1
|
Esplandiu E, Morris J, Enochs I, Besemer N, Lirman D. Enhancing reef carbonate budgets through coral restoration. Sci Rep 2024; 14:27599. [PMID: 39528507 PMCID: PMC11555216 DOI: 10.1038/s41598-024-76799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Complex reef structure, built via calcium carbonate production by stony corals and other calcifying taxa, supports key ecosystem services. However, the decline in coral cover on reefs of the Florida Reef Tract (US), caused by ocean warming, disease, and other stressors, has led to erosion exceeding accretion, causing net loss of reef framework. Active coral restoration, aimed at rapidly increasing coral cover, is essential for recovering reef structure and function. Traditionally, restoration success focused on the survivorship and growth of transplanted corals. This is the first empirical study to examine the role of high-density outplants of the endangered staghorn coral, Acropora cervicornis, in restoring positive carbonate accretion on Florida reefs. Successful transplantation of staghorn corals contributed to positive net carbonate production. Restored plots yielded a mean net carbonate production rate of 3.06 kg CaCO3 m- 2 yr- 1, whereas control plots exhibited net erosive states. Staghorn restoration plots sustained positive net carbonate production at a threshold of ~ 2.96% coral cover. However, bleaching, storms, and disease challenge these reefs, highlighting the need for restoration strategies that enhance resilience to environmental stressors. Establishing Acroporid aggregations through outplanting, alongside climate adaptation strategies, could foster reef habitat growth and enhance the recovery of ecosystem services.
Collapse
Affiliation(s)
- Emily Esplandiu
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy., Key Biscayne, FL, 33149, USA.
| | - John Morris
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystem Division, NOAA , 4301 Rickenbacker Cswy., Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Cswy., Miami, FL, 33149, USA
| | - Ian Enochs
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystem Division, NOAA , 4301 Rickenbacker Cswy., Miami, FL, 33149, USA
| | - Nicole Besemer
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystem Division, NOAA , 4301 Rickenbacker Cswy., Miami, FL, 33149, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy., Key Biscayne, FL, 33149, USA
| |
Collapse
|
2
|
Muñiz-Castillo AI, Rivera-Sosa A, McField M, Chollett I, Eakin CM, Enríquez S, Giró A, Drysdale I, Rueda M, Soto M, Craig N, Arias-González JE. Underlying drivers of coral reef vulnerability to bleaching in the Mesoamerican Reef. Commun Biol 2024; 7:1452. [PMID: 39506046 PMCID: PMC11541557 DOI: 10.1038/s42003-024-07128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Coral bleaching, a consequence of stressed symbiotic relationships between corals and algae, has escalated due to intensified heat stress events driven by climate change. Despite global efforts, current early warning systems lack local precision. Our study, spanning 2015-2017 in the Mesoamerican Reef, revealed prevalent intermediate bleaching, peaking in 2017. By scrutinizing 23 stress exposure and sensitivity metrics, we accurately predicted 75% of bleaching severity variation. Notably, distinct thermal patterns-particularly the climatological seasonal warming rate and various heat stress metrics-emerged as better predictors compared to conventional indices (such as Degree Heating Weeks). Surprisingly, deeper reefs with diverse coral communities showed heightened vulnerability. This study presents a framework for coral reef bleaching vulnerability assessment, leveraging accessible data (including historical and real-time sea surface temperature, habitat variables, and species composition). Its operational potential lies in seamless integration with existing monitoring systems, offering crucial insights for conservation and management.
Collapse
Affiliation(s)
- Aarón Israel Muñiz-Castillo
- Laboratorio de Ecología de Ecosistemas de Arrecifes Coralinos, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Mérida, 97310, Yucatán, Mexico.
- Healthy Reefs for Healthy People, Puerto Morelos, Mexico.
| | - Andrea Rivera-Sosa
- Laboratorio de Ecología de Ecosistemas de Arrecifes Coralinos, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Mérida, 97310, Yucatán, Mexico
| | - Melanie McField
- Healthy Reefs for Healthy People, Fort Lauderdale, USA.
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, 34949, FL, USA.
| | | | - C Mark Eakin
- Corals and Climate, Silver Spring, 20904, MD, USA
| | - Susana Enríquez
- Laboratorio de Fotobiología. Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cancun, 77500, Quintana Roo, Mexico
| | - Ana Giró
- Healthy Reefs for Healthy People, Guatemala City, Guatemala
| | - Ian Drysdale
- Healthy Reefs for Healthy People, Tegucigalpa, Honduras
| | - Marisol Rueda
- Healthy Reefs for Healthy People, Puerto Morelos, Mexico
| | - Mélina Soto
- Healthy Reefs for Healthy People, Puerto Morelos, Mexico
| | - Nicole Craig
- Healthy Reefs for Healthy People, Belmopan, Belize
| | - Jesús Ernesto Arias-González
- Laboratorio de Ecología de Ecosistemas de Arrecifes Coralinos, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Mérida, 97310, Yucatán, Mexico.
| |
Collapse
|
3
|
Gonzalez K, Daraghmeh N, Lozano-Cortés D, Benzoni F, Berumen ML, Carvalho S. Differential spatio-temporal responses of Red Sea coral reef benthic communities to a mass bleaching event. Sci Rep 2024; 14:24229. [PMID: 39414881 PMCID: PMC11484895 DOI: 10.1038/s41598-024-74956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Understanding how coral reefs respond to disturbances is fundamental to assessing their resistance and resilience, particularly in the context of climate change. Due to the escalating frequency and intensity of coral bleaching events, it is essential to evaluate spatio-temporal responses of coral reef communities to disentangle the mechanisms underlying ecological changes. Here, we used benthic data collected from 59 reefs in the Red Sea over five years (2014-2019), a period that encompasses the 2015/2016 mass bleaching event. Reefs were located within three different geographic regions with different environmental settings: north (Duba; Al Wajh), central (Jeddah; Thuwal), and south (Al Lith; Farasan Banks; Farasan Islands). Coral community responses were region-specific, with communities in the south being more promptly affected than those in the northern and central regions, with hard and soft coral cover dropping drastically in several reefs from around > 40% to < 5% two years after bleaching. Coral bleaching effects were particularly evident in the decrease of cover in branching corals. Overall, we documented a shift towards a dominance of macroalgae, turf algae, and crustose coralline algae (CCA). Using remote sensing data, we analyzed sea surface temperature (SST) regimes at the study sites to infer potential drivers of changes in benthic composition. Both SST and Degree Heating Weeks (DHW) only partially aligned with the responses of benthic communities, highlighting the need for more accurate predictors of coral bleaching in the Red Sea. In times of intense coastal development along Saudi Arabia's Red Sea coast, our study provides crucial baseline information on developments in coral reef community composition, as well as to guide decision-making, namely restoration efforts.
Collapse
Affiliation(s)
- Karla Gonzalez
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nauras Daraghmeh
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Marine Sciences, University of Gothenburg, Box 461, Gothenburg, 40530, Sweden
- Gothenburg Global Biodiversity Centre, Box 463, Gothenburg, 40530, Sweden
| | - Diego Lozano-Cortés
- Environmental Protection Department, Saudi Aramco, Dhahran, Kingdom of Saudi Arabia
| | - Francesca Benzoni
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Michael L Berumen
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Mellin C, Stuart-Smith RD, Heather F, Oh E, Turak E, Edgar GJ. Coral responses to a catastrophic marine heatwave are decoupled from changes in total coral cover at a continental scale. Proc Biol Sci 2024; 291:20241538. [PMID: 39378994 PMCID: PMC11461067 DOI: 10.1098/rspb.2024.1538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
The services provided by the world's coral reefs are threatened by increasingly frequent and severe marine heatwaves. Heatwave-induced degradation of reefs has often been inferred from the extent of the decline in total coral cover, which overlooks extreme variation among coral taxa in their susceptibility and responses to thermal stress. Here, we provide a continental-scale assessment of coral cover changes at 262 shallow tropical reef sites around Australia, using ecological survey data on 404 coral taxa before and after the 2016 mass bleaching event. A strong spatial structure in coral community composition along large-scale environmental gradients largely dictated how coral communities responded to heat stress. While heat stress variables were the best predictors of change in total coral cover, the pre-heatwave community composition best predicted the temporal beta-diversity index (an indicator of change in community composition over time). Indicator taxa in each coral community differed before and after the heatwave, highlighting potential winners and losers of climate-driven coral bleaching. Our results demonstrate how assessment of change in total cover alone may conceal very different responses in community structure, some of which showed strong regional consistency, and may provide a telling outlook of how coral reefs may reorganize in a warmer future.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia5005, Australia
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Freddie Heather
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Elizabeth Oh
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Emre Turak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Denis H, Selmoni O, Gossuin H, Jauffrais T, Butler CC, Lecellier G, Berteaux-Lecellier V. Climate adaptive loci revealed by seascape genomics correlate with phenotypic variation in heat tolerance of the coral Acropora millepora. Sci Rep 2024; 14:22179. [PMID: 39333135 PMCID: PMC11436834 DOI: 10.1038/s41598-024-67971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2024] [Indexed: 09/29/2024] Open
Abstract
One of the main challenges in coral reef conservation and restoration is the identification of coral populations resilient under global warming. Seascape genomics is a powerful tool to uncover genetic markers potentially involved in heat tolerance among large populations without prior information on phenotypes. Here, we aimed to provide first insights on the role of candidate heat associated loci identified using seascape genomics in driving the phenotypic response of Acropora millepora from New Caledonia to thermal stress. We subjected 7 colonies to a long-term ex-situ heat stress assay (4 °C above the maximum monthly mean) and investigated their physiological response along with their Symbiodiniaceae communities and genotypes. Despite sharing similar thermal histories and associated symbionts, these conspecific individuals differed greatly in their tolerance to heat stress. More importantly, the clustering of individuals based on their genotype at heat-associated loci matched the phenotypic variation in heat tolerance. Colonies that sustained on average lower mortality, higher Symbiodiniaceae/chlorophyll concentrations and photosynthetic efficiency under prolonged heat stress were also the closest based on their genotypes, although the low sample size prevented testing loci predictive accuracy. Together these preliminary results support the relevance of coupling seascape genomics and long-term heat stress experiments in the future, to evaluate the effect size of candidate heat associated loci and pave the way for genomic predictive models of corals heat tolerance.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia.
- Ecole Doctorale 129, SU Sorbonne Université, 4, Place Jussieu, 75252, Paris, France.
| | - Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), EPFL, Lausanne, Switzerland
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Hugues Gossuin
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | - Thierry Jauffrais
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
| | | | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, BP R4 98 851, Nouméa, New Caledonia
| | | |
Collapse
|
6
|
Wei Y, Zhang W, Baguya EB, Gu Y, Yi K, Zhou J, Tong M. Bleached coral supports high diversity and heterogeneity of bacterial communities: Following the rule of the 'Anna Karenina principle'. ENVIRONMENTAL RESEARCH 2024; 262:119977. [PMID: 39265759 DOI: 10.1016/j.envres.2024.119977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Coral-associated bacteria are sensitive to the health status of coral and proven biomarker(s) of the coral bleaching. However, whether coral specificity or health status play a key role when coral-associated bacteria responding to coral bleaching is not known. Therefore, the bacterial communities of five species of healthy and bleached corals, Acropora millepora, Favites abdita, Galaxea fascicularis, Dipsastraea speciosa and Pocillopora damicornis, were collected along the coast of Sanya, South China Sea and targeted for associated bacterial studies. The relative abundance of the dominant class Gammaproteobacteria tended to be higher in healthy corals, while Alphaproteobacteria were more abundant in bleached corals. Dominant genus Achromobacter demonstrated higher relative abundance in healthy corals (0.675) than in bleached corals (0.151). Most of the bleached corals had high α diversity, β dispersion, heterogeneity and complexity of the co-occurrence network of bacterial communities, which support the 'Anna Karenina Principle (AKP)' of diverse in threatened objects and conserved in healthy ones. The bacterial communities in the bleached corals were mostly involved in the selection process, and communities in the healthy corals were involved in the undominated process, which is obtained based on the null model test of β nearest-taxon-index (βNTI) and Bray-Curtis-based Raup-Crick (RCBray). This evidence further confirmed the AKP and revealed that the bacterial communities in the bleached corals were driven by deterministic factors. These findings provide valuable insights into the connection between bacterial and coral status, and the application of the AKP in the changing patterns of bacterial communities during coral bleaching.
Collapse
Affiliation(s)
- Yihan Wei
- Ocean College, Zhejiang University, Zhoushan, 316021, China; Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou, 510030, China
| | - Wenguang Zhang
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | | | - Yu Gu
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Kehan Yi
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518131, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, 316021, China; Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou, 510030, China; Hainan Institute, Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
7
|
Primov KD, Burdick DR, Lemer S, Forsman ZH, Combosch DJ. Genomic data reveals habitat partitioning in massive Porites on Guam, Micronesia. Sci Rep 2024; 14:17107. [PMID: 39048606 PMCID: PMC11269739 DOI: 10.1038/s41598-024-67992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Corals in marginal reef habitats generally exhibit less bleaching and associated mortality compared to nearby corals in more pristine reef environments. It is unclear, however, if these differences are due to environmental differences, including turbidity, or genomic differences between the coral hosts in these different environments. One particularly interesting case is in the coral genus Porites, which contains numerous morphologically similar massive Porites species inhabiting a wide range of reef habitats, from turbid river deltas and stagnant back reefs to high-energy fore reefs. Here, we generate ddRAD data for 172 Porites corals from river delta and adjacent (<0.5 km) fore reef populations on Guam to assess the extent of genetic differentiation among massive Porites corals in these two contrasting environments and throughout the island. Phylogenetic and population genomic analyses consistently identify seven different clades of massive Porites, with the two largest clades predominantly inhabiting either river deltas or fore reefs, respectively. No population structure was detected in the two largest clades, and Cladocopium was the dominant symbiont genus in all clades and environments. The perceived bleaching resilience of corals in marginal reefs may therefore be attributed to interspecific differences between morphologically similar species, in addition to potentially mediating environmental differences. Marginal reef environments may therefore not provide a suitable refuge for many reef corals in a heating world, but instead host additional cryptic coral diversity.
Collapse
Affiliation(s)
- Karim D Primov
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - David R Burdick
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | - Sarah Lemer
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| | - Zac H Forsman
- King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia
| | - David J Combosch
- University of Guam Marine Laboratory, UOG Station, Mangilao, GU, USA
| |
Collapse
|
8
|
Nanami A. Nocturnal substrate association of four coral reef fish groups (parrotfishes, surgeonfishes, groupers and butterflyfishes) in relation to substrate architectural characteristics. PeerJ 2024; 12:e17772. [PMID: 39040932 PMCID: PMC11262305 DOI: 10.7717/peerj.17772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
Although numerous coral reef fish species utilize substrates with high structural complexities as habitats and refuge spaces, quantitative analysis of nocturnal fish substrate associations has not been sufficiently examined yet. The aims of the present study were to clarify the nocturnal substrate associations of 17 coral reef fish species (nine parrotfish, two surgeonfish, two grouper and four butterflyfish) in relation to substrate architectural characteristics. Substrate architectural characteristics were categorized into seven types: (1) eave-like space, (2) large inter-branch space, (3) overhang by protrusion of fine branching structure, (4) overhang by coarse structure, (5) uneven structure without large space or overhang, (6) flat and (7) macroalgae. Overall, fishes were primarily associated with three architectural characteristics (eave-like space, large inter-branch space and overhang by coarse structure). The main providers of these three architectural characteristics were tabular and corymbose Acropora, staghorn Acropora, and rock. Species-specific significant positive associations with particular architectural characteristics were found as follows. For the nine parrotfish species, Chlorurus microrhinos with large inter-branch space and overhang by coarse structure; Ch. spilurus with eave-like space and large inter-branch space; Hipposcarus longiceps with large inter-branch space; Scarus ghobban with overhang by coarse structure; five species (Scarus forsteni, S. niger, S. oviceps, S. rivulatus and S. schlegeli) with eave-like space. For the two surgeonfish species, Naso unicornis with overhang by coarse structure; N. lituratus with eave-like space. For the two grouper species, Plectropomus leopardus with eave-like space; Epinephelus ongus with overhang by coarse structure. For the four butterflyfish species, Chaetodon trifascialis with eave-like space and large inter-branch space; C. lunulatus and C. ephippium with large inter-branch space; C. auriga showed no significant associations with any architectural characteristics. Four species (Ch. microrhinos, H. longiceps, S. niger and N. unicornis) also showed clear variations in substrate associations among the different fish size classes. Since parrotfishes, surgeonfishes and groupers are main fisheries targets in coral reefs, conservation and restoration of coral species that provide eave-like space (tabular and corymbose Acropora) and large inter-branch space (staghorn Acropora) as well as hard substrates with coarse structure that provide overhang (rock) should be considered for effective fisheries management in coral reefs. For butterflyfishes, coral species that provide eave-like space (tabular Acropora) and large inter-branch space (staghorn Acropora) should also be conserved and restored for provision of sleeping sites.
Collapse
Affiliation(s)
- Atsushi Nanami
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yaeyama Field Station, Coastal and Inland Fisheries Ecosystem Division, Ishigaki, Okinawa, Japan
| |
Collapse
|
9
|
Martins CPP, Ziegler M, Schubert P, Wilke T, Wall M. Effects of water flow and ocean acidification on oxygen and pH gradients in coral boundary layer. Sci Rep 2024; 14:12757. [PMID: 38830941 PMCID: PMC11148076 DOI: 10.1038/s41598-024-63210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Reef-building corals live in highly hydrodynamic environments, where water flow largely controls the complex chemical microenvironments surrounding them-the concentration boundary layer (CBL). The CBL may be key to alleviate ocean acidification (OA) effects on coral colonies by partially isolating them. However, OA effects on coral CBL remain poorly understood, particularly under different flow velocities. Here, we investigated these effects on the reef-building corals Acropora cytherea, Pocillopora verrucosa, and Porites cylindrica. We preconditioned corals to a control (pH 8.0) and OA (pH 7.8) treatment for four months and tested how low flow (2 cm s-1) and moderate flow (6 cm s-1) affected O2 and H+ CBL traits (thickness, surface concentrations, and flux) inside a unidirectional-flow chamber. We found that CBL traits differed between species and flow velocities. Under OA, traits remained generally stable across flows, except surface pH. In all species, the H+ CBL was thin and led to lower surface pH. Still, low flow thickened H+ CBLs and increased light elevation of surface pH. In general, our findings reveal a weak to null OA modulation of the CBL. Moreover, the OA-buffering capacity by the H+ CBL may be limited in coral species, though low flow could enhance CBL sheltering.
Collapse
Affiliation(s)
- Catarina P P Martins
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, 35392, Giessen, Germany.
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Patrick Schubert
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Marlene Wall
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148, Kiel, Germany
| |
Collapse
|
10
|
Huang S, Luo L, Wen B, Liu X, Yu K, Zhang M. Metabolic signatures of two scleractinian corals from the northern South China sea in response to extreme high temperature events. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106490. [PMID: 38636276 DOI: 10.1016/j.marenvres.2024.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Coral bleaching events are becoming increasingly common worldwide, causing widespread coral mortality. However, not all colonies within the same coral taxa show sensitivity to bleaching events, and the current understanding of the metabolic mechanisms underlying thermal bleaching in corals remains limited. We used untargeted metabolomics to analyze the biochemical processes involved in the survival of two bleaching phenotypes of the common corals Pavona decussata and Acropora pruinosa, during a severe bleaching event in the northern South China Sea in 2020. During thermal bleaching, P. decussata and A. pruinosa significantly accumulated energy products such as succinate and EPA, antioxidants and inflammatory markers, and reduced energy storage substances like glutamate and thymidine. KEGG analysis revealed enrichment of energy production pathways such as ABC transporters, nucleotide metabolism and lipid metabolism, suggesting the occurrence of oxidative stress and energy metabolism disorders in bleached corals. Notably, heat stress exerted distinct effects on metabolic pathways in the two coral species, e.g., P. decussata activating carbohydrate metabolism pathways like glycolysis and the TCA cycle, along with amino acid metabolism pathways, whereas A. pruinosa significantly altered the content of multiple small peptides affected amino acid metabolism. Furthermore, the osmoregulatory potential of corals correlates with their ability to survive in heat-stress environments in the wild. This study provides valuable insights into the metabolic mechanisms linked to thermal tolerance in reef-building corals, contributes to the understanding of corals' adaptive potential to heat stress induced by global warming and lays the foundation for developing targeted conservation strategies in the future.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Li Luo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Beihua Wen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xurui Liu
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Liu C, Zhang Y, Botana MT, Fu Y, Huang L, Jiang L, Yu X, Luo Y, Huang H. The bioenergetics response of the coral Pocillopora damicornis to temperature changes during its reproduction stage. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106557. [PMID: 38823094 DOI: 10.1016/j.marenvres.2024.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/21/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Sexual reproduction of reef-building corals is vital for coral reef ecosystem recovery. Corals allocate limited energy to growth and reproduction, when being under environmental disturbance, which ultimately shapes the community population dynamics. In the present study, energetic and physiological parameters of both parental colonies and larvae of the coral Pocillopora damicornis were measured during their reproduction stage under four temperatures; 28 °C (low-temperature acclimation, LA), 29 °C (control temperature, CT), 31 °C (high-temperature acclimation, HA), and 32 °C (heat stress, HS). The results showed temperature changes altered the larvae release timing and fecundity in P. damicornis. Parental colonies exposed to the LA treatment exhibited reduced investment in reproduction and released fewer larvae, while retaining more energy for their development. However, each larva acquired higher energy and symbiont densities enabling survival through longer planktonic periods before settlement. In contrast, parental colonies exposed to the HA treatment had increased investment for reproduction and larvae output, while per larva gained less energy to mitigate the threat of higher temperature. Furthermore, the energy allocation processes restructured fatty acids concentration and composition in both parental colonies and larvae as indicated by shifts in membrane fluidity under adaptable temperature changes. Notably, parental colonies from the HS treatment expended more energy in response to heat stress, resulting in adverse effects, especially after larval release. Our study expands the current knowledge on the energy allocation strategies of P. damicornis and how it is impacted by temperature. Parental colonies employed different energy allocation strategies under distinct temperature regimes to optimize their development and offspring success, but under heat stress, both were compromised. Lipid metabolism is essential for the success of coral reproduction and further understanding their response to heat stress can improve intervention strategies for coral reef conservation in warmer future oceans.
Collapse
Affiliation(s)
- Chengyue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China.
| | - Yuyang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Marina Tonetti Botana
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Lintao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Xiaolei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
12
|
Strand EL, Wong KH, Farraj A, Gray S, McMenamin A, Putnam HM. Coral species-specific loss and physiological legacy effects are elicited by an extended marine heatwave. J Exp Biol 2024; 227:jeb246812. [PMID: 38774956 DOI: 10.1242/jeb.246812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
Marine heatwaves are increasing in frequency and intensity, with potentially catastrophic consequences for marine ecosystems such as coral reefs. An extended heatwave and recovery time-series that incorporates multiple stressors and is environmentally realistic can provide enhanced predictive capacity for performance under climate change conditions. We exposed common reef-building corals in Hawai'i, Montipora capitata and Pocillopora acuta, to a 2-month period of high temperature and high PCO2 conditions or ambient conditions in a factorial design, followed by 2 months of ambient conditions. High temperature, rather than high PCO2, drove multivariate physiology shifts through time in both species, including decreases in respiration rates and endosymbiont densities. Pocillopora acuta exhibited more significantly negatively altered physiology, and substantially higher bleaching and mortality than M. capitata. The sensitivity of P. acuta appears to be driven by higher baseline rates of photosynthesis paired with lower host antioxidant capacity, creating an increased sensitivity to oxidative stress. Thermal tolerance of M. capitata may be partly due to harboring a mixture of Cladocopium and Durusdinium spp., whereas P. acuta was dominated by other distinct Cladocopium spp. Only M. capitata survived the experiment, but physiological state in heatwave-exposed M. capitata remained significantly diverged at the end of recovery relative to individuals that experienced ambient conditions. In future climate scenarios, particularly marine heatwaves, our results indicate a species-specific loss of corals that is driven by baseline host and symbiont physiological differences as well as Symbiodiniaceae community compositions, with the surviving species experiencing physiological legacies that are likely to influence future stress responses.
