1
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Paletta P, Bass N, Kavaliers M, Choleris E. The role of oxytocin in shaping complex social behaviours: possible interactions with other neuromodulators. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210058. [PMID: 35858107 PMCID: PMC9272141 DOI: 10.1098/rstb.2021.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 08/31/2023] Open
Abstract
This review explores the role of oxytocin in the mediation of select social behaviours, with particular emphasis on female rodents. These behaviours include social recognition, social learning, pathogen detection and avoidance, and maternal care. Specific brain regions where oxytocin has been shown to directly mediate various aspects of these social behaviours, as well as other proposed regions, are discussed. Possible interactions between oxytocin and other regulatory systems, in particular that of oestrogens and dopamine, in the modulation of social behaviour are considered. Similarities and differences between males and females are highlighted. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
- Department of Psychology, Western University, London, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Building Room 4020, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| |
Collapse
|
3
|
Wang P, Wang SC, Liu X, Jia S, Wang X, Li T, Yu J, Parpura V, Wang YF. Neural Functions of Hypothalamic Oxytocin and its Regulation. ASN Neuro 2022; 14:17590914221100706. [PMID: 35593066 PMCID: PMC9125079 DOI: 10.1177/17590914221100706] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Oxytocin (OT), a nonapeptide, has a variety of functions. Despite extensive studies on OT over past decades, our understanding of its neural functions and their regulation remains incomplete. OT is mainly produced in OT neurons in the supraoptic nucleus (SON), paraventricular nucleus (PVN) and accessory nuclei between the SON and PVN. OT exerts neuromodulatory effects in the brain and spinal cord. While magnocellular OT neurons in the SON and PVN mainly innervate the pituitary and forebrain regions, and parvocellular OT neurons in the PVN innervate brainstem and spinal cord, the two sets of OT neurons have close interactions histologically and functionally. OT expression occurs at early life to promote mental and physical development, while its subsequent decrease in expression in later life stage accompanies aging and diseases. Adaptive changes in this OT system, however, take place under different conditions and upon the maturation of OT release machinery. OT can modulate social recognition and behaviors, learning and memory, emotion, reward, and other higher brain functions. OT also regulates eating and drinking, sleep and wakefulness, nociception and analgesia, sexual behavior, parturition, lactation and other instinctive behaviors. OT regulates the autonomic nervous system, and somatic and specialized senses. Notably, OT can have different modulatory effects on the same function under different conditions. Such divergence may derive from different neural connections, OT receptor gene dimorphism and methylation, and complex interactions with other hormones. In this review, brain functions of OT and their underlying neural mechanisms as well as the perspectives of their clinical usage are presented.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, California, USA
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Neuroscience Laboratory for Translational Medicine, School of Mental Health, Qiqihar Medical University, Qiqihar, China
| | - Jiawei Yu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Kerqin District Maternity & Child Healthcare Hospital, Tongliao, Inner Mongolia, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Sasaki K, Ferdousi F, Fukumitsu S, Kuwata H, Isoda H. Antidepressant- and anxiolytic-like activities of Rosmarinus officinalis extract in rodent models: Involvement of oxytocinergic system. Biomed Pharmacother 2021; 144:112291. [PMID: 34653760 DOI: 10.1016/j.biopha.2021.112291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oxytocin (OXT), a neuropeptide involved in mammal reproductive and prosocial behaviors, has been reported to interact with various stressor-provoked neurobiological changes, including neuroendocrine, neurotransmitter, and inflammatory processes. In view of disturbances in psychosocial relationships due to social isolation and physical distancing measures amid the COVID-19 pandemic, being one of the triggering factors for the recent rise in depression and anxiety, OXT is a potential candidate for a new antidepressant. METHODS In this present study, we have aimed to investigate the effects of oral administration of Rosmarinus officinalis extract (RE), extracted from distillation residue of rosemary essential oil, on central OXT level in the context of other stress biomarkers and neurotransmitter levels in mice models. Tail suspension test (TST) and elevated plus maze test (EPMT) following LPS injection were employed to assess depressive- and anxiety-like behavior in mice, respectively. FINDINGS Pretreatment with RE for seven days significantly improved behavior in TST and EPMT. Whole-genome microarray analysis reveals that RE significantly reversed TST stress-induced alterations in gene expressions related to oxytocinergic and neurotransmitter pathways and inflammatory processes. In both models, RE significantly increased central Oxt and Oxtr expressions, as well as OXT protein levels. RE also significantly attenuated stress-induced changes in serum corticosterone, brain and serum BDNF levels, and brain neurotransmitters levels in both models. INTERPRETATION Altogether, our study is the first to report antidepressant- and anxiolytic-like activities of RE through modulating oxytocinergic system in mice brain and thus highlights the prospects of RE in the treatment of depressive disorders of psychosocial nature.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoshi Fukumitsu
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577 Ibaraki, Japan
| | - Hidetoshi Kuwata
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577 Ibaraki, Japan.
| |
Collapse
|
5
|
Neuroendocrine Mechanisms of Social Bonds and Separation Stress in Rodents, Dogs, and Other Species. Curr Top Behav Neurosci 2021; 54:3-22. [PMID: 34518995 DOI: 10.1007/7854_2021_257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mammalian species form unique bonds between mothers and infants. Maternal care, including suckling, is necessary for infant survival, and the mother and, sometimes, the father require a lot of effort in nurturing infants. An infant's probability of survival depends on the extent of the investment of care by the mother. In parallel, mothers must identify their offspring and invest only in those who possess their genes to achieve evolutionary benefits. Therefore, they need to recognize their offspring and show a strong preference for them. For this reason, bond formation between mothers and infants is important. The mother monitors her offspring's physical condition and stays close to them. The offspring also form strong bonds with their mothers. Therefore, a separation between the mother and infant causes severe stress for both parties. Although it was initially thought that such bonds between mother and infant are limited to the same species, we have also observed a similar phenomenon in the human-dog relationship. In this article, we discuss the neuroendocrine mechanisms that underlie bond formation and separation based on findings of neurobiological research in mice and the relationship between humans and dogs.
Collapse
|
6
|
Rae M, Lemos Duarte M, Gomes I, Camarini R, Devi LA. Oxytocin and vasopressin: Signalling, behavioural modulation and potential therapeutic effects. Br J Pharmacol 2021; 179:1544-1564. [PMID: 33817785 DOI: 10.1111/bph.15481] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are endogenous ligands for OT and AVP receptors in the brain and in the peripheral system. Several studies demonstrate that OT and AVP have opposite roles in modulating stress, anxiety and social behaviours. Interestingly, both peptides and their receptors exhibit high sequence homology which could account for the biased signalling interaction of the peptides with OT and AVP receptors. However, how and under which conditions this crosstalk occurs in vivo remains unclear. In this review we shed light on the complexity of the roles of OT and AVP, by focusing on their signalling and behavioural differences and exploring the crosstalk between the receptor systems. Moreover, we discuss the potential of OT and AVP receptors as therapeutic targets to treat human disorders, such as autism, schizophrenia and drug abuse.
Collapse
Affiliation(s)
- Mariana Rae
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Roberts AI, Roberts SGB. Communicative roots of complex sociality and cognition. Biol Rev Camb Philos Soc 2020; 95:51-73. [PMID: 31608566 DOI: 10.1111/brv.12553] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
Abstract
Mammals living in more complex social groups typically have large brains for their body size and many researchers have proposed that the primary driver of the increase in brain size through primate and hominin evolution was the selection pressures associated with sociality. Many mammals, and especially primates, use flexible signals that show a high degree of voluntary control and these signals may play an important role in forming and maintaining social relationships between group members. However, the specific role that cognitive skills play in this complex communication, and how in turn this relates to sociality, is still unclear. The hypothesis for the communicative roots of complex sociality and cognition posits that cognitive demands behind the communication needed to form and maintain bonded social relationships in complex social settings drives the link between brain size and sociality. We review the evidence in support of this hypothesis and why key features of cognitively complex communication such as intentionality and referentiality should be more effective in forming and maintaining bonded relationships as compared with less cognitively complex communication. Exploring the link between cognition, communication and sociality provides insights into how increasing flexibility in communication can facilitate the emergence of social systems characterised by bonded social relationships, such as those found in non-human primates and humans. To move the field forward and carry out both within- and among-species comparisons, we advocate the use of social network analysis, which provides a novel way to describe and compare social structure. Using this approach can lead to a new, systematic way of examining social and communicative complexity across species, something that is lacking in current comparative studies of social structure.
Collapse
Affiliation(s)
- Anna I Roberts
- Department of Psychology, University of Chester, Chester, CH1 4BJ, UK
| | - Sam G B Roberts
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
8
|
Lee NS, Beery AK. Neural Circuits Underlying Rodent Sociality: A Comparative Approach. Curr Top Behav Neurosci 2019; 43:211-238. [PMID: 30710222 DOI: 10.1007/7854_2018_77] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual's life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA.
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA, USA. .,Department of Psychology, Smith College, Northampton, MA, USA. .,Neuroscience Program, Smith College, Northampton, MA, USA.
| |
Collapse
|
9
|
Cussotto S, Sandhu KV, Dinan TG, Cryan JF. The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Front Neuroendocrinol 2018; 51:80-101. [PMID: 29753796 DOI: 10.1016/j.yfrne.2018.04.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
The human gut harbours trillions of symbiotic bacteria that play a key role in programming different aspects of host physiology in health and disease. These intestinal microbes are also key components of the gut-brain axis, the bidirectional communication pathway between the gut and the central nervous system (CNS). In addition, the CNS is closely interconnected with the endocrine system to regulate many physiological processes. An expanding body of evidence is supporting the notion that gut microbiota modifications and/or manipulations may also play a crucial role in the manifestation of specific behavioural responses regulated by neuroendocrine pathways. In this review, we will focus on how the intestinal microorganisms interact with elements of the host neuroendocrine system to modify behaviours relevant to stress, eating behaviour, sexual behaviour, social behaviour, cognition and addiction.
Collapse
Affiliation(s)
- Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Kiran V Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
10
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Rae M, Zanos P, Georgiou P, Chivers P, Bailey A, Camarini R. Environmental enrichment enhances conditioned place preference to ethanol via an oxytocinergic-dependent mechanism in male mice. Neuropharmacology 2018; 138:267-274. [PMID: 29908241 DOI: 10.1016/j.neuropharm.2018.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/20/2018] [Accepted: 06/10/2018] [Indexed: 02/01/2023]
Abstract
Environmental conditions, such as stress and environmental enrichment (EE), influence predisposition to alcohol use/abuse; however, the underlying mechanisms remain unknown. To assess the effect of environmental conditions on the initial rewarding effects of alcohol, we examined conditioned place-preference (CPP) to alcohol following exposure to EE in mice. Since social context is a major factor contributing to initial alcohol-drinking, we also assessed the impact of EE on the levels of the "social neuropeptide" oxytocin (OT) and its receptor, OTR. Finally, we assessed the effect of pharmacological manipulations of the oxytocinergic system on EE-induced alcohol CPP. While EE increased sociability and reduced anxiety-like behaviors, it caused a ∼3.5-fold increase in alcohol reward compared to controls. EE triggered profound neuroadaptations of the oxytocinergic system; it increased hypothalamic OT levels and decreased OTR binding in the prefrontal cortex and olfactory nuclei of the brain. Repeated administration of the OT analogue carbetocin (6.4 mg/kg/day) mimicked the behavioral effects of EE on ethanol CPP and induced similar brain region-specific alterations of OTR binding as those observed following EE. Conversely, repeated administration of the OTR antagonist L,369-899 (5 mg/kg/day) during EE exposure, but not during the acquisition of alcohol CPP, reversed the pronounced EE-induced ethanol rewarding effect. These results demonstrate for the first time, a stimulatory effect of environmental enrichment exposure on alcohol reward via an oxytocinergic-dependent mechanism, which may predispose to alcohol abuse. This study offers a unique prospective on the neurobiological understanding of the initial stages of alcohol use/misuse driven by complex environmental-social interplay.
Collapse
Affiliation(s)
- Mariana Rae
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, Brazil; Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Panos Zanos
- Department of Psychiatry, University of Maryland, Baltimore, School of Medicine, Baltimore, USA; Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland, Baltimore, School of Medicine, Baltimore, USA; Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Priti Chivers
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK; Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Rosana Camarini
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Oxytocin, social factors, and the expression of conditioned disgust (anticipatory nausea) in male rats. Behav Pharmacol 2018; 27:718-725. [PMID: 27740965 DOI: 10.1097/fbp.0000000000000271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disgust has been proposed to have evolved as a means to rid the body and mouth of noxious substances and toxins, as well as to motivate and facilitate avoidance of contact with disease-causing organisms and infectious materials. Nonemetic species, such as the rat, show distinctive facial expressions, including the gaping reaction, indicative of nausea-based disgust. These conditioned disgust responses can be used to model anticipatory nausea in humans, which is a learned response observed following chemotherapy treatment. As social factors play a role in the modulation and expression of conditioned disgust responses in rats, and the nonapeptide, oxytocin (OT), is involved in the modulation of social behavior, the present study examined the effects of an OT antagonist, L-368 899, on the development and expression of socially mediated conditioned disgust in male rats. When administered 10 min before testing in a distinct context (different from the original conditioning context), L-368 899 (5 mg/kg) significantly decreased gaping behavior in rats that were conditioned with a social partner. LiCl-treated rats administered L-368 899 before testing also showed decreased social initiations toward their social partner. These findings suggest that OT may play a role in the modulation and expression of socially mediated conditioned disgust in rats.
Collapse
|
13
|
Yao S, Bergan J, Lanjuin A, Dulac C. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. eLife 2017; 6:31373. [PMID: 29231812 PMCID: PMC5768418 DOI: 10.7554/elife.31373] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/11/2017] [Indexed: 01/30/2023] Open
Abstract
The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase-expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single-unit recording in the MeA uncovered significant changes in the sensory representation of conspecific cues in the absence of oxytocin signaling. Finally, acute manipulation of oxytocin signaling in adults is sufficient to alter social interaction preferences in males as well as responses of MeA neurons to chemosensory cues. These results uncover the critical role of oxytocin signaling in a molecularly defined neuronal population in order to modulate the behavioral and physiological responses of male mice to females on a moment-to-moment basis.
Collapse
Affiliation(s)
- Shenqin Yao
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Joseph Bergan
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Anne Lanjuin
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
14
|
Rios VP, Kraenkel RA. Do I Know You? How Individual Recognition Affects Group Formation and Structure. PLoS One 2017; 12:e0170737. [PMID: 28125708 PMCID: PMC5268392 DOI: 10.1371/journal.pone.0170737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 12/09/2016] [Indexed: 11/21/2022] Open
Abstract
Groups in nature can be formed by interactions between individuals, or by external pressures like predation. It is reasonable to assume that groups formed by internal and external conditions have different dynamics and structures. We propose a computational model to investigate the effects of individual recognition on the formation and structure of animal groups. Our model is composed of agents that can recognize each other and remember previous interactions, without any external pressures, in order to isolate the effects of individual recognition. We show that individual recognition affects the number and size of groups, and the modularity of the social networks. This model can be used as a null model to investigate the effects of external factors on group formation and persistence.
Collapse
Affiliation(s)
- Vitor Passos Rios
- Programa de Pós-Graduação em Ecologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| | - Roberto André Kraenkel
- Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Garrido Zinn C, Clairis N, Silva Cavalcante LE, Furini CRG, de Carvalho Myskiw J, Izquierdo I. Major neurotransmitter systems in dorsal hippocampus and basolateral amygdala control social recognition memory. Proc Natl Acad Sci U S A 2016; 113:E4914-9. [PMID: 27482097 PMCID: PMC4995962 DOI: 10.1073/pnas.1609883113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Social recognition memory (SRM) is crucial for reproduction, forming social groups, and species survival. Despite its importance, SRM is still relatively little studied. Here we examine the participation of the CA1 region of the dorsal hippocampus (CA1) and the basolateral amygdala (BLA) and that of dopaminergic, noradrenergic, and histaminergic systems in both structures in the consolidation of SRM. Male Wistar rats received intra-CA1 or intra-BLA infusions of different drugs immediately after the sample phase of a social discrimination task and 24-h later were subjected to a 5-min retention test. Animals treated with the protein synthesis inhibitor, anisomycin, into either the CA1 or BLA were unable to recognize the previously exposed juvenile (familiar) during the retention test. When infused into the CA1, the β-adrenoreceptor agonist, isoproterenol, the D1/D5 dopaminergic receptor antagonist, SCH23390, and the H2 histaminergic receptor antagonist, ranitidine, also hindered the recognition of the familiar juvenile 24-h later. The latter drug effects were more intense in the CA1 than in the BLA. When infused into the BLA, the β-adrenoreceptor antagonist, timolol, the D1/D5 dopamine receptor agonist, SKF38393, and the H2 histaminergic receptor agonist, ranitidine, also hindered recognition of the familiar juvenile 24-h later. In all cases, the impairment to recognize the familiar juvenile was abolished by the coinfusion of agonist plus antagonist. Clearly, both the CA1 and BLA, probably in that order, play major roles in the consolidation of SRM, but these roles are different in each structure vis-à-vis the involvement of the β-noradrenergic, D1/D5-dopaminergic, and H2-histaminergic receptors therein.
Collapse
Affiliation(s)
- Carolina Garrido Zinn
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Nicolas Clairis
- Département de Biologie, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Lorena Evelyn Silva Cavalcante
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil;
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil;
| |
Collapse
|
16
|
de Moura AC, Lazzari VM, Becker RO, Gil MS, Ruthschilling CA, Agnes G, Almeida S, da Veiga ABG, Lucion AB, Giovenardi M. Gene expression in the CNS of lactating rats with different patterns of maternal behavior. Neurosci Res 2015; 99:8-15. [DOI: 10.1016/j.neures.2015.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022]
|
17
|
Griffiths PR, Brennan PA. Roles for learning in mammalian chemosensory responses. Horm Behav 2015; 68:91-102. [PMID: 25200200 DOI: 10.1016/j.yhbeh.2014.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/08/2014] [Accepted: 08/27/2014] [Indexed: 12/27/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". A rich variety of chemosignals have been identified that influence mammalian behaviour, including peptides, proteins and volatiles. Many of these elicit innate effects acting either as pheromones within species or allelochemicals between species. However, even innate pheromonal responses in mammals are not as hard-wired as the original definition of the term would suggest. Many, if not most mammalian pheromonal responses are only elicited in certain behavioural or physiological contexts. Furthermore, certain pheromones are themselves rewarding and act as unconditioned stimuli to link non-pheromonal stimuli to the pheromonal response, via associative learning. The medial amygdala, has emerged as a potential site for this convergence by which learned chemosensory input is able to gain control over innately-driven output circuits. The medial amygdala is also an important site for associating social chemosensory information that enables recognition of conspecifics and heterospecifics by association of their complex chemosensory signatures both within and across olfactory chemosensory systems. Learning can also influence pheromonal responses more directly to adapt them to changing physiological and behavioural context. Neuromodulators such as noradrenaline and oxytocin can plasticise neural circuits to gate transmission of chemosensory information. More recent evidence points to a role for neurogenesis in this adaptation, both at the peripheral level of the sensory neurons and via the incorporation of new neurons into existing olfactory bulb circuits. The emerging picture is of integrated and flexible responses to chemosignals that adapt them to the environmental and physiological context in which they occur.
Collapse
Affiliation(s)
- Philip R Griffiths
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | - Peter A Brennan
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
18
|
Quattrocki E, Friston K. Autism, oxytocin and interoception. Neurosci Biobehav Rev 2014; 47:410-30. [PMID: 25277283 PMCID: PMC4726659 DOI: 10.1016/j.neubiorev.2014.09.012] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/23/2014] [Accepted: 09/20/2014] [Indexed: 02/08/2023]
Abstract
Autism is a pervasive developmental disorder characterized by profound social and verbal communication deficits, stereotypical motor behaviors, restricted interests, and cognitive abnormalities. Autism affects approximately 1% of children in developing countries. Given this prevalence, identifying risk factors and therapeutic interventions are pressing objectives—objectives that rest on neurobiologically grounded and psychologically informed theories about the underlying pathophysiology. In this article, we review the evidence that autism could result from a dysfunctional oxytocin system early in life. As a mediator of successful procreation, not only in the reproductive system, but also in the brain, oxytocin plays a crucial role in sculpting socio-sexual behavior. Formulated within a (Bayesian) predictive coding framework, we propose that oxytocin encodes the saliency or precision of interoceptive signals and enables the neuronal plasticity necessary for acquiring a generative model of the emotional and social 'self.' An aberrant oxytocin system in infancy could therefore help explain the marked deficits in language and social communication—as well as the sensory, autonomic, motor, behavioral, and cognitive abnormalities—seen in autism.
Collapse
Affiliation(s)
- E Quattrocki
- The Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London WC1N 3BG, UK.
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
19
|
Brennan P, Keverne EB. Biological complexity and adaptability of simple mammalian olfactory memory systems. Neurosci Biobehav Rev 2014; 50:29-40. [PMID: 25451762 DOI: 10.1016/j.neubiorev.2014.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/20/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022]
Abstract
Chemosensory systems play vital roles in the lives of most mammals, including the detection and identification of predators, as well as sex and reproductive status and the identification of individual conspecifics. All of these capabilities require a process of recognition involving a combination of innate (kairomonal/pheromonal) and learned responses. Across very different phylogenies, the mechanisms for pheromonal and odour learning have much in common. They are frequently associated with plasticity of GABA-ergic feedback at the initial level of processing the chemosensory information, which enhances its pattern separation capability. Association of odourant features into an odour object primarily involves anterior piriform cortex for non-social odours. However, the medial amygdala appears to be involved in both the recognition of social odours and their association with chemosensory information sensed by the vomeronasal system. Unusually not only the sensory neurons themselves, but also the GABA-ergic interneurons in the olfactory bulb are continually being replaced, with implications for the induction and maintenance of learned chemosensory responses.
Collapse
Affiliation(s)
- P Brennan
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Lieberwirth C, Wang Z. Social bonding: regulation by neuropeptides. Front Neurosci 2014; 8:171. [PMID: 25009457 PMCID: PMC4067905 DOI: 10.3389/fnins.2014.00171] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/05/2014] [Indexed: 11/13/2022] Open
Abstract
Affiliative social relationships (e.g., among spouses, family members, and friends) play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT), and arginine vasopressin (AVP), in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed.
Collapse
Affiliation(s)
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
21
|
Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives. Psychopharmacology (Berl) 2014; 231:1125-46. [PMID: 24048469 DOI: 10.1007/s00213-013-3268-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/27/2013] [Indexed: 12/14/2022]
Abstract
The establishment of robust and replicable behavioural testing paradigms with translational value for psychiatric diseases is a major step forward in developing and testing etiology-directed treatment for these complex disorders. Based on the existing literature, we have generated an inventory of applied rodent behavioural testing paradigms relevant to autism spectrum disorders (ASD). This inventory focused on previously used paradigms that assess behavioural domains that are affected in ASD, such as social interaction, social communication, repetitive behaviours and behavioural inflexibility, cognition as well as anxiety behaviour. A wide range of behavioural testing paradigms for rodents were identified. However, the level of face and construct validity is highly variable. The predictive validity of these paradigms is unknown, as etiology-directed treatments for ASD are currently not on the market. To optimise these studies, future efforts should address aspects of reproducibility and take into account data about the neurodevelopmental underpinnings and trajectory of ASD. In addition, with the increasing knowledge of processes underlying ASD, such as sensory information processes and synaptic plasticity, phenotyping efforts should include multi-level automated analysis of, for example, representative task-related behavioural and electrophysiological read-outs.
Collapse
|
22
|
Anacker AMJ, Beery AK. Life in groups: the roles of oxytocin in mammalian sociality. Front Behav Neurosci 2013; 7:185. [PMID: 24376404 PMCID: PMC3858648 DOI: 10.3389/fnbeh.2013.00185] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/14/2013] [Indexed: 12/17/2022] Open
Abstract
In recent decades, scientific understanding of the many roles of oxytocin (OT) in social behavior has advanced tremendously. The focus of this research has been on maternal attachments and reproductive pair-bonds, and much less is known about the substrates of sociality outside of reproductive contexts. It is now apparent that OT influences many aspects of social behavior including recognition, trust, empathy, and other components of the behavioral repertoire of social species. This review provides a comparative perspective on the contributions of OT to life in mammalian social groups. We provide background on the functions of OT in maternal attachments and the early social environment, and give an overview of the role of OT circuitry in support of different mating systems. We then introduce peer relationships in group-living rodents as a means for studying the importance of OT in non-reproductive affiliative behaviors. We review species differences in oxytocin receptor (OTR) distributions in solitary and group-living species of South American tuco-tucos and in African mole-rats, as well as singing mice. We discuss variation in OTR levels with seasonal changes in social behavior in female meadow voles, and the effects of OT manipulations on peer huddling behavior. Finally, we discuss avenues of promise for future investigation, and relate current findings to research in humans and non-human primates. There is growing evidence that OT is involved in social selectivity, including increases in aggression toward social outgroups and decreased huddling with unfamiliar individuals, which may support existing social structures or relationships at the expense of others. OT’s effects reach beyond maternal attachment and pair bonds to play a role in affiliative behavior underlying “friendships”, organization of broad social structures, and maintenance of established social relationships with individuals or groups.
Collapse
Affiliation(s)
| | - Annaliese K Beery
- Neuroscience Program, Smith College Northampton, MA, USA ; Departments of Psychology and Biology, Smith College Northampton, MA, USA
| |
Collapse
|
23
|
Arueti M, Perach-Barzilay N, Tsoory MM, Berger B, Getter N, Shamay-Tsoory SG. When two become one: the role of oxytocin in interpersonal coordination and cooperation. J Cogn Neurosci 2013; 25:1418-27. [PMID: 23574582 DOI: 10.1162/jocn_a_00400] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cooperation involves intentional coordinated acts performed to achieve potentially positive outcomes. Here we present a novel explanatory model of cooperation, which focuses on the role of the oxytocinergic system in promoting interpersonal coordination and synchrony. Cooperation was assessed using a novel computerized drawing task that may be performed individually or cooperatively by two participants who coordinate their actions. Using a within-subject crossover design, 42 participants performed the task alone and with a partner following the administration of placebo and oxytocin 1 week apart. The data indicate that following placebo administration, participants performed better alone than in pairs. Yet, the administration of oxytocin improved paired performance up to the level of individual performance. This effect depended on the personality traits of cooperativeness or competitiveness. It is concluded that oxytocin may play a key role in enhancing social synchrony and coordination of behaviors required for cooperation.
Collapse
|
24
|
Okabe S, Nagasawa M, Mogi K, Kikusui T. Importance of mother-infant communication for social bond formation in mammals. Anim Sci J 2012; 83:446-52. [PMID: 22694327 DOI: 10.1111/j.1740-0929.2012.01014.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mother-infant bonding is a universal relationship of all mammalian species. Here, we describe the role of reciprocal communication between mother and infant in the formation of bonding for several mammalian species. Mother-infant bond formation is reinforced by various social cues or stimuli, including communicative signals, such as odor and vocalizations, or tactile stimuli. The mother also develops cross-modal sensory recognition of the infant, during bond formation. Many studies have indicated that the oxytocin neural system plays a pivotal role in bond formation by the mother; however, the underlying neural mechanisms for infants have not yet been clarified. The comparative understanding of cognitive functions of mother and infants may help us understand the biological significance of mother-infant communication in mammalian species.
Collapse
Affiliation(s)
- Shota Okabe
- Department of Animal Science and Biotechnology, Azabu University, Chuo-ku, Sagamihara, Japan
| | | | | | | |
Collapse
|
25
|
Onaka T, Takayanagi Y, Yoshida M. Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 2012; 24:587-98. [PMID: 22353547 DOI: 10.1111/j.1365-2826.2012.02300.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin neurones are activated by stressful stimuli, food intake and social attachment. Activation of oxytocin neurones in response to stressful stimuli or food intake is mediated, at least in part, by noradrenaline/prolactin-releasing peptide (PrRP) neurones in the nucleus tractus solitarius, whereas oxytocin neurones are activated after social stimuli via medial amygdala neurones. Activation of oxytocin neurones induces the release of oxytocin not only from their axon terminals, but also from their dendrites. Oxytocin acts locally where released or diffuses and acts on remote oxytocin receptors widely distributed within the brain, resulting in anxiolytic, anorexic and pro-social actions. The action sites of oxytocin appear to be multiple. Oxytocin shows anxiolytic actions, at least in part, via serotoninergic neurones in the median raphe nucleus, has anorexic actions via pro-opiomelanocortin neurones in the nucleus tractus solitarius and facilitates social recognition via the medial amygdala. Stress, obesity and social isolation are major risk factors for mortality in humans. Thus, the oxytocin-oxytocin receptor system is a therapeutic target for the promotion of human health.
Collapse
Affiliation(s)
- T Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shinotsuke-shi, Tochigi-ken, Japan.
| | | | | |
Collapse
|
26
|
Analysis of transcriptional levels of the oxytocin receptor in different areas of the central nervous system and behaviors in high and low licking rats. Behav Brain Res 2012; 228:176-84. [DOI: 10.1016/j.bbr.2011.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 11/21/2022]
|
27
|
Wacker DW, Ludwig M. Vasopressin, oxytocin, and social odor recognition. Horm Behav 2012; 61:259-65. [PMID: 21920364 DOI: 10.1016/j.yhbeh.2011.08.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 11/30/2022]
Abstract
Central vasopressin and oxytocin, and their homologues, modulate a multitude of social behaviors in a variety of animal taxa. All social behavior requires some level of social (re)cognition, and these neuropeptides exert powerful effects on an animal's ability to recognize and appropriately respond to a conspecific. Social cognition for many mammals, including rodents, begins at the main and accessory olfactory systems. We recently identified vasopressin expressing neurons in the main and accessory olfactory bulb and in the anterior olfactory nucleus, a region of olfactory cortex that transmits and processes information in the main olfactory system. We review this and other work demonstrating that both vasopressin and oxytocin modulate conspecific social recognition at the level of the olfactory system. We also outline recent work on the somato-dendritic release of vasopressin and oxytocin, and propose a model by which the somato-dendritic priming of these neuropeptides in main olfactory regions may facilitate the formation of short-term social odor memories. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
28
|
Nagasawa M, Okabe S, Mogi K, Kikusui T. Oxytocin and mutual communication in mother-infant bonding. Front Hum Neurosci 2012; 6:31. [PMID: 22375116 PMCID: PMC3289392 DOI: 10.3389/fnhum.2012.00031] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/10/2012] [Indexed: 12/12/2022] Open
Abstract
Mother-infant bonding is universal to all mammalian species. In this review, we describe the manner in which reciprocal communication between the mother and infant leads to mother-infant bonding in rodents. In rats and mice, mother-infant bond formation is reinforced by various social stimuli, such as tactile stimuli and ultrasonic vocalizations (USVs) from the pups to the mother, and feeding and tactile stimulation from the mother to the pups. Some evidence suggests that mother and infant can develop a cross-modal sensory recognition of their counterpart during this bonding process. Neurochemically, oxytocin in the neural system plays a pivotal role in each side of the mother-infant bonding process, although the mechanisms underlying bond formation in the brains of infants has not yet been clarified. Impairment of mother-infant bonding, that is, deprivation of social stimuli from the mother, strongly influences offspring sociality, including maternal behavior toward their own offspring in their adulthood, implying a "non-genomic transmission of maternal environment," even in rodents. The comparative understanding of cognitive functions between mother and infants, and the biological mechanisms involved in mother-infant bonding may help us understand psychiatric disorders associated with mother-infant relationships.
Collapse
Affiliation(s)
| | | | | | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, SagamiharaKanagawa-ken, Japan
| |
Collapse
|
29
|
Kojima S, Alberts JR. Oxytocin mediates the acquisition of filial, odor-guided huddling for maternally-associated odor in preweanling rats. Horm Behav 2011; 60:549-58. [PMID: 21872599 PMCID: PMC3866017 DOI: 10.1016/j.yhbeh.2011.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/18/2011] [Accepted: 08/11/2011] [Indexed: 11/22/2022]
Abstract
The present study was designed to examine possible roles of oxytocin (OT) in the acquisition of a filial huddling preference in preweanling rats. We used a procedure in which a scented, foster mother can induce an odor-guided huddling preference in preweanling pups, following a single, 2-h-long co-habitation (Kojima and Alberts, 2009, 2011). This single, discrete period for preference learning enables us to observe the mother-pup interactions that establish the pups' preferences and to intervene with experimental manipulations. Four, 14-day-old littermates interacted with a scented foster mother that provided maternal care during a 2-h session. Two of the pups were pretreated with an intracerebroventricular injection of OT or an oxytocin antagonist (OTA), and the others received a vehicle injection. Filial preference for a maternally-paired odor was measured in a huddling test the next day. OT is necessary for acquisition of the filial preference: The preference learning was blocked in the pups treated with OTA, but not in their vehicle-treated littermates who experienced the same mother at the same time. Injection with exogenous OT did not augment the pups' preference. Manipulating pups' central OT also altered the contact interactions of the mother and pups. When some pups received OT, mother-litter aggregations formed as frequently and with similar combinations of bodies, but contact aggregations were significantly more cohesive than when some pups in the litter received OTA. We discuss dual, behavioral and neuroendocrine roles of OT in social learning by preweanling rats.
Collapse
|
30
|
Engelmann M, Hädicke J, Noack J. Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure. Nat Protoc 2011; 6:1152-62. [PMID: 21799485 DOI: 10.1038/nprot.2011.353] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Testing declarative memory in laboratory rodents can provide insights into the fundamental mechanisms underlying this type of learning and memory processing, and these insights are likely to be applicable to humans. Here we provide a detailed description of the social discrimination procedure used to investigate recognition memory in rats and mice, as established during the last 20 years in our laboratory. The test is based on the use of olfactory signals for social communication in rodents; this involves a direct encounter between conspecifics, during which the investigatory behavior of the experimental subject serves as an index for learning and memory performance. The procedure is inexpensive, fast and very reliable, but it requires well-trained human observers. We include recent modifications to the procedure that allow memory extinction to be investigated by retroactive and proactive interference, and that enable the dissociated analysis of the central nervous processing of the volatile fraction of an individual's olfactory signature. Depending on the memory retention interval under study (short-term memory, intermediate-term memory, long-term memory or long-lasting memory), the protocol takes ~10 min or up to several days to complete.
Collapse
Affiliation(s)
- Mario Engelmann
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Magdeburg, Germany.
| | | | | |
Collapse
|
31
|
Mogi K, Nagasawa M, Kikusui T. Developmental consequences and biological significance of mother-infant bonding. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1232-41. [PMID: 20817069 DOI: 10.1016/j.pnpbp.2010.08.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
Mother-infant bonding is universal to all mammalian species. Here, we review how mutual communication between the mother and infant leads to mother-infant bonding in non-primate species. In rodents, mother-infant bond formation is reinforced by various pup stimuli, such as tactile stimuli and ultrasonic vocalizations. Evidence suggests that the oxytocin neural system plays a pivotal role in each aspect of the mother-infant bonding, although the mechanisms underlying bond formation in the brain of infants has not yet been clarified. Impairment of mother-infant bonding strongly influences offspring sociality. We describe the negative effects of mother-infant bonding deprivation on the neurobehavioral development in rodent offspring, even if weaning occurs in the later lactating period. We also discuss similar effects observed in pigs and dogs, which are usually weaned earlier than under natural conditions. The comparative understanding of the developmental consequences of mother-infant bonding and the underlying mechanisms provide insight into the biological significance of this bonding in mammals, and may help us to understand psychiatric disorders related to child abuse or childhood neglect.
Collapse
Affiliation(s)
- Kazutaka Mogi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Japan
| | | | | |
Collapse
|
32
|
Wacker DW, Engelmann M, Tobin VA, Meddle SL, Ludwig M. Vasopressin and social odor processing in the olfactory bulb and anterior olfactory nucleus. Ann N Y Acad Sci 2011; 1220:106-16. [PMID: 21388408 DOI: 10.1111/j.1749-6632.2010.05885.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Central vasopressin facilitates social recognition and modulates numerous complex social behaviors in mammals, including parental behavior, aggression, affiliation, and pair-bonding. In rodents, social interactions are primarily mediated by the exchange of olfactory information, and there is evidence that vasopressin signaling is important in brain areas where olfactory information is processed. We recently discovered populations of vasopressin neurons in the main and accessory olfactory bulbs and anterior olfactory nucleus that are involved in the processing of social odor cues. In this review, we propose a model of how vasopressin release in these regions, potentially from the dendrites, may act to filter social odor information to facilitate odor-based social recognition. Finally, we discuss recent human research linked to vasopressin signaling and suggest that our model of priming-facilitated vasopressin signaling would be a rewarding target for further studies, as a failure of priming may underlie pathological changes in complex behaviors.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Sánchez-Andrade G, Kendrick KM. Roles of α- and β-estrogen receptors in mouse social recognition memory: effects of gender and the estrous cycle. Horm Behav 2011; 59:114-22. [PMID: 21056567 DOI: 10.1016/j.yhbeh.2010.10.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/28/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
Abstract
Establishing clear effects of gender and natural hormonal changes during female ovarian cycles on cognitive function has often proved difficult. Here we have investigated such effects on the formation and long-term (24 h) maintenance of social recognition memory in mice together with the respective involvement of α- and β-estrogen receptors using α- and β-estrogen receptor knockout mice and wildtype controls. Results in wildtype animals showed that while females successfully formed a memory in the context of a habituation/dishabituation paradigm at all stages of their ovarian cycle, only when learning occurred during proestrus (when estrogen levels are highest) was it retained after 24 h. In α-receptor knockout mice (which showed no ovarian cycles) both formation and maintenance of this social recognition memory were impaired, whereas β-receptor knockouts showed no significant deficits and exhibited the same proestrus-dependent retention of memory at 24 h. To investigate possible sex differences, male α- and β-estrogen receptor knockout mice were also tested and showed similar effects to females excepting that α-receptor knockouts had normal memory formation and only exhibited a 24 h retention deficit. This indicates a greater dependence in females on α-receptor expression for memory formation in this task. Since non-specific motivational and attentional aspects of the task were unaffected, our findings suggest a general α-receptor dependent facilitation of memory formation by estrogen as well as an enhanced long-term retention during proestrus. Results are discussed in terms of the differential roles of the two estrogen receptors, the neural substrates involved and putative interactions with oxytocin.
Collapse
Affiliation(s)
- G Sánchez-Andrade
- Laboratory of Molecular Signalling, Cognitive and Systems Neuroscience Group, The Babraham Institute, Babraham, Cambridge CB22 3AQ, UK
| | | |
Collapse
|
34
|
D'Cunha TM, King SJ, Fleming AS, Lévy F. Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal memory in postpartum rats. Horm Behav 2011; 59:14-21. [PMID: 20932839 DOI: 10.1016/j.yhbeh.2010.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/24/2010] [Accepted: 09/26/2010] [Indexed: 11/24/2022]
Abstract
Female rats with maternal experience display a shorter onset of maternal responsiveness compared to those with no prior experience. This phenomenon called 'maternal memory' is critically dependent on the nucleus accumbens (NA) shell. We hypothesized that activation of OT receptors in the NA shell facilitates maternal memory. In Experiment 1, postpartum female rats given 1 hour of maternal experience were infused following the experience with either a high or low dose of an OT antagonist into the NA shell and tested for maternal behavior after a 10-day pup isolation period. Females receiving a high dose of the antagonist showed a significantly longer latency to exhibit full maternal behavior after the pup isolation period compared to females that received vehicle or a high dose of antagonist in a control region. In Experiment 2, postpartum female rats were infused with either a high or low dose of OT into the NA shell after a 15-minute maternal experience and tested for maternal behavior after a 10-day pup isolation period. There were no significant differences between the females infused with OT and females treated with a vehicle infused into the NA shell or with OT infused into the control region. One possible reason for a lack of facilitation is a floor effect, since females in the control groups displayed a rapid maternal response after the pup isolation period. These findings suggest that OT receptors, likely in combination with other neurotransmitters, in the NA shell play a role in the consolidation of maternal memory.
Collapse
Affiliation(s)
- T M D'Cunha
- Department of Psychology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | | | | | | |
Collapse
|
35
|
Choleris E, Clipperton-Allen AE, Phan A, Kavaliers M. Neuroendocrinology of social information processing in rats and mice. Front Neuroendocrinol 2009; 30:442-459. [PMID: 19442683 DOI: 10.1016/j.yfrne.2009.05.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
We reviewed oxytocin (OT), arginine-vasopressin (AVP) and gonadal hormone involvement in various modes of social information processing in mice and rats. Gonadal hormones regulate OT and AVP mediation of social recognition and social learning. Estrogens foster OT-mediated social recognition and the recognition and avoidance of parasitized conspecifics via estrogen receptor (ER) alpha (ERalpha) and ERbeta. Testosterone and its metabolites, including estrogens, regulate social recognition in males predominantly via the AVP V1a receptor. Both OT and AVP are involved in the social transmission of food preferences and ERalpha has inhibitory, while ERbeta has enhancing, roles. OT also enhances mate copying by females. ERalpha mediates the sexual, and ERbeta the recognition, aspects of the risk-taking enhancing effects of females on males. Thus, androgens and estrogens control social information processing by regulating OT and AVP. This control is finely tuned for different forms of social information processing.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | - Anna Phan
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Ontario, Canada N6A 5C2
| |
Collapse
|
36
|
Neumann ID. The advantage of social living: brain neuropeptides mediate the beneficial consequences of sex and motherhood. Front Neuroendocrinol 2009; 30:483-496. [PMID: 19416734 DOI: 10.1016/j.yfrne.2009.04.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/21/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
Living in social groups is clearly beneficial for many species, often resulting in increased survival, enhanced fitness of the group, and progression of brain development and cognitive abilities. The development of the social brain has been promoted on the basis (i) of activation of reward centres by social stimuli, (ii) of positive consequences of close social interactions on emotionality (which is reinforcing by itself) and on general fitness, and (iii) of negative health consequences in the absence or as a result of sudden interruption of social interactions. For example, social interactions as seen between mother and child or between mating partners have beneficial effects on the mental and physical health state, in particular on adaptive processes related to emotional and physiological stress coping in both sexes. Here, the neurobiological basis of social behaviour, in particular the involvement of the brain neuropeptides, oxytocin and prolactin, in mediating such positive health effects will be discussed.
Collapse
Affiliation(s)
- Inga D Neumann
- Department of Behavioural and Molecular Neuroendocrinology, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
37
|
Ross HE, Young LJ. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol 2009; 30:534-547. [PMID: 19481567 PMCID: PMC2748133 DOI: 10.1016/j.yfrne.2009.05.004] [Citation(s) in RCA: 547] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/14/2009] [Accepted: 05/22/2009] [Indexed: 12/17/2022]
Abstract
Oxytocin is produced in the hypothalamus and released into the circulation through the neurohypophyseal system. Peripherally released oxytocin facilitates parturition and milk ejection during nursing. Centrally released oxytocin coordinates the onset of maternal nurturing behavior at parturition and plays a role in mother-infant bonding. More recent studies have revealed a more general role for oxytocin in modulating affiliative behavior in both sexes. Oxytocin regulates alloparental care and pair bonding in female monogamous prairie voles. Social recognition in male and female mice is also modulated by oxytocin. In humans, oxytocin increases gaze to the eye region of human faces and enhances interpersonal trust and the ability to infer the emotions of others from facial cues. While the neurohypopheseal oxytocin system has been well characterized, less is known regarding the nature of oxytocin release within the brain. Here we review the role of oxytocin in the regulation of prosocial interactions, and discuss the neuroanatomy of the central oxytocin system.
Collapse
Affiliation(s)
- Heather E Ross
- Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta GA, USA
| | - Larry J Young
- Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta GA, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
38
|
Sanchez-Andrade G, Kendrick KM. The main olfactory system and social learning in mammals. Behav Brain Res 2009; 200:323-35. [DOI: 10.1016/j.bbr.2008.12.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 12/26/2022]
|
39
|
Lee HJ, Macbeth AH, Pagani JH, Young WS. Oxytocin: the great facilitator of life. Prog Neurobiol 2009; 88:127-51. [PMID: 19482229 DOI: 10.1016/j.pneurobio.2009.04.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/24/2009] [Accepted: 04/02/2009] [Indexed: 01/01/2023]
Abstract
Oxytocin (Oxt) is a nonapeptide hormone best known for its role in lactation and parturition. Since 1906 when its uterine-contracting properties were described until 50 years later when its sequence was elucidated, research has focused on its peripheral roles in reproduction. Only over the past several decades have researchers focused on what functions Oxt might have in the brain, the subject of this review. Immunohistochemical studies revealed that magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei are the neurons of origin for the Oxt released from the posterior pituitary. Smaller cells in various parts of the brain, as well as release from magnocellular dendrites, provide the Oxt responsible for modulating various behaviors at its only identified receptor. Although Oxt is implicated in a variety of "non-social" behaviors, such as learning, anxiety, feeding and pain perception, it is Oxt's roles in various social behaviors that have come to the fore recently. Oxt is important for social memory and attachment, sexual and maternal behavior, and aggression. Recent work implicates Oxt in human bonding and trust as well. Human disorders characterized by aberrant social interactions, such as autism and schizophrenia, may also involve Oxt expression. Many, if not most, of Oxt's functions, from social interactions (affiliation, aggression) and sexual behavior to eventual parturition, lactation and maternal behavior, may be viewed as specifically facilitating species propagation.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Section on Neural Gene Expression, NIMH, NIH, DHHS, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
40
|
Guevara-Guzmán R, Arriaga V, Kendrick KM, Bernal C, Vega X, Mercado-Gómez OF, Rivas-Arancibia S. Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats. Neuroscience 2009; 159:940-50. [PMID: 19356678 DOI: 10.1016/j.neuroscience.2009.01.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 11/25/2022]
Abstract
There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.
Collapse
Affiliation(s)
- R Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Apartado Postal 70250, Mexico 04510, D.F, Mexico.
| | | | | | | | | | | | | |
Collapse
|
41
|
Macbeth AH, Scharfman HE, Maclusky NJ, Gautreaux C, Luine VN. Effects of multiparity on recognition memory, monoaminergic neurotransmitters, and brain-derived neurotrophic factor (BDNF). Horm Behav 2008; 54:7-17. [PMID: 17927990 PMCID: PMC2441760 DOI: 10.1016/j.yhbeh.2007.08.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 01/11/2023]
Abstract
Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5-6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after the last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic activity and levels were measured in prefrontal cortex, CA1 hippocampus, CA3 hippocampus, and olfactory bulb (OB). NP and MP females differed in monoamine concentrations in the OB only, with MP females having significantly greater concentrations of dopamine and metabolite DOPAC, norepinephrine and metabolite MHPG, and the serotonin metabolite 5-HIAA, as compared to NP females. These results indicate a long-term change in OB neurochemistry as a result of multiparity. Brain-derived neurotrophic factor (BDNF) was also measured in hippocampus (CA1, CA3, dentate gyrus) and septum. MP females had higher BDNF levels in both CA1 and septum; as these regions are implicated in memory performance, elevated BDNF may underlie the observed memory task differences. Thus, MP females (experiencing multiple bouts of pregnancy, birth, and pup rearing during the first year of life) displayed enhanced memory task performance but equal anxiety responses, as compared to NP females. These results are consistent with previous studies showing long-term changes in behavioral function in MP, as compared to NP, rats and suggest that alterations in monoamines and a neurotrophin, BDNF, may contribute to the observed behavioral changes.
Collapse
Affiliation(s)
- Abbe H Macbeth
- Department of Psychology, Hunter College, CUNY, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
In addition to various reproductive stimuli, the neuropeptide oxytocin (OXT) is released both from the neurohypophysial terminal into the blood stream and within distinct brain regions in response to stressful or social stimuli. Brain OXT receptor-mediated actions were shown to be significantly involved in the regulation of a variety of behaviours. Here, complementary methodological approaches are discussed which were utilised to reveal, for example, anxiolytic and anti-stress effects of OXT, both in females and in males, effects that were localised within the central amygdala and the hypothalamic paraventricular nucleus. Also, in male rats, activation of the brain OXT system is essential for the regulation of sexual behaviour, and increased OXT system activity during mating is directly linked to an attenuated anxiety-related behaviour. Moreover, in late pregnancy and during lactation, central OXT is involved in the establishment and fine-tuned maintenance of maternal care and maternal aggression. In monogamous prairie voles, brain OXT is important for mating-induced pair bonding, especially in females. Another example of behavioural actions of intracerebral OXT is the promotion of social memory processes and recognition of con-specifics, as revealed in rats, mice, sheep and voles. Experimental evidence suggests that, in humans, brain OXT exerts similar behavioural effects. Thus, the brain OXT system seems to be a potential target for the development of therapeutics to treat anxiety- and depression-related diseases or abnormal social behaviours including autism.
Collapse
Affiliation(s)
- I D Neumann
- Department of Behavioural and Molecular Neuroendocrinology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
43
|
Vaginocervical stimulation enhances social recognition memory in rats via oxytocin release in the olfactory bulb. Neuroscience 2008; 152:585-93. [DOI: 10.1016/j.neuroscience.2008.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/04/2007] [Accepted: 01/07/2008] [Indexed: 11/15/2022]
|
44
|
Veyrac A, Nguyen V, Marien M, Didier A, Jourdan F. Noradrenergic control of odor recognition in a nonassociative olfactory learning task in the mouse. Learn Mem 2007; 14:847-54. [PMID: 18086828 DOI: 10.1101/lm.708807] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study examined the influence of pharmacological modulations of the locus coeruleus noradrenergic system on odor recognition in the mouse. Mice exposed to a nonrewarded olfactory stimulation (training) were able to memorize this odor and to discriminate it from a new odor in a recall test performed 15 min later. At longer delays (30 or 60 min), the familiar odor was no longer retained, and both stimuli were perceived as new ones. Following a post-training injection of the alpha(2)-adrenoceptor antagonist dexefaroxan, the familiar odor was still remembered 30 min after training. In contrast, both the alpha(2)-adrenoceptor agonist UK 14304 and the noradrenergic neurotoxin DSP-4 prevented the recognition of the familiar odor 15 min after the first exposure. Noradrenaline release in the olfactory bulb, assessed by measurement of the extracellular noradrenaline metabolite normetanephrine, was increased by 62% following dexefaroxan injection, and was decreased by 38%-44% after treatment with UK 14304 and DSP-4. Performance of mice in the recall test was reduced by a post-training injection of the beta-adrenoceptor antagonist propranolol or the alpha(1)-antagonist prazosin, thus implicating a role for beta- and alpha(1)-adrenoceptors in the facilitating effects of noradrenaline on short-term olfactory recognition in this model.
Collapse
Affiliation(s)
- Alexandra Veyrac
- Neurosciences Sensorielles, Comportement, Cognition, CNRS-UMR 5020, Université de Lyon, Université Claude Bernard-Lyon 1, 69366 Lyon, France
| | | | | | | | | |
Collapse
|
45
|
Abstract
The neuropeptide oxytocin is synthesized in the brain and released from neurohypophyseal terminals into the blood and within defined brain regions that regulate emotional, cognitive, and social behaviors. A recent study of CD38-/- mice (Jin et al., 2007) has demonstrated an essential role for the transmembrane receptor CD38 in secretion of oxytocin into the blood.
Collapse
Affiliation(s)
- Inga D Neumann
- Department of Behavioural Neuroendocrinology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
46
|
Brennan PA, Kendrick KM. Mammalian social odours: attraction and individual recognition. Philos Trans R Soc Lond B Biol Sci 2007; 361:2061-78. [PMID: 17118924 PMCID: PMC1764843 DOI: 10.1098/rstb.2006.1931] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.
Collapse
Affiliation(s)
- Peter A Brennan
- Department of Physiology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
47
|
Broad K, Curley J, Keverne E. Mother-infant bonding and the evolution of mammalian social relationships. Philos Trans R Soc Lond B Biol Sci 2006; 361:2199-214. [PMID: 17118933 PMCID: PMC1764844 DOI: 10.1098/rstb.2006.1940] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A wide variety of maternal, social and sexual bonding strategies have been described across mammalian species, including humans. Many of the neural and hormonal mechanisms that underpin the formation and maintenance of these bonds demonstrate a considerable degree of evolutionary conservation across a representative range of these species. However, there is also a considerable degree of diversity in both the way these mechanisms are activated and in the behavioural responses that result. In the majority of small-brained mammals (including rodents), the formation of a maternal or partner preference bond requires individual recognition by olfactory cues, activation of neural mechanisms concerned with social reward by these cues and gender-specific hormonal priming for behavioural output. With the evolutionary increase of neocortex seen in monkeys and apes, there has been a corresponding increase in the complexity of social relationships and bonding strategies together with a significant redundancy in hormonal priming for motivated behaviour. Olfactory recognition and olfactory inputs to areas of the brain concerned with social reward are downregulated and recognition is based on integration of multimodal sensory cues requiring an expanded neocortex, particularly the association cortex. This emancipation from olfactory and hormonal determinants of bonding has been succeeded by the increased importance of social learning that is necessitated by living in a complex social world and, especially in humans, a world that is dominated by cultural inheritance.
Collapse
Affiliation(s)
| | | | - E.B Keverne
- Sub-Department of Animal Behaviour, University of CambridgeMadingley, Cambridge CB3 8AA, UK
| |
Collapse
|
48
|
Hammock EA, Young LJ. Oxytocin, vasopressin and pair bonding: implications for autism. Philos Trans R Soc Lond B Biol Sci 2006; 361:2187-98. [PMID: 17118932 PMCID: PMC1764849 DOI: 10.1098/rstb.2006.1939] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the neurobiological substrates regulating normal social behaviours may provide valuable insights in human behaviour, including developmental disorders such as autism that are characterized by pervasive deficits in social behaviour. Here, we review the literature which suggests that the neuropeptides oxytocin and vasopressin play critical roles in modulating social behaviours, with a focus on their role in the regulation of social bonding in monogamous rodents. Oxytocin and vasopressin contribute to a wide variety of social behaviours, including social recognition, communication, parental care, territorial aggression and social bonding. The effects of these two neuropeptides are species-specific and depend on species-specific receptor distributions in the brain. Comparative studies in voles with divergent social structures have revealed some of the neural and genetic mechanisms of social-bonding behaviour. Prairie voles are socially monogamous; males and females form long-term pair bonds, establish a nest site and rear their offspring together. In contrast, montane and meadow voles do not form a bond with a mate and only the females take part in rearing the young. Species differences in the density of receptors for oxytocin and vasopressin in ventral forebrain reward circuitry differentially reinforce social-bonding behaviour in the two species. High levels of oxytocin receptor (OTR) in the nucleus accumbens and high levels of vasopressin 1a receptor (V1aR) in the ventral pallidum contribute to monogamous social structure in the prairie vole. While little is known about the genetic factors contributing to species-differences in OTR distribution, the species-specific distribution pattern of the V1aR is determined in part by a species-specific repetitive element, or 'microsatellite', in the 5' regulatory region of the gene encoding V1aR (avpr1a). This microsatellite is highly expanded in the prairie vole (as well as the monogamous pine vole) compared to a very short version in the promiscuous montane and meadow voles. These species differences in microsatellite sequence are sufficient to change gene expression in cell culture. Within the prairie vole species, intraspecific variation in the microsatellite also modulates gene expression in vitro as well as receptor distribution patterns in vivo and influences the probability of social approach and bonding behaviour. Similar genetic variation in the human AVPR1A may contribute to variations in human social behaviour, including extremes outside the normal range of behaviour and those found in autism spectrum disorders. In sum, comparative studies in pair-bonding rodents have revealed neural and genetic mechanisms contributing to social-bonding behaviour. These studies have generated testable hypotheses regarding the motivational systems and underlying molecular neurobiology involved in social engagement and social bond formation that may have important implications for the core social deficits characterizing autism spectrum disorders.
Collapse
Affiliation(s)
| | - Larry J Young
- Department of Psychiatry and Behavioural Sciences, Centre for Behavioural NeuroscienceYerkes National Primate Research Centre, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
49
|
Lim MM, Young LJ. Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm Behav 2006; 50:506-17. [PMID: 16890230 DOI: 10.1016/j.yhbeh.2006.06.028] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/26/2006] [Accepted: 06/27/2006] [Indexed: 11/21/2022]
Abstract
Social relationships are essential for maintaining human mental health, yet little is known about the brain mechanisms involved in the development and maintenance of social bonds. Animal models are powerful tools for investigating the neurobiological mechanisms regulating the cognitive processes leading to the development of social relationships and for potentially extending our understanding of the human condition. In this review, we discuss the roles of the neuropeptides oxytocin and vasopressin in the regulation of social bonding as well as related social behaviors which culminate in the formation of social relationships in animal models. The formation of social bonds is a hierarchical process involving social motivation and approach, the processing of social stimuli and formation of social memories, and the social attachment itself. Oxytocin and vasopressin have been implicated in each of these processes. Specifically, these peptides facilitate social affiliation and parental nurturing behavior, are essential for social recognition in rodents, and are involved in the formation of selective mother-infant bonds in sheep and pair bonds in monogamous voles. The convergence of evidence from these animal studies makes oxytocin and vasopressin attractive candidates for the neural modulation of human social relationships as well as potential therapeutic targets for the treatment of psychiatric disorders associated with disruptions in social behavior, including autism.
Collapse
Affiliation(s)
- Miranda M Lim
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, and 954 Gatewood Road Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
50
|
Reyes-Guerrero G, Vázquez-García M, Elias-Viñas D, Donatti-Albarrán OA, Guevara-Guzmán R. Effects of 17 b-estradiol and extremely low-frequency electromagnetic fields on social recognition memory in female rats: A possible interaction? Brain Res 2006; 1095:131-8. [PMID: 16730671 DOI: 10.1016/j.brainres.2006.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 04/01/2006] [Accepted: 04/04/2006] [Indexed: 11/30/2022]
Abstract
We have investigated a potential memory-enhancing effect of exposure to extremely low-frequency electromagnetic fields (ELF EMF) in female rats and its dependence on estrogen, using a social recognition task. A juvenile social recognition paradigm was used and memory retention tested at 30 and 300 min after an adult was exposed to a juvenile during two 4-min trials. Results showed that an intact social recognition memory was present at 30 min in both gonadally intact and ovariectomized rats with, or without, ELF-EMF. However, whereas gonadally intact control females failed to show retention of the recognition memory at 300 min, those additionally exposed to ELF EMF did. This shows that the enhanced duration effect of ELF EMF on social recognition memory occurs in gonadally intact females as well as in males. In addition, results showed that the ELF EMF facilitation of memory retention was prevented by ovariectomy but restored by exogenous treatment with estrogen. This suggests that this ELF EMF effect on social recognition memory is estrogen-dependent.
Collapse
Affiliation(s)
- Gloria Reyes-Guerrero
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70250, México, D. F., 04510, México
| | | | | | | | | |
Collapse
|