1
|
Keller V, Calchera A, Otte J, Schmitt I. Genomic features of lichen-associated black fungi. IUBMB Life 2025; 77:e2934. [PMID: 39710945 DOI: 10.1002/iub.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024]
Abstract
Lichens are mutualistic associations consisting of a primary fungal host, and one to few primary phototrophic symbiont(s), usually a green alga and/or a cyanobacterium. They form complex thallus structures, which provide unique and stable habitats for many other microorganisms. Frequently isolated from lichens are the so-called black fungi, or black yeasts, which are mainly characterized by melanized cell walls and extremophilic lifestyles. It is presently unclear in which ways these fungi interact with other members of the lichen symbiosis. Genomic resources of lichen-associated black fungi are needed to better understand the physiological potential of these fungi and shed light on the complexity of the lichen consortium. Here, we present high-quality genomes of 14 black fungal lineages, isolated from lichens of the rock-dwelling genus Umbilicaria. Nine of the lineages belong to the Eurotiomycetes (Chaetothyriales), four to the Dothideomycetes, and one to the Arthoniomycetes, representing the first genome of a black fungus in this class. The PacBio-based assemblies are highly contiguous (5-42 contigs per genome, mean coverage of 79-502, N50 of 1.0-7.3 mega-base-pair (Mb), Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness generally ≥95.4%). Most contigs are flanked by a telomere sequence, suggesting we achieved near chromosome-level assemblies. Genome sizes range between 26 and 44 Mb. Transcriptome-based annotations yielded ~11,000-18,000 genes per genome. We analyzed genome content with respect to repetitive elements, biosynthetic genes, and effector genes. Each genome contained a polyketide synthase gene related to the dihydroxynaphthalene-melanin pathway. This research provides insights into genome content and metabolic potential of these relatively unknown, but frequently encountered lichen associates.
Collapse
Affiliation(s)
- Victoria Keller
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Panda L, Gk K, Sawant AR, Singh SK, Gupta M, C SD, Shashikala P, Prashanth K. Genomic insights into drug resistance and virulence determinants in rare pyomelanin-producing clinical isolates of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-05008-1. [PMID: 39699780 DOI: 10.1007/s10096-024-05008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE Clinical isolates of multi-drug resistant Acinetobacter baumannii are a major cause of nosocomial infections, often attributed to the highly adaptable genome that helps it to thrive under environmental selection pressure. Here, we aim to provide genotypic-based surveys and comparative whole genome sequencing (WGS) analysis to explore the genomics of the rare pyomelanin-forming clinical isolates of A. baumannii from India. METHODS A total of 54 clinical isolates of A. baumannii obtained from two tertiary care hospitals were genotyped using repetitive sequence-based PCR (REP-PCR) for elucidating their molecular epidemiology, followed by their resistance profiling through the determination of minimum inhibitory concentration using the micro broth dilution method. The isolates' virulence and antibiotic-resistant determinants were detected by PCR screening, followed by biofilm quantification. Pyomelanin pigment produced by A. baumannii isolates was isolated and chemically characterized. Finally, WGS of three pigment-producing and one non-producing A. baumannii strains was performed to explore the factors contributing to their variability. RESULTS REP-PCