mechanism of action and effects on liver proteins are not known. METHODS The toxicity of Andro on the viability of leghorn male hepatoma (LMH) cells at different concentrations and times was analyzed by CCK-8 assays. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the culture supernatants were measured using an automatic biochemical analyzer to evaluate the protective effect of androscopolide on LPS-induced injury of LMH cells. Subsequently, TMT proteomics analysis were performed on the negative control group (NC group), LPS, and LPS-Andro groups, and bioinformatics analysis was performed on the differentially expressed proteins (DEPs). RESULTS It was found that Andro reduced ALT and AST levels in the cell supernatant and alleviated LPS-induced injury in LMH cells. Proteomic analysis identified 50 and 166 differentially expressed proteins in the LPS vs. NC group and LPS-Andro vs. LPS group, respectively. Andro may be involved in steroid metabolic processes, negative regulation of MAPK cascade, oxidative stress, and other processes to protect against LPS-induced liver injury. CONCLUSIONS Andro protects against LPS-induced liver injury, HMGCS1, HMGCR, FDPS, PBK, CAV1, PRDX1, PRDX4, and PRDX6, which were identified by differential proteomics, may be the targets of Andro. Our study may provide new theoretical support for Andro protection against liver injury.
Collapse
Affiliation(s)
- Shihao Ge
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Wenqi Lian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yongjiang Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Linzheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250035, Shangdong, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Houmei Li
- Shuozhou grass and animal husbandry development center, ShuoZhou, 036000, Shanxi, China
| | - Dongliang Wang
- ShuoZhou Vocational Technology College, ShuoZhou, 036000, Shanxi, China
| | - Quanhai Pang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
7
|
Asejeje FO, Akinola KD, Abiola MA. Sodium benzoate exacerbates hepatic oxidative stress and inflammation in lipopolysaccharide-induced liver injury in rats. Immunopharmacol Immunotoxicol 2023; 45:558-564. [PMID: 36927185 DOI: 10.1080/08923973.2023.2191818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver damage is a global health concern associated with a high mortality rate. Sodium benzoate (SB) is a widely used preservative in the food industry with a wide range of applications. However, there's a lack of scientific reports on its effect on lipopolysaccharide-induced hepatic dysfunction. OBJECTIVE The present study investigated the influence of SB on lipopolysaccharide (LPS)-induced liver injury. MATERIALS AND METHODS Twenty-eight rats were randomly allocated into four groups: control (received distilled water), SB (received 600 mg/kg), LPS (received 0.25 mg/kg), and LPS + SB (received LPS, 0.25 mg/kg, and SB, 600 mg/kg). SB was administered orally for 14 days while LPS was administered intraperitoneally for 7 days. RESULTS Administration of SB to rats with hepatocyte injury exacerbated liver damage with a significant increase in the activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). We also observed that SB aggravated LPS-mediated hepatic oxidative stress occasioned by a marked decrease in antioxidant status with a concomitant increase in lipid peroxidation. Furthermore, LPS - mediated increase in inflammatory biomarkers as well as histological deterioration in the liver was exacerbated following the administration of SB to rats. CONCLUSION Taken together, the study provides experimental evidence that SB exacerbates hepatic oxidative stress and inflammation in LPS-mediated liver injury.
Collapse
Affiliation(s)
- Folake Olubukola Asejeje
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Khalid Damilare Akinola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Michael Abayomi Abiola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
8
|
Deng Y, Luo H. The protective effects of phosphoserine aminotransferase 1 (PSAT1) against hepatic ischemia-reperfusion injury. J Cell Commun Signal 2023; 17:851-862. [PMID: 36745318 PMCID: PMC10409687 DOI: 10.1007/s12079-023-00727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a severe clinical syndrome, causing a profound medical and socioeconomic burden worldwide. This study aimed to explore underlying biomarkers and treatment targets in the progression of hepatic I/R injury. We screened gene expression profiles of the hepatic I/R injury from the Gene Expression Omnibus (GEO) database, downloaded expression profiles data (GSE117066). Differentially expressed genes (DEGs) were identified through cluster of the PPI network, and enrichment pathways were conducted based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The bioinformatics analysis was used to identify biomarkers that alleviate hepatic I/R injury. Finally, the effects of hub gene were investigated by in vitro and in vivo experiments. A total of 162 DEGs (76 up-regulated and 86 down-regulated genes) were extracted between sham and I/R, and 248 DEGs (118 up-regulated and 130 down-regulated genes) were extracted between I/R and ischemic postconditioning (IPO). The cluster of the PPI network and maximal clique centrality (MCC) method of the common DEGs were performed to identify the phosphoserine aminotransferase 1 (PSAT1) as the potential gene for hepatic I/R injury. Then, the H-E, TUNEL and PCNA staining were indicated that the hepatic injury score was highest in I/R 6 h. The expression level of apoptosis-related proteins was consistent with the pathological results. Both gain- and loss-of-function assays demonstrated that hepatic I/R injury was alleviated by PSAT1. PSAT1 may play crucial roles in hepatic I/R injury and thus serves as a hub biomarker for hepatic I/R injury prognosis and individual-based treatment.
Collapse
Affiliation(s)
- Yinzhi Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
9
|
Lu Y, Pan X, Cao C, Fan S, Tan H, Cui S, Liu Y, Cui D. MnO 2 Coated Mesoporous PdPt Nanoprobes for Scavenging Reactive Oxygen Species and Solving Acetaminophen-Induced Liver Injury. Adv Healthc Mater 2023; 12:e2300163. [PMID: 37184887 DOI: 10.1002/adhm.202300163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/23/2023] [Indexed: 05/16/2023]
Abstract
As one of the most widely used drugs, acetaminophen, is the leading cause of acute liver injury. In addition, acetaminophen-induced liver injury (AILI) has a strong relationship with the overproduced reactive oxygen species, which can be effectively eliminated by nanozymes. To address these challenges, mesoporous PdPt@MnO2 nanoprobes (PPM NPs) mimicking peroxide, catalase, and superoxide dismutase-like properties are synthesized. They demonstrate nontoxicity, high colloidal stability, and exceptional reactive oxygen species (ROS)-scavenging ability. By scavenging excessive ROS, decreasing inflammatory cytokines, and inhibiting the recruitment and activation of monocyte/macrophage cells and neutrophils, the pathology mechanism of PPM NPs in AILI is confirmed. Moreover, PPM NPs' therapeutic effect and good biocompatibility may facilitate the clinical treatment of AILI.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Cheng Cao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shanshan Fan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Shengsheng Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Hong YJ, Kim GH, Park Y, Jo HJ, Nam MW, Kim DG, Cho H, Shim HJ, Jin JS, Rho H, Han CY. Suaeda glauca Attenuates Liver Fibrosis in Mice by Inhibiting TGFβ1-Smad2/3 Signaling in Hepatic Stellate Cells. Nutrients 2023; 15:3740. [PMID: 37686772 PMCID: PMC10490352 DOI: 10.3390/nu15173740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic liver injury due to various hepatotoxic stimuli commonly leads to fibrosis, which is a crucial factor contributing to liver disease-related mortality. Despite the potential benefits of Suaeda glauca (S. glauca) as a natural product, its biological and therapeutic effects are barely known. This study investigated the effects of S. glauca extract (SGE), obtained from a smart farming system utilizing LED lamps, on the activation of hepatic stellate cells (HSCs) and the development of liver fibrosis. C57BL/6 mice received oral administration of either vehicle or SGE (30 or 100 mg/kg) during CCl4 treatment for 6 weeks. The supplementation of SGE significantly reduced liver fibrosis induced by CCl4 in mice as evidenced by histological changes and a decrease in collagen accumulation. SGE treatment also led to a reduction in markers of HSC activation and inflammation as well as an improvement in blood biochemical parameters. Furthermore, SGE administration diminished fibrotic responses following acute liver injury. Mechanistically, SGE treatment prevented HSC activation and inhibited the phosphorylation and nuclear translocation of Smad2/3, which are induced by transforming growth factor (TGF)-β1 in HSCs. Our findings indicate that SGE exhibits anti-fibrotic effects by inhibiting TGFβ1-Smad2/3 signaling in HSCs.
Collapse
Affiliation(s)
- You-Jung Hong
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Gil-Hwan Kim
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Yongdo Park
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Hye-Jin Jo
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Min-Woo Nam
- LED Agri-Bio Fusion Technology Research Center, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea
| | - Dong-Gu Kim
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea
| | - Hwangeui Cho
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Hyun-Joo Shim
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Jong-Sik Jin
- LED Agri-Bio Fusion Technology Research Center, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea
| | - Hyunsoo Rho
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Chang-Yeob Han
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| |
Collapse
|
11
|
Panasiak L, Kuciński M, Hliwa P, Pomianowski K, Ocalewicz K. Telomerase Activity in Somatic Tissues and Ovaries of Diploid and Triploid Rainbow Trout ( Oncorhynchus mykiss) Females. Cells 2023; 12:1772. [PMID: 37443805 PMCID: PMC10340188 DOI: 10.3390/cells12131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Telomerase activity has been found in the somatic tissues of rainbow trout. The enzyme is essential for maintaining telomere length but also assures homeostasis of the fish organs, playing an important role during tissue regeneration. The unique morphological and physiological characteristics of triploid rainbow trout, when compared to diploid specimens, make them a promising model for studies concerning telomerase activity. Thus, in this study, we examined the expression of the Tert gene in various organs of subadult and adult diploid and triploid rainbow trout females. Upregulated Tert mRNA transcription was observed in all the examined somatic tissues sampled from the triploid fish when compared to diploid individuals. Contrastingly, Tert expression in the ovaries was significantly decreased in the triploid specimens. Within the diploids, the highest expression of Tert was observed in the liver and in the ovaries of the subadult individuals. In the triploids, Tert expression was increased in the somatic tissues, while the ovaries exhibited lower activity of telomerase compared to other organs and decreased compared to the ovaries in the diploids. The ovaries of triploid individuals were underdeveloped, consisting of only a few oocytes. The lack of germ cells, which are usually characterized by high Tert expression, might be responsible for the decrease in telomerase activity in the triploid ovaries. The increase in Tert expression in triploid somatic tissues suggests that they require higher telomerase activity to cope with environmental stress and maintain internal homeostasis.
Collapse
Affiliation(s)
- Ligia Panasiak
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av., 81-378 Gdynia, Poland; (M.K.); (K.O.)
| | - Marcin Kuciński
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av., 81-378 Gdynia, Poland; (M.K.); (K.O.)
| | - Piotr Hliwa
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Warszawska St. 117, 10-719 Olsztyn, Poland;
| | - Konrad Pomianowski
- Laboratory of Physiology of Marine Organisms, Genetics and Marine Biotechnology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Konrad Ocalewicz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av., 81-378 Gdynia, Poland; (M.K.); (K.O.)
| |
Collapse
|
12
|
Han C, Guan L, Xu L. Protective effect of luteoloside against Toxoplasma gondii-induced liver injury through inhibiting TLR4/NF-κB and P2X7R/NLRP3 and enhancing Nrf2/HO-1 signaling pathway. Parasitol Res 2023; 122:1333-1342. [PMID: 37046028 DOI: 10.1007/s00436-023-07833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Toxoplasma gondii (T. gondii) infection can cause liver injury by inducing inflammation and oxidative stress. The Chinese herbal extract luteoloside (Lut) has considerable anti-inflammatory and antioxidant properties, but its effects on the liver injury during T. gondii infection have not been reported. This study investigated the hepatoprotective effects of Lut by treating T. gondii-infected mice with 0-200 mg/kg doses of Lut and further examined the expression of key proteins in the inflammation and oxidative stress-related pathways in the liver to investigate the potential mechanism of the hepatoprotective effects of Lut. Results showed that Lut remarkably reduced serum ALT and AST levels, considerably decreased inflammatory factors TNF-α, IL-6, and IL-1β, as well as oxidative products MDA, and greatly increased antioxidant enzymes SOD and GSH. The expression of key proteins TLR4, Myd88, TRAF6, p-NF-κB p65 in the TLR4/NF-κB pathway and P2X7R, NLRP3, caspase 1, IL-1β, IL-18 in the P2X7R/NLRP3 pathway were significantly decreased in the liver. And the expression of key proteins Nrf2, HO-1, NQO-1, and GCLC in the Nrf2/HO-1 antioxidant-related pathway was significantly upregulated. In conclusion, Lut attenuated T. gondii-induced liver injury by inhibiting the inflammatory response and enhancing antioxidant capacity. The hepatoprotective mechanisms of Lut are involved in inhibiting TLR4/NF-κB and P2X7R/NLRP3 inflammatory signaling pathways, as well as enhancing the Nrf2/HO-1 antioxidant pathway. These findings not only provide some reference for further exploring the specific hepatoprotective mechanism of Lut during T. gondii infection, but also provide some theoretical basis for the future clinical application of Lut as a hepatoprotective drug in T. gondii infection.
Collapse
Affiliation(s)
- Chengquan Han
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China
| | - Lizeng Guan
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China
| | - Lu Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276000, Shandong, China.
| |
Collapse
|
13
|
Kim J, Zimmerman MA, Shin WY, Boettcher BT, Lee JS, Park JI, Ali M, Yang M, Mishra J, Hagen CE, McGraw JE, Mathison A, Woehlck HJ, Lomberk G, Camara AKS, Urrutia RA, Stowe DF, Hong JC. Effects of Subnormothermic Regulated Hepatic Reperfusion on Mitochondrial and Transcriptomic Profiles in a Porcine Model. Ann Surg 2023; 277:e366-e375. [PMID: 34387201 PMCID: PMC8840998 DOI: 10.1097/sla.0000000000005156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We sought to investigate the biological effects of pre-reperfusion treatments of the liver after warm and cold ischemic injuries in a porcine donation after circulatory death model. SUMMARY OF BACKGROUND DATA Donation after circulatory death represents a severe form of liver ischemia and reperfusion injury that has a profound impact on graft function after liver transplantation. METHODS Twenty donor pig livers underwent 60 minutes of in situ warm ischemia after circulatory arrest and 120 minutes of cold static preservation prior to simulated transplantation using an ex vivo perfusion machine. Four reperfusion treatments were compared: Control-Normothermic (N), Control- Subnormothermic (S), regulated hepatic reperfusion (RHR)-N, and RHR-S (n = 5 each). The biochemical, metabolic, and transcriptomic profiles, as well as mitochondrial function were analyzed. RESULTS Compared to the other groups, RHR-S treated group showed significantly lower post-reperfusion aspartate aminotransferase levels in the reperfusion effluent and histologic findings of hepatocyte viability and lesser degree of congestion and necrosis. RHR-S resulted in a significantly higher mitochondrial respiratory control index and calcium retention capacity. Transcriptomic profile analysis showed that treatment with RHR-S activated cell survival and viability, cellular homeostasis as well as other biological functions involved in tissue repair such as cytoskeleton or cytoplasm organization, cell migration, transcription, and microtubule dynamics. Furthermore, RHR-S inhibited organismal death, morbidity and mortality, necrosis, and apoptosis. CONCLUSION Subnormothermic RHR mitigates IRI and preserves hepatic mitochondrial function after warm and cold hepatic ischemia. This organ resuscitative therapy may also trigger the activation of protective genes against IRI. Sub- normothermic RHR has potential applicability to clinical liver transplantation.
Collapse
Affiliation(s)
- Joohyun Kim
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee WI
- Transplant Center, Froedtert & the Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI
| | - Michael A Zimmerman
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee WI
- Transplant Center, Froedtert & the Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI
| | - Woo Young Shin
- Department of Surgery, inha University School of Medicine, incheon, South Korea
| | - Brent T Boettcher
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Muhammed Ali
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Jyotsna Mishra
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Joseph E McGraw
- Department of Pharmacology, Concordia University, Mequon, WI
| | - Angela Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI; and
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee WI
| | - Harvey J Woehlck
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Gwen Lomberk
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI; and
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee WI
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Raul A Urrutia
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI; and
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee WI
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Johnny C Hong
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee WI
- Transplant Center, Froedtert & the Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI
| |
Collapse
|
14
|
Effects of Continuous LPS Induction on Oxidative Stress and Liver Injury in Weaned Piglets. Vet Sci 2022; 10:vetsci10010022. [PMID: 36669023 PMCID: PMC9865882 DOI: 10.3390/vetsci10010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Due to imperfections in their immune and digestive systems, weaned piglets are susceptible to invasions of the external environment and diseases, especially bacterial infections, which lead to slow growth, tissue damage, and even the death of piglets. Here, a model of weaned piglets induced by Escherichia coli lipopolysaccharide (LPS) was established to explore the effects of continuous low-dose LPS induction on the mechanism of liver injury. A total of forty-eight healthy 28-day-old weaned piglets (weight = 6.65 ± 1.19 kg) were randomly divided into two groups: the CON group and LPS group. During the experimental period of thirteen days, the LPS group was injected intraperitoneally with LPS (100 μg/kg) once per day, and the CON group was treated with the same volume of 0.9% NaCl solution. On the 1st, 5th, 9th, and 13th days, the serum and liver of the piglets were collected for the determination of serum biochemical indexes, an antioxidant capacity evaluation, and histopathological examinations. In addition, the mRNA expression levels of the TLR4 pathway and inflammatory cytokines were detected. The results showed that the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) in the serum increased after LPS induction. The activities of total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) in the serum and liver homogenate of the LPS group were lower than those of the CON group, while the malondialdehyde (MDA) content in the serum and the activities of catalase (CAT) and superoxide dismutase (SOD) in the liver of the LPS group were higher than those in the CON group. At the same time, morphological impairment of the livers occurred, including hepatocyte caryolysis, hepatocyte vacuolization, karyopycnosis, and inflammatory cell infiltration, and the mRNA expression levels of TLR4, MyD88, NF-κB, TNF-α, IL-6, and IL-10 were upregulated in the livers after LPS induction. The above results were more obvious on the 1st and 5th days of LPS induction, while the trend during the later period was not significant. It was concluded that the oxidative stress and liver injury occurred at the early stage of LPS induction, while the liver damage weakened at the later stage. The weaned piglets probably gradually developed tolerance to the endotoxin after the continuous low-dose induction of LPS.
Collapse
|
15
|
Lu Y, Cao C, Pan X, Liu Y, Cui D. Structure design mechanisms and inflammatory disease applications of nanozymes. NANOSCALE 2022; 15:14-40. [PMID: 36472125 DOI: 10.1039/d2nr05276h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanozymes are artificial enzymes with high catalytic activity, low cost, and good biocompatibility, and have received ever-increasing attention in recent years. Various inorganic and organic nanoparticles have been found to exhibit enzyme-like activities and are used as nanozymes for diverse biomedical applications ranging from tumor imaging and therapeutics to detection. However, their further clinical applications are hindered by the potential toxicity and long-term retention of nanomaterials in vivo. Clarifying the catalytic mechanism of nanozymes and identifying the key factors responsible for their behavior can guide the design of nanozyme structure, enlighten the ways to improve their enzyme-like activities, and minimize the dosage of nanozymes, leading to reduced toxicity to the human body for a real biomedical application prospect. In particular, inflammation occurring in numerous diseases is closely related to reactive oxygen species, and the active oxygen scavenging ability of nanozymes potentially exerts excellent therapeutic effects on inflammatory diseases. In this review, we systematically summarize the structure-activity relationship of nanozymes, including regulation strategies for size and morphology, surface structure, and composition. Based on the structure-activity mechanisms, a series of chemically designed nanozymes developed to target various inflammatory diseases are briefly summarized.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Cheng Cao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
- National Engineering Center for Nanotechnology, Shanghai 200240, People's Republic of China.
| |
Collapse
|
16
|
Ahmed ZSO, Tahon MA, Hasan RS, El-Sayed HGM, AbuBaker HO, Ahmed IM, Ahmed YH. Histopathological, immunohistochemical, and molecular investigation of atrazine toxic effect on some organs of adult male albino rats with a screening of Acacia nilotica as a protective trial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83797-83809. [PMID: 35771327 DOI: 10.1007/s11356-022-21659-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Atrazine (ATZ) is a widely used herbicide; however, it has deleterious effects. The current study aimed to investigate the potential toxic effect of ATZ as a neuroendocrine disruptor on the cerebellum and thyroid gland and on the liver as a detoxifying organ. We examined the ability of ATZ to induce oxidative stress and subsequent apoptosis in these organs. Moreover, we investigated the potential protective effect of Acacia nilotica, because of its potent antioxidant activity. Thus, our study was carried out on 40 adult male albino rats that were divided equally into 4 groups (10 rats/each group). The first group received distilled water, while the second group received ATZ dissolved in corn oil at 200 mg/kg body weight/day by stomach gavage. The third group was treated orally by ATZ (200 mg/kg body weight/day) plus Acacia nilotica (400 mg/kg/day). Group IV received Acacia nilotica only at a dose (400 mg/kg/day). After successive 30 days of the experiment, blood and tissue samples were collected from all groups. Our findings revealed the ability of ATZ to induce toxic effects was observed microscopically in the form of degenerated neurons and vacuolated neuropil of the cerebellum, degenerated hepatocytes, and vacuolation of the follicular cells of the thyroid gland. Furthermore, ATZ significantly elevated AST, ALT, and ALP serum levels and TB concentration, while decreased GSH. DNA fragmentation% and activated caspase-3 expression significantly increased after ATZ exposure. Interestingly, Acacia nilotica administration was able to partially protect the examined organs against the toxic effect of ATZ exposure.
Collapse
Affiliation(s)
- Zainab Sabry Othman Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- King Salman International University, Ras Sudr, South Sinai, Egypt
| | - Mohamed Abdelaziz Tahon
- Central laboratory of residue analysis of pesticides and heavy metal in food, Agricultural Research Center, Giza, Egypt
| | - Randa S Hasan
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Hazem G M El-Sayed
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Huda O AbuBaker
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ismaiel M Ahmed
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
17
|
Alimba CG, Sivanesan S, Krishnamurthi K. Mitochondrial dysfunctions elicited by solid waste leachates provide insights into mechanisms of leachates induced cell death and pathophysiological disorders. CHEMOSPHERE 2022; 307:136085. [PMID: 36007733 DOI: 10.1016/j.chemosphere.2022.136085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Emissions (mainly leachates and landfill gases) from solid waste facilities are laden with mixtures of dangerous xenobiotics implicated with significant increase in various pathophysiological disorders including cancer, and eventual mortality of exposed wildlife and humans. However, the molecular mechanisms of solid waste leachates induce pathophysiological disorders and cell death are still largely unknown. Although, evolving evidence implicated generation of reactive oxygen species and oxidative stress as the possible mechanism. Recent scientific reports are linking reactive oxygen species and mitochondrial dysfunctions as the player mechanism in pathophysiological disorder and apoptosis induced by xenobiotics in solid waste leachates. This systematic review presents an explicit discussion of recent scientific findings on the structural and functional alterations in mitochondria induced by solid waste leachates as the molecular mechanisms plausibly responsible for the pathophysiological disorders, cancer and cell death reported in landfill toxicology and epidemiological studies. This review aims to increase scientific understanding on solid waste leachate induced mitochondria dysfunctions as the key player in molecular mechanisms of solid waste induced toxicity. The findings in this review were mainly from using primary cells, cell lines, Drosophila and fish. Whether the findings will similarly be observed in mammalian test systems in vivo and particularly in exposed humans, remained to be investigated. Improvement in technological advancements, enforcement of legislation and regulations, and creation of sophisticated health surveillance against exposure to solid waste leachates, will expectedly mitigate human exposure to solid waste emissions and contamination of the environment.
Collapse
Affiliation(s)
- Chibuisi Gideon Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria; Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany.
| | - Saravanadevi Sivanesan
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Kannan Krishnamurthi
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P, India.
| |
Collapse
|
18
|
Alshammari GM, Abdelhalim MA, Al-Ayed MS, Al-Harbi LN, Yahya MA. The Protective Effect of α-Lipoic Acid against Gold Nanoparticles (AuNPs)-Mediated Liver Damage Is Associated with Upregulating Nrf2 and Suppressing NF-κB. Nutrients 2022; 14:nu14163327. [PMID: 36014833 PMCID: PMC9414933 DOI: 10.3390/nu14163327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/21/2022] Open
Abstract
This study examined if regulating the keap-1? Nrf2 antioxidant pathway mediated gold nanoparticles (AuNPs) induced liver damage, and examined the protective effect of co-supplement of α-lipoic acid (α-LA). Rats were separated into 4 groups (n = 8/each) as control, α-LA (200 mg/kg), AuNPs (5 µg/2.85 × 1011), and AuNPs (5 µg/2.85 × 1011) + α-LA (200 mg/kg). After 7 days, AuNPs induced severe degeneration in the livers of rats with the appearance of some fatty changes. In addition, it increased serum levels of alanine aminotransferase (ALT) and gamma-glutamyl transferase (ɣ-GTT), and aspartate aminotransferase (AST), as well as liver levels of malondialdehyde (MDA). Concomitantly, AuNPs significantly depleted hepatic levels of total glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) but increased hepatic levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). It also reduced mRNA levels of B-cell lymphoma 2 (Bcl2) and heme oxygenase-1 (HO-1) but significantly increased those of Bax and cleaved caspase-3, as well as the ratio of Bax/Bcl2. In addition, AuNPs enhanced the total and nuclear levels of NF-κB p65 but reduced the mRNA and total and nuclear protein levels of Nrf2. Of note, AuNPs did not affect the mRNA levels of keap-1. All these events were reversed by α-LA in the AuNPs-treated rats. In conclusion, α-LA attenuated AuNPs-mediated liver damage in rats by suppressing oxidative stress and inflammation, effects that are associated with upregulation/activation of Nrf2.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
19
|
Samuvel DJ, Nguyen NT, Jaeschke H, Lemasters JJ, Wang X, Choo YM, Hamann MT, Zhong Z. Platanosides, a Potential Botanical Drug Combination, Decrease Liver Injury Caused by Acetaminophen Overdose in Mice. JOURNAL OF NATURAL PRODUCTS 2022; 85:1779-1788. [PMID: 35815804 PMCID: PMC9788857 DOI: 10.1021/acs.jnatprod.2c00324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. Platanosides (PTSs) isolated from the American sycamore tree (Platanus occidentalis) represent a potential new four-molecule botanical drug class of antibiotics active against drug-resistant infectious disease. Preliminary studies have suggested that PTSs are safe and well tolerated and have antioxidant properties. The potential utility of PTSs in decreasing APAP hepatotoxicity in mice in addition to an assessment of their potential with APAP for the control of infectious diseases along with pain and pyrexia associated with a bacterial infection was investigated. On PTS treatment in mice, serum alanine aminotransferase (ALT) release, hepatic centrilobular necrosis, and 4-hydroxynonenal (4-HNE) were markedly decreased. In addition, inducible nitric oxide synthase (iNOS) expression and c-Jun-N-terminal kinase (JNK) activation decreased when mice overdosed with APAP were treated with PTSs. Computational studies suggested that PTSs may act as JNK-1/2 and Keap1-Nrf2 inhibitors and that the isomeric mixture could provide greater efficacy than the individual molecules. Overall, PTSs represent promising botanical drugs for hepatoprotection and drug-resistant bacterial infections and are effective in protecting against APAP-related hepatotoxicity, which decreases liver necrosis and inflammation, iNOS expression, and oxidative and nitrative stresses, possibly by preventing persistent JNK activation.
Collapse
Affiliation(s)
- Devadoss J. Samuvel
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Nga T. Nguyen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - John J. Lemasters
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, People Republic of China
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mark T. Hamann
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Zhi Zhong
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
20
|
Hepatoprotective Effect of Mitochondria-Targeted Antioxidant Mito-TEMPO against Lipopolysaccharide-Induced Liver Injury in Mouse. Mediators Inflamm 2022; 2022:6394199. [PMID: 35769207 PMCID: PMC9236847 DOI: 10.1155/2022/6394199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is vulnerable to sepsis, and sepsis-induced liver injury is closely associated with poor survival of sepsis patients. Studies have found that the overproduction of reactive oxygen species (ROS) is the major cause of oxidative stress, which is the main pathogenic factor for the progression of septic liver injury. The mitochondria are a major source of ROS. Mito-TEMPO is a mitochondria-specific superoxide scavenger. The aim of this study was to investigate the effect of Mito-TEMPO on lipopolysaccharide- (LPS-) induced sepsis mice. We found that Mito-TEMPO pretreatment inhibited inflammation, attenuated LPS-induced liver injury, and enhanced the antioxidative capability in septic mice, as evidenced by the decreased MDA content and the increased SOD activity. In addition, Mito-TEMPO restored mitochondrial size and improved mitochondrial function. Finally, we found that the levels of pyroptosis-related proteins in the liver of LPS-treated mice were lower after pretreatment with Mito-TEMPO. The mechanisms could be related to Mito-TEMPO enhanced antioxidative capability and improved mitochondrial function, which reflects the ability to neutralize ROS.
Collapse
|
21
|
Boulahtouf Z, Virzì A, Baumert TF, Verrier ER, Lupberger J. Signaling Induced by Chronic Viral Hepatitis: Dependence and Consequences. Int J Mol Sci 2022; 23:ijms23052787. [PMID: 35269929 PMCID: PMC8911453 DOI: 10.3390/ijms23052787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.
Collapse
Affiliation(s)
- Zakaria Boulahtouf
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Alessia Virzì
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Service d’Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Eloi R. Verrier
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Correspondence:
| |
Collapse
|
22
|
M Soliman S, Mosallam S, Mamdouh MA, Hussein MA, M Abd El-Halim S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv 2022; 29:427-439. [PMID: 35098843 PMCID: PMC8812757 DOI: 10.1080/10717544.2022.2032875] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cranberry extract (CBE) is a major source of the antioxidant polyphenolics but suffers from limited bioavailability. The goal of this research was to encapsulate the nutraceutical (CBE), into bile salt augmented liposomes (BSALs) as a promising oral delivery system to potentiate its hepatoprotective impact against dimethylnitrosamine (DMN) induced liver injury in rats. The inclusion of bile salt in the liposomal structure can enhance their stability within the gastrointestinal tract and promote CBE permeability. CBE loaded BSALs formulations were fabricated utilizing a (23) factorial design to explore the impact of phospholipid type (X1), phospholipid amount (X2), and sodium glycocholate (SGC) amount (X3) on BSALs properties, namely; entrapment efficiency percent, (EE%); vesicle size, (VS); polydispersity index; (PDI); zeta potential, (ZP); and release efficiency percent, (RE%). The optimum formulation (F1) exhibited spherical vesicles with EE% of 71.27 ± 0.32%, VS; 148.60 ± 6.46 nm, PDI; 0.38 ± 0.02, ZP; −18.27 ± 0.67 mV and RE%; 61.96 ± 1.07%. Compared to CBE solution, F1 had attenuated DMN-induced hepatic injury, as evidenced by the significant decrease in serum level of ALT, AST, ALP, MDA, and elevation of GSH level, as well as SOD and GPX activities. Furthermore, F1 exhibited an anti-inflammatory character by suppressing TNF-α, MCP-1, and IL-6, as well as downregulation of VEGF-C, STAT-3, and IFN-γ mRNA levels. This study verified that when CBE was integrated into BSALs, F1, its hepatoprotective effect was significantly potentiated to protect the liver against DMN-induced damage. Therefore, F1 could be deliberated as an antioxidant, antiproliferative, and antifibrotic therapy to slow down the progression of hepatic damage.
Collapse
Affiliation(s)
- Sara M Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Mohammed Abdalla Hussein
- Biochemistry Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Shady M Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| |
Collapse
|
23
|
Asadi N, Yousefi E, Tappeh KH, Khademvatan S. Anti-toxoplasma and Cytotoxic Activities of Holothuria leucospilota Extract and TiO 2NPs In vitro and In vivo. Infect Disord Drug Targets 2022; 22:e170122200295. [PMID: 35078399 DOI: 10.2174/1871526522666220117120303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND An impressive treatment for toxoplasmosis is the combinatory use of sulfadiazine and pyrimethamine. However, both the drugs involve significant side effects and toxicity for the host. Therefore, the discovery of new anti-toxoplasma medications with high efficacy and less to no side effects is urgently needed. OBJECTIVE This study aimed to evaluate the anti-toxoplasmic effects of Holothuria leucospilota (H. leucospilota) extract and TiO2NPs on the cell death of Toxoplasma gondii (T. gondii) tachyzoites in vitro and serum liver enzymes (AST, ALT, and ALP), and also to evaluate the immune response and production of IL-5, IFN-γ, and TNF-α in a mouse model. MATERIALS AND METHODS The cytotoxicity of TiO2NPs and H. leucospilota extract against the tachyzoite of T. gondii was evaluated by the methyl thiazolyl tetrazolium (MTT) assay. The levels of serum TNF-α, IFN-γ, IL-5, and liver enzymes were measured, as well. All the groups were subjected to T. gondii, and the survival rate of experimental mice was evaluated. RESULTS Our findings suggested in vivo and in vitro anti-toxoplasmic activity of TiO2NPs and H. leucospilota extract by inhibiting the proliferation and invasion of T. gondii tachyzoite. In addition, a significant increase in IFN-γ and TNF-α production was observed in mice treated with high doses of TiO2NPs and H. leucospilota extract. However, IL-5 levels decreased in TiO2NPs and H. leucospilota extract-treated mice. Our results also showed a highly significant increase (P < 0.05) in the levels of ALT, AST, and ALP in the groups injected with TiO2NPs and H. leucospilota extract, but not the control group. CONCLUSION TiO2NPs and H. leucospilota extract have greater anti-toxoplasma effects in vitro and in vivo. These two compounds could be considered as a candidate for use against toxoplasmosis, both therapeutically and prophylactically.
Collapse
Affiliation(s)
- Negar Asadi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Yousefi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Khosrow Hazrati Tappeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
24
|
Guo X, Li Z, Liu S, Zhang M, Guan Y, Qin J, Li X, Zhang B, Tang J. Studying the effect of PDA@CeO 2 nanoparticles with antioxidant activity on the mechanical properties of cells. J Mater Chem B 2021; 9:9204-9212. [PMID: 34698747 DOI: 10.1039/d1tb01918j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studying the influence of nanomaterials on the microstructure and mechanical properties of cells is essential to guide the biological applications of nanomaterials. In this article, the effects of the first synthesized PDA@CeO2 nanoparticles (NPs) with multiple ROS scavenging activities on cell ultra-morphology and mechanical properties were investigated by atomic force microscopy (AFM). After the cells were exposed to PDA@CeO2 NPs, there was no obvious change in cell morphology, but the Young's modulus of the cells was increased. On the contrary, after the cells were damaged by H2O2, the secreted molecules appeared on the cell surface, and the Young's modulus was decreased significantly. However, PDA@CeO2 NPs could effectively inhibit the reduction of the Young's modulus caused by oxidative stress damage. PDA@CeO2 NPs could also protect F-actin from oxidative stress damage and maintain the stability of the cytoskeleton. This work investigates the intracellular antioxidant mechanism of nanomaterials from the changes in the microstructure and biomechanics of living cells, providing a new analytical approach to explore the biological effects of nanomaterials.
Collapse
Affiliation(s)
- Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Sitong Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, P. R. China.,School of Life Sciences, Jilin University, Changchun, 130012, P. R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, P. R. China
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
25
|
Liu W, Zeng X, Liu Y, Liu J, Li C, Chen L, Chen H, Ouyang D. The Immunological Mechanisms and Immune-Based Biomarkers of Drug-Induced Liver Injury. Front Pharmacol 2021; 12:723940. [PMID: 34721020 PMCID: PMC8554067 DOI: 10.3389/fphar.2021.723940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) has become one of the major challenges of drug safety all over the word. So far, about 1,100 commonly used drugs including the medications used regularly, herbal and/or dietary supplements, have been reported to induce liver injury. Moreover, DILI is the main cause of the interruption of new drugs development and drugs withdrawn from the pharmaceutical market. Acute DILI may evolve into chronic DILI or even worse, commonly lead to life-threatening acute liver failure in Western countries. It is generally considered to have a close relationship to genetic factors, environmental risk factors, and host immunity, through the drug itself or its metabolites, leading to a series of cellular events, such as haptenization and immune response activation. Despite many researches on DILI, the specific biomarkers about it are not applicable to clinical diagnosis, which still relies on the exclusion of other causes of liver disease in clinical practice as before. Additionally, circumstantial evidence has suggested that DILI is mediated by the immune system. Here, we review the underlying mechanisms of the immune response to DILI and provide guidance for the future development of biomarkers for the early detection, prediction, and diagnosis of DILI.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jinfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Hongying Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
26
|
Wang L, Wang X, Kong L, Wang S, Huang K, Wu J, Wang C, Sun H, Liu K, Meng Q. Isoliquiritigenin alleviates LPS/ D-GalN-induced acute liver failure by activating the PGC-1α/ Nrf2 pathway to reduce oxidative stress and inflammatory response. Int Immunopharmacol 2021; 100:108159. [PMID: 34555641 DOI: 10.1016/j.intimp.2021.108159] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022]
Abstract
Acute liver failure (ALF) is a dramatic liver disease characterized by large areas of inflammation. However, there are no available effective targeted drugs for ALF treatment. In the study, serum biochemical index and H&E were used to explore the amelioration of the liver histopathological changes. The oxidative stress kits, quantitative real-time PCR, western blot, immunohistochemistry, immunofluorescence staining, reactive oxygen species (ROS), and siRNA were used to elucidate the mechanisms underlying isoliquiritigenin (ISL) protection. The results showed that ISL significantly improved the liver pathological changes. Furthermore, ISL reduced oxidative stress by altering the expression of PGC-1α, Nrf2, HO-1, NQO1, Keap1, GCLC, and GCLM in damaged hepatocytes. Moreover, the levels of inflammation-related genes including NLRP3 inflammasome, IL-1β, IL-6, TNF-α, iNOS, and Mip-2 were repressed by ISL. In addition, ISL alleviated LPS/D-GalN-induced hepatocytes apoptosis by increasing the Bcl-2/Bax ratio and suppressing the expression of cleaved caspase-3. Further in vivo and in vitro evidence proved the involvement of the PGC-1α/Nrf2 signaling pathway in ISL protection. In conclusion, ISL improves the ability of anti-oxidative stress, alleviates inflammatory reaction, apoptosis, and inhibits NLRP3 inflammasome to protect lipopolysaccharide/D-galactosamine (LPS/D-GalN)-induced ALF through activating the PGC-1α/Nrf2 pathway, which provides the possibility for the treatment of ALF.
Collapse
Affiliation(s)
- Lu Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaohui Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lina Kong
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shuyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Kai Huang
- Drug Clinical Trial Institution, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
27
|
Ahmadi A, Niknahad H, Li H, Mobasheri A, Manthari RK, Azarpira N, Mousavi K, Khalvati B, Zhao Y, Sun J, Zong Y, Ommati MM, Heidari R. The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid-induced hepatic and renal toxicity. Toxicol Lett 2021; 349:12-29. [PMID: 34089816 DOI: 10.1016/j.toxlet.2021.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
The cholestatic liver injury could occur in response to a variety of diseases or xenobiotics. Although cholestasis primarily affects liver function, it has been well-known that other organs such as the kidney could be influenced in cholestatic patients. Severe cholestasis could lead to tissue fibrosis and organ failure. Unfortunately, there is no specific therapeutic option against cholestasis-induced organ injury. Hence, finding the mechanism of organ injury during cholestasis could lead to therapeutic options against this complication. The accumulation of potentially cytotoxic compounds such as hydrophobic bile acids is the most suspected mechanism involved in the pathogenesis of cholestasis-induced organ injury. A plethora of evidence indicates a role for the inflammatory response in the pathogenesis of several human diseases. Here, the role of nuclear factor-kB (NFkB)-mediated inflammatory response is investigated in an animal model of cholestasis. Bile duct ligated (BDL) animals were treated with sulfasalazine (SSLZ, 10 and 100 mg/kg, i.p) as a potent inhibitor of NFkB signaling. The NFkB proteins family activity in the liver and kidney, serum and tissue levels of pro-inflammatory cytokines, tissue biomarkers of oxidative stress, serum markers of organ injury, and the liver and kidney histopathological alterations and fibrotic changes. The oxidative stress-mediated inflammatory-related indices were monitored in the kidney and liver at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant increase in serum and urine markers of organ injury, besides changes in biomarkers of oxidative stress and tissue histopathology, were evident in the liver and kidney of BDL animals. The activity of NFkB proteins (p65, p50, p52, c-Rel, and RelB) was significantly increased in the liver and kidney of cholestatic animals. Serum and tissue levels of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-7, IL-12, IL-17, IL-18, IL-23, TNF-α, and INF-γ) were also higher than sham-operated animals. Moreover, TGF- β, α-SMA, and tissue fibrosis (Trichrome stain) were evident in cholestatic animals' liver and kidneys. It was found that SSLZ (10 and 100 mg/kg/day, i.p) alleviated cholestasis-induced hepatic and renal injury. The effect of SSLZ on NFkB signaling and suppression of pro-inflammatory cytokines could play a significant role in its protective role in cholestasis. Based on these data, NFkB signaling could receive special attention to develop therapeutic options to blunt cholestasis-induced organ injury.
Collapse
Affiliation(s)
- Asrin Ahmadi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Jianyu Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yuqi Zong
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Wang Y, Liu Y. Neutrophil-Induced Liver Injury and Interactions Between Neutrophils and Liver Sinusoidal Endothelial Cells. Inflammation 2021; 44:1246-1262. [PMID: 33649876 DOI: 10.1007/s10753-021-01442-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Neutrophils are the most abundant type of leukocytes with diverse functions in immune defense including production of reactive oxygen species, bacteriocidal proteins, neutrophil extracellular traps, and pro-inflammatory mediators. However, aberrant accumulation of neutrophils in host tissues and excessive release of bacteriocidal compounds can lead to unexpected injury to host organs. Neutrophil-mediated liver injury has been reported in various types of liver diseases including liver ischemia/reperfusion injury, nonalcoholic fatty liver disease, endotoxin-induced liver injury, alcoholic liver disease, and drug-induced liver injury. Yet the mechanisms of neutrophil-induced hepatotoxicity in different liver diseases are complicated. Current knowledge of these mechanisms are summarized in this review. In addition, a substantial body of evidence has emerged showing that liver sinusoidal endothelial cells (LSECs) participate in several key steps of neutrophil-mediated liver injury including neutrophil recruitment, adhesion, transmigration, and activation. This review also highlights the current understanding of the interactions between LSECs and neutrophils in liver injury. The future challenge is to explore new targets for selectively interfering neutrophil-induced liver injury without impairing host defense function against microbial infection. Further understanding the role of LSECs in neutrophil-induced hepatotoxicity would aid in developing more selective therapeutic approaches for liver disease.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
29
|
Yang F, Feng B, Niu YJ, Hu CY, Meng YH. Fu instant tea ameliorates fatty liver by improving microbiota dysbiosis and elevating short-chain fatty acids in the intestine of mice fed a high-fat diet. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep 2021; 24:605. [PMID: 34184084 PMCID: PMC8240184 DOI: 10.3892/mmr.2021.12242] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Taurine is a fundamental mediator of homeostasis that exerts multiple roles to confer protection against oxidant stress. The development of hypertension, muscle/neuro‑associated disorders, hepatic cirrhosis, cardiac dysfunction and ischemia/reperfusion are examples of some injuries that are linked with oxidative stress. The present review gives a comprehensive description of all the underlying mechanisms of taurine, with the aim to explain its anti‑oxidant actions. Taurine is regarded as a cytoprotective molecule due to its ability to sustain normal electron transport chain, maintain glutathione stores, upregulate anti‑oxidant responses, increase membrane stability, eliminate inflammation and prevent calcium accumulation. In parallel, the synergistic effect of taurine with other potential therapeutic modalities in multiple disorders are highlighted. Apart from the results derived from research findings, the current review bridges the gap between bench and bedside, providing mechanistic insights into the biological activity of taurine that supports its potential therapeutic efficacy in clinic. In the future, further clinical studies are required to support the ameliorative effect of taurine against oxidative stress.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Demetrios A. Spandidos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | | | |
Collapse
|
31
|
Dai JM, Guo WN, Tan YZ, Niu KW, Zhang JJ, Liu CL, Yang XM, Tao KS, Chen ZN, Dai JY. Wogonin alleviates liver injury in sepsis through Nrf2-mediated NF-κB signalling suppression. J Cell Mol Med 2021; 25:5782-5798. [PMID: 33982381 PMCID: PMC8184690 DOI: 10.1111/jcmm.16604] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/24/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a life‐threatening organ dysfunction syndrome, and liver is a susceptible target organ in sepsis, because the activation of inflammatory pathways contributes to septic liver injury. Oxidative stress has been documented to participate in septic liver injury, because it not only directly induces oxidative genotoxicity, but also exacerbates inflammatory pathways to potentiate damage of liver. Therefore, to ameliorate oxidative stress is promising for protecting liver in sepsis. Wogonin is the compound extracted from the medicinal plant Scutellaria baicalensis Geogi and was found to exert therapeutic effects in multiple inflammatory diseases via alleviation of oxidative stress. However, whether wogonin is able to mitigate septic liver injury remains unknown. Herein, we firstly proved that wogonin treatment could improve survival of mice with lipopolysaccharide (LPS)‐ or caecal ligation and puncture (CLP)‐induced sepsis, together with restoration of reduced body temperature and respiratory rate, and suppression of several pro‐inflammatory cytokines in circulation. Then, we found that wogonin effectively alleviated liver injury via potentiation of the anti‐oxidative capacity. To be specific, wogonin activated Nrf2 thereby promoting expressions of anti‐oxidative enzymes including NQO‐1, GST, HO‐1, SOD1 and SOD2 in hepatocytes. Moreover, wogonin‐induced Nrf2 activation could suppress NF‐κB‐regulated up‐regulation of pro‐inflammatory cytokines. Ultimately, we provided in vivo evidence that wogonin activated Nrf2 signalling, potentiated anti‐oxidative enzymes and inhibited NF‐κB‐regulated pro‐inflammatory signalling. Taken together, this study demonstrates that wogonin can be the potential therapeutic agent for alleviating liver injury in sepsis by simultaneously ameliorating oxidative stress and inflammatory response through the activation of Nrf2.
Collapse
Affiliation(s)
- Ji-Min Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Wei-Nan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi-Zhou Tan
- Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Kun-Wei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia-Jia Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Cheng-Li Liu
- Department of Hepatobiliary Surgery, Air Force Medical Center, Beijing, China.,Fourth Military Medical University, Xi'an, China
| | - Xiang-Min Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Kai-Shan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing-Yao Dai
- Department of Hepatobiliary Surgery, Air Force Medical Center, Beijing, China.,Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Nguyen TLL, Huynh DTN, Jin Y, Jeon H, Heo KS. Protective effects of ginsenoside-Rg2 and -Rh1 on liver function through inhibiting TAK1 and STAT3-mediated inflammatory activity and Nrf2/ARE-mediated antioxidant signaling pathway. Arch Pharm Res 2021; 44:241-252. [PMID: 33537886 DOI: 10.1007/s12272-020-01304-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Systemic or hepatic inflammation is caused by intraperitoneal application of lipopolysaccharide (LPS). In this study, we investigated anti-inflammatory and antioxidant properties of combination of ginsenoside-Rg2 (G-Rg2) and -Rh1 (G-Rh1) on liver function under LPS challenging. We first confirmed that G-Rg2 and -Rh1 at 100 μg/ml did not show cytotoxicity in HepG2 cells. G-Rg2 and -Rh1 treatment significantly inhibited activation of STAT3 and TAK1, and inflammatory factors including iNOS, TNF-α, and IL-1β in peritoneal macrophages. In HepG2 cells, G-Rg2 and -Rh1 treatment inhibited activation of STAT3 and TAK1/c-Jun N-terminal kinase, and down-regulated nuclear translocation of NF-κB transcription factor. In addition, LPS-induced mitochondrial dysfunction was restored by treatment with G-Rg2 and -Rh1. Interestingly, pretreatment with G-Rg2 and -Rh1 effectively inhibited mitochondrial damage-mediated ROS production induced by LPS stimulation, and alterations of Nrf2 nuclear translocation and ARE promotor activity were involved in G-Rg2 and -Rh1 effects on balancing ROS levels. In liver tissues of LPS-treated mice, G-Rg2 and -Rh1 treatment protected liver damages and increased Nrf2 expression while reducing CD45 expression. Taken together, G-Rg2 and -Rh1 exerts a protective effect on liver function by increasing antioxidant through Nrf2 and anti-inflammatory activities through STAT3/TAK1 and NF-κB signaling pathways in liver cells and macrophages.
Collapse
Affiliation(s)
- Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Diem Thi Ngoc Huynh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea.,Department of Pharmacy, Da Nang University of Medical Technology and Pharmacy, Da Nang, Vietnam
| | - Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Hyesu Jeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
33
|
Evaluation of the effect of methotrexate on the hippocampus, cerebellum, liver, and kidneys of adult male albino rat: Histopathological, immunohistochemical and biochemical studies. Acta Histochem 2021; 123:151682. [PMID: 33465564 DOI: 10.1016/j.acthis.2021.151682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Methotrexate (MTX) has been used for treatment of autoimmune diseases, inflammatory disorders as rheumatic arthritis, and different types of cancers. However, it has shown adverse effects on vital organs. The current study was conducted to investigate the toxic effect of MTX on the hippocampus, cerebellum, liver and kidneys of adult male albino rats. MTX was injected weekly at 5 mg/kg body weight via I/P injection for 6 weeks. At the end of the experiment, histopathological, immunohistochemical and biochemical evaluation were performed on the hippocampus, cerebellum, liver, and kidney tissues of the sacrificed rats. We observed that methotrexate induced neural tissue damage in the hippocampus and cerebellum, degeneration of hepatocytes, congestion of the central vein and blood sinusoids of the liver, distortion in the renal corpuscles and necrosis of the renal tubule. Immunohistochemical findings revealed strong positive expression of Caspase-3, PCNA and GFAP. Biochemical studies revealed significant elevation in the serum levels of AST and ALT, in addition to high serum concentrations of creatinine and urea. Also, MTX injection increased MDA, while it decreased GSH, SOD and AChE levels. We conclude the ability of MTX to induce oxidative stress that results into apoptosis and tissue injury, leading to neurotoxicity, hepatotoxicity, and nephrotoxicity.
Collapse
|
34
|
ÇAKINA S, ÖZTÜRK Ş. Streptozotosin kaynaklı diyabetik sıçanların karaciğerindeki oksidatif stres belirteçleri: metformin ve sitagliptinin etkileri. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.791369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
35
|
Dihydro-stilbene gigantol relieves CCl 4-induced hepatic oxidative stress and inflammation in mice via inhibiting C5b-9 formation in the liver. Acta Pharmacol Sin 2020; 41:1433-1445. [PMID: 32404983 DOI: 10.1038/s41401-020-0406-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
In general, anti-inflammatory treatment is considered for multiple liver diseases despite the etiology. But current drugs for alleviating liver inflammation have defects, making it necessary to develop more potent and safer drugs for liver injury. In this study, we screened a series of (dihydro-)stilbene or (dihydro-)phenanthrene derivatives extracted from Pholidota chinensis for their potential biological activities. Among 31 compounds, the dihydro-stilbene gigantol exerted most potent protective effects on human hepatocytes against lithocholic acid toxicity, and exhibited solid antioxidative and anti-inflammatory effect in vitro. In mice with CCl4-induced acute liver injury, pre-administration of gigantol (10, 20, 40 mg· kg-1· d-1, po, for 7 days) dose-dependently decreased serum transaminase levels and improved pathological changes in liver tissues. The elevated lipid peroxidation and inflammatory responses in the livers were also significantly alleviated by gigantol. The pharmacokinetic studies showed that gigantol was highly concentrated in the mouse livers, which consisted with its efficacy in preventing liver injury. Using a label-free quantitative proteomic analysis we revealed that gigantol mainly regulated the immune system process in liver tissues of CCl4-treated mice, and the complement and coagulation cascades was the predominant pathway; gigantol markedly inhibited the expression of complement component C9, which was a key component for the formation of terminal complement complex (TCC) C5b-9. These results were validated by immunohistochemistry (IHC) or real time-PCR. Confocal microscopy analysis showed that gigantol significantly inhibited the vascular deposition of TCC in the liver. In conclusion, we demonstrate for the first time that oral administration of gigantol potently relieves liver oxidative stress and inflammation, possibly via a novel mechanism of inhibiting the C5b-9 formation in the liver.
Collapse
|
36
|
Salama SA, Kabel AM. Taxifolin ameliorates iron overload-induced hepatocellular injury: Modulating PI3K/AKT and p38 MAPK signaling, inflammatory response, and hepatocellular regeneration. Chem Biol Interact 2020; 330:109230. [PMID: 32828744 DOI: 10.1016/j.cbi.2020.109230] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Although physiological levels of iron are essential for numerous biological processes, excess iron causes critical tissue injury. Under iron overload conditions, non-chelated iron generates reactive oxygen species that mediate iron-induced tissue injury with subsequent induction of apoptosis, necrosis, and inflammatory responses. Because liver is a central player in iron metabolism and storage, it is vulnerable to iron-induced tissue injury. Taxifolin is naturally occurring compound that has shown potent antioxidant and potential iron chelation competency. The aim of the current study was to investigate the potential protective effects of taxifolin against iron-induced hepatocellular injury and to elucidate the underlining mechanisms using rats as a mammalian model. The results of the current work indicated that taxifolin inhibited iron-induced apoptosis and enhanced hepatocellular survival as demonstrated by decreased activity of caspase-3 and activation of the pro-survival signaling PI3K/AKT, respectively. Western blotting analysis revealed that taxifolin enhanced liver regeneration as indicated by increased PCNA protein abundance. Taxifolin mitigated the iron-induced histopathological aberration and reduced serum activity of liver enzymes (ALT and AST), highlighting enhanced liver cell integrity. Mechanistically, taxifolin modulated the redox-sensitive MAPK signaling (p38/c-Fos) and improved redox status of the liver tissues as indicated by decreased lipid peroxidation and protein oxidation along with enhanced total antioxidant capacity. Interestingly, it decreased liver iron content and down-regulated the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β. Collectively, these data highlight, for the first time, the ameliorating effects of taxifolin against iron overload-induced hepatocellular injury that is potentially mediated through anti-inflammatory, antioxidant, and potential iron chelation activities.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
37
|
Josson Akkara P, Sabina EP. A biochemical approach to the anti-inflammatory, antioxidant and antiapoptotic potential of beta-carotene as a protective agent against bromobenzene-induced hepatotoxicity in female Wistar albino rats. J Appl Biomed 2020; 18:87-95. [PMID: 34907730 DOI: 10.32725/jab.2020.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2020] [Indexed: 11/05/2022] Open
Abstract
Bromobenzene is a compound which has contributed much in understanding the mechanisms involved in xenobiotic hepatotoxicity induced by drugs and environment pollutants. In the present study, the protective and ameliorative effect of beta-carotene was investigated against bromobenzene-induced hepatotoxicity and compared with silymarin, a standard hepatoprotective reference drug. Beta-carotene (10 mg/kg b.w. p.o.) was administered to the rats for 9 days before intragastric intubation of bromobenzene (10 mmol/kg b.w.). Liver marker enzymes (aspartate transaminase, alanine transaminase and alkaline phosphatase), total protein content, bilirubin, total cholesterol, high-density lipoproteins, triglycerides, antioxidant status (reduced glutathione, superoxide dismutase, catalase, glutathione-S-transferase and glutathione peroxidase) were assessed along with histopathological analysis. ELISA was performed for analysing the levels of cytokines such as TNF-α, IL-1β and IL-6 in serum and in the liver. Caspase-3, COX-2 and NF-κB were evaluated by Western blotting. Administration of bromobenzene resulted in elevated levels of liver marker enzymes, bilirubin, lipid peroxidation and cytokines but deterioration in total protein content, antioxidant levels and histopathological conditions. Pre-treatment with beta-carotene not only significantly decreased the levels of liver markers, lipid peroxidation and cytokines but also improved histo-architecture and increased antioxidant levels minimising oxidative stress, and reduced factors contributing to apoptosis. This significant reversal of the biochemical changes on pre-treatment with beta-carotene in comparison with rats administered with bromobenzene clearly demonstrates that beta-carotene possesses promising hepatoprotective effect through its antioxidant, anti-inflammatory and antiapoptotic activity and hence is suggested as a potential therapeutic agent for protection from bromobenzene.
Collapse
Affiliation(s)
- Priya Josson Akkara
- Vellore Institute of Technology, School of Bio Sciences and Technology, Vellore, India.,Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Evan Prince Sabina
- Vellore Institute of Technology, School of Bio Sciences and Technology, Vellore, India
| |
Collapse
|
38
|
Kang YB(A, Eo J, Bulutoglu B, Yarmush ML, Usta OB. Progressive hypoxia-on-a-chip: An in vitro oxygen gradient model for capturing the effects of hypoxia on primary hepatocytes in health and disease. Biotechnol Bioeng 2020; 117:763-775. [PMID: 31736056 PMCID: PMC7015781 DOI: 10.1002/bit.27225] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Oxygen is vital to the function of all tissues including the liver and lack of oxygen, that is, hypoxia can result in both acute and chronic injuries to the liver in vivo and ex vivo. Furthermore, a permanent oxygen gradient is naturally present along the liver sinusoid, which plays a role in the metabolic zonation and the pathophysiology of liver diseases. Accordingly, here, we introduce an in vitro microfluidic platform capable of actively creating a series of oxygen concentrations on a single continuous microtissue, ranging from normoxia to severe hypoxia. This range approximately captures both the physiologically relevant oxygen gradient generated from the portal vein to the central vein in the liver, and the severe hypoxia occurring in ischemia and liver diseases. Primary rat hepatocytes cultured in this microfluidic platform were exposed to an oxygen gradient of 0.3-6.9%. The establishment of an ascending hypoxia gradient in hepatocytes was confirmed in response to the decreasing oxygen supply. The hepatocyte viability in this platform decreased to approximately 80% along the hypoxia gradient. Simultaneously, a progressive increase in accumulation of reactive oxygen species and expression of hypoxia-inducible factor 1α was observed with increasing hypoxia. These results demonstrate the induction of distinct metabolic and genetic responses in hepatocytes upon exposure to an oxygen (/hypoxia) gradient. This progressive hypoxia-on-a-chip platform can be used to study the role of oxygen and hypoxia-associated molecules in modeling healthy and injured liver tissues. Its use can be further expanded to the study of other hypoxic tissues such as tumors as well as the investigation of drug toxicity and efficacy under oxygen-limited conditions.
Collapse
Affiliation(s)
- Young Bok (Abraham) Kang
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
- College of Engineering, George Fox University, Newberg, OR, USA
| | - Jinsu Eo
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Beyza Bulutoglu
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - O. Berk Usta
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children-Boston, Boston, MA, USA
| |
Collapse
|
39
|
Li R, Kassaye H, Pan Y, Shen Y, Li W, Cheng Y, Guo J, Xu Y, Yin H, Yuan Z. A visible and near-infrared dual-fluorescent probe for discrimination between Cys/Hcy and GSH and its application in bioimaging. Biomater Sci 2020; 8:5994-6003. [DOI: 10.1039/d0bm01237h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The probe Cy2 showed high sensitivity and excellent selectivity with a distinct fluorescence off-on response to GSH with NIR emission and Cys/Hcy with green emission, respectively.
Collapse
|
40
|
Xiong G, Deng Y, Cao Z, Liao X, Zhang J, Lu H. The hepatoprotective effects of Salvia plebeia R. Br. extract in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 95:399-410. [PMID: 31654769 DOI: 10.1016/j.fsi.2019.10.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Salvia plebeia R. Br. is a traditional Chinese medicinal herb that has been widely used for the treatment of many inflammatory diseases such as hepatitis. However, the underlying molecular mechanism about the hepatoprotective effects of S. plebeia remains largely unknown. Here, we investigated the antioxidant activities and anti-inflammatory effects of ethanol extracts of S. plebeia (SPEE) in the zebrafish model. Firstly, we determined the chemical compositions of SPEE and identified three major constituents by using GC-MS analysis. After that, SPEE exhibited significantly antioxidant properties in the LPS-induced zebrafish embryos, and the enzyme activities of ROS, CAT and SOD were obviously inhibited in a dose-dependent manner. Secondly, SPEE greatly reduced fat vacuoles (HE staining), lipid accumulation (Oil O staining) and hepatocyte fibrosis (Gemori staining) in the thioacetamide (TAA)-induced hepatocyte injury of adult zebrafish. Meanwhile, the NO contents and lipid metabolism-related genes were substantially down-regulated after SPEE exposure. Thirdly, we used RNA-Seq analysis to identify the differentially expressed genes (DEGs) after SPEE exposure in adult zebrafish liver. The results showed that 1289 DEGs including 558 up-regulated and 731 down-regulated were identified between the TAA + SPEE and TAA groups. KEGG pathway and GO functional analysis revealed that steroid biosynthesis, oxidation-reduction and innate immunity were significantly enriched. Mechanistically, SPEE can considerably reduce the cell apoptosis of hepatocytes and promote the translocation of Nrf2 protein from the nucleus to the cytoplasm in TAA-induced zebrafish. Moreover, SPEE can modulate various inflammatory cytokines and immune genes both in the control and H2O2-stimulated conditions. The pro-inflammatory cytokines such as IL-1β and TNF-α was markedly up-regulated but the anti-inflammatory cytokines such as TGF-β was greatly down-regulated after SPEE treatment. In addition, some key genes in the TLR signaling were also activated in the H2O2-stimulated conditions. In summary, our results suggested that SPEE had an important role in the antioxidant and anti-inflammatory effects in zebrafish in the near future. Some of the components identified in this study may be served as potential sources of new hepatoprotective compounds for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Yunyun Deng
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Zigang Cao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Xinjun Liao
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China.
| |
Collapse
|
41
|
Zhou RJ, Zhao Y, Fan K, Xie ML. Protective effect of apigenin on d-galactosamine/LPS-induced hepatocellular injury by increment of Nrf-2 nucleus translocation. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:929-936. [PMID: 31758207 DOI: 10.1007/s00210-019-01760-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Apigenin has a protective effect on D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced mouse liver injury through the increments of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and peroxisome proliferator-activated receptor γ (PPARγ) expressions, but its exact mechanisms are still uncertain. This study aimed to further verify its protective effect on hepatocytes and to determine its target of action. The results showed that after treatment of D-GalN/LPS-stimulated hepatocytes with 2.5-20 μM apigenin, the supernatant alanine aminotransferase, aspartate aminotransferasein, tumor necrosis factor-α, and malondialdehyde levels and intracellular nuclear factor-κB protein expression were decreased, while the supernatant superoxide dismutase (SOD) and catalase (CAT) levels, intracellular PPARγ and inhibitor of kappa B-alpha protein expressions, and nucleus Nrf-2 protein expression were increased. After pretreatment with BML-111 or GW9662, the apigenin-induced nucleus Nrf-2 or intracellular PPARγ protein expressions were completely inhibited, respectively, but the both pretreatment differently affected the protective effect of apigenin on hepatocytes. The former completely canceled the protective effect, whereas the latter did not. These findings further demonstrate that apigenin can exert a protective effect on D-GalN/LPS-induced hepatocellular injury via the increment of Nrf-2 nucleus translocation, which may increase the SOD and CAT levels and PPARγ protein expression and subsequently inhibit the inflammatory response.
Collapse
Affiliation(s)
- Rui-Jun Zhou
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China
| | - Ying Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China
| | - Ke Fan
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China
| | - Mei-Lin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, No. 199 Renai Road, Suzhou Industrial Park 215123, Suzhou, Jiangsu Province, 215123, China.
| |
Collapse
|
42
|
Lv H, An B, Yu Q, Cao Y, Liu Y, Li S. The hepatoprotective effect of myricetin against lipopolysaccharide and D-galactosamine-induced fulminant hepatitis. Int J Biol Macromol 2019; 155:1092-1104. [PMID: 31712142 DOI: 10.1016/j.ijbiomac.2019.11.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
Fulminant hepatitis (FH) is a severe liver disease characterized by extensive hepatic necrosis, oxidative stress, and inflammation. Myricetin (Myr), a botanical flavonoid glycoside, is recognized to exert antiapoptosis, anti-inflammatory, and antioxidant properties. In the current study, we focused on exploring the protective effects and underlying mechanisms of Myr against lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced FH. These data indicated that Myr effectively protected from LPS/D-GalN-induced FH by lowering the mortality of mice, decreasing ALT and AST levels, and alleviating histopathological changes, oxidative stress, inflammation, and hepatic apoptosis. Moreover, Myr could efficiently mediate multiple signaling pathways, displaying not only the regulation of caspase-3/9 and P53 protein, inhibition of toll-like receptor 4 (TLR4)-nuclear factor-kappa B (NF-κB) activation, and -mitogen-activated protein kinase (MAPK), but also the increase of heme oxygenase-1 (HO-1) and nuclear factor-erythroid 2-related factor 2 (Nrf2) expression, as well as induction of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation in mice with LPS/D-GalN-induced FH. Importantly, our further results in vitro suggested that Myr remarkably attenuated H2O2-triggered hepatotoxicity and ROS generation, activated Keap1-Nrf2/HO-1 and AMPK/ACC signaling pathway. However, Myr-enhanced the expression of HO-1 and Nrf2 protein was reversed by Keap1-overexpression, Nrf2-null and AMPK inhibitor. Meanwhile, Myr-relieved hepatotoxicity excited by H2O2 was blocked by Nrf2-null and AMPK inhibitor. Taken together, Myr exhibits a protective role against LPS/D-GalN-induced FH by suppressing hepatic apoptosis, inflammation, and oxidative stress, likely involving in the regulation of apoptosis-related protein, TLR4-NF-κB/-MAPK and NLRP3 inflammasome, and AMPK-Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Beiying An
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun 130062, China
| | - Yu Cao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Yang Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Bayi, China.
| |
Collapse
|
43
|
Wang H, Wan K, Shi X. Recent Advances in Nanozyme Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805368. [PMID: 30589120 DOI: 10.1002/adma.201805368] [Citation(s) in RCA: 411] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Indexed: 05/21/2023]
Abstract
As a new generation of artificial enzymes, nanozymes have the advantages of high catalytic activity, good stability, low cost, and other unique properties of nanomaterials. Due to their wide range of potential applications, they have become an emerging field bridging nanotechnology and biology, attracting researchers in various fields to design and synthesize highly catalytically active nanozymes. However, the thorough understanding of experimental phenomena and the mechanisms beneath practical applications of nanozymes limits their rapid development. Herein, the progress of experimental and computational research of nanozymes on two issues over the past decade is briefly reviewed: (1) experimental development of new nanozymes mimicking different types of enzymes. This covers their structures and applications ranging from biosensing and bioimaging to therapeutics and environmental protection. (2) The catalytic mechanism proposed by experimental and theoretical study. The challenges and future directions of computational research in this field are also discussed.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaiwei Wan
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinghua Shi
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Gao K, Liu F, Chen X, Chen M, Deng Q, Zou X, Guo H. Crocetin protects against fulminant hepatic failure induced by lipopolysaccharide/D-galactosamine by decreasing apoptosis, inflammation and oxidative stress in a rat model. Exp Ther Med 2019; 18:3775-3782. [PMID: 31616509 PMCID: PMC6781807 DOI: 10.3892/etm.2019.8030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Fulminant hepatic failure (FHF) is a clinical syndrome characterized by sudden and severe liver dysfunction. Apoptosis and inflammation are essential for the pathogenesis of FHF. Crocetin, the major component present in saffron, has been reported to possess anti-inflammatory and antioxidant functions; however, its role in FHF is poorly understood. The aim of this study was to explore the protective effects of crocetin against lipopolysac§§charide (LPS)/D-galactosamine (D-GalN)-induced FHF and the underlying mechanisms in a rat model. For the in vivo study, rats were assigned to the LPS/D-GalN group or to the crocetin pre-treatment+LPS/D- GalN group. Each group was then further divided according to the different LPS/D-GalN treatment times of 0, 6, 12 or 48 h. The results demonstrated that crocetin pre-treatment efficiently protected against LPS/D-GalN-induced FHF by improving liver tissue morphology, reducing total bilirubin generation and decreasing the activities of alanine transaminase and aspartate aminotransferase. Moreover, crocetin pre-treatment significantly decreased hepatocyte apoptosis, p53 mRNA expression and the expression of proteins in the caspase family and the Bcl-2 pro-apoptotic family following LPS/D-GalN treatment. Furthermore, crocetin also decreased the secretion of pro-inflammatory cytokines in the serum and in the liver via suppression of NF-κB activation, and also suppressed hepatic oxidative stress. In conclusion, crocetin protected against LPS/D-GalN-induced FHF and inhibited apoptosis, inflammation and oxidative stress. The underlying mechanisms may be related to the regulation of apoptotic proteins in the caspase family and the Bcl-2 family, as well as the modulation of NF-κB expression. Therefore, crocetin may be used as a novel therapy for preventing FHF.
