1
|
Ścibior A, Llopis J, Dobrakowski PP, Męcik-Kronenberg T. Magnesium (Mg) and Neurodegeneration: A Comprehensive Overview of Studies on Mg Levels in Biological Specimens in Humans Affected Some Neurodegenerative Disorders with an Update on Therapy and Clinical Trials Supplemented with Selected Animal Studies. Int J Mol Sci 2024; 25:12595. [PMID: 39684308 DOI: 10.3390/ijms252312595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, characterized by neuron loss, are a group of neurological disorders that adversely affect the lives of millions of people worldwide. Although several medicines have been approved for managing neurodegenerative diseases, new therapies allowing for a significant slowdown in the progression of neurodegenerative syndromes are constantly being sought. Magnesium (Mg), a crucial mineral necessary for the functioning of organisms, is important to normal central nervous system (CNS) activity. Although the effects of this bioelement on the CNS are relatively well recognized, its role in the pathophysiology of neurological disorders in humans is not yet well characterized. Therefore, the main goal of this review is to collect data about a possible association between Mg and neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's Disease (PD), and Amyotrophic lateral sclerosis (ALS) in humans. Hence, the levels of Mg in blood, cerebrospinal fluid (CSF), urine, and hair from subjects with AD, PD, and ALS are compiled to detect possible variations in the levels of this mineral in the biological specimens of people with neurodegenerative illnesses. Additionally, the findings from an animal model are summarized to offer the reader a deeper insight into studies on Mg in the context of neuroprotection and neurodegeneration. Data provided in the present review indicate that Mg, due to its neuroprotective, antioxidant, anti-inflammatory, and mitochondrial-supportive properties, could be a potential therapeutic agent for AD, PD, and ALS. However, more epidemiological studies with standardized methods of dietary assessment and Mg measurement are necessary to recognize its exact role in neurodegenerative disorders. Moreover, extensive well-designed clinical trials are also needed to establish definitive therapeutic protocols and optimal dosages, and to ensure long-term safety of this mineral supplementation in AD, PD, and ALS patients.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów St. 1J, 20-708 Lublin, Poland
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, 18016 Granada, Spain
| | - Paweł P Dobrakowski
- Psychology Institute, Humanitas University in Sosnowiec, Jana Kilińskiego St. 43, 41-200 Sosnowiec, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 3 Maja St. 13, 41-800 Zabrze, Poland
- Collegium Medicum im. Dr Władysław Biegański, Jan Długosz University, Washington St. 4/8, 42-200 Częstochowa, Poland
| |
Collapse
|
2
|
Gorini F, Tonacci A. Metal Toxicity and Dementia Including Frontotemporal Dementia: Current State of Knowledge. Antioxidants (Basel) 2024; 13:938. [PMID: 39199184 PMCID: PMC11351151 DOI: 10.3390/antiox13080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Frontotemporal dementia (FTD) includes a number of neurodegenerative diseases, often with early onset (before 65 years old), characterized by progressive, irreversible deficits in behavioral, linguistic, and executive functions, which are often difficult to diagnose due to their similar phenotypic characteristics to other dementias and psychiatric disorders. The genetic contribution is of utmost importance, although environmental risk factors also play a role in its pathophysiology. In fact, some metals are known to produce free radicals, which, accumulating in the brain over time, can induce oxidative stress, inflammation, and protein misfolding, all of these being key features of FTD and similar conditions. Therefore, the present review aims to summarize the current evidence about the environmental contribution to FTD-mainly dealing with toxic metal exposure-since the identification of such potential environmental risk factors can lead to its early diagnosis and the promotion of policies and interventions. This would allow us, by reducing exposure to these pollutants, to potentially affect society at large in a positive manner, decreasing the burden of FTD and similar conditions on affected individuals and society overall. Future perspectives, including the application of Artificial Intelligence principles to the field, with related evidence found so far, are also introduced.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
3
|
Panaiotov S, Tancheva L, Kalfin R, Petkova-Kirova P. Zeolite and Neurodegenerative Diseases. Molecules 2024; 29:2614. [PMID: 38893490 PMCID: PMC11173861 DOI: 10.3390/molecules29112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative diseases (NDs), characterized by progressive degeneration and death of neurons, are strongly related to aging, and the number of people with NDs will continue to rise. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs, and the current treatments offer no cure. A growing body of research shows that AD and especially PD are intricately related to intestinal health and the gut microbiome and that both diseases can spread retrogradely from the gut to the brain. Zeolites are a large family of minerals built by [SiO4]4- and [AlO4]5- tetrahedrons joined by shared oxygen atoms and forming a three-dimensional microporous structure holding water molecules and ions. The most widespread and used zeolite is clinoptilolite, and additionally, mechanically activated clinoptilolites offer further improved beneficial effects. The current review describes and discusses the numerous positive effects of clinoptilolite and its forms on gut health and the gut microbiome, as well as their detoxifying, antioxidative, immunostimulatory, and anti-inflammatory effects, relevant to the treatment of NDs and especially AD and PD. The direct effects of clinoptilolite and its activated forms on AD pathology in vitro and in vivo are also reviewed, as well as the use of zeolites as biosensors and delivery systems related to PD.
Collapse
Affiliation(s)
- Stefan Panaiotov
- National Centre of Infectious and Parasitic Diseases, Yanko Sakazov Blvd. 26, 1504 Sofia, Bulgaria;
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria;
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, 66 Ivan Mihailov St., 2700 Blagoevgrad, Bulgaria
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria;
| |
Collapse
|
4
|
Bryliński Ł, Kostelecka K, Woliński F, Duda P, Góra J, Granat M, Flieger J, Teresiński G, Buszewicz G, Sitarz R, Baj J. Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications. Int J Mol Sci 2023; 24:7228. [PMID: 37108392 PMCID: PMC10139039 DOI: 10.3390/ijms24087228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Aluminium (Al) is the most ubiquitous metal in the Earth's crust. Even though its toxicity is well-documented, the role of Al in the pathogenesis of several neurological diseases remains debatable. To establish the basic framework for future studies, we review literature reports on Al toxicokinetics and its role in Alzheimer's disease (AD), autism spectrum disorder (ASD), alcohol use disorder (AUD), multiple sclerosis (MS), Parkinson's disease (PD), and dialysis encephalopathy (DE) from 1976 to 2022. Despite poor absorption via mucosa, the biggest amount of Al comes with food, drinking water, and inhalation. Vaccines introduce negligible amounts of Al, while the data on skin absorption (which might be linked with carcinogenesis) is limited and requires further investigation. In the above-mentioned diseases, the literature shows excessive Al accumulation in the central nervous system (AD, AUD, MS, PD, DE) and epidemiological links between greater Al exposition and their increased prevalence (AD, PD, DE). Moreover, the literature suggests that Al has the potential as a marker of disease (AD, PD) and beneficial results of Al chelator use (such as cognitive improvement in AD, AUD, MS, and DE cases).