Collapse
Affiliation(s)
- Emma L Strand
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| | - Kevin H Wong
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine and Atmospheric Science, Miami, FL 33149, USA
| | - Alexa Farraj
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Sierra Gray
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biology, University of Victoria, Victoria, BC, Canada, V8P 5C2
| | - Ana McMenamin
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
13
|
Aji LP, Maas DL, Capriati A, Ahmad A, de Leeuw C, Becking LE. Shifts in dominance of benthic communities along a gradient of water temperature and turbidity in tropical coastal ecosystems. PeerJ 2024; 12:e17132. [PMID: 38666078 PMCID: PMC11044884 DOI: 10.7717/peerj.17132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 04/28/2024] Open
Abstract
Tropical coastal benthic communities will change in species composition and relative dominance due to global (e.g., increasing water temperature) and local (e.g., increasing terrestrial influence due to land-based activity) stressors. This study aimed to gain insight into possible trajectories of coastal benthic assemblages in Raja Ampat, Indonesia, by studying coral reefs at varying distances from human activities and marine lakes with high turbidity in three temperature categories (<31 °C, 31-32 °C, and >32 °C). The benthic community diversity and relative coverage of major benthic groups were quantified via replicate photo transects. The composition of benthic assemblages varied significantly among the reef and marine lake habitats. The marine lakes <31 °C contained hard coral, crustose coralline algae (CCA), and turf algae with coverages similar to those found in the coral reefs (17.4-18.8% hard coral, 3.5-26.3% CCA, and 15-15.5% turf algae, respectively), while the higher temperature marine lakes (31-32 °C and >32 °C) did not harbor hard coral or CCA. Benthic composition in the reefs was significantly influenced by geographic distance among sites but not by human activity or depth. Benthic composition in the marine lakes appeared to be structured by temperature, salinity, and degree of connection to the adjacent sea. Our results suggest that beyond a certain temperature (>31 °C), benthic communities shift away from coral dominance, but new outcomes of assemblages can be highly distinct, with a possible varied dominance of macroalgae, benthic cyanobacterial mats, or filter feeders such as bivalves and tubeworms. This study illustrates the possible use of marine lake model systems to gain insight into shifts in the benthic community structure of tropical coastal ecosystems if hard corals are no longer dominant.
Collapse
Affiliation(s)
- Ludi Parwadani Aji
- Wageningen University and Research, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, Indonesia
| | | | | | | | | | - Leontine Elisabeth Becking
- Wageningen University and Research, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Winslow EM, Speare KE, Adam TC, Burkepile DE, Hench JL, Lenihan HS. Corals survive severe bleaching event in refuges related to taxa, colony size, and water depth. Sci Rep 2024; 14:9006. [PMID: 38637581 PMCID: PMC11026537 DOI: 10.1038/s41598-024-58980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Marine heatwaves are increasing in frequency and duration, threatening tropical reef ecosystems through intensified coral bleaching events. We examined a strikingly variable spatial pattern of bleaching in Moorea, French Polynesia following a heatwave that lasted from November 2018 to July 2019. In July 2019, four months after the onset of bleaching, we surveyed > 5000 individual colonies of the two dominant coral genera, Pocillopora and Acropora, at 10 m and 17 m water depths, at six forereef sites around the island where temperature was measured. We found severe bleaching increased with colony size for both coral genera, but Acropora bleached more severely than Pocillopora overall. Acropora bleached more at 10 m than 17 m, likely due to higher light availability at 10 m compared to 17 m, or greater daily temperature fluctuation at depth. Bleaching in Pocillopora corals did not differ with depth but instead varied with the interaction of colony size and Accumulated Heat Stress (AHS), in that larger colonies (> 30 cm) were more sensitive to AHS than mid-size (10-29 cm) or small colonies (5-9 cm). Our findings provide insight into complex interactions among coral taxa, colony size, and water depth that produce high spatial variation in bleaching and related coral mortality.
Collapse
Affiliation(s)
- Erin M Winslow
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Kelly E Speare
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thomas C Adam
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - James L Hench
- Nicholas School of the Environment, Duke University, Beaufort, NC, 28516, USA
| | - Hunter S Lenihan
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
15
|
Yen LP, Yong CLX, Todd PA. The effect of coral colony morphology, coral surface condition, particle size, and seeding point on the trapping and deposition of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171077. [PMID: 38382597 DOI: 10.1016/j.scitotenv.2024.171077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Coral reefs are increasingly identified as microplastic sinks. Understanding the trapping and deposition effects on microplastics among coral colonies of different morphologies can help identify which corals and coral reefs are at higher risk of microplastic exposure. Here, we used a current-generating saltwater flume to explore microplastic trapping and deposition among branching coral, Pocillopora acuta, colonies with contrasting morphologies (open and compact), together with varying coral surface conditions (live, dead, and waxed), microplastic sizes (400 to 500 μm and 900 to 1000 μm), and seeding points (above-colony and mid-colony). Results revealed that more microplastics were trapped by, and deposited nearer to, compact colonies compared to those with a more open morphology-likely due to differences in flow dynamics. More of the larger microplastics were trapped, as were those introduced at the mid seeding point, but coral surface condition had no significant effect. These findings add to the growing evidence that corals are effective at trapping and facilitating deposition of microplastics. Branching corals with compact structures are potentially at high risk of microplastic pollution impact. We posit that coral composition, i.e. the relative abundance of compact branching colonies, will affect microplastic accumulation in natural reef environments. SYNOPSIS: This study demonstrates the effects of coral morphology on microplastic trapping and deposition, providing mechanistic insights into the factors that contribute to coral reefs acting as microplastic sinks.
Collapse
Affiliation(s)
- Li Peng Yen
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Clara Lei Xin Yong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
16
|
Wang S, Lu C, Zhang Q, He X, Wang W, Li J, Su H. Microbial community and transcriptional responses to V. coralliilyticus stress in coral Favites halicora and Pocillopora damicornis holobiont. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106394. [PMID: 38340371 DOI: 10.1016/j.marenvres.2024.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Variability in coral hosts susceptibility to Vibrio coralliilyticus is well-documented; however, the comprehensive understanding of tolerance of response to pathogen among coral species is lacked. Herein, we investigated the microbial communities and transcriptome dynamics of two corals in response to Vibrio coralliilyticus. Favites halicora displayed greater resistance to Vibrio coralliilyticus challenge than Pocillopora damicornis. Furthermore, the relative abundances of Flavobacteriaceae, Vibrionacea, Rhodobacteraceae, and Roseobacteraceae increased significantly in Favites halicora following pathogen stress, whereas that of Akkermansiaceae increased significantly in Pocillopora damicornis, leading to bacterial community imbalance. In contrast to the previous results, pathogen infection did not have much effect on the community structures of Symbiodiniaceae and fungi, but led to a decrease in the density of Symbiodiniaceae. Transcriptome analysis indicated that Vibrio infection triggered a coral immune response, resulting in higher expression of immune-related genes, which appeared to have higher transcriptional plasticity in Favites halicora than in Pocillopora damicornis. Specifically, the upregulated genes of Favites halicora were predominantly involved in the apoptosis pathway, whereas Pocillopora damicornis were significantly enriched in the nucleotide excision repair and base excision repair pathways. These findings suggest that coral holobionts activate different mechanisms across species in response to pathogens through shifts in microbial communities and transcriptomes, which provides novel insight into assessing the future coral assemblages suffering from disease outbreaks.
Collapse
Affiliation(s)
- Shuying Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Chunrong Lu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Qi Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xucong He
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Weihui Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jiani Li
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
17
|
Gregorin C, Di Vito M, Roveta C, Pulido Mantas T, Gridelli S, Domenichelli F, Cilenti L, Vega Fernández T, Puce S, Musco L. Reduction of small-prey capture rate and collective predation in the bleached sea anemone Exaiptasiadiaphana. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106435. [PMID: 38467089 DOI: 10.1016/j.marenvres.2024.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Cnidarians may dominate benthic communities, as in the case of coral reefs that foster biodiversity and provide important ecosystem services. Polyps may feed by predating mesozooplantkon and large motile prey, but many species further obtain autotrophic nutrients from photosymbiosis. Anthropogenic disturbance, such as the rise of seawater temperature and turbidity, can lead to the loss of symbionts, causing bleaching. Prolonged periods of bleaching can induce mortality events over vast areas. Heterotrophy may allow bleached cnidarians to survive for long periods of time. We tested the reinforcement of heterotrophic feeding of bleached polyps of Exaiptasia diaphana fed with both small zooplantkon and large prey, in order to evaluate if heterotrophy allows this species to compensate the reduction of autotrophy. Conversely to expected, heterotrophy was higher in unbleached polyps (+54% mesozooplankton prey and +11% large prey). The increase of heterotrophic intake may not be always used as a strategy to compensate autotrophic depletion in bleached polyps. Such a resilience strategy might be more species-specific than expected.
Collapse
Affiliation(s)
- Chiara Gregorin
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Marica Di Vito
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Camilla Roveta
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Torcuato Pulido Mantas
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Stefano Gridelli
- Cattolica Aquarium, Piazzale Delle Nazioni 1/A, 47841 Cattolica, Italy
| | | | - Lucrezia Cilenti
- National Research Council -National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Via Michele Protano, 71121 Foggia, Italy
| | - Tomás Vega Fernández
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Stefania Puce
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Luigi Musco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biological and Environmental Sciences and Technologies, Salento University, Via Lecce - Monteroni, 73100 Lecce, Italy; NBFC, National Biodiversity Future Center, Piazza Marina, 61 90133 Palermo, Italy.
| |
Collapse
|
18
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
19
|
Linsmayer LB, Noel SK, Leray M, Wangpraseurt D, Hassibi C, Kline DI, Tresguerres M. Effects of bleaching on oxygen dynamics and energy metabolism of two Caribbean coral species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170753. [PMID: 38360316 DOI: 10.1016/j.scitotenv.2024.170753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
As mass coral bleaching events become more frequent, it is increasingly important to elucidate the factors underlying coral susceptibility and survival. We measured photosynthesis, respiration, and O2 concentration at the coral tissue surface, Symbiodiniaceae genotypes, and energy metabolic enzyme activities in Agaricia agaricites and Orbicella franksi throughout experimentally-induced thermal bleaching (+3 °C). A. agaricites colonies started to bleach two days into the thermal treatment and were fully bleached between Days 19-31. In contrast, O. franksi colonies only started to bleach on Day 12 and five colonies fully bleached between Days 24-38 while the remining three colonies took up 55 days. Both species experienced decreased photosynthesis and respiration rates as bleaching progressed. As a result, daytime O2 concentration at the coral surface shifted from hyperoxia in unbleached corals to normoxia in partially bleached corals, and to near hypoxia in fully bleached corals. Additionally, nighttime tissue surface O2 concentration shifted from hypoxia to normoxia, likely resulting from decreased symbiotic algae density, respiration, and photosynthates that fuel coral aerobic respiration. Genetic profiling of internal transcribed spacer 2 (ITS2) revealed differences in Symbiodiniaceae clade proportions between control and bleached colonies. Activity levels of energy metabolic enzymes did not significantly vary between control and bleached A. agaricites, but malate dehydrogenase and strombine dehydrogenase activities were significantly higher in bleached O. franksi colonies compared to controls. These differences were driven by the three O. franksi colonies that took the longest to bleach and contained >98 % Durusdinium sp. D1. The shifts in O2 dynamics within the microhabitat of bleached corals may have important implications for the metabolism of the coral holobiont while the changes in Symbiodiniaceae ITS2 profile and the upregulation of energy metabolic enzymes identify a potential factor contributing to bleaching dynamics.
Collapse
Affiliation(s)
- L B Linsmayer
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - S K Noel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - M Leray
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, Panama
| | - D Wangpraseurt
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA; Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - C Hassibi
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - D I Kline
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA; Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, Panama
| | - M Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Burt AJ, Vogt-Vincent N, Johnson H, Sendell-Price A, Kelly S, Clegg SM, Head C, Bunbury N, Fleischer-Dogley F, Jeremie MM, Khan N, Baxter R, Gendron G, Mason-Parker C, Walton R, Turnbull LA. Integration of population genetics with oceanographic models reveals strong connectivity among coral reefs across Seychelles. Sci Rep 2024; 14:4936. [PMID: 38472289 PMCID: PMC10933301 DOI: 10.1038/s41598-024-55459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Many countries with tropical reef systems face hard choices preserving coral reefs in the face of climate change on limited budgets. One approach to maximising regional reef resilience is targeting management efforts and resources at reefs that export large numbers of larvae to other reefs. However, this requires reef connectivity to be quantified. To map coral connectivity in the Seychelles reef system we carried out a population genomic study of the Porites lutea species complex using 241 sequenced colonies from multiple islands. To identify oceanographic drivers of this connectivity and quantify variability, we further used a 2 km resolution regional ocean simulation coupled with a larval dispersal model to predict the flow of coral larvae between reef sites. Patterns of admixture and gene flow are broadly supported by model predictions, but the realised connectivity is greater than that predicted from model simulations. Both methods detected a biogeographic dispersal barrier between the Inner and Outer Islands of Seychelles. However, this barrier is permeable and substantial larval transport is possible across Seychelles, particularly for one of two putative species found in our genomic study. The broad agreement between predicted connectivity and observed genetic patterns supports the use of such larval dispersal simulations in reef system management in Seychelles and the wider region.
Collapse
Affiliation(s)
- April J Burt
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK.
- Seychelles Islands Foundation, Mont Fleuri, Mahé, Seychelles.
| | - Noam Vogt-Vincent
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | - Helen Johnson
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | | | - Steve Kelly
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Sonya M Clegg
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Catherine Head
- Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK
| | - Nancy Bunbury
- Seychelles Islands Foundation, Mont Fleuri, Mahé, Seychelles
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| | | | - Marie-May Jeremie
- Ministry of Agriculture, Climate Change and Environment, Victoria, Seychelles
| | - Nasreen Khan
- Island Conservation Society Seychelles, Pointe Larue, Mahé, Seychelles
| | - Richard Baxter
- Island Biodiversity and Conservation Centre, University of Seychelles, Victoria, Seychelles
| | - Gilberte Gendron
- Island Biodiversity and Conservation Centre, University of Seychelles, Victoria, Seychelles
| | | | | | | |
Collapse
|
21
|
Selmoni O, Bay LK, Exposito-Alonso M, Cleves PA. Finding genes and pathways that underlie coral adaptation. Trends Genet 2024; 40:213-227. [PMID: 38320882 DOI: 10.1016/j.tig.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Mass coral bleaching is one of the clearest threats of climate change to the persistence of marine biodiversity. Despite the negative impacts of bleaching on coral health and survival, some corals may be able to rapidly adapt to warming ocean temperatures. Thus, a significant focus in coral research is identifying the genes and pathways underlying coral heat adaptation. Here, we review state-of-the-art methods that may enable the discovery of heat-adaptive loci in corals and identify four main knowledge gaps. To fill these gaps, we describe an experimental approach combining seascape genomics with CRISPR/Cas9 gene editing to discover and validate heat-adaptive loci. Finally, we discuss how information on adaptive genotypes could be used in coral reef conservation and management strategies.
Collapse
Affiliation(s)
- Oliver Selmoni
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Line K Bay
- Reef Recovery, Adaptation, and Restoration, Australian Institute of Marine Science; Townsville, QLD 4810, Australia
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Phillip A Cleves
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
22
|
Kahng SE, Odle E, Wakeman KC. Coral geometry and why it matters. PeerJ 2024; 12:e17037. [PMID: 38436029 PMCID: PMC10909345 DOI: 10.7717/peerj.17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Clonal organisms like reef building corals exhibit a wide variety of colony morphologies and geometric shapes which can have many physiological and ecological implications. Colony geometry can dictate the relationship between dimensions of volume, surface area, and length, and their associated growth parameters. For calcifying organisms, there is the added dimension of two distinct components of growth, biomass production and calcification. For reef building coral, basic geometric shapes can be used to model the inherent mathematical relationships between various growth parameters and how colony geometry determines which relationships are size-dependent or size-independent. Coral linear extension rates have traditionally been assumed to be size-independent. However, even with a constant calcification rate, extension rates can vary as a function of colony size by virtue of its geometry. Whether the ratio between mass and surface area remains constant or changes with colony size is the determining factor. For some geometric shapes, the coupling of biomass production (proportional to surface area productivity) and calcification (proportional to volume) can cause one aspect of growth to geometrically constrain the other. The nature of this relationship contributes to a species' life history strategy and has important ecological implications. At one extreme, thin diameter branching corals can maximize growth in surface area and resource acquisition potential, but this geometry requires high biomass production to cover the fast growth in surface area. At the other extreme, growth in large, hemispheroidal corals can be constrained by calcification. These corals grow surface area relatively slowly, thereby retaining a surplus capacity for biomass production which can be allocated towards other anabolic processes. For hemispheroidal corals, the rate of surface area growth rapidly decreases as colony size increases. This ontogenetic relationship underlies the success of microfragmentation used to accelerate restoration of coral cover. However, ontogenetic changes in surface area productivity only applies to certain coral geometries where surface area to volume ratios decrease with colony size.
Collapse
Affiliation(s)
- Samuel E. Kahng
- Oceanography, University of Hawaii, Honolulu, HI, United States of America
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
- Kikai Institute for Coral Reef Science, Kikai, Japan
| | - Eric Odle
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Kevin C. Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Förster F, Reynaud S, Sauzéat L, Ferrier-Pagès C, Samankassou E, Sheldrake TE. Increased coral biomineralization due to enhanced symbiotic activity upon volcanic ash exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168694. [PMID: 38007126 DOI: 10.1016/j.scitotenv.2023.168694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Coral reefs, which are among the most productive ecosystems on earth, are in global decline due to rapid climate change. Volcanic activity also results in extreme environmental changes at local to global scales, and may have significant impacts on coral reefs compared to other natural disturbances. During explosive eruptions, large amounts of volcanic ash are generated, significantly disrupting ecosystems close to a volcano, and depositing ash over distal areas (10s - 1000s of km depending on i.a. eruption size and wind direction). Once volcanic ash interacts with seawater, the dissolution of metals leads to a rapid change in the geochemical properties of the seawater column. Here, we report the first known effects of volcanic ash on the physiology and elemental cycling of a symbiotic scleractinian coral under laboratory conditions. Nubbins of the branching coral Stylophora pistillata were reared in aquaria under controlled conditions (insolation, temperature, and pH), while environmental parameters, effective quantum yield, and skeletal growth rate were monitored. Half the aquaria were exposed to volcanic ash every other day for 6 weeks (250 mg L-1 week-1), which induced significant changes in the fluorescence-derived photochemical parameters (ΦPSII, Fv/Fm, NPQ, rETR), directly enhanced the efficiency of symbiont photosynthesis (Pg, Pn), and lead to increased biomineralization rates. Enhancement of symbiont photosynthesis is induced by the supply of essential metals (Fe and Mn), derived from volcanic ash leaching in ambient seawater or within the organism following ingestion. The beneficial role of volcanic ash as an important micronutrient source is supported by the fact that neither photophysiological stress nor signs of lipid peroxidation were detected. Subaerial volcanism affects micronutrient cycling in the coral ecosystem, but the implication for coral ecophysiology on a reef scale remains to be tested. Nevertheless, exposure to volcanic ash can improve coral health and thus influence resilience to external stressors.
Collapse
Affiliation(s)
- Frank Förster
- Geovolco Team, Department of Earth Sciences, University of Geneva, Genève, Switzerland.
| | | | - Lucie Sauzéat
- Laboratoire Magmas et Volcans (LMV), Université Clermont Auvergne, CNRS, IRD, OPGC, F-63000 Clermont-Ferrand, France; Institut de Génétique, Reproduction et Développement (iGReD), Université Clermont Auvergne, CNRS, INSERM, F-63000 Clermont-Ferrand, France
| | | | - Elias Samankassou
- Sedimentology Group, Department of Earth Sciences, University of Geneva, Genève, Switzerland
| | - Tom E Sheldrake
- Geovolco Team, Department of Earth Sciences, University of Geneva, Genève, Switzerland
| |
Collapse
|
24
|
Quigley KM. Breeding and Selecting Corals Resilient to Global Warming. Annu Rev Anim Biosci 2024; 12:209-332. [PMID: 37931139 DOI: 10.1146/annurev-animal-021122-093315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Selective breeding of resilient organisms is an emerging topic in marine conservation. It can help us predict how species will adapt in the future and how we can help restore struggling populations effectively in the present. Scleractinian corals represent a potential tractable model system given their widescale phenotypic plasticity across fitness-related traits and a reproductive life history based on mass synchronized spawning. Here, I explore the justification for breeding in corals, identify underutilized pathways of acclimation, and highlight avenues for quantitative targeted breeding from the coral host and symbiont perspective. Specifically, the facilitation of enhanced heat tolerance by targeted breeding of plasticity mechanisms is underutilized. Evidence from theoretical genetics identifies potential pitfalls, including inattention to physical and genetic characteristics of the receiving environment. Three criteria for breeding emerge from this synthesis: selection from warm, variable reefs that have survived disturbance. This information will be essential to protect what we have and restore what we can.
Collapse
Affiliation(s)
- K M Quigley
- The Minderoo Foundation, Perth, Western Australia, Australia;
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
25
|
Combosch DJ, Burdick D, Primov K, Rios D, Rios K, Fernandez J. Barcoding and mitochondrial phylogenetics of Porites corals. PLoS One 2024; 19:e0290505. [PMID: 38359055 PMCID: PMC10868756 DOI: 10.1371/journal.pone.0290505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/10/2023] [Indexed: 02/17/2024] Open
Abstract
Coral reefs are the most diverse ecosystem on the planet based on the abundance and diversity of phyla and higher taxa. However, it is still difficult to assess the diversity of lower taxa, especially at the species level. One tool for improving the identification of lower taxa are genetic markers that can distinguish cryptic species and assess species boundaries. Here, we present one such approach for an important and challenging group of reef-building corals. Porites corals are the main reef-builders of many coral reefs in the Indo-Pacific, owing to the massive growth forms of some species. The current number of valid Porites species is controversial, inflated with many synonymies, and often based on gross colony morphology although several morphospecies believed to be widespread and common can only be distinguished based on detailed microstructure analyses by taxonomic experts. Here, we test the suitability of multiple regions of mtDNA as genetic barcodes to identify suitable markers for species differentiation and unambiguous identification. Resulting sequencing data was further used for the first phylogenetic analysis of Guam's Porites species. We tested eight different mitochondrial markers and analyzed four in detail for 135 Porites specimens: mtDNA markers were amplified for 67 Porites specimens from Guam, representing 12 nominal Porites species, and combined with 69 mitochondrial genomes, mostly from Hawaii. The combination of all 4 markers distinguished 10 common and 7 uncommon Central-West Pacific Porites species. Most clades separate species along taxonomic boundaries, which is uncommon for Porites corals and testifies to the suitability of our multi-marker approach, and a combination of the two most promising barcodes distinguished 8/10 common species. These barcodes are thus suitable to distinguish virtually cryptic species in one of the most important and challenging coral genera. They offer a cheap, fast and reliable way to identify Porites species for species-level research, monitoring and conservation.
