1
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
2
|
Shah FA, Albaqami F, Alattar A, Alshaman R, Zaitone SA, Gabr AM, Abdel-Moneim AMH, dosoky ME, Koh PO. Quercetin attenuated ischemic stroke induced neurodegeneration by modulating glutamatergic and synaptic signaling pathways. Heliyon 2024; 10:e28016. [PMID: 38571617 PMCID: PMC10987936 DOI: 10.1016/j.heliyon.2024.e28016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Ischemic strokes originate whenever the circulation to the brain is interrupted, either temporarily or permanently, resulting in a lack of oxygen and other nutrients. This deprivation primarily impacts the cerebral cortex and striatum, resulting in neurodegeneration. Several experimental stroke models have demonstrated that the potent antioxidant quercetin offers protection against stroke-related damage. Multiple pathways have been associated with quercetin's ability to safeguard the brain from ischemic injury. This study examines whether the administration of quercetin alters glutamate NMDA and GluR1 receptor signaling in the cortex and striatum 72 h after transient middle cerebral artery occlusion. The administration of 10 mg/kg of quercetin shielded cortical and striatal neurons from cell death induced by ischemia in adult SD rats. Quercetin reversed the ischemia-induced reduction of NR2a/PSD95, consequently promoting the pro-survival AKT pathway and reducing CRMP2 phosphorylation. Additionally, quercetin decreased the levels of reactive oxygen species and inflammatory pathways while increasing the expression of the postsynaptic protein PSD95. Our results suggest that quercetin may be a promising neuroprotective drug for ischemic stroke therapy as it recovers neuronal damage via multiple pathways.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Faisal Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Attia M. Gabr
- Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdel-Moneim Hafez Abdel-Moneim
- Department of Physiology, College of Medicine, Qassim University, Qassim, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Mohamed El dosoky
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Phil Ok Koh
- Department of Anatomy and Histology, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| |
Collapse
|
3
|
Suganuma T, Hatori S, Chen CK, Hori S, Kanuka M, Liu CY, Tatsuzawa C, Yanagisawa M, Hayashi Y. Caffeoylquinic Acid Mitigates Neuronal Loss and Cognitive Decline in 5XFAD Mice Without Reducing the Amyloid-β Plaque Burden. J Alzheimers Dis 2024; 99:1285-1301. [PMID: 38788074 DOI: 10.3233/jad-240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Background Caffeoylquinic acid (CQA), which is abundant in coffee beans and Centella asiatica, reportedly improves cognitive function in Alzheimer's disease (AD) model mice, but its effects on neuroinflammation, neuronal loss, and the amyloid-β (Aβ) plaque burden have remained unclear. Objective To assess the effects of a 16-week treatment with CQA on recognition memory, working memory, Aβ levels, neuronal loss, neuroinflammation, and gene expression in the brains of 5XFAD mice, a commonly used mouse model of familial AD. Methods 5XFAD mice at 7 weeks of age were fed a 0.8% CQA-containing diet for 4 months and then underwent novel object recognition (NOR) and Y-maze tests. The Aβ levels and plaque burden were analyzed by enzyme-linked immunosorbent assay and immunofluorescent staining, respectively. Immunostaining of markers of mature neurons, synapses, and glial cells was analyzed. AmpliSeq transcriptome analysis and quantitative reverse-transcription-polymerase chain reaction were performed to assess the effect of CQA on gene expression levels in the cerebral cortex of the 5XFAD mice. Results CQA treatment for 4 months improved recognition memory and ameliorated the reduction of mature neurons and synaptic function-related gene mRNAs. The Aβ levels, plaque burden, and glial markers of neuroinflammation seemed unaffected. Conclusions These findings suggest that CQA treatment mitigates neuronal loss and improves cognitive function without reducing Aβ levels or neuroinflammation. Thus, CQA is a potential therapeutic compound for AD, improving cognitive function via as-yet unknown mechanisms independent of reductions in Aβ or neuroinflammation.
Collapse
Affiliation(s)
- Takaya Suganuma
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Biological Science Research Laboratories, Kao Corporation, Ichikai, Japan
| | - Sena Hatori
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Satoshi Hori
- Biological Science Research Laboratories, Kao Corporation, Ichikai, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chih-Yao Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chika Tatsuzawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Japan
- R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Lee YY, Han JI, Lee KE, Cho S, Suh EC. Neuroprotective effect of dexmedetomidine on autophagy in mice administered intracerebroventricular injections of Aβ 25-35. Front Pharmacol 2023; 14:1184776. [PMID: 37663257 PMCID: PMC10469611 DOI: 10.3389/fphar.2023.1184776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Alzheimer's disease (AD), one of the most prevalent neurodegenerative diseases is associated with pathological autophagy-lysosomal pathway dysfunction. Dexmedetomidine (Dex) has been suggested as an adjuvant to general anesthesia with advantages in reducing the incidence of postoperative cognitive dysfunction in Dex-treated patients with AD and older individuals. Several studies reported that Dex improved memory; however, evidence on the effects of Dex on neuronal autophagy dysfunction in the AD model is lacking. We hypothesized that Dex administration would have neuroprotective effects by improving pathological autophagy dysfunction in mice that received an intracerebroventricular (i.c.v.) injection of amyloid β-protein fragment 25-35 (Aβ25-35) and in an autophagy-deficient cellular model. In the Y-maze test, Dex reversed the decreased activity of Aβ25-35 mice. Additionally, it restored the levels of two memory-related proteins, phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII) and postsynaptic density-95 (PSD-95) in Aβ25-35 mice and organotypic hippocampal slice culture (OHSC) with Aβ25-35. Dex administration also resulted in decreased expression of the autophagy-related microtubule-associated proteins light chain 3-II (LC3-II), p62, lysosome-associated membrane protein2 (LAMP2), and cathepsin D in Aβ25-35 mice and OHSC with Aβ25-35. Increased numbers of co-localized puncta of LC3-LAMP2 or LC3-cathepsin D, along with dissociated LC3-p62 immunoreactivity following Dex treatment, were observed. These findings were consistent with the results of western blots and the transformation of double-membrane autophagosomes into single-membraned autolysosomes in ultrastructures. It was evident that Dex treatment alleviated impaired autolysosome formation in Aβ mice. Our study demonstrated the improvement of memory impairment caused by Dex and its neuroprotective mechanism by investigating the role of the autophagy-lysosomal pathway in a murine Aβ25-35 model. These findings suggest that Dex could be used as a potential neuroprotective adjuvant in general anesthesia to prevent cognitive decline.
Collapse
Affiliation(s)
- Youn Young Lee
- Department of Anesthesiology and Pain Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jong In Han
- Department of Anesthesiology and Pain Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sooyoung Cho
- Department of Anesthesiology and Pain Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Cheng Suh
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Mahaman YAR, Feng J, Huang F, Salissou MTM, Wang J, Liu R, Zhang B, Li H, Zhu F, Wang X. Moringa Oleifera Alleviates Aβ Burden and Improves Synaptic Plasticity and Cognitive Impairments in APP/PS1 Mice. Nutrients 2022; 14:nu14204284. [PMID: 36296969 PMCID: PMC9609596 DOI: 10.3390/nu14204284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease is a global public health problem and the most common form of dementia. Due to the failure of many single therapies targeting the two hallmarks, Aβ and Tau, and the multifactorial etiology of AD, there is now more and more interest in nutraceutical agents with multiple effects such as Moringa oleifera (MO) that have strong anti-oxidative, anti-inflammatory, anticholinesterase, and neuroprotective virtues. In this study, we treated APP/PS1 mice with a methanolic extract of MO for four months and evaluated its effect on AD-related pathology in these mice using a multitude of behavioral, biochemical, and histochemical tests. Our data revealed that MO improved behavioral deficits such as anxiety-like behavior and hyperactivity and cognitive, learning, and memory impairments. MO treatment abrogated the Aβ burden to wild-type control mice levels via decreasing BACE1 and AEP and upregulating IDE, NEP, and LRP1 protein levels. Moreover, MO improved synaptic plasticity by improving the decreased GluN2B phosphorylation, the synapse-related proteins PSD95 and synapsin1 levels, the quantity and quality of dendritic spines, and neurodegeneration in the treated mice. MO is a nutraceutical agent with promising therapeutic potential that can be used in the management of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Feng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- College of Health, Natural and Agriculture Sciences Africa University, Mutare P.O. Box 1320, Zimbabwe
| | - Jianzhi Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Honglian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Correspondence: (F.Z.); (X.W.)
| | - Xiaochuan Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
- Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518000, China
- Correspondence: (F.Z.); (X.W.)
| |
Collapse
|
6
|
PSD-95: An Effective Target for Stroke Therapy Using Neuroprotective Peptides. Int J Mol Sci 2021; 22:ijms222212585. [PMID: 34830481 PMCID: PMC8618101 DOI: 10.3390/ijms222212585] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Therapies for stroke have remained elusive in the past despite the great relevance of this pathology. However, recent results have provided strong evidence that postsynaptic density protein-95 (PSD-95) can be exploited as an efficient target for stroke neuroprotection by strategies able to counteract excitotoxicity, a major mechanism of neuronal death after ischemic stroke. This scaffold protein is key to the maintenance of a complex framework of protein interactions established at the postsynaptic density (PSD) of excitatory neurons, relevant to neuronal function and survival. Using cell penetrating peptides (CPPs) as therapeutic tools, two different approaches have been devised and advanced to different levels of clinical development. First, nerinetide (Phase 3) and AVLX-144 (Phase 1) were designed to interfere with the coupling of the ternary complex formed by PSD-95 with GluN2B subunits of the N-methyl-D-aspartate type of glutamate receptors (NMDARs) and neuronal nitric oxide synthase (nNOS). These peptides reduced neurotoxicity derived from NMDAR overactivation, decreased infarct volume and improved neurobehavioral results in different models of ischemic stroke. However, an important caveat to this approach was PSD-95 processing by calpain, a pathological mechanism specifically induced by excitotoxicity that results in a profound alteration of survival signaling. Thus, a third peptide (TP95414) has been recently developed to interfere with PSD-95 cleavage and reduce neuronal death, which also improves neurological outcome in a preclinical mouse model of permanent ischemia. Here, we review recent advancements in the development and characterization of PSD-95-targeted CPPs and propose the combination of these two approaches to improve treatment of stroke and other excitotoxicity-associated disorders.
Collapse
|
7
|
Ayuso-Dolado S, Esteban-Ortega GM, Vidaurre ÓG, Díaz-Guerra M. A novel cell-penetrating peptide targeting calpain-cleavage of PSD-95 induced by excitotoxicity improves neurological outcome after stroke. Theranostics 2021; 11:6746-6765. [PMID: 34093851 PMCID: PMC8171078 DOI: 10.7150/thno.60701] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
Postsynaptic density protein-95 (PSD-95) is a multidomain protein critical to the assembly of signaling complexes at excitatory synapses, required for neuronal survival and function. However, calpain-processing challenges PSD-95 function after overactivation of excitatory glutamate receptors (excitotoxicity) in stroke, a leading cause of death, disability and dementia in need of efficient pharmacological treatments. A promising strategy is neuroprotection of the infarct penumbra, a potentially recoverable area, by promotion of survival signaling. Interference of PSD-95 processing induced by excitotoxicity might thus be a therapeutic target for stroke and other excitotoxicity-associated pathologies. Methods: The nature and stability of PSD-95 calpain-fragments was analyzed using in vitro assays or excitotoxic conditions induced in rat primary neuronal cultures or a mouse model of stroke. We then sequenced PSD-95 cleavage-sites and rationally designed three cell-penetrating peptides (CPPs) containing these sequences. The peptides effects on PSD-95 stability and neuronal viability were investigated in the cultured neurons, subjected to acute or chronic excitotoxicity. We also analyzed the effect of one of these peptides in the mouse model of stroke by measuring infarct size and evaluating motor coordination and balance. Results: Calpain cleaves three interdomain linker regions in PSD-95 and produces stable fragments corresponding to previously described PSD-95 supramodules (PDZ1-2 and P-S-G) as well as a truncated form SH3-GK. Peptide TP95414, containing the cleavage site in the PDZ3-SH3 linker, is able to interfere PSD-95 downregulation and reduces neuronal death by excitotoxicity. Additionally, TP95414 is delivered to mice cortex and, in a severe model of permanent ischemia, significantly improves the neurological outcome after brain damage. Conclusions: Interference of excitotoxicity-induced PSD-95-processing with specific CPPs constitutes a novel and promising therapeutic approach for stroke treatment.
Collapse
|
8
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
9
|
Sabirzhanov B, Makarevich O, Barrett JP, Jackson IL, Glaser EP, Faden AI, Stoica BA. Irradiation-Induced Upregulation of miR-711 Inhibits DNA Repair and Promotes Neurodegeneration Pathways. Int J Mol Sci 2020; 21:ijms21155239. [PMID: 32718090 PMCID: PMC7432239 DOI: 10.3390/ijms21155239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy for brain tumors induces neuronal DNA damage and may lead to neurodegeneration and cognitive deficits. We investigated the mechanisms of radiation-induced neuronal cell death and the role of miR-711 in the regulation of these pathways. We used in vitro and in vivo models of radiation-induced neuronal cell death. We showed that X-ray exposure in primary cortical neurons induced activation of p53-mediated mechanisms including intrinsic apoptotic pathways with sequential upregulation of BH3-only molecules, mitochondrial release of cytochrome c and AIF-1, as well as senescence pathways including upregulation of p21WAF1/Cip1. These pathways of irradiation-induced neuronal apoptosis may involve miR-711-dependent downregulation of pro-survival genes Akt and Ang-1. Accordingly, we demonstrated that inhibition of miR-711 attenuated degradation of Akt and Ang-1 mRNAs and reduced intrinsic apoptosis after neuronal irradiation; likewise, administration of Ang-1 was neuroprotective. Importantly, irradiation also downregulated two novel miR-711 targets, DNA-repair genes Rad50 and Rad54l2, which may impair DNA damage responses, amplifying the stimulation of apoptotic and senescence pathways and contributing to neurodegeneration. Inhibition of miR-711 rescued Rad50 and Rad54l2 expression after neuronal irradiation, enhancing DNA repair and reducing p53-dependent apoptotic and senescence pathways. Significantly, we showed that brain irradiation in vivo persistently elevated miR-711, downregulated its targets, including pro-survival and DNA-repair molecules, and is associated with markers of neurodegeneration, not only across the cortex and hippocampus but also specifically in neurons isolated from the irradiated brain. Our data suggest that irradiation-induced miR-711 negatively modulates multiple pro-survival and DNA-repair mechanisms that converge to activate neuronal intrinsic apoptosis and senescence. Using miR-711 inhibitors to block the development of these regulated neurodegenerative pathways, thus increasing neuronal survival, may be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
- Correspondence: (B.S.); (B.A.S.)
| | - Oleg Makarevich
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - James P. Barrett
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF 700-B, Baltimore, MD 21201, USA;
| | - Ethan P. Glaser
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Alan I. Faden
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Bogdan A. Stoica
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Correspondence: (B.S.); (B.A.S.)
| |
Collapse
|
10
|
The Use of Stem Cell Differentiation Stage Factors (SCDSFs) Taken from Zebrafish Embryos during Organogenesis and Their Role in Regulating the Gene Expression of Normal and Pathological (Stem) Cells. Int J Mol Sci 2020; 21:ijms21144914. [PMID: 32664640 PMCID: PMC7404112 DOI: 10.3390/ijms21144914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 11/21/2022] Open
Abstract
Studies conducted on Zebrafish embryos in our laboratory have allowed for the identification of precise moments of organogenesis in which a lot of genes are switched on and off, a sign that the genome is undergoing substantial changes in gene expression. Stem cell growth and differentiation stage-factors present in different moments of organogenesis have proven to have different specific functions in gene regulation. The substances present in the first stages of cell differentiation in Zebrafish embryos have demonstrated an ability to counteract the senescence of stem cells, reducing the expression of the beta-galactosidase marker, enhancing the genes Oct-4, Sox-2, c-Myc, TERT, and the transcription of Bmi-1, which act as key telomerase-independent repressors of cell aging. The molecules present in the intermediate to late stages of cell differentiation have proven to be able to reprogram pathological human cells, such as cancer cells and those of the basal layer of the epidermis in psoriasis, which present a higher multiplication rate than normal cells. The factors present in all the stages of cell differentiation are able to counteract neurodegeneration, and to regenerate tissues: It has been possible to regenerate hair follicles in many patients with androgenetic alopecia through transdermal administration of stem cell differentiation stage factors (SCDSFs) by means of cryopass-laser.
Collapse
|
11
|
Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, Lolli F, Marcello E, Sironi L, Vegeto E, Maggi A. Sex-Specific Features of Microglia from Adult Mice. Cell Rep 2019; 23:3501-3511. [PMID: 29924994 PMCID: PMC6024879 DOI: 10.1016/j.celrep.2018.05.048] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/06/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Sex has a role in the incidence and outcome of neurological illnesses, also influencing the response to treatments. Neuroinflammation is involved in the onset and progression of several neurological diseases, and the fact that estrogens have anti-inflammatory activity suggests that these hormones may be a determinant in the sex-dependent manifestation of brain pathologies. We describe significant differences in the transcriptome of adult male and female microglia, possibly originating from perinatal exposure to sex steroids. Microglia isolated from adult brains maintain the sex-specific features when put in culture or transplanted in the brain of the opposite sex. Female microglia are neuroprotective because they restrict the damage caused by acute focal cerebral ischemia. This study therefore provides insight into a distinct perspective on the mechanisms underscoring a sexual bias in the susceptibility to brain diseases. Transcriptome sequencing indicates sexual differentiation in adult murine microglia Female microglia show a neuroprotective phenotype, independent from hormonal cues Female microglia phenotype is retained after transfer into male brains The presence of female microglia protects male brains from ischemic stroke
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Gelosa
- Centro Cardiologico Monzino IRCCS, Milan 20138, Italy
| | - Laura Castiglioni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Mauro Cimino
- Department of Biomolecular Sciences, University of Urbino, Urbino 61029, Italy
| | - Nicoletta Rizzi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Giovanna Pepe
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Federica Lolli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Luigi Sironi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy; Centro Cardiologico Monzino IRCCS, Milan 20138, Italy
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy.
| |
Collapse
|
12
|
Comparing effects of CDK inhibition and E2F1/2 ablation on neuronal cell death pathways in vitro and after traumatic brain injury. Cell Death Dis 2018; 9:1121. [PMID: 30401820 PMCID: PMC6219504 DOI: 10.1038/s41419-018-1156-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) activates multiple neuronal cell death mechanisms, leading to post-traumatic neuronal loss and neurological deficits. TBI-induced cell cycle activation (CCA) in post-mitotic neurons causes regulated cell death involving cyclin-dependent kinase (CDK) activation and initiation of an E2F transcription factor-mediated pro-apoptotic program. Here we examine the mechanisms of CCA-dependent neuronal apoptosis in primary neurons in vitro and in mice exposed to controlled cortical impact (CCI). In contrast to our prior work demonstrating robust neuroprotective effects by CDK inhibitors after TBI, examination of neuronal apoptotic mechanisms in E2F1−/−/E2F2−/− or E2F2−/− transgenic mice following CCI suggests that E2F1 and/or E2F2 likely play only a modest role in neuronal cell loss after brain trauma. To elucidate more critical CCA molecular pathways involved in post-traumatic neuronal cell death, we investigated the neuroprotective effects and mechanisms of the potent CDK inhibitor CR8 in a DNA damage model of cell death in primary cortical neurons. CR8 treatment significantly reduced caspase activation and cleavage of caspase substrates, attenuating neuronal cell death. CR8 neuroprotective effects appeared to reflect inhibition of multiple pathways converging on the mitochondrion, including injury-induced elevation of pro-apoptotic Bcl-2 homology region 3 (BH3)-only proteins Puma and Noxa, thereby attenuating mitochondrial permeabilization and release of cytochrome c and AIF, with reduction of both caspase-dependent and -independent apoptosis. CR8 administration also limited injury-induced deficits in mitochondrial respiration. These neuroprotective effects may be explained by CR8-mediated inhibition of key upstream injury responses, including attenuation of c-Jun phosphorylation/activation as well as inhibition of p53 transactivation of BH3-only targets.
Collapse
|
13
|
Biava PM. The New Treatments in Regenerative Medicine and in Oncologic and Degenerative Diseases. WORLD FUTURES 2016; 72:191-204. [DOI: 10.1080/02604027.2016.1194155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Biava PM, Canaider S, Facchin F, Bianconi E, Ljungberg L, Rotilio D, Burigana F, Ventura C. Stem Cell Differentiation Stage Factors from Zebrafish Embryo: A Novel Strategy to Modulate the Fate of Normal and Pathological Human (Stem) Cells. Curr Pharm Biotechnol 2016. [PMID: 26201607 PMCID: PMC5384357 DOI: 10.2174/1389201016666150629102825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adiposederived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device. In addition we report the data not yet published about a first protein analysis of the SCDSFs and about their role in a pathological condition like neurodegeneration.
Collapse
Affiliation(s)
- Pier M Biava
- Scientific Institute of Research and Care Multimedica, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Morigaki R, Goto S. Postsynaptic Density Protein 95 in the Striosome and Matrix Compartments of the Human Neostriatum. Front Neuroanat 2015; 9:154. [PMID: 26648848 PMCID: PMC4663261 DOI: 10.3389/fnana.2015.00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
The human neostriatum consists of two functional subdivisions referred to as the striosome (patch) and matrix compartments. The striosome-matrix dopamine systems play a central role in cortico-thalamo-basal ganglia circuits, and their involvement is thought to underlie the genesis of multiple movement and behavioral disorders, and of drug addiction. Human neuropathology also has shown that striosomes and matrix have differential vulnerability patterns in several striatal neurodegenerative diseases. Postsynaptic density protein 95 (PSD-95), also known as disks large homolog 4, is a major scaffolding protein in the postsynaptic densities of dendritic spines. PSD-95 is now known to negatively regulate not only N-methyl-D-aspartate glutamate signaling, but also dopamine D1 signals at sites of postsynaptic transmission. Accordingly, a neuroprotective role for PSD-95 against dopamine D1 receptor (D1R)-mediated neurotoxicity in striatal neurodegeneration also has been suggested. Here, we used a highly sensitive immunohistochemistry technique to show that in the human neostriatum, PSD-95 is differentially concentrated in the striosome and matrix compartments, with a higher density of PSD-95 labeling in the matrix compartment than in the striosomes. This compartment-specific distribution of PSD-95 was strikingly complementary to that of D1R. In addition to the possible involvement of PSD-95-mediated synaptic function in compartment-specific dopamine signals, we suggest that the striosomes might be more susceptible to D1R-mediated neurotoxicity than the matrix compartment. This notion may provide new insight into the compartment-specific vulnerability of MSNs in striatal neurodegeneration.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University Tokushima, Japan ; Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University Tokushima, Japan ; Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University Tokushima, Japan
| | - Satoshi Goto
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University Tokushima, Japan ; Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University Tokushima, Japan
| |
Collapse
|
16
|
Ghosh A, Giese KP. Calcium/calmodulin-dependent kinase II and Alzheimer's disease. Mol Brain 2015; 8:78. [PMID: 26603284 PMCID: PMC4657223 DOI: 10.1186/s13041-015-0166-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 11/10/2022] Open
Abstract
CaMKII is a remarkably complex protein kinase, known to have a fundamental role in synaptic plasticity and memory formation. Further, CaMKII has also been suggested to be a tau kinase. CaMKII dysregulation may therefore be a modulator of toxicity in Alzheimer's disease, a dementia characterised by aberrant calcium signalling, synapse and neuronal loss, and impaired memory. Here, we first examine the evidence for CaMKII dysregulation in Alzheimer's patients and draw parallels to findings in disease models which recapitulate key aspects of the disease. We then put forward the hypothesis that these changes critically contribute to neurodegeneration and memory impairment in Alzheimer's disease.
Collapse
Affiliation(s)
- Anshua Ghosh
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK.
| | - Karl Peter Giese
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK.
| |
Collapse
|
17
|
Liu M, Huangfu X, Zhao Y, Zhang D, Zhang J. Steroid receptor coactivator-1 mediates letrozole induced downregulation of postsynaptic protein PSD-95 in the hippocampus of adult female rats. J Steroid Biochem Mol Biol 2015. [PMID: 26223010 DOI: 10.1016/j.jsbmb.2015.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hippocampus local estrogen which is converted from androgen that catalyzed by aromatase has been shown to play important roles in the regulation of learning and memory as well as cognition through action on synaptic plasticity, but the underlying mechanisms are poorly understood. Steroid receptor coactivator-1 (SRC-1) is one of the coactivators of steroid nuclear receptors; it is widely distributed in brain areas that related to learning and memory, reproductive regulation, sensory and motor information integration. Previous studies have revealed high levels of SRC-1 immunoreactivities in the hippocampus; it is closely related to the levels of synaptic proteins such as PSD-95 under normal development or gonadectomy, but its exact roles in the regulation of these proteins remains unclear. In this study, we used aromatase inhibitor letrozole in vivo and SRC-1 RNA interference in vitro to investigate whether SRC-1 mediated endogenous estrogen regulation of hippocampal PSD-95. The results revealed that letrozole injection synchronously decreased hippocampal SRC-1 and PSD-95 in a dose-dependant manner. Furthermore, when SRC-1 specific shRNA pool was applied to block the expression of SRC-1 in the primary hippocampal neuron culture, both immunocytochemistry and Western blot revealed that levels of PSD-95 were also decreased significantly. Taking together, these results provided the first evidence that SRC-1 mediated endogenous estrogen regulation of hippocampal synaptic plasticity by targeting the expression of synaptic protein PSD-95. Additionally, since letrozole is frequently used to treat estrogen-sensitive breast cancer, the above results also indicate its potential side effects in clinical administration.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Xuhong Huangfu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Dongmei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
18
|
Shu S, Pei L, Lu Y. Promising targets of cell death signaling of NR2B receptor subunit in stroke pathogenesis. Regen Med Res 2014; 2:8. [PMID: 25984336 PMCID: PMC4422319 DOI: 10.1186/2050-490x-2-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/10/2014] [Indexed: 11/10/2022] Open
Abstract
Stroke is an acute cerebrovascular disease caused by acute brain artery bursting or cerebral embolism that leads to neuronal death and severe dysfunction of synaptic transmission. Neuronal damage after stroke remains a major cause of morbidity and mortality worldwide and affects 795 000 of lives every year in United States. However, effective treatments remain lacking, which makes the identification of new therapeutic targets a matter of great importance. N-methyl-D-aspartate glutamate (NMDA) receptor is important both in the normal synaptic transmission and in the neuronal death after stroke. Accumulated evidences show NMDA receptor downstream effectors, such as PSD-95, DAPK1, and ERK, had been revealed to be linked with neuronal damage. Based on our recent studies, we review the promising targets of the NMDA receptor downstream signaling involved in stroke treatment. This review will provide the concept of NR2B downstream signaling in neuronal death after stroke and provide evidences for developing better NMDAR-based therapeutics by targeting downstream proteins.
Collapse
Affiliation(s)
- Shu Shu
- Department of Pathophysiology, Tongji Medical College and Institute for Brain Research, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030 PR China
| | - Lei Pei
- Department of Pathophysiology, Tongji Medical College and Institute for Brain Research, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030 PR China
| | - Youming Lu
- Department of Pathophysiology, Tongji Medical College and Institute for Brain Research, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, 430030 PR China
| |
Collapse
|
19
|
Zhang J, Saur T, Duke AN, Grant SGN, Platt DM, Rowlett JK, Isacson O, Yao WD. Motor impairments, striatal degeneration, and altered dopamine-glutamate interplay in mice lacking PSD-95. J Neurogenet 2014; 28:98-111. [PMID: 24702501 DOI: 10.3109/01677063.2014.892486] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Excessive activation of the N-methyl-d-aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32-positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor-mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95-dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.
Collapse
Affiliation(s)
- Jingping Zhang
- New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts , USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Proctor DT, Coulson EJ, Dodd PR. Post-synaptic scaffolding protein interactions with glutamate receptors in synaptic dysfunction and Alzheimer's disease. Prog Neurobiol 2011; 93:509-21. [PMID: 21382433 DOI: 10.1016/j.pneurobio.2011.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is characterized clinically by an insidious decline in cognition. Much attention has been focused on proposed pathogenic mechanisms that relate Aβ plaque and neurofibrillary tangle pathology to cognitive symptoms, but compelling evidence now identifies early synaptic loss and dysfunction, which precede plaque and tangle formation, as the more probable initiators of cognitive impairment. Glutamate-mediated transmission is severely altered in AD. Glutamate receptor expression is most markedly altered in regions of the AD brain that show the greatest pathological changes. Signaling via glutamate receptors controls synaptic strength and plasticity, and changes in these parameters are likely to contribute to memory and cognitive deficits in AD. Glutamate receptor expression and activity are modulated by interactions with post-synaptic scaffolding proteins that augment the strength and direction of signal cascades initiated by glutamate receptor activity. Scaffold proteins offer promising targets for more focused and effective drug therapy. In consequence, interest is developing into the roles these proteins play in neurological disease. In this review we discuss disruptions to excitatory neurotransmission at the level of glutamate receptor-post-synaptic scaffolding protein interactions that may contribute to synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Dustin T Proctor
- School of Chemistry and Molecular Biosciences, Molecular Biosciences Building #76, Coopers Road, St Lucia campus, University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
21
|
DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 2010; 140:222-34. [PMID: 20141836 DOI: 10.1016/j.cell.2009.12.055] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 10/16/2009] [Accepted: 12/29/2009] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors constitute a major subtype of glutamate receptors at extrasynaptic sites that link multiple intracellular catabolic processes responsible for irreversible neuronal death. Here, we report that cerebral ischemia recruits death-associated protein kinase 1 (DAPK1) into the NMDA receptor NR2B protein complex in the cortex of adult mice. DAPK1 directly binds with the NMDA receptor NR2B C-terminal tail consisting of amino acid 1292-1304 (NR2B(CT)). A constitutively active DAPK1 phosphorylates NR2B subunit at Ser-1303 and in turn enhances the NR1/NR2B receptor channel conductance. Genetic deletion of DAPK1 or administration of NR2B(CT) that uncouples an activated DAPK1 from an NMDA receptor NR2B subunit in vivo in mice blocks injurious Ca(2+) influx through NMDA receptor channels at extrasynaptic sites and protects neurons against cerebral ischemic insults. Thus, DAPK1 physically and functionally interacts with the NMDA receptor NR2B subunit at extrasynaptic sites and this interaction acts as a central mediator for stroke damage.
Collapse
|
22
|
Marcello E, Gardoni F, Di Luca M, Pérez-Otaño I. An arginine stretch limits ADAM10 exit from the endoplasmic reticulum. J Biol Chem 2010; 285:10376-84. [PMID: 20100836 DOI: 10.1074/jbc.m109.055947] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A disintegrin and metalloproteinase 10 (ADAM10) is a type I transmembrane glycoprotein responsible for the ectodomain shedding of a number of proteins implicated in the pathogenesis of diseases ranging from cancer to Alzheimer Disease. ADAM10 is synthesized in an inactive form, which is proteolytically activated during its forward transport along the secretory pathway and at the plasma membrane. Therefore, modulation of its trafficking could provide a mechanism to finely tune its shedding activity. Here we report the identification of an endoplasmic reticulum (ER) retention motif within the ADAM10 intracellular C-terminal tail. Sequential deletion/mutagenesis analyses showed that an arginine-rich ((723)RRR) sequence was responsible for the retention of ADAM10 in the ER and its inefficient surface trafficking. Mutating the second arginine to alanine was sufficient to allow ER exit and surface expression in both heterologous cells and hippocampal neurons. As synapse-associated protein 97 (SAP97) binds ADAM10 at its cytoplasmic tail and facilitates forward ADAM10 trafficking in neurons, we tested whether SAP97 could modulate ER export. However, neither expression nor Ser-39 phosphorylation of SAP97 in heterologous cells or hippocampal neurons were sufficient to allow the ER exit of ADAM10, suggesting that other signaling pathways or alternative binding partners are responsible for ADAM10 ER exit. Together, these results identify a novel mechanism regulating the intracellular trafficking and membrane delivery of ADAM10.
Collapse
Affiliation(s)
- Elena Marcello
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | |
Collapse
|
23
|
Postsynaptic density-93 deficiency protects cultured cortical neurons from N-methyl-D-aspartate receptor-triggered neurotoxicity. Neuroscience 2010; 166:1083-90. [PMID: 20097270 DOI: 10.1016/j.neuroscience.2010.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/23/2022]
Abstract
It has been reported that N-methyl-D-aspartate receptor (NMDAR)-triggered neurotoxicity is related to excessive Ca(2+) loading and an increase in nitric oxide (NO) concentration. However, the molecular mechanisms that underlie these events are not completely understood. NMDARs and neuronal NO synthase each binds to the scaffolding protein postsynaptic density (PSD)-93 through its PDZ domains. In this study, we determined whether PSD-93 plays a critical role in NMDAR/Ca(2+)/NO-mediated neurotoxicity. We found that the targeted disruption of the PSD-93 gene attenuated the neurotoxicity triggered by NMDAR activation, but not by non-NMDAR activation, in cultured mouse cortical neurons. PSD-93 deficiency reduced the amount of NMDAR subunits NR2A and NR2B in synaptosomal fractions from the cortical neurons and significantly prevented NMDA-stimulated increases in cyclic guanosine 3',5'-monophosphate and Ca(2+) loading in the cortical neurons. These findings indicate that PSD-93 deficiency could block NMDAR-triggered neurotoxicity by disrupting the NMDAR-Ca(2+)-NO signaling pathway and reducing expression of synaptic NR2A and NR2B. Since NMDARs, Ca(2+), and NO play a critical role during the development of brain trauma, seizures, and ischemia, the present work suggests that PSD-93 might contribute to molecular mechanisms of neuronal damage in these brain disorders.
Collapse
|
24
|
Bartos JA, Ulrich JD, Li H, Beazely MA, Chen Y, MacDonald JF, Hell JW. Postsynaptic clustering and activation of Pyk2 by PSD-95. J Neurosci 2010; 30:449-63. [PMID: 20071509 PMCID: PMC2822408 DOI: 10.1523/jneurosci.4992-08.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 12/24/2022] Open
Abstract
The tyrosine kinase Pyk2 plays a unique role in intracellular signal transduction by linking Ca(2+) influx to tyrosine phosphorylation, but the molecular mechanism of Pyk2 activation is unknown. We report that Pyk2 oligomerization by antibodies in vitro or overexpression of PSD-95 in PC6-3 cells induces trans-autophosphorylation of Tyr402, the first step in Pyk2 activation. In neurons, Ca(2+) influx through NMDA-type glutamate receptors causes postsynaptic clustering and autophosphorylation of endogenous Pyk2 via Ca(2+)- and calmodulin-stimulated binding to PSD-95. Accordingly, Ca(2+) influx promotes oligomerization and thereby autoactivation of Pyk2 by stimulating its interaction with PSD-95. We show that this mechanism of Pyk2 activation is critical for long-term potentiation in the hippocampus CA1 region, which is thought to underlie learning and memory.
Collapse
Affiliation(s)
- Jason A. Bartos
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
| | - Jason D. Ulrich
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
| | - Hongbin Li
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | - Michael A. Beazely
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | - Yucui Chen
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
| | - John F. MacDonald
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Johannes W. Hell
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
- Department of Pharmacology, University of California, Davis, Davis, California 95616-8636
| |
Collapse
|
25
|
Epis R, Marcello E, Gardoni F, Longhi A, Calvani M, Iannuccelli M, Cattabeni F, Canonico PL, Di Luca M. Modulatory effect of acetyl-L-carnitine on amyloid precursor protein metabolism in hippocampal neurons. Eur J Pharmacol 2008; 597:51-6. [PMID: 18801359 DOI: 10.1016/j.ejphar.2008.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 08/21/2008] [Accepted: 09/01/2008] [Indexed: 11/17/2022]
Abstract
Alzheimer Disease is the most common chronic neurodegenerative disorder associated with aging. Nevertheless, its pharmacological therapy is still an unresolved issue. In double-blind controlled studies, acetyl-L-carnitine (ALC) demonstrated beneficial effects on Alzheimer's disease. However, the mechanisms behind its neuroprotective ability remain to be fully established. In this study, the effect of acetyl-L-carnitine on amyloid precursor protein (APP) metabolism was investigated by in vitro models, both in a neuroblastoma cell line and in primary hippocampal cultures. We found that ALC treatment stimulates alpha-secretase activity and physiological APP metabolism. In particular, ALC favors the delivery of ADAM10 (a disintegrin and metalloproteinase 10, the most accredited candidate for alpha-secretase) to the post-synaptic compartment, and consequently positively modulates its enzymatic activity towards APP. Our findings suggest that the benefits of ALC reported in previous clinical studies are underscored by the specific biological mechanism of this compound on APP metabolism. In fact, ALC can directly influence the primary event in Alzheimer's disease pathogenesis, i.e. the Amyloid beta cascade, promoting alpha-secretase activity and directly affecting the release of the non amyloidogenic metabolite.
Collapse
Affiliation(s)
- Roberta Epis
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
More than half of the initially-formed neurons are deleted in certain brain regions during normal development. This process, whereby cells are discretely removed without interfering with the further development of remaining cells, is called programmed cell death (PCD). The term apoptosis is used to describe certain morphological manifestations of PCD. Many of the effectors of this developmental cell death program are highly expressed in the developing brain, making it more susceptible to accidental activation of the death machinery, e.g. following hypoxia-ischemia or irradiation. Recent evidence suggests, however, that activation and regulation of cell death mechanisms under pathological conditions do not exactly mirror physiological, developmentally regulated PCD. It may be argued that the conditions after e.g. ischemia are not even compatible with the execution of PCD as we know it. Under pathological conditions cells are exposed to various stressors, including energy failure, oxidative stress and unbalanced ion fluxes. This results in parallel triggering and potential overshooting of several different cell death pathways, which then interact with one another and result in complex patterns of biochemical manifestations and cellular morphological features. These types of cell death are here called "pathological apoptosis," where classical hallmarks of PCD, like pyknosis, nuclear condensation and caspase-3 activation, are combined with non-PCD features of cell death. Here we review our current knowledge of the mechanisms involved, with special focus on the potential for therapeutic intervention tailored to the needs of the developing brain.
Collapse
Affiliation(s)
- Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
27
|
Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 2007; 29:409-21. [PMID: 18063376 DOI: 10.1016/j.nbd.2007.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/03/2007] [Accepted: 10/17/2007] [Indexed: 11/20/2022] Open
Abstract
We study the striatal susceptibility to NMDA receptor (NMDAR)-mediated injury of two Huntington's disease (HD) transgenic mice: R6/1 and R6/1:BDNF(+/-). We found that R6/1:BDNF(+/-) mice--which express reduced levels of BDNF--were more resistant than R6/1 mice to intrastriatal injection of quinolinate. This increased resistance is related to a differential reduction in expression of NMDAR scaffolding proteins, MAGUKs (PSD-95, PSD-93, SAP-102 and SAP-97) but not to altered levels or synaptic location of NMDAR. A robust reorganization of postsynaptic density (PSD) was detected in HD transgenic mice, shown by a switch of PSD-93 by PSD-95 in PSD. Furthermore, NMDAR signaling pathways were affected by different BDNF levels in HD mice; we found a reduction of synaptic alpha CaMKII (but not of nNOS) in R6/1:BDNF(+/-) compared to R6/1 mice. The specific regulation of MAGUKs and alpha CaMKII in striatal neurons may reflect a protective mechanism against expression of mutant huntingtin exon-1.
Collapse
|
28
|
Marcello E, Gardoni F, Mauceri D, Romorini S, Jeromin A, Epis R, Borroni B, Cattabeni F, Sala C, Padovani A, Di Luca M. Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity. J Neurosci 2007; 27:1682-91. [PMID: 17301176 PMCID: PMC6673742 DOI: 10.1523/jneurosci.3439-06.2007] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder caused by a combination of events impairing normal neuronal function. Here we found a molecular bridge between key elements of primary and secondary pathogenic events in AD, namely the elements of the amyloid cascade and synaptic dysfunction associated with the glutamatergic system. In fact, we report that synapse-associated protein-97 (SAP97), a protein involved in dynamic trafficking of proteins to the excitatory synapse, is responsible for driving ADAM10 (a disintegrin and metalloproteinase 10, the most accredited candidate for alpha-secretase) to the postsynaptic membrane, by a direct interaction through its Src homology 3 domain. NMDA receptor activation mediates this event and positively modulates alpha-secretase activity. Furthermore, perturbing ADAM10/SAP97 association in vivo by cell-permeable peptides impairs ADAM10 localization in postsynaptic membranes and consequently decreases the physiological amyloid precursor protein (APP) metabolism. Our findings indicate that glutamatergic synapse activation through NMDA receptor promotes the non-amyloidogenic APP cleavage, strengthening the correlation between APP metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Elena Marcello
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Daniela Mauceri
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Stefano Romorini
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Pharmacology, University of Milan, 20129 Milan, Italy
| | - Andreas Jeromin
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712, and
| | - Roberta Epis
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Barbara Borroni
- Department of Neurological Sciences, University of Brescia, 25125 Brescia, Italy
| | - Flaminio Cattabeni
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | - Carlo Sala
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Pharmacology, University of Milan, 20129 Milan, Italy
| | - Alessandro Padovani
- Department of Neurological Sciences, University of Brescia, 25125 Brescia, Italy
| | - Monica Di Luca
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| |
Collapse
|
29
|
Jiang Q, Wang J, Wu X, Jiang Y. Alterations of NR2B and PSD-95 expression after early-life epileptiform discharges in developing neurons. Int J Dev Neurosci 2007; 25:165-70. [PMID: 17428633 DOI: 10.1016/j.ijdevneu.2007.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Revised: 02/04/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022] Open
Abstract
As an extreme form of abnormally synchronized activity, epilepsy may modify patterns of organization in the nervous system. It is clear that enhanced glutamatergic excitatory synaptic transmission with alterations in the expression of ionotropic glutamate receptors is a mechanism critical for seizure susceptibility and excitotoxicity. However, the exact quomodo and the roles of regulated N-methyl-D-aspartate receptor (NMDAR) composition and expression of a major postsynaptic density (PSD) scaffolding molecule, PSD-95, are as yet unclear. To study protein expression changes after epileptiform discharges in cultured immature rat cortical neurons, we divided cells into three groups which were transiently exposed to regular Neurobasal/B27 (control group), physiological solution (PS group) and magnesium-free physiological solution (MGF group) at cultured day 6. Neurons at three different culture ages (DIV7, DIV12 and DIV17) were collected for immunoblotting analysis. We found a decrease in expression of NR2B NMDAR subunit and PSD-95 (P<0.05) shortly after insult (within 24 h), which may show that brief magnesium-free media treatment of primary cultured rat cortical neurons, an in vitro model of seizure brain injury, has a major influence on the expression of NR2B subunit and PSD-95.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | | | | | | |
Collapse
|
30
|
Cepeda C, Wu N, André VM, Cummings DM, Levine MS. The corticostriatal pathway in Huntington's disease. Prog Neurobiol 2006; 81:253-71. [PMID: 17169479 PMCID: PMC1913635 DOI: 10.1016/j.pneurobio.2006.11.001] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/08/2006] [Accepted: 11/03/2006] [Indexed: 11/21/2022]
Abstract
The corticostriatal pathway provides most of the excitatory glutamatergic input into the striatum and it plays an important role in the development of the phenotype of Huntington's disease (HD). This review summarizes results obtained from genetic HD mouse models concerning various alterations in this pathway. Evidence indicates that dysfunctions of striatal circuits and cortical neurons that make up the corticostriatal pathway occur during the development of the HD phenotype, well before there is significant neuronal cell loss. Morphological changes in the striatum are probably primed initially by alterations in the intrinsic functional properties of striatal medium-sized spiny neurons. Some of these alterations, including increased sensitivity of N-methyl-D-aspartate receptors in subpopulations of neurons, might be constitutively present but ultimately require abnormalities in the corticostriatal inputs for the phenotype to be expressed. Dysfunctions of the corticostriatal pathway are complex and there are multiple changes as demonstrated by significant age-related transient and more chronic interactions with the disease state. There also is growing evidence for changes in cortical microcircuits that interact to induce dysfunctions of the corticostriatal pathway. The conclusions of this review emphasize, first, the general role of neuronal circuits in the expression of the HD phenotype and, second, that both cortical and striatal circuits must be included in attempts to establish a framework for more rational therapeutic strategies in HD. Finally, as changes in cortical and striatal circuitry are complex and in some cases biphasic, therapeutic interventions should be regionally specific and take into account the temporal progression of the phenotype.
Collapse
Affiliation(s)
- Carlos Cepeda
- Mental Retardation Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
31
|
Dong YN, Wu HY, Hsu FC, Coulter DA, Lynch DR. Developmental and cell-selective variations in N-methyl-D-aspartate receptor degradation by calpain. J Neurochem 2006; 99:206-17. [PMID: 16899064 PMCID: PMC2483508 DOI: 10.1111/j.1471-4159.2006.04096.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMDA receptors play critical roles in synaptic modulation and neurological disorders. In this study, we investigated the developmental changes in NR2 cleavage by NMDA receptor-activated calpain in cultured cortical and hippocampal neurons. Calpain activity increased with development, associated with increased expression of NMDA receptors but not of calpain I. The activation of calpain in immature and mature cortical cultures was inhibited by antagonists of NR1/2B and NR1/2A/2B receptors, whereas the inhibition of NR1/2B receptors did not alter calpain activation in mature hippocampal cultures. The degradation of NR2 subunits by calpain differed with developmental age. NR2A was not a substrate of calpain in mature hippocampal cultures, but was cleaved in immature cortical and hippocampal cultures. NR2B degradation by calpain in cortical cultures decreased with development, but the level of degradation of NR2B in hippocampal cultures did not change. The kinetics of NMDA receptor-gated whole cell currents were also modulated by calpain activation in a manner that varied with developmental stage in vitro. In early (but not later) developmental stages, calpain activation altered the NMDA-evoked current rise time and time constants for both desensitization and deactivation. Our data suggest that the susceptibility of the NMDA receptor to cleavage by calpain varies with neuronal maturity in a manner that may alter its electrophysiological properties.
Collapse
Affiliation(s)
- Yi Na Dong
- Department of Neurology and Pediatrics, University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | | | |
Collapse
|
32
|
Gardoni F, Di Luca M. New targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 2006; 545:2-10. [PMID: 16831414 DOI: 10.1016/j.ejphar.2006.06.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 03/20/2006] [Accepted: 06/13/2006] [Indexed: 12/13/2022]
Abstract
Excitotoxicity is thought to be a major mechanism in many human disease states such as ischemia, trauma, epilepsy and chronic neurodegenerative disorders. Briefly, synaptic overactivity leads to the excessive release of glutamate that activates postsynaptic cell membrane receptors, which upon activation open their associated ion channel pore to produce ion influx. To date, although molecular basis of glutamate toxicity remain uncertain, there is general agreement that N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors plays a key role in mediating at least some aspects of glutamate neurotoxicity. On this view, research has focused in the discovery of new compounds able to either reduce glutamate release or activation of postsynaptic NMDA receptors. Although NMDA receptor antagonists prevent excitotoxicity in cellular and animal models, these drugs have limited usefulness clinically. Side effects such as psychosis, nausea, vomiting, memory impairment, and neuronal cell death accompany complete NMDA receptor blockade, dramatizing the crucial role of the NMDA receptor in normal neuronal processes. Recently, however, well-tolerated compounds such as memantine has been shown to be able to block excitotoxic cell death in a clinically tolerated manner. Understanding the biochemical properties of the multitude of NMDA receptor subtypes offers the possibility of developing more effective and clinically useful drugs. The increasing knowledge of the structure and function of this postsynaptic NMDA complex may improve the identification of specific molecular targets whose pharmacological or genetic manipulation might lead to innovative therapies for brain disorders.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy.
| | | |
Collapse
|
33
|
Waxman EA, Lynch DR. N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 2005; 11:37-49. [PMID: 15632277 DOI: 10.1177/1073858404269012] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors are the major mediator of excitotoxicity. Although physiological activation of the NMDA receptor is necessary for cell survival, overactivation is a signal for cell death. Several pathways are activated through NMDA receptor stimulation, most of which can contribute to excitotoxicity. These include events leading to mitochondrial dysfunction, activation of calcium-dependent enzymes, and activation of mitogen-activated protein kinase pathways. Understanding the role of these mechanisms is important in developing agents that block excitotoxicity without inhibiting functions necessary for survival. NMDA receptor subtypes may be responsible for mediating separate pathways, and subtype-specific inhibition has shown promising results in some neurological models. This review examines the roles of NMDA receptor subtypes in excitotoxicity and neurological disorders.
Collapse
Affiliation(s)
- Elisa A Waxman
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | |
Collapse
|
34
|
Gardoni F, Mauceri D, Fiorentini C, Bellone C, Missale C, Cattabeni F, Di Luca M. CaMKII-dependent phosphorylation regulates SAP97/NR2A interaction. J Biol Chem 2003; 278:44745-52. [PMID: 12933808 DOI: 10.1074/jbc.m303576200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synapse-associated protein 97 (SAP97), a member of membrane-associated guanylate kinase protein family, has been implicated in the processes of targeting ionotropic glutamate receptors at postsynaptic sites. Here we show that SAP97 is enriched at the postsynaptic density where it co-localizes with both ionotropic glutamate receptors and downstream signaling proteins such as Ca2+/calmodulin-dependent protein kinase II (CaMKII). SAP97 and alphaCaMKII display a high co-localization pattern in hippocampal neurons as well as in transfected COS-7 cells. Metabolic labeling of hippocampal cultures reveals that N-methyl-D-aspartic acid (NMDA) receptor activation induces CaMKII-dependent phosphorylation of SAP97; co-incubation with the CaMKII-specific inhibitor KN-93 reduces SAP97 phosphorylation to basal levels. Our results show that SAP97 directly interacts with the NR2A subunit of NMDA receptor both in an in vitro "pull-out" assay and in co-immunoprecipitation experiments from homogenates and synaptosomes purified from hippocampal rat tissue. Interestingly, in the postsynaptic density fraction, SAP97 fails to co-precipitate with NR2A. We show here that SAP97 is directly associated with NR2A through its PDZ1 domain, and CaMKII-dependent phosphorylation of SAP97-Ser-232 disrupts NR2A interaction both in an in vitro pull-out assay and in transfected COS-7 cells. Moreover, expression of SAP97(S232D) mutant has effects similar to those observed upon constitutively activating CaMKII. Our findings suggest that SAP97/NR2A interaction is regulated by CaMKII-dependent phosphorylation and provide a novel mechanism for the regulation of synaptic targeting of NMDA receptor subunits.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Takagi Y, Takagi N, Besshoh S, Miyake-Takagi K, Takeo S. Transient global ischemia enhances phosphorylation of the GluR1 subunit of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor in the hippocampal CA1 region in rats. Neurosci Lett 2003; 341:33-6. [PMID: 12676337 DOI: 10.1016/s0304-3940(03)00153-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of the GluR1 subunit of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor has been implicated in the regulation of the receptor channel. We investigated the effects of transient global ischemia in rats on phosphorylation of the GluR1 subunit in the hippocampal CA1 and CA3/dentate gyrus. Transient ischemia induced an increase in the phosphorylation of GluR1 at Ser831 in the CA1 at 1 h of reperfusion. In contrast, the phosphorylation of Ser845 in neither region was affected by the ischemia. The amounts of calcium/calmodulin-dependent kinase (CaMKII) and its activated form, but not cAMP-dependent protein kinase subunits, were increased in a crude membrane fraction after ischemia. The results suggest that an activated CaMKII may phosphorylate Ser831 of GluR1 and a consequent phosphorylation of GluR1 may be related to pathogenic events occurring in the vulnerable subfield of the hippocampus after transient global ischemia.
Collapse
Affiliation(s)
- Yuko Takagi
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Tokyo University of Pharmacy & Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|