Collapse
Affiliation(s)
- Łukasz Bryliński
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Katarzyna Kostelecka
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Filip Woliński
- Student Scientific Group, Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland
| | - Piotr Duda
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Joanna Góra
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Michał Granat
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Ryszard Sitarz
- I Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Makhdoomi S, Mahboobian MM, Haddadi R, Komaki A, Mohammadi M. Silibinin-loaded nanostructured lipid carriers (NLCs) ameliorated cognitive deficits and oxidative damages in aluminum chloride-induced neurotoxicity in male mice. Toxicology 2022; 477:153260. [PMID: 35850386 DOI: 10.1016/j.tox.2022.153260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Aluminum chloride (AlCl3) and its accumulation in the brain are associated with neurodegenerative disease. Recent investigations have illustrated that silibinin is known to have neuroprotective properties. The present study investigates the neuroprotective effects of silibinin-loaded nanostructured lipid carriers (Sili-NLCs) against AlCl3-induced neurotoxicity in male mice. Sili-NLCs were prepared using the emulsification-solvent evaporation method and subjected to particle size, zeta potential, and entrapment efficiency (% EE) analysis. Mice were treated with AlCl3 (100 mg/kg/day, p.o.) and with the same concentration of silibinin and Sili-NLCs (50,100, and 200 mg/kg/day, p.o.) for 30 days in different groups. After treating animals, behavioral studies were assessed. Also, the brain tissue samples were collected from all mice to evaluate oxidative damage and histological changes. The particle size, polydispersity index, zeta potential, and entrapment efficiency (% EE) of prepared Sili-NLCs found 239.7 ± 4.04 nm, 0.082 ± 0.003, - 16.33 ± 0.15 mV, and 72.65 ± 2.03 %, respectively. Brain uptake studies showed that Sili-NLCs had a 5.7-fold greater uptake in the mice brain than the free drug. The AlCl3 caused significant cognitive impairment and increased the level of lipid peroxidation accompanied by decreasing antioxidant enzyme activity in the brain tissue. These findings correlated well with the histopathological experiments. Furthermore, treatment with Sili-NLCs significantly improved the AlCl3-induced cognitive impairment, neurochemical anomalies, and histopathological changes. Given these results, silibinin, when delivered using NLCs, is potentially more effective than free silibinin in decreasing AlCl3- induced neurotoxicity.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Herbal Medicine and natural product Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Yoshida S. Therapeutic Strategies and Metal-Induced Oxidative Stress: Application of Synchrotron Radiation Microbeam to Amyotrophic Lateral Sclerosis in the Kii Peninsula of Japan. Front Neurol 2022; 13:884439. [PMID: 35837234 PMCID: PMC9273737 DOI: 10.3389/fneur.2022.884439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
A series of extensive gene-environment studies on amyotrophic lateral sclerosis (ALS) and Parkinsonism–dementia complex (PDC) in Guam Island, USA, and the Kii Peninsula of Japan, including Auyu Jakai, West New Guinea, have led us to hypothesize that a prolonged low calcium (Ca) and magnesium (Mg) intake, especially over generation, may cause oxidative stress to motor and nigral neurons by an increased uptake of environment metallic elements, i.e., aluminum (Al), manganese (Mn), and iron (Fe). Otherwise, 5–10% of total ALS cases are familial ALS (fALS), of which 20% of the fALS cases linked to a point mutation of Cu/Zn superoxide dismutase (SOD1). In the vicinity of the Kii Peninsula, about 7% of the ALS cases are also linked to the SOD1 mutation. Using synchrotron radiation (SR) microbeam, conglomerate inclusion (SOD1 aggregates) within a spinal motor neuron of the fALS case in the vicinity revealed a loss of copper (Cu) in contrast to extremely high contents of Zinc (Zn) and Ca. That means an exceptionally low Cu/Zn ratio with an increased Ca content, indicating the abnormalities of the active site of SOD1 protein of the fALS. Furthermore, sALS in the southernmost high incidence areas of the Kii Peninsula showed a low Cu/Zn ratio within a motor neuron, suggesting a fragility of SOD1 proteins. From the perspective of gene–environment interactions, the above two research trends may show a common oxidative stress underlying the neuronal degenerative process of ALS/PDC in the Kii Peninsula of Japan. Therefore, it is a crucial point for the prospect of therapeutic strategy to clarify a role of transition metals in the oxidative process in both ALS/PDC, including ALS elsewhere in the world. This paper reviews a history of the genetic epidemiological studies, especially from the aspect of gene–environment interaction, on ALS/PDC in the Kii and Guam high incidence foci and the results of a series of analytical research on trace metallic elements within neurons of both sALS and fALS cases, especially using a synchrotron radiation (SR) microbeam of Spring-8 and Photon Factory of Japan. The SR microbeam is an ideal X-ray source, which supplies an extremely high brilliance (high-intensity photon) and tunability (energy variability) to investigate trace metallic elements contained in biological specimens at the cellular level, even more without any damages. This research will provide a valuable information about the mechanism of oxidative stress involved in neuronal cell death in ALS and related neurodegenerative disorders. To elucidate the physicochemical mechanism of the oxidative process in neuronal degeneration, it will shed a new light on the therapeutic strategies for ALS/PDC in near future.
Collapse
|
7
|
Spencer P, Lagrange E, Camu W. ALS and environment: Clues from spatial clustering? Rev Neurol (Paris) 2019; 175:652-663. [DOI: 10.1016/j.neurol.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
|
8
|
Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol 2019; 12:45-70. [PMID: 32206026 PMCID: PMC7071840 DOI: 10.2478/intox-2019-0007] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Aluminium (Al) is frequently accessible to animal and human populations to the extent that intoxications may occur. Intake of Al is by inhalation of aerosols or particles, ingestion of food, water and medicaments, skin contact, vaccination, dialysis and infusions. Toxic actions of Al induce oxidative stress, immunologic alterations, genotoxicity, pro-inflammatory effect, peptide denaturation or transformation, enzymatic dysfunction, metabolic derangement, amyloidogenesis, membrane perturbation, iron dyshomeostasis, apoptosis, necrosis and dysplasia. The pathological conditions associated with Al toxicosis are desquamative interstitial pneumonia, pulmonary alveolar proteinosis, granulomas, granulomatosis and fibrosis, toxic myocarditis, thrombosis and ischemic stroke, granulomatous enteritis, Crohn's disease, inflammatory bowel diseases, anemia, Alzheimer's disease, dementia, sclerosis, autism, macrophagic myofasciitis, osteomalacia, oligospermia and infertility, hepatorenal disease, breast cancer and cyst, pancreatitis, pancreatic necrosis and diabetes mellitus. The review provides a broad overview of Al toxicosis as a background for sustained investigations of the toxicology of Al compounds of public health importance.
Collapse
Affiliation(s)
- Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Ephraim Igwenagu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Nanacha Afifi Igbokwe
- Department Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
9
|
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol 2019; 431:1843-1868. [PMID: 30664867 DOI: 10.1016/j.jmb.2019.01.018] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., β-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.
Collapse
Affiliation(s)
- Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
10
|
Chernoff N, Hill DJ, Diggs DL, Faison BD, Francis BM, Lang JR, Larue MM, Le TT, Loftin KA, Lugo JN, Schmid JE, Winnik WM. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:1-47. [PMID: 28598725 PMCID: PMC6503681 DOI: 10.1080/10937404.2017.1297592] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer's disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.
Collapse
Affiliation(s)
- N. Chernoff
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. J. Hill
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. L. Diggs
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - B. D. Faison
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, DC, USA
| | - B. M. Francis
- Department of Entomology, University of Illinois, Champaign-Urbana, IL, USA
| | - J. R Lang
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - M. M. Larue
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - T.-T. Le
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | | | - J. N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - J. E. Schmid
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - W. M. Winnik
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| |
Collapse
|
11
|
Level of neurotoxic metals in amyotrophic lateral sclerosis: A population-based case–control study. J Neurol Sci 2015; 359:11-7. [DOI: 10.1016/j.jns.2015.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/18/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022]
|
12
|
Paez-Colasante X, Figueroa-Romero C, Sakowski SA, Goutman SA, Feldman EL. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol 2015; 11:266-79. [PMID: 25896087 DOI: 10.1038/nrneurol.2015.57] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor neurons, which results in weakness and atrophy of voluntary skeletal muscles. Treatments do not modify the disease trajectory effectively, and only modestly improve survival. A complex interaction between genes, environmental exposure and impaired molecular pathways contributes to pathology in patients with ALS. Epigenetic mechanisms control the hereditary and reversible regulation of gene expression without altering the basic genetic code. Aberrant epigenetic patterns-including abnormal microRNA (miRNA) biogenesis and function, DNA modifications, histone remodeling, and RNA editing-are acquired throughout life and are influenced by environmental factors. Thus, understanding the molecular processes that lead to epigenetic dysregulation in patients with ALS might facilitate the discovery of novel therapeutic targets and biomarkers that could reduce diagnostic delay. These achievements could prove crucial for successful disease modification in patients with ALS. We review the latest findings regarding the role of miRNA modifications and other epigenetic mechanisms in ALS, and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ximena Paez-Colasante