Collapse
Affiliation(s)
| | - David Burdick
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Karim Primov
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Dareon Rios
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Kireon Rios
- Marine Laboratory, University of Guam, Mangilao, Guam
| | | |
Collapse
|
26
|
Wei Y, Chen B, Yu K, Liao Z, Yu X, Qin Z, Bao Z, Xu L, Wang Y. Evolutionary radiation and microbial community dynamics shape the thermal tolerance of Fungiidae in the southern South China Sea. Microbiol Spectr 2024; 12:e0243623. [PMID: 38174936 PMCID: PMC10845974 DOI: 10.1128/spectrum.02436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial β-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.
Collapse
Affiliation(s)
- Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Zhiheng Liao
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| |
Collapse
|
27
|
Shinzato C, Yoshioka Y. Genomic Data Reveal Diverse Biological Characteristics of Scleractinian Corals and Promote Effective Coral Reef Conservation. Genome Biol Evol 2024; 16:evae014. [PMID: 38271267 PMCID: PMC10901607 DOI: 10.1093/gbe/evae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Reef-building corals (Scleractinia, Anthozoa, Cnidaria) are the keystone organisms of coral reefs, which constitute the most diverse marine ecosystems. Since the first decoded coral genome reported in 2011, about 40 reference genomes are registered as of 2023. Comparative genomic analyses of coral genomes have revealed genomic characters that may underlie unique biological characteristics and coral diversification. These include existence of genes for biosynthesis of mycosporine-like amino acids, loss of an enzyme necessary for cysteine biosynthesis in family Acroporidae, and lineage-specific gene expansions of DMSP lyase-like genes in the genus Acropora. While symbiosis with endosymbiotic photosynthetic dinoflagellates is a common biological feature among reef-building corals, genes associated with the intricate symbiotic relationship encompass not only those shared by many coral species, but also genes that were uniquely duplicated in each coral lineage, suggesting diversified molecular mechanisms of coral-algal symbiosis. Coral genomic data have also enabled detection of hidden, complex population structures of corals, indicating the need for species-specific, local-scale, carefully considered conservation policies for effective maintenance of corals. Consequently, accumulating coral genomic data from a wide range of taxa and from individuals of a species not only promotes deeper understanding of coral reef biodiversity, but also promotes appropriate and effective coral reef conservation. Considering the diverse biological traits of different coral species and accurately understanding population structure and genetic diversity revealed by coral genomic analyses during coral reef restoration planning could enable us to "archive" coral reef environments that are nearly identical to natural coral reefs.
Collapse
Affiliation(s)
- Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Yuki Yoshioka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0412, Japan
| |
Collapse
|
28
|
McClanahan TR, Darling ES, Beger M, Fox HE, Grantham HS, Jupiter SD, Logan CA, Mcleod E, McManus LC, Oddenyo RM, Surya GS, Wenger AS, Zinke J, Maina JM. Diversification of refugia types needed to secure the future of coral reefs subject to climate change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14108. [PMID: 37144480 DOI: 10.1111/cobi.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Identifying locations of refugia from the thermal stresses of climate change for coral reefs and better managing them is one of the key recommendations for climate change adaptation. We review and summarize approximately 30 years of applied research focused on identifying climate refugia to prioritize the conservation actions for coral reefs under rapid climate change. We found that currently proposed climate refugia and the locations predicted to avoid future coral losses are highly reliant on excess heat metrics, such as degree heating weeks. However, many existing alternative environmental, ecological, and life-history variables could be used to identify other types of refugia that lead to the desired diversified portfolio for coral reef conservation. To improve conservation priorities for coral reefs, there is a need to evaluate and validate the predictions of climate refugia with long-term field data on coral abundance, diversity, and functioning. There is also the need to identify and safeguard locations displaying resistance toprolonged exposure to heat waves and the ability to recover quickly after thermal exposure. We recommend using more metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist, and recover from exposure to high ocean temperatures and the consequences of climate change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading portfolio that can be used to improve strategic coral reef conservation in a rapidly warming climate.
Collapse
Affiliation(s)
- Tim R McClanahan
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - Emily S Darling
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
| | - Maria Beger
- School of Biology, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Helen E Fox
- Coral Reef Alliance, Oakland, California, USA
| | - Hedley S Grantham
- Forests and Climate Change, Wildlife Conservation Society, Bronx, New York, USA
| | - Stacy D Jupiter
- Melanesia Program, Wildlife Conservation Society, Suva, Fiji
| | - Cheryl A Logan
- Department of Marine Science, California State University, Monterey Bay, Seaside, California, USA
| | - Elizabeth Mcleod
- Global Reefs Program, The Nature Conservancy, Arlington, Virginia, USA
| | - Lisa C McManus
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Remy M Oddenyo
- Kenya Marine Program, Wildlife Conservation Society, Mombasa, Kenya
| | - Gautam S Surya
- Forests and Climate Change, Wildlife Conservation Society, Bronx, New York, USA
| | - Amelia S Wenger
- Global Marine Programs, Wildlife Conservation Society, Bronx, New York, USA
- Centre for Biodiversity and Conservation Science, University of Queensland, St. Lucia, Queensland, Australia
| | - Jens Zinke
- School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Joseph M Maina
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Wernberg T, Thomsen MS, Baum JK, Bishop MJ, Bruno JF, Coleman MA, Filbee-Dexter K, Gagnon K, He Q, Murdiyarso D, Rogers K, Silliman BR, Smale DA, Starko S, Vanderklift MA. Impacts of Climate Change on Marine Foundation Species. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:247-282. [PMID: 37683273 DOI: 10.1146/annurev-marine-042023-093037] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.
Collapse
Affiliation(s)
- Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Mads S Thomsen
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Julia K Baum
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Melanie J Bishop
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda A Coleman
- National Marine Science Centre, New South Wales Department of Primary Industries, Coffs Harbour, New South Wales, Australia
| | - Karen Filbee-Dexter
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Karine Gagnon
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Daniel Murdiyarso
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Bogor, Indonesia
- Department of Geophysics and Meteorology, IPB University, Bogor, Indonesia
| | - Kerrylee Rogers
- School of Earth, Atmospheric, and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom
| | - Samuel Starko
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
| | - Mathew A Vanderklift
- Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, Western Australia, Australia
| |
Collapse
|
30
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168221. [PMID: 37923256 DOI: 10.1016/j.scitotenv.2023.168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenically driven climate change is predicted to increase average sea surface temperatures, as well as the frequency and intensity of marine heatwaves in the future. This increasing temperature is predicted to have a range of negative physiological impacts on multiple life-stages of coral reef fish. Nevertheless, studies of early-life stages remain limited, and tissue-specific transcriptomic studies of post-larval coral reef fish are yet to be conducted. Here, in an aquaria-based study we investigate the tissue-specific (brain, liver, muscle, and digestive tract) transcriptomic response of post-larval (20 dph) Amphiprion ocellaris to temperatures associated with future climate change (+3 °C). Additionally, we utilized metatranscriptomic sequencing to investigate how the microbiome of the digestive tract changes at +3 °C. Our results show that the transcriptional response to elevated temperatures is highly tissue-specific, as the number of differentially expressed genes (DEGs) and gene functions varied amongst the brain (102), liver (1785), digestive tract (380), and muscle (447). All tissues displayed DEGs associated with thermal stress, as 23 heat-shock protein genes were upregulated in all tissues. Our results indicate that post-larval clownfish may experience liver fibrosis-like symptoms at +3 °C as genes associated with extracellular matrix structure, oxidative stress, inflammation, glucose transport, and metabolism were all upregulated. We also observe a shift in the digestive tract microbiome community structure, as Vibrio sp. replace Escherichia coli as the dominant bacteria. This shift is coupled with the dysregulation of various genes involved in immune response in the digestive tract. Overall, this study highlights post-larval clownfish will display tissue-specific transcriptomic responses to future increases in temperature, with many potentially harmful pathways activated at +3 °C.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
31
|
Godefroid M, Vandendriessche M, Todinanahary GGB, Ransquin I, Dubois P. Thermal sensitivity of black corals (Antipatharia: Hexacorallia): Comparisons between sympatric species from a thermally fluctuating site in Madagascar and between allopatric congenerics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168311. [PMID: 37926267 DOI: 10.1016/j.scitotenv.2023.168311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
This study investigated factors shaping the thermal sensitivity in antipatharians, a taxon whose members form dense aggregations in all oceans, harbouring a high biodiversity. First, we tested the thermal responses of five sympatric species (Antipathes grandis, Cupressopathes abies, Stichopathes cf. maldivensis, Cirrhipathes anguina and Cirrhipathes cf. spiralis) from the Great Reef of Toliara (Madagascar), using an acute ramping methodology. We then compared the thermal performance curves (TPCs) for oxygen consumption of these five species. Results indicated that phylogeny alone does not explain differences in thermal sensitivity (Antipathidae vs. Myriopathidae). On the contrary, morphology (branched vs. unbranched) appeared as a key factor, with unbranched species (S. cf. maldivensis, C. anguina, C. cf. spiralis) being more tolerant to thermal stress than branched ones (A. grandis and C. abies). Several hypothesis could explain these variations in thermal tolerance across morphology, such as tissue thickness, surface/volume ratio or mass-transfer efficiency. Secondly, we compared the TPC of Stichopathes from Madagascar with those previously obtained in congenerics from the Canary Islands and French Polynesia. This revealed a higher thermal tolerance in the two former than in the latter. It is proposed that it is linked to higher annual temperature variability (but not daily variability) in these two sites compared to French Polynesia. It is concluded that thermal sensitivity in antipatharians is linked to their morphology influencing their physiology and to their thermal history. Phylogeny at the family level plays a less important role in explaining differences in thermal sensitivity in antipatharians.
Collapse
Affiliation(s)
- Mathilde Godefroid
- Marine Biology Laboratory, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP160/15, 1050 Brussels, Belgium.
| | - Mathilde Vandendriessche
- Marine Biology Laboratory, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP160/15, 1050 Brussels, Belgium
| | - Gildas Georges Boleslas Todinanahary
- Belaza Marine Station, Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr Rabesandratana HD, P.O. Box 141, 601 Toliara, Madagascar
| | - Ignace Ransquin
- Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Place du Levant 2, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Dubois
- Marine Biology Laboratory, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP160/15, 1050 Brussels, Belgium
| |
Collapse
|
32
|
Walker AS, Kratochwill CA, van Woesik R. Past disturbances and local conditions influence the recovery rates of coral reefs. GLOBAL CHANGE BIOLOGY 2024; 30:e17112. [PMID: 38273580 DOI: 10.1111/gcb.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024]
Abstract
Corals are being increasingly subjected to marine heatwaves. Theory suggests that increasing the intensity of disturbances reduces recovery rates, which inspired us to examine the recovery rates of coral cover following marine heatwaves, cyclones, and other disturbances at 1921 study sites, in 58 countries and three oceans, from 1977 to 2020. In the Atlantic Ocean, coral cover has decreased fourfold since the 1970s, and recovery rates following disturbances have been relatively slow, except in the Antilles. By contrast, reefs in the Pacific and Indian Oceans have maintained coral cover and recovery rates over time. There were positive relationships between rates of coral recovery and prior cyclone and heatwave frequency, and negative relationships between rates of coral recovery and macroalgae cover and distance to shore. A recent increase in the variance in recovery rates in some ecoregions of the Pacific and Indian Oceans suggests that some reefs in those ecoregions may be approaching a phase shift. While marine heatwaves are increasing in intensity and frequency, our results suggest that regional and local conditions influence coral recovery rates, and therefore, effective local management efforts can help reefs recover from disturbances.