Collapse
Affiliation(s)
- Ke Gao
- Department of Pathology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Faquan Liu
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Xi Chen
- Department of Ears, Nose and Throat, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518115, P.R. China
| | - Mengxue Chen
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Qingwen Deng
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Xingjian Zou
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| | - Hongxing Guo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P.R. China
| |
Collapse
|
45
|
Elufioye TO, Habtemariam S. Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action. Biomed Pharmacother 2019; 112:108600. [PMID: 30780110 DOI: 10.1016/j.biopha.2019.108600] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma are one of the major health challenges in the world and many conditions such as inadequate nutrition, viral infection, ethanol and drug abuse, xenobiotic exposure, and metabolic diseases have been implicated in the development and progression of liver diseases. Several factors including lipid peroxidation, production of reactive oxygen species (ROS), peroxynitrite formation, complement factors and proinflammatory mediators, such as cytokines and chemokines, are involved in hepatic diseases. Rosmarinic acid (RA) is a natural phenolic compound found mainly in the family Lamiaceae consisting of several medicinal plants, herbs and spices. Several biological activities have been reported for RA and these include antioxidant properties as a ROS scavenger and lipid peroxidation inhibitor, anti-inflammatory, neuroprotective and antiangiogenic among others. This review is aimed at discussing the effects of RA on the liver, highlighting its hepatoprotective potential and the underlying mechanisms.
Collapse
Affiliation(s)
- Taiwo O Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Nigeria.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Chatham, Maritime Kent, ME4 4TB, UK
| |
Collapse
|
46
|
Salama SA, Arab HH, Hassan MH, Al Robaian MM, Maghrabi IA. Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J Trace Elem Med Biol 2019; 52:74-82. [PMID: 30732903 DOI: 10.1016/j.jtemb.2018.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Cadmium is an extremely toxic pollutant that reaches human body through intake of the industrially polluted food and water as well as through cigarette smoking and exposure to polluted air. Cadmium accumulates in different body organs especially the liver. It induces tissue injury largely through inflammation and oxidative stress-based mechanisms. The aim of the current study was to investigate the ability of γ glutamyl cysteine (γGC) to protect against cadmium-induced hepatocellular injury employing Wistar rats as a mammalian model. The results of the current work indicated that γGC upregulated the level of the anti-inflammatory cytokine IL-10 and downregulated the levels of the pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the cadmium-exposed rats. In addition, γGC reduced the liver tissues cadmium content in the cadmium-treated rats, suppressed the cadmium-induced hepatocellular apoptosis and oxidative modifications of cellular DNA, lipids, and proteins. Additionally, γGC enhanced the antioxidant potential of the liver tissues in the cadmium-treated rats as evidenced by a remarkable increase in the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase and significant increase in the levels of the total antioxidant capacity and reduced glutathione as well as a significant reduction in oxidized to reduced glutathione (GSSG/GSH) ratio. Moreover, it effectively improved liver cell integrity in the cadmium-treated rats as demonstrated by a significant reduction in the serum activity of the liver enzymes (ALT and AST) and amelioration of the cadmium-evoked histopathological alterations. Together, these findings underscore, for the first time, the alleviating effects of γGC against cadmium-induced hepatocellular injury that is potentially mediated through reduction of liver tissue cadmium content along with modulation of both hepatocellular redox status and inflammatory cytokines.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Hany H Arab
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munaworah, 30001, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, 11751, Egypt
| | - Majed M Al Robaian
- Department of Pharmaceutics, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
47
|
A Hepatoprotective Effect of a Hot Water Extract from Loliolus beka Gray Meat Against H 2O 2-Induced Oxidative Damage in Hepatocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:567-581. [PMID: 31468432 DOI: 10.1007/978-981-13-8023-5_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here, we investigated the hepatoprotective effect of a hot water extract from Loliolus beka gray meat (LBMH) containing plentiful taurine in H2O2-induced oxidative stress in hepatocytes. LBMH potently scavenged the 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and exhibited the good reducing power and the oxygen radical absorbance capacity (ORAC) value. Also, LBMH improved the cell viability against H2O2-induced hepatic damage in cultured hepatocytes by reducing intracellular reactive oxygen species (ROS) production. In addition, LBMH inhibited apoptosis via a reduction in sub-G1 cell population, as well as inhibition of apoptotic body formation from H2O2-induced oxidative damage in hepatocytes. Moreover, LBMH regulated the expression levels of Bax, a pro-apoptotic molecule and Bcl-2, an anti-apoptotic molecule in H2O2-treated hepatocytes. Additionally, pre-treatment with LBMH increased the expression of heme oxygenase 1 (HO-1), which is a hepatoprotective enzyme, by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) in H2O2-treated hepatocytes. Taken together, LBMH may be useful as a food ingredient for treatment of liver disease by regulating the Nrf2/HO-1 signal pathway.
Collapse
|
48
|
Wang XZ, Zhang SY, Xu Y, Zhang LY, Jiang ZZ. The role of neutrophils in triptolide-induced liver injury. Chin J Nat Med 2018; 16:653-664. [PMID: 30269842 DOI: 10.1016/s1875-5364(18)30105-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 12/13/2022]
Abstract
Triptolide (TP) induces severe liver injury, but its hepatotoxicity mechanisms are still unclear. Inflammatory responses may be involved in the pathophysiology. Neutrophils are the first-line immune effectors for sterile and non-sterile inflammatory responses. Thus, the aim of the present study was to investigate the neutrophilic inflammatory response in TP-induced liver injury in C57BL/6 mice. Our results showed that neutrophils were recruited and accumulated in the liver, which was parallel to or slightly after the development of liver injury. Neutrophils induced release of myeloperoxidase and up-regulation of CD11b, which caused cytotoxicity and hepatocyte death. Hepatic expressions of CXL1, TNF-α, IL-6, and MCP1 were increased significantly to regulate neutrophils recruitment and activation. Up-regulation of toll like receptors 4 and 9 also facilitated neutrophils infiltration. Moreover, neutrophils depletion using an anti-Gr1 antibody showed mild protection against TP overdose. These results indicated that neutrophils accumulation might be the secondary response, not the cause of TP-induced liver injury. In conclusion, the inflammatory response including neutrophil infiltration may play a role in TP-induced hepatotoxicity, but may not be severe enough to cause additional liver injury.
Collapse
Affiliation(s)
- Xin-Zhi Wang
- Jiangsu Key Laboratory of Drug Screening, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Shen-Ye Zhang
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Yao Xu
- Jiangsu Key Laboratory of Drug Screening, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China.
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Traditional Chinese Medicine Evaluation and Translational Research, Nanjing 210009, China.
| |
Collapse
|
49
|
Ge Y, Zhang Q, Li H, Bai G, Jiao Z, Wang H. Adipose-derived stem cells alleviate liver apoptosis induced by ischemia-reperfusion and laparoscopic hepatectomy in swine. Sci Rep 2018; 8:16878. [PMID: 30442976 PMCID: PMC6237819 DOI: 10.1038/s41598-018-34939-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023] Open
Abstract
Hepatic ischemia-reperfusion (I/R) injury is inevitable during hepatectomy and may cause both postoperative morbidity and mortality. Regenerative medicine suggested adipose-derived stem cells (ADSCs) as an attractive tool for the treatment of liver diseases. In this study, we investigated the effect of ADSCs in an I/R model combined with laparoscopic hepatectomy in swine. Eighteen Bama miniature pigs were randomly divided into Sham, IRI, and ADSCs groups. ADSCs (1 × 106/kg) were injected through liver parenchyma immediately after hemihepatectomy. The apoptosis-related role of ADSCs was studied. The results showed that ADSCs transplantation reduced both pathological and ultrastructural changes and decreased the number of apoptotic-positive cells. In the ADSCs group, Fas, Fas ligand (FasL) protein, and mRNA were downregulated and the enzyme activities of Caspase3, Caspase8, and Caspase9 were significantly decreased. In addition, ADSC therapy significantly increased the ratio of Bcl-2/Bax protein and mRNA compared to the IRI group. In conclusion, ADSCs attenuated both I/R and hepatectomy-induced liver apoptosis in a porcine model, and offers a potential therapeutic option for hepatic I/R and hepatectomy.
Collapse
Affiliation(s)
- Yansong Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Qianzhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Ge Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Zhihui Jiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P.R. China.
| |
Collapse
|
50
|
Xu L, Sang R, Yu Y, Li J, Ge B, Zhang X. The polysaccharide from Inonotus obliquus protects mice from Toxoplasma gondii-induced liver injury. Int J Biol Macromol 2018; 125:1-8. [PMID: 30445083 DOI: 10.1016/j.ijbiomac.2018.11.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
The study aimed to explore the protective effects and mechanism of Inonotus obliquus polysaccharide (IOP) on liver injury caused by Toxoplasma gondii (T. gondii) infection in mice. The results showed that treatment with IOP significantly decreased the liver coefficient, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA) and nitric oxide (NO), and increased the contents of antioxidant enzyme superoxide dismutase (SOD) and glutathione (GSH). IOP effectively decreased the expression of serum tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and interluekin-4 (IL-4) in T. gondii-infected mice. In agreement with these observations, IOP also alleviated hepatic pathological damages caused by T. gondii. Furthermore, we found that IOP down-regulated the levels of toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4), phosphorylations of nuclear factor-κappaB (NF-κB) p65 and inhibitor kappaBα (IκBα), whereas up-regulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). These findings suggest that IOP possesses hepatoprotective effects against T. gondii-induced liver injury in mice, and such protection is at least in part due to its anti-inflammatory effects through inhibiting the TLRs/NF-κB signaling axis and the activation of an antioxidant response by inducing the Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Lu Xu
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Rui Sang
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Yifan Yu
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Jinxia Li
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Bingjie Ge
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xuemei Zhang
- Department of Animal Medicine, Agricultural College, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|