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- The A. Alfred Taubman Medical Research Institute, University of Michigan, 109 Zina Pitcher Place, 5017 A. Alfred Taubman Biomedical Science Research Building, Ann Arbor, MI 48109, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Oshima E, Ishihara T, Yokota O, Nakashima-Yasuda H, Nagao S, Ikeda C, Naohara J, Terada S, Uchitomi Y. Accelerated tau aggregation, apoptosis and neurological dysfunction caused by chronic oral administration of aluminum in a mouse model of tauopathies. Brain Pathol 2013; 23:633-44. [PMID: 23574527 DOI: 10.1111/bpa.12059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/28/2013] [Indexed: 11/30/2022] Open
Abstract
To clarify whether long-term oral ingestion of aluminum (Al) can increase tau aggregation in mammals, we examined the effects of oral Al administration on tau accumulation, apoptosis in the central nervous system (CNS) and motor function using tau transgenic (Tg) mice that show very slowly progressive tau accumulation. Al-treated tau Tg mice had almost twice as many tau-positive inclusions in the spinal cord as tau Tg mice without Al treatment at 12 months of age, a difference that reached statistical significance, and the development of pretangle-like tau aggregates in the brain was also significantly advanced from 9 months. Al exposure did not induce any tau pathology in wild-type (WT) mice. Apoptosis was observed in the hippocampus in Al-treated tau Tg mice, but was virtually absent in the other experimental groups. Motor function as assessed by the tail suspension test was most severely impaired in Al-treated tau Tg mice. Given our results, chronic oral ingestion of Al may more strongly promote tau aggregation, apoptosis and neurological dysfunction if individuals already had a pathological process causing tau aggregation. These findings may also implicate chronic Al neurotoxicity in humans, who frequently have had mild tau pathology from a young age.
Collapse
Affiliation(s)
- Etsuko Oshima
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Kawahara M, Kato-Negishi M. Link between Aluminum and the Pathogenesis of Alzheimer's Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. Int J Alzheimers Dis 2011; 2011:276393. [PMID: 21423554 PMCID: PMC3056430 DOI: 10.4061/2011/276393] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/29/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
Whilst being environmentally abundant, aluminum is not essential for life. On the contrary, aluminum is a widely recognized neurotoxin that inhibits more than 200 biologically important functions and causes various adverse effects in plants, animals, and humans. The relationship between aluminum exposure and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and Parkinsonism dementia in the Kii Peninsula and Guam, and Alzheimer's disease (AD) has been suggested. In particular, the link between aluminum and Alzheimer's disease has been the subject of scientific debate for several decades. However, the complex characteristics of aluminum bioavailability make it difficult to evaluate its toxicity and therefore, the relationship remains to be established. Mounting evidence has suggested that significance of oligomerization of β-amyloid protein and neurotoxicity in the molecular mechanism of AD pathogenesis. Aluminum may play crucial roles as a cross-linker in β-amyloid oligomerization. Here, we review the detailed characteristics of aluminum neurotoxicity based on our own studies and the recent literatures. Our aim is to revisit the link between aluminum and AD and to integrate aluminum and amyloid cascade hypotheses in the context of β-amyloid oligomerization and the interactions with other metals.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Analytical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki 882-8508, Japan
| | | |
Collapse
|
16
|
Liu YQ, Xin TR, Liang JJ, Wang WM, Zhang YY. Memory performance, brain excitatory amino acid and acetylcholinesterase activity of chronically aluminum exposed mice in response to soy isoflavones treatment. Phytother Res 2010; 24:1451-6. [PMID: 20878693 DOI: 10.1002/ptr.3120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Memory performance, brain excitatory amino acid and acetylcholinesterase activity of chronically aluminum (Al) exposed mice in response to soy isoflavones (SI) treatment was investigated in the study. Forty eight mice were allotted randomly into a control group, an Al exposed group (100 mg/kg Al) and an Al exposed group treated with SI (100 mg/kg Al + 60 mg/kg SI) for 60 days. Chronic Al exposure significantly impaired long memory performance in mice as assessed using a passive avoidance task test (χ(2) analysis, p < 0.05). Interestingly, SI treatment markedly improved the memory performance score in the Al exposed mice. This improvement was associated with a total reversal of Al-induced increases in acetylcholinesterase activity in the cerebral cortex and hippocampus of mice. The Al exposure also led to significant decreases in brain levels of aspartic and glutamic acids, two excitatory amino acid neurotransmitters; whereas SI treatment partially reversed the decreased aspartic and glutamic acid contents in the hippocampus. The results suggest that SI can improve long memory performance in the Al exposed mice, possibly by modulating the metabolism of brain acetylcholine and amino acid neurotransmitters.
Collapse
Affiliation(s)
- Yan-qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
17
|
George JL, Mok S, Moses D, Wilkins S, Bush AI, Cherny RA, Finkelstein DI. Targeting the progression of Parkinson's disease. Curr Neuropharmacol 2010; 7:9-36. [PMID: 19721815 PMCID: PMC2724666 DOI: 10.2174/157015909787602814] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/15/2008] [Accepted: 09/09/2008] [Indexed: 02/07/2023] Open
Abstract
By the time a patient first presents with symptoms of Parkinson's disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson's disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease.
Collapse
Affiliation(s)
- J L George
- The Mental Health Research Institute of Victoria , 155 Oak Street, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Kihira T, Suzuki A, Kondo T, Wakayama I, Yoshida S, Hasegawa K, Garruto RM. Immunohistochemical expression of IGF-I and GSK in the spinal cord of Kii and Guamanian ALS patients. Neuropathology 2009; 29:548-58. [PMID: 19323791 DOI: 10.1111/j.1440-1789.2009.01010.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor-I (IGF-I) is a potent survival factor for motor neurons in animals, and glycogen synthase kinase-3beta (GSK-3beta) is suspected to play roles in apoptosis and tau phosphorylation. Here we report the immunological expression of IGF-I, GSK-3beta, phosphorylated-GSK-3alpha/beta (p-GSK-3alpha/beta) and phosphorylated-tau in the spinal cord and hippocampus of Kii and Guam amyotrophic lateral sclerosis (ALS) patients. Sixteen ALS patients (10 Japanese sporadic, 3 Kii and 3 Guam ALS) and 14 neurological controls (10 Japanese and 4 Guamanian) were examined. The immunoreactivity for each antibody was rated by the percentages of positive neurons to total anterior horn neurons in each patient and was analyzed statistically. Many normal-looking neurons from Japanese sporadic ALS, Kii ALS and Guam ALS patients, as well as from Japanese and Guam controls, were positive for anti-IGF-I antibody. A positive correlation between IR scores for anti-IGF-I antibody and clinical durations of Japanese sporadic ALS patients was found in this study (P < 0.0001). This suggested that IGF-I might have a protective effect against ALS degeneration. In Japanese sporadic ALS patients, abnormal as well as normal-looking neurons showed significant high IR scores for anti-GSK-3beta antibody than those of controls. Anterior horn neurons from Guam and Kii ALS patients characteristically showed weak staining for anti-GSK-3beta antibody but were markedly positive for anti-pGSK-3alpha/beta antibody compared to those from both Japanese controls and Japanese sporadic ALS patients, and showed the co-localization of IGF-I and p-GSK-3alpha/beta. This suggested that the IGF-I signaling pathway in Guam and Kii ALS patients might function to phosphorylate GSK-3beta to protect neurons from ALS degeneration. Neurofibrillary tangles (NFTs) in the hippocampus and spinal cord from Kii and Guam ALS patients showed the co-localization of PHF-tau and p-GSK-3alpha/beta by a confocal laser scanning technique. The predominant expression of p-GSK-3alpha/beta compared to GSK-3beta in spinal motor neurons and the co-localization of p-GSK-3alpha/beta and PHF-tau in NFT-laden neurons in the hippocampus and spinal cord were characteristic findings of Kii and Guam ALS patients.
Collapse
Affiliation(s)
- Tameko Kihira
- Department of Neurology, Wakayama Medical University, Wakayama City, Wakayama Prefecture, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Soares DC, Barlow PN, Porteous DJ, Devon RS. An interrupted beta-propeller and protein disorder: structural bioinformatics insights into the N-terminus of alsin. J Mol Model 2008; 15:113-22. [PMID: 19023603 DOI: 10.1007/s00894-008-0381-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/05/2008] [Indexed: 12/11/2022]
Abstract
Defects in the human ALS2 gene, which encodes the 1,657-amino-acid residue protein alsin, are linked to several related motor neuron diseases. We created a structural model for the N-terminal 690-residue region of alsin through comparative modelling based on regulator of chromosome condensation 1 (RCC1). We propose that this alsin region contains seven RCC1-like repeats in a seven-bladed beta-propeller structure. The propeller is formed by a double clasp arrangement containing two segments (residues 1-218 and residues 525-690). The 306-residue insert region, predicted to lie within blade 5 and to be largely disordered, is poorly conserved across species. Surface patches of evolutionary conservation probably indicate locations of binding sites. Both disease-causing missense mutations-Cys157Tyr and Gly540Glu-are buried in the propeller and likely to be structurally disruptive. This study aids design of experimental studies by highlighting the importance of construct length, will enhance interpretation of protein-protein interactions, and enable rational site-directed mutagenesis.
Collapse
Affiliation(s)
- Dinesh C Soares
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh EH42XU, UK.
| | | | | | | |
Collapse
|
20
|
Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10 Suppl 1:1-269. [PMID: 18085482 PMCID: PMC2782734 DOI: 10.1080/10937400701597766] [Citation(s) in RCA: 521] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Daniel Krewski
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Degenerative processes within the nervous system are common features in disease entities such as dementia of Alzheimer type (DAT), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS). ALS is a neurodegenerative disease with unknown etiology; widespread muscle wasting and respiratory failure lead to death within a few years. Denervation can be detected with electromyography and axonal deterioration monitored by motor unit number estimates. Several suggestions about the cause of ALS have emerged but no solid theory has yet precipitated. Lead or mercury exposure has been suggested. Exposure data alone cannot support this connection. Alterations in metal kinetics may underlie the deterioration of motor function observed in patients with ALS. In this review the role of metals in motor neuron disease is discussed. Both classic studies on exposure and recent understanding of metal binding proteins are considered. Aspects of peak exposure and excretion are merged toward an understanding of metal dynamics in ALS. An overview of chemical and electrophysiological investigations is given in the context of neurodegeneration.
Collapse
Affiliation(s)
- Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | | | | |
Collapse
|
22
|
Oyanagi K, Kawakami E, Kikuchi-Horie K, Ohara K, Ogata K, Takahama S, Wada M, Kihira T, Yasui M. Magnesium deficiency over generations in rats with special references to the pathogenesis of the parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Neuropathology 2006; 26:115-28. [PMID: 16708544 DOI: 10.1111/j.1440-1789.2006.00672.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parkinsonism-dementia complex (PDC) and amyotrophic lateral sclerosis (ALS) are fatal neurological diseases. The incidence on Guam was very high between 1950 and 1965 but decreased dramatically after 1965. It is thought that drinking water containing low levels of calcium (Ca) and magnesium (Mg), and high levels of aluminum and of a plant excitatory neurotoxin are involved in the pathogenesis of these diseases. The present experiment was performed in rats that were exposed to low Ca and/or Mg intake over two generations, thus simulating the conditions of human life on Guam, where several generations live continuously in the same environment. Significant loss of dopaminergic neurons was identified exclusively in the substantia nigra in 1-year-old rats that had been exposed continuously to low Mg intake (one-fifth of the normal level) over generations. The present study suggests that low Mg intake over generations may be involved in the pathogenesis of substantia nigra degeneration in humans.
Collapse
Affiliation(s)
- Kiyomitsu Oyanagi
- Department of Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Oyanagi K. The nature of the parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam and magnesium deficiency. Parkinsonism Relat Disord 2005; 11 Suppl 1:S17-23. [PMID: 15885623 DOI: 10.1016/j.parkreldis.2005.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 02/14/2005] [Accepted: 02/14/2005] [Indexed: 12/01/2022]
Abstract
The parkinsonism-dementia complex (PDC) and amyotrophic lateral sclerosis (ALS) were the fatal neurological diseases, showing very high incidence during 1950-1970 and dramatic decrease after 1970 on Guam. Through the research, the present author insisted that; (1) NFTs in Guam ALS patients are merely a background feature widely dispersed in the population, (2) Guam ALS and PDC are basically different diseases, and (3) Guam ALS occurs initially as classic ALS. As pathogeneses of the diseases, intake of low calcium (Ca) and magnesium (Mg) and high aluminum water and of some plant excitatory neurotoxin has been speculated. To elucidate the pathogenesis, the author performed an experiment exposing rats to low Ca and/or Mg intake for two generations, so as to follow the actual way of human living on the island, since several generations live continuously in the same environment. The study indicates that continuous low Mg intake for two generations induces exclusive loss of dopaminergic neurons in in rats, and may support the Mg hypothesis in the pathogenesis of PDC of Guam.
Collapse
Affiliation(s)
- Kiyomitsu Oyanagi
- Department of Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Japan.
| |
Collapse
|
24
|
Abstract
This treatise briefly discusses the genetic features of ALS and reviews environmental exposures in sporadic ALS. At least 10 genetic foci are responsible for cases of familial motor neuron disease and more are yet to be discovered. Research into sporadic ALS suggests that abundant factors apparently participate in the disease process. A singular cause and unifying disease and nerve dysfunction in polyneuropathies, a multitude of genetic, toxic, autoimmune, infectious, and systematic processes seem to be at play. The ALS syndrome likely will not be dissimilar.
Collapse
Affiliation(s)
- Matthew P Wicklund
- Department of Neurology, Wilford Hall Medical Center, 59MDOS/MMCN, 2200 Bergquist Drive, Suite 1, Lackland Air Force Base, TX 78236, USA.
| |
Collapse
|
25
|
Kihira T, Yoshida S, Kondo T, Yase Y, Ono S. ALS-like skin changes in mice on a chronic low-Ca/Mg high-Al diet. J Neurol Sci 2004; 219:7-14. [PMID: 15050431 DOI: 10.1016/j.jns.2003.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2002] [Revised: 09/25/2003] [Accepted: 11/18/2003] [Indexed: 11/28/2022]
Abstract
Epidemiologic studies of endemic foci of amyotrophic lateral sclerosis (ALS) have shown low concentrations of Ca/Mg and high concentrations of Al/Mn in the drinking water and garden soil, which may play a causative role in the pathogenesis of endemic ALS. We studied the effects of chronic exposure to a low-Ca/Mg high-Al maltol diet on the skin of experimental animals. In ALS patients, atrophy of the epidermis, edematous changes with separated collagen fibrils and an accumulation of amorphous materials between collagen bundles were regarded as pathognomonic skin changes of ALS. Mice chronically fed a low-Ca/Mg high-Al maltol diet showed neuronal degeneration and loss in the spinal cords and cerebral cortices, as well as skin changes including atrophy, separation of collagen fibrils and accumulation of amorphous materials, similar to the skin changes characteristic of ALS. This is the first report of skin changes in animal models similar to those of ALS. We speculate that environmental factors such as chronic low-Ca/Mg high-Al condition play some causative role in the pathogenesis of Kii-ALS.
Collapse
Affiliation(s)
- Tameko Kihira
- Department of Neurology, Wakayama Medical University, 811-1 Kimiidera, Wakayama City 641-8510, Japan.
| | | | | | | | | |
Collapse
|