Collapse
Affiliation(s)
- Andrew S Walker
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, USA
| | - Chelsey A Kratochwill
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
33
|
Chuang PS, Yu SP, Liu PY, Hsu MT, Chiou YJ, Lu CY, Tang SL. A gauge of coral physiology: re-examining temporal changes in Endozoicomonas abundance correlated with natural coral bleaching. ISME COMMUNICATIONS 2024; 4:ycae001. [PMID: 38371393 PMCID: PMC10872716 DOI: 10.1093/ismeco/ycae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Bacteria contribute to many physiological functions of coral holobionts, including responses to bleaching. The bacterial genus, Endozoicomonas, dominates the microbial flora of many coral species and its abundance appears to be correlated with coral bleaching. However, evidences for decoupling of bleaching and Endozoicomonas abundance changes have also been reported. In 2020, a severe bleaching event was recorded at reefs in Taiwan, providing a unique opportunity to re-examine bleaching-Endozoicomonas association using multiple stony corals in natural environments. In this study, we monitored tissue color and microbiome changes in three coral species (Montipora sp., Porites sp., and Stylophora pistillata) in Kenting National Park, following the bleaching event. All tagged Montipora sp. and Porites sp. recovered from bleaching within 1 year, while high mortality occurred in S. pistillata. Microbiome analysis found no correlation of Endozoicomonas relative abundance and bleaching severity during the sampling period, but found a stronger correlation when the month in which bleaching occurred was excluded. Moreover, Endozoicomonas abundance increased during recovery months in Montipora sp. and Porites sp., whereas in S. pistillata it was nearly depleted. These results suggest that Endozoicomonas abundance may represent a gauge of coral health and reflect recovery of some corals from stress. Interestingly, even though different Endozoicomonas strains predominated in the three corals, these Endozoicomonas strains were also shared among coral taxa. Meanwhile, several Endozoicomonas strains showed secondary emergence during coral recovery, suggesting possible symbiont switching in Endozoicomonas. These findings indicate that it may be possible to introduce Endozoicomonas to non-native coral hosts as a coral probiotic.
Collapse
Affiliation(s)
- Po-Shun Chuang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Sheng-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Ming-Tsung Hsu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Jing Chiou
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Centre for Marine Science and Innovation, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
34
|
Longley R, Benucci GMN, Pochon X, Bonito G, Bonito V. Species-specific coral microbiome assemblages support host bleaching resistance during an extreme marine heatwave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167803. [PMID: 37838063 DOI: 10.1016/j.scitotenv.2023.167803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Scleractinian assemblages are threatened by marine heat waves with coral survivorship depending on host genetics and microbiome composition. We documented an extreme marine heat wave in Fiji and the response of corals in two thermally stressed reef flats. Through high-throughput amplicon sequencing of 16S and ITS rDNA phylogenetic markers, we assessed coral microbiomes (Symbiodiniaceae, prokaryotes, fungi, and Apicomplexa) of paired bleached and unbleached colonies of four common coral species representative of dominant genera in the South Pacific. While all coral species exhibited one or more pathways to bleaching resistance, harboring assemblages composed primarily of thermally tolerant photosymbionts did not always result in host bleaching resistance. Montipora and Pocillopora species, which associate with diverse Symbiodiniaceae and vertically transmit their photosymbionts, fared better than Acropora, which acquire their photosymbionts from the environment, and Porites, which associate with a narrow photosymbiont assemblage. Prokaryotic and fungal beta diversity did not differ between bleached and unbleached conspecifics, however, the relative abundance of the fungus Malassezia globosa was significantly greater in unbleached colonies of Montipora digitata. Each coral species harbored distinct assemblages of Symbiodiniaceae, prokaryotes, and Apicomplexa, but not fungi, reiterating the importance of host genetics in structuring components of its microbiome. Terrestrial fungal and prokaryotic taxa were detected at low abundance across coral microbiomes, indicating that allochthonous microbial inputs occur, but that coral microbiomes remain dominated by marine microbial taxa. Our study offers valuable insights into the microbiome assemblages associated with coral tolerance to extreme water temperatures.
Collapse
Affiliation(s)
- Reid Longley
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 48824, MI, USA
| | | | - Xavier Pochon
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Gregory Bonito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 48824, MI, USA; Plant, Soil and Microbial Science Department, Michigan State University, East Lansing, 48824, MI, USA; Coral Coast Conservation Center, Votua Village, Fiji.
| | - Victor Bonito
- Coral Coast Conservation Center, Votua Village, Fiji; Reef Explorer Fiji, Votua Village, Fiji
| |
Collapse
|
35
|
Dalpadado P, Roxy MK, Arrigo KR, van Dijken GL, Chierici M, Ostrowski M, Skern-Mauritzen R, Bakke G, Richardson AJ, Sperfeld E. Rapid climate change alters the environment and biological production of the Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167342. [PMID: 37758130 DOI: 10.1016/j.scitotenv.2023.167342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
We synthesize and review the impacts of climate change on the physical, chemical, and biological environments of the Indian Ocean and discuss mitigating actions and knowledge gaps. The most recent climate scenarios identify with high certainty that the Indian Ocean (IO) is experiencing one of the fastest surface warming among the world's oceans. The area of surface waters of >28 °C (IO Warm Pool) has significantly increased during 1982-2021 by expanding into the northern-central basins. A significant decrease in pH and aragonite (building blocks of calcified organisms) levels in the IO was observed from 1981-2020 due to an increase in atmospheric CO2 concentrations. There are also signals of decreasing trends in primary productivity in the north, likely related to enhanced stratification and nutrient depletion. Further, the rapid warming of the IO will manifest more extreme weather conditions along its adjacent continents and oceans, including marine heat waves that are likely to reshape biodiversity. However, the impact of climate change beyond the unprecedented warming, increase in marine heat waves, expansion of the IO Warm Pool, and decrease in pH, remains uncertain for many other key variables in the IO including changes in salinity, oxygen, and net primary production. Understanding the response of these physical, chemical, and biological variables to climate change is vital to project future changes in regional fisheries and identify mitigation actions. We accordingly conclude by identifying knowledge gaps and recommending directions for sustainable fisheries and climate impact studies.
Collapse
Affiliation(s)
| | - Mathew Koll Roxy
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Kevin R Arrigo
- Department of Earth System Science, Stanford University, Stanford, CA, United States
| | - Gert L van Dijken
- Department of Earth System Science, Stanford University, Stanford, CA, United States
| | | | - Marek Ostrowski
- Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| | | | - Gunnstein Bakke
- Directorate of Fisheries, Strandgaten 229, 5804 Bergen, Norway
| | - Anthony J Richardson
- School of the Environment, University of Queensland, St. Lucia, 4072, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, 4067, Queensland, Australia
| | - Erik Sperfeld
- Animal Ecology, Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| |
Collapse
|
36
|
Sayco SLG, Alabort Pomares A, Cabaitan PC, Kurihara H. Reproductive consequences of thermal stress-induced bleaching in the giant clam Tridacna crocea. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106280. [PMID: 38043168 DOI: 10.1016/j.marenvres.2023.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Reproduction is a fundamental process necessary for maintaining a population. However, reproductive processes are sensitive to thermal stress which can cause bleaching in reef organisms such as corals and giant clams. Here we examined the phototrophic and physiological performances, particularly the reproductive processes, in Tridacna crocea during bleaching and recovery periods. Giant clam individuals were induced to bleach at heated treatment (32-33 °C) for 16 days and allowed to recover at 28-29 °C for 35 days. The control giant clams were kept at 28-29 °C. Heated giant clams showed lower phototrophic performances (Fv/Fm and photosynthesis), but their respiration and survival were similar to control giant clams. The gonadosomatic index (GSI) was lower, and the proportion of regressive eggs (i.e., eggs that are no longer viable) was higher in heated than in control giant clams. However, heated giant clams were able to maintain their egg size. In addition, T. crocea showed recovery of phototrophic potential and color of mantle but not of their reproductive output after a month of recovery. Our results indicate that bleaching reduces the reproductive output in giant clams by disrupting their gametogenesis, such as through egg resorption, but giant clams showed potential reproductive strategy, through maintenance of their egg size, to ensure the quality of their offspring. Furthermore, one month of recovery is not sufficient to restore the normal reproductive processes in T. crocea, which may delay their population recovery after a bleaching disturbance.
Collapse
Affiliation(s)
- Sherry Lyn G Sayco
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Ana Alabort Pomares
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Patrick C Cabaitan
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Haruko Kurihara
- Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
37
|
Morais J, Tebbett SB, Morais RA, Bellwood DR. Hot spots of bleaching in massive Porites coral colonies. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106276. [PMID: 38016301 DOI: 10.1016/j.marenvres.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Coral bleaching events have become more frequent and severe due to ocean warming. While the large-scale impacts of bleaching events are well-known, there is growing recognition of the importance of small-scale spatial variation in bleaching and survival probability of individual coral colonies. By quantifying bleaching in 108 massive Porites colonies spread across Lizard Island, Great Barrier Reef, during the 2016 bleaching event, we investigated how hydrodynamic exposure levels and colony size contribute to local variability in bleaching prevalence and extent. Our results revealed that exposed locations were the least impacted by bleaching, while lagoonal areas exhibited the highest prevalence of bleaching and colony-level bleaching extents. Such patterns of bleaching could be due to prolonged exposure to warm water in the lagoon. These findings highlight the importance of considering location-specific factors when assessing coral health and emphasize the vulnerability of corals in lagoonal habitats to rapid and/or prolonged elevated temperatures.
Collapse
Affiliation(s)
- Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia; Paris Sciences et Lettres Université, École Pratique des Hautes Études, EPHE-UPVD-CNRS, USR 3278 CRIOBE, University of Perpignan, 66860, Perpignan, France
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
38
|
Fu J, Zhou J, Zhou J, Zhang Y, Liu L. Competitive effects of the macroalga Caulerpa taxifolia on key physiological processes in the scleractinian coral Turbinaria peltata under thermal stress. PeerJ 2023; 11:e16646. [PMID: 38107563 PMCID: PMC10725675 DOI: 10.7717/peerj.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
An increased abundance of macroalgae has been observed in coral reefs damaged by climate change and local environmental stressors. Macroalgae have a sublethal effect on corals that includes the inhibition of their growth, development, and reproduction. Thus, this study explored the effects of the macroalga, Caulerpa taxifolia, on the massive coral, Turbinaria peltata, under thermal stress. We compared the responses of the corals' water-meditated interaction with algae (the co-occurrence group) and those in direct contact with algae at two temperatures. The results show that after co-culturing with C. taxifolia for 28 days, the density content of the dinoflagellate endosymbionts was significantly influenced by the presence of C. taxifolia at ambient temperature (27 °C), from 1.3 × 106 cells cm-2 in control group to 0.95 × 106 cells cm-2 in the co-occurrence group and to 0.89 × 106 cells cm-2 in the direct contact group. The chlorophyll a concentration only differed significantly between the control and the direct contact group at 27 °C. The protein content of T. peltata decreased by 37.2% in the co-occurrence group and 49.0% in the direct contact group compared to the control group. Meanwhile, the growth rate of T. peltata decreased by 57.7% in the co-occurrence group and 65.5% in the direct contact group compared to the control group. The activity of the antioxidant enzymes significantly increased, and there was a stronger effect of direct coral contact with C. taxifolia than the co-occurrence group. At 30 °C, the endosymbiont density, chlorophyll a content, and growth rate of T. peltata significantly decreased compared to the control temperature; the same pattern was seen in the increase in antioxidant enzyme activity. Additionally, when the coral was co-cultured with macroalgae at 30 °C, there was no significant decrease in the density or chlorophyll a content of the endosymbiont compared to the control. However, the interaction of macroalgae and elevated temperature was evident in the feeding rate, protein content, superoxide dismutase (SOD), and catalase (CAT) activity compared to the control group. The direct contact of the coral with macroalga had a greater impact than water-meditated interactions. Hence, the competition between coral and macroalga may be more intense under thermal stress.
Collapse
Affiliation(s)
- JianRong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - JiaLi Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - YanPing Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
39
|
Stahl F, Mezger SD, Migani V, Rohlfs M, Fahey VJ, Schoenig E, Wild C. Recent and rapid reef recovery around Koh Phangan Island, Gulf of Thailand, driven by plate-like hard corals. PeerJ 2023; 11:e16115. [PMID: 38025748 PMCID: PMC10640840 DOI: 10.7717/peerj.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/27/2023] [Indexed: 12/01/2023] Open
Abstract
Mass bleaching events and local anthropogenic influences have changed the benthic communities of many coral reefs with pronounced spatial differences that are linked to resilience patterns. The Gulf of Thailand is an under-investigated region with only few existing datasets containing long-term developments of coral reef communities using the same method at fixed sites. We thus analyzed benthic community data from seven reefs surrounding the island of Koh Phangan collected between 2014 and 2022. Findings revealed that the average live hard coral cover around Koh Phangan increased from 37% to 55% over the observation period, while turf algae cover decreased from 52% to 29%, indicating some recovery of local reefs. This corresponds to a mean increased rate of coral cover by 2.2% per year. The increase in live hard coral cover was mainly driven by plate-like corals, which quadrupled in proportion over the last decade from 7% to 28% while branching corals decreased in proportion from 9% to 2%. Furthermore, the hard coral genus richness increased, indicating an increased hard coral diversity. While in other reefs, increasing live hard coral cover is often attributed to fast-growing, branching coral species, considered more susceptible to bleaching and other disturbances, the reefs around Koh Phangan recovered mainly via growth of plate-like corals, particularly of the genus Montipora. Although plate-like morphologies are not necessarily more bleaching tolerant, they are important for supporting reef fish abundance and structural complexity on reefs, aiding reef recovery and sturdiness. Hence, our findings indicate that the intensity of local stressors around Kho Phangan allows reef recovery driven by some hard coral species.
Collapse
Affiliation(s)
- Florian Stahl
- Faculty of Biology and Chemistry, Marine Botany Group, Universität Bremen, Bremen, Germany
- Faculty of Biology and Chemistry, Marine Ecology Group, Universität Bremen, Bremen, Germany
| | - Selma D. Mezger
- Faculty of Biology and Chemistry, Marine Ecology Group, Universität Bremen, Bremen, Germany
| | - Valentina Migani
- Faculty of Biology and Chemistry, Evolutionary Biology Group, Universität Bremen, Bremen, Germany
| | - Marko Rohlfs
- Faculty of Biology and Chemistry, Chemical Ecology Group, Universität Bremen, Bremen, Germany
| | - Victoria J. Fahey
- Center for Oceanic Research and Education (COREsea), Chaloklum, Koh Phangan, Thailand
| | - Eike Schoenig
- Center for Oceanic Research and Education (COREsea), Chaloklum, Koh Phangan, Thailand
| | - Christian Wild
- Faculty of Biology and Chemistry, Marine Ecology Group, Universität Bremen, Bremen, Germany
| |
Collapse
|
40
|
Khen A, Wall CB, Smith JE. Standardization of in situ coral bleaching measurements highlights the variability in responses across genera, morphologies, and regions. PeerJ 2023; 11:e16100. [PMID: 37810774 PMCID: PMC10552771 DOI: 10.7717/peerj.16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Marine heatwaves and regional coral bleaching events have become more frequent and severe across the world's oceans over the last several decades due to global climate change. Observational studies have documented spatiotemporal variation in the responses of reef-building corals to thermal stress within and among taxa across geographic scales. Although many tools exist for predicting, detecting, and quantifying coral bleaching, it remains difficult to compare bleaching severity (e.g., percent cover of bleached surface areas) among studies and across species or regions. For this review, we compiled over 2,100 in situ coral bleaching observations representing 87 reef-building coral genera and 250 species of common morphological groups from a total of 74 peer-reviewed scientific articles, encompassing three broad geographic regions (Atlantic, Indian, and Pacific Oceans). While bleaching severity was found to vary by region, genus, and morphology, we found that both genera and morphologies responded differently to thermal stress across regions. These patterns were complicated by (i) inconsistent methods and response metrics across studies; (ii) differing ecological scales of observations (i.e., individual colony-level vs. population or community-level); and (iii) temporal variability in surveys with respect to the onset of thermal stress and the chronology of bleaching episodes. To improve cross-study comparisons, we recommend that future surveys prioritize measuring bleaching in the same individual coral colonies over time and incorporate the severity and timing of warming into their analyses. By reevaluating and standardizing the ways in which coral bleaching is quantified, researchers will be able to track responses to marine heatwaves with increased rigor, precision, and accuracy.
Collapse
Affiliation(s)
- Adi Khen
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Christopher B. Wall
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jennifer E. Smith
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
41
|
Price JT, McLachlan RH, Jury CP, Toonen RJ, Wilkins MJ, Grottoli AG. Long-term coral microbial community acclimatization is associated with coral survival in a changing climate. PLoS One 2023; 18:e0291503. [PMID: 37738222 PMCID: PMC10516427 DOI: 10.1371/journal.pone.0291503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
The plasticity of some coral-associated microbial communities under stressors like warming and ocean acidification suggests the microbiome has a role in the acclimatization of corals to future ocean conditions. Here, we evaluated the acclimatization potential of coral-associated microbial communities of four Hawaiian coral species (Porites compressa, Porites lobata, Montipora capitata, and Pocillopora acuta) over 22-month mesocosm experiment. The corals were exposed to one of four treatments: control, ocean acidification, ocean warming, or combined future ocean conditions. Over the 22-month study, 33-67% of corals died or experienced a loss of most live tissue coverage in the ocean warming and future ocean treatments while only 0-10% died in the ocean acidification and control. Among the survivors, coral-associated microbial communities responded to the chronic future ocean treatment in one of two ways: (1) microbial communities differed between the control and future ocean treatment, suggesting the potential capacity for acclimatization, or (2) microbial communities did not significantly differ between the control and future ocean treatment. The first strategy was observed in both Porites species and was associated with higher survivorship compared to M. capitata and P. acuta which exhibited the second strategy. Interestingly, the microbial community responses to chronic stressors were independent of coral physiology. These findings indicate acclimatization of microbial communities may confer resilience in some species of corals to chronic warming associated with climate change. However, M. capitata genets that survived the future ocean treatment hosted significantly different microbial communities from those that died, suggesting the microbial communities of the survivors conferred some resilience. Thus, even among coral species with inflexible microbial communities, some individuals may already be tolerant to future ocean conditions. These findings suggest that coral-associated microbial communities could play an important role in the persistence of some corals and underlie climate change-driven shifts in coral community composition.
Collapse
Affiliation(s)
- James T. Price
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Rowan H. McLachlan
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher P. Jury
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United States of America
| | - Michael J. Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Andréa G. Grottoli
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
42
|
Speelman PE, Parger M, Schoepf V. Divergent recovery trajectories of intertidal and subtidal coral communities highlight habitat-specific recovery dynamics following bleaching in an extreme macrotidal reef environment. PeerJ 2023; 11:e15987. [PMID: 37727686 PMCID: PMC10506583 DOI: 10.7717/peerj.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Coral reefs face an uncertain future punctuated by recurring climate-induced disturbances. Understanding how reefs can recover from and reassemble after mass bleaching events is therefore important to predict their responses and persistence in a rapidly changing ocean. On naturally extreme reefs characterized by strong daily temperature variability, coral heat tolerance can vary significantly over small spatial gradients but it remains poorly understood how this impacts bleaching resilience and recovery dynamics, despite their importance as resilience hotspots and potential refugia. In the macrotidal Kimberley region in NW Australia, the 2016 global mass bleaching event had a strong habitat-specific impact on intertidal and subtidal coral communities at our study site: corals in the thermally variable intertidal bleached less severely and recovered within six months, while 68% of corals in the moderately variable subtidal died. We therefore conducted benthic surveys 3.5 years after the bleaching event to determine potential changes in benthic cover and coral community composition. In the subtidal, we documented substantial increases in algal cover and live coral cover had not fully recovered to pre-bleaching levels. Furthermore, the subtidal coral community shifted from being dominated by branching Acropora corals with a competitive life history strategy to opportunistic, weedy Pocillopora corals which likely has implications for the functioning and stress resilience of this novel coral community. In contrast, no shifts in algal and live coral cover or coral community composition occurred in the intertidal. These findings demonstrate that differences in coral heat tolerance across small spatial scales can have large consequences for bleaching resilience and that spatial patchiness in recovery trajectories and community reassembly after bleaching might be a common feature on thermally variable reefs. Our findings further confirm that reefs adapted to high daily temperature variability play a key role as resilience hotspots under current climate conditions, but their ability to do so may be limited under intensifying ocean warming.
Collapse
Affiliation(s)
- P. Elias Speelman
- Institute for Biodiversity and Ecosystem Dynamics, Dept. of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Parger
- UWA Ocean Institute, The University of Western Australia, Perth, WA, Australia
| | - Verena Schoepf
- Institute for Biodiversity and Ecosystem Dynamics, Dept. of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands
- UWA Ocean Institute, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
43
|
Cant J, Reimer JD, Sommer B, Cook KM, Kim SW, Sims CA, Mezaki T, O'Flaherty C, Brooks M, Malcolm HA, Pandolfi JM, Salguero‐Gómez R, Beger M. Coral assemblages at higher latitudes favor short-term potential over long-term performance. Ecology 2023; 104:e4138. [PMID: 37458125 PMCID: PMC10909567 DOI: 10.1002/ecy.4138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The persistent exposure of coral assemblages to more variable abiotic regimes is assumed to augment their resilience to future climatic variability. Yet, while the determinants of coral population resilience across species remain unknown, we are unable to predict the winners and losers across reef ecosystems exposed to increasingly variable conditions. Using annual surveys of 3171 coral individuals across Australia and Japan (2016-2019), we explore spatial variation across the short- and long-term dynamics of competitive, stress-tolerant, and weedy assemblages to evaluate how abiotic variability mediates the structural composition of coral assemblages. We illustrate how, by promoting short-term potential over long-term performance, coral assemblages can reduce their vulnerability to stochastic environments. However, compared to stress-tolerant, and weedy assemblages, competitive coral taxa display a reduced capacity for elevating their short-term potential. Accordingly, future climatic shifts threaten the structural complexity of coral assemblages in variable environments, emulating the degradation expected across global tropical reefs.
Collapse
Affiliation(s)
- James Cant
- Centre for Biological DiversityUniversity of St AndrewsSt AndrewsUK
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - James D. Reimer
- Molecular Invertebrate Systematics and Ecology LaboratoryGraduate School of Engineering and Science, University of the RyukyusNishiharaJapan
- Tropical Biosphere Research CentreUniversity of the RyukyusNishiharaJapan
| | - Brigitte Sommer
- School of Life and Environmental ScienceThe University of SydneyCamperdownNew South WalesAustralia
- School of Life SciencesUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Katie M. Cook
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- National Institute of Water and Atmospheric ResearchHamiltonNew Zealand
| | - Sun W. Kim
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Carrie A. Sims
- Smithsonian Tropical Research InstitutePanama CityRepublic of Panama
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Nishidomari, Otsuki‐choKochiJapan
| | | | - Maxime Brooks
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Hamish A. Malcolm
- Fisheries Research, Department of Primary IndustriesCoffs HarbourNew South WalesAustralia
| | - John M. Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Roberto Salguero‐Gómez
- Department of ZoologyUniversity of OxfordOxfordUK
- Centre for Biodiversity and Conservation Science, School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
- Max Planck Institute for Demographic ResearchRostockGermany
| | - Maria Beger
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- Centre for Biodiversity and Conservation Science, School of Biological SciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
44
|
Dellaert Z, Putnam HM. Reconciling the variability in the biological response of marine invertebrates to climate change. J Exp Biol 2023; 226:jeb245834. [PMID: 37655544 DOI: 10.1242/jeb.245834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
As climate change increases the rate of environmental change and the frequency and intensity of disturbance events, selective forces intensify. However, given the complicated interplay between plasticity and selection for ecological - and thus evolutionary - outcomes, understanding the proximate signals, molecular mechanisms and the role of environmental history becomes increasingly critical for eco-evolutionary forecasting. To enhance the accuracy of our forecasting, we must characterize environmental signals at a level of resolution that is relevant to the organism, such as the microhabitat it inhabits and its intracellular conditions, while also quantifying the biological responses to these signals in the appropriate cells and tissues. In this Commentary, we provide historical context to some of the long-standing challenges in global change biology that constrain our capacity for eco-evolutionary forecasting using reef-building corals as a focal model. We then describe examples of mismatches between the scales of external signals relative to the sensors and signal transduction cascades that initiate and maintain cellular responses. Studying cellular responses at this scale is crucial because these responses are the basis of acclimation to changing environmental conditions and the potential for environmental 'memory' of prior or historical conditions through molecular mechanisms. To challenge the field, we outline some unresolved questions and suggest approaches to align experimental work with an organism's perception of the environment; these aspects are discussed with respect to human interventions.
Collapse
Affiliation(s)
- Zoe Dellaert
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|
45
|
Mudge L, Bruno JF. Disturbance intensification is altering the trait composition of Caribbean reefs, locking them into a low functioning state. Sci Rep 2023; 13:14022. [PMID: 37640770 PMCID: PMC10462730 DOI: 10.1038/s41598-023-40672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Anthropogenic climate change is intensifying natural disturbance regimes, which negatively affects some species, while benefiting others. This could alter the trait composition of ecological communities and influence resilience to disturbance. We investigated how the frequency and intensification of the regional storm regime (and likely other disturbances) is altering coral species composition and in turn resistance and recovery. We developed regional databases of coral cover and composition (3144 reef locations from 1970 to 2017) and of the path and strength of cyclonic storms in the region (including 10,058 unique storm-reef intersections). We found that total living coral cover declined steadily through 2017 (the median annual loss rate was ~ 0.25% per year). Our results also indicate that despite the observed increase in the intensity of Atlantic cyclonic storms, their effect on coral cover has decreased markedly. This could be due in part to selection for disturbance-resistant taxa in response to the intensifying disturbance regime. We found that storms accelerated the loss of threatened acroporid corals but had no measurable effect on the cover of more resilient "weedy" corals, thereby increasing their relative cover. Although resistance to disturbance has increased, recovery rates have slowed due to the dominance of small, slow-growing species. This feedback loop is locking coral communities into a low-functioning state dominated by weedy species with limited ecological or societal value.
Collapse
Affiliation(s)
- Laura Mudge
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Barefoot Ocean, LLC., Houston, Texas, USA.
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Keighan R, van Woesik R, Yalon A, Nam J, Houk P. Moderate chlorophyll-a environments reduce coral bleaching during thermal stress in Yap, Micronesia. Sci Rep 2023; 13:9338. [PMID: 37291208 PMCID: PMC10250426 DOI: 10.1038/s41598-023-36355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Thermal-stress events on coral reefs lead to coral bleaching, mortality, and changes in species composition. The coral reefs of Yap, in the Federated States of Micronesia, however, remained largely unaffected by major thermal-stress events until 2020, when temperatures were elevated for three months. Twenty-nine study sites were examined around Yap to determine geographical and taxonomic patterns of coral abundance, bleaching susceptibility, and environmental predictors of bleaching susceptibility. Island-wide, 21% (± 14%) of the coral cover was bleached in 2020. Although inner reefs had a greater proportion of thermally-tolerant Porites corals, the prevalence of bleaching was consistently lower on inner reefs (10%) than on outer reefs (31%) for all coral taxa. Corals on both inner and outer reefs along the southwestern coast exhibited the lowest prevalence of coral bleaching and had consistently elevated chlorophyll-a concentrations. More broadly, we revealed a negative relationship between bleaching prevalence and (moderate) chlorophyll-a concentrations that may have facilitated resistance to thermal stress by reducing irradiance and providing a heterotrophic energy source to benefit some corals exposed to autotrophic stress. Southwestern reefs also supported a high but declining fish biomass, making these bleaching-resistant and productive reefs a potential climate-change refuge and a prime target for conservation.
Collapse
Affiliation(s)
- Rachael Keighan
- University of Guam Marine Laboratory, UoG Station, Mangilao, GU, 96923, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, 150 West University Blvd, Melbourne, Fl, 32901, USA
| | - Anthony Yalon
- Yap State Division of Marine Resources, Colonia, Yap, FM 96943, Federated States of Micronesia
| | - Joe Nam
- Yap Community Action Program, Colonia, Yap, FM 96943, Federated States of Micronesia
| | - Peter Houk
- University of Guam Marine Laboratory, UoG Station, Mangilao, GU, 96923, USA.
| |
Collapse
|
47
|
de Souza MR, Caruso C, Ruiz-Jones L, Drury C, Gates RD, Toonen RJ. Importance of depth and temperature variability as drivers of coral symbiont composition despite a mass bleaching event. Sci Rep 2023; 13:8957. [PMID: 37268692 DOI: 10.1038/s41598-023-35425-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/17/2023] [Indexed: 06/04/2023] Open
Abstract
Coral reefs are iconic examples of climate change impacts because climate-induced heat stress causes the breakdown of the coral-algal symbiosis leading to a spectacular loss of color, termed 'coral bleaching'. To examine the fine-scale dynamics of this process, we re-sampled 600 individually marked Montipora capitata colonies from across Kāne'ohe Bay, Hawai'i and compared the algal symbiont composition before and after the 2019 bleaching event. The relative proportion of the heat-tolerant symbiont Durusdinium in corals increased in most parts of the bay following the bleaching event. Despite this widespread increase in abundance of Durusdinium, the overall algal symbiont community composition was largely unchanged, and hydrodynamically defined regions of the bay retained their distinct pre-bleaching compositions. We explain ~ 21% of the total variation, of which depth and temperature variability were the most significant environmental drivers of Symbiodiniaceae community composition by site regardless of bleaching intensity or change in relative proportion of Durusdinium. We hypothesize that the plasticity of symbiont composition in corals may be constrained to adaptively match the long-term environmental conditions surrounding the holobiont, despite an individual coral's stress and bleaching response.
Collapse
Affiliation(s)
- Mariana Rocha de Souza
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Lupita Ruiz-Jones
- Chaminade University of Honolulu, 3140 Waialae Ave, Honolulu, HI, 96816, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
48
|
Noel B, Denoeud F, Rouan A, Buitrago-López C, Capasso L, Poulain J, Boissin E, Pousse M, Da Silva C, Couloux A, Armstrong E, Carradec Q, Cruaud C, Labadie K, Lê-Hoang J, Tambutté S, Barbe V, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores JM, Forcioli D, Furla P, Galand PE, Lombard F, Pesant S, Reynaud S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Allemand D, Planes S, Gilson E, Zoccola D, Wincker P, Voolstra CR, Aury JM. Pervasive tandem duplications and convergent evolution shape coral genomes. Genome Biol 2023; 24:123. [PMID: 37264421 DOI: 10.1186/s13059-023-02960-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species. RESULTS In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf. effusa, with vastly improved contiguity that allows us to study the functional organization of these genomes. We annotate their gene catalog and report a relatively higher gene number than that found in other public coral genome sequences, 43,000 and 32,000 genes, respectively. This finding is explained by a high number of tandemly duplicated genes, accounting for almost a third of the predicted genes. We show that these duplicated genes originate from multiple and distinct duplication events throughout the coral lineage. They contribute to the amplification of gene families, mostly related to the immune system and disease resistance, which we suggest to be functionally linked to coral host resilience. CONCLUSIONS At large, we show the importance of duplicated genes to inform the biology of reef-building corals and provide novel avenues to understand and screen for differences in stress resilience.
Collapse
Affiliation(s)
- Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Alice Rouan
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | | | - Laura Capasso
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
- Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Emilie Boissin
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Mélanie Pousse
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Eric Armstrong
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Corinne Cruaud
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Julie Lê-Hoang
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Sylvie Tambutté
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Fondation Tara Océan, Base Tara, 8 Rue de Prague, 75 012, Paris, France
| | | | - Guillaume Iwankow
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Sarah Romac
- AD2M, UMR 7144, Sorbonne Université, CNRS, Station Biologique de Roscoff, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- AD2M, UMR 7144, Sorbonne Université, CNRS, Station Biologique de Roscoff, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire Des Sciences du Climat Et de L'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-Sur-Yvette, 91191, France
| | - J Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Pierre E Galand
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Institut de La Mer de Villefranche Sur Mer, Sorbonne Université, Laboratoire d'Océanographie de Villefranche, Villefranche-Sur-Mer, 06230, France
- Institut Universitaire de France, Paris, 75231, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Fondation Tara Océan, Base Tara, 8 Rue de Prague, 75 012, Paris, France
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, 97331, USA
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Department of Human Genetics, CHU Nice, Nice, France
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | | | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France.
| |
Collapse
|
49
|
Hazraty-Kari S, Morita M, Tavakoli-Kolour P, Harii S. Response of resistant larvae of the coral Acropora tenuis to future thermal stress. MARINE POLLUTION BULLETIN 2023; 192:115060. [PMID: 37207392 DOI: 10.1016/j.marpolbul.2023.115060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Seawater temperatures are rising rapidly and severely due to climate change, negatively affecting coral reef communities. The persistence of coral populations depends on their success during the early life stages. Thermal conditioning during the larval stage can increase coral larvae's ability to tolerate high temperatures in subsequent stages. We studied the response of resistant larvae of Acropora tenuis to thermal stress to increase their thermal tolerance during the juvenile stage. Larvae were exposed to ambient (∼26 °C) and thermal stress (∼31 °C) temperatures. Then, settlement success on preconditioned tiles was determined. After 28 days at ambient temperature, the juveniles were exposed to thermal stress for 14 days, and their survival was assessed. Our results showed that thermal stress in the larval stage did not alter the thermal tolerance of juveniles, and they could not acclimate to heat stress. As a result, the summer's heat waves could potentially threaten their resilience.
Collapse
Affiliation(s)
- Sanaz Hazraty-Kari
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
50
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ryu T, Ravasi T. Clownfish larvae exhibit faster growth, higher metabolic rates and altered gene expression under future ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162296. [PMID: 36801344 DOI: 10.1016/j.scitotenv.2023.162296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Increasing ocean temperatures have been demonstrated to have a range of negative impacts on coral reef fishes. However, despite a wealth of studies of juvenile/adult reef fish, studies of how early developmental stages respond to ocean warming are limited. As overall population persistence is influenced by the development of early life stages, detailed studies of larval responses to ocean warming are essential. Here, in an aquaria-based study we investigate how temperatures associated with future warming and present-day marine heatwaves (+3 °C) impact the growth, metabolic rate, and transcriptome of 6 discrete developmental stages of clownfish larvae (Amphiprion ocellaris). A total of 6 clutches of larvae were assessed, with 897 larvae imaged, 262 larvae undergoing metabolic testing and 108 larvae subject to transcriptome sequencing. Our results show that larvae reared at +3 °C grow and develop significantly faster and exhibit higher metabolic rates than those in control conditions. Finally, we highlight the molecular mechanisms underpinning the response of larvae from different developmental stages to higher temperatures, with genes associated with metabolism, neurotransmission, heat stress and epigenetic reprogramming differentially expressed at +3 °C. Overall, these results indicate that clownfish development could be altered under future warming, with developmental rate, metabolic rate, and gene expression all affected. Such changes may lead to altered larval dispersal, changes in settlement time and increased energetic costs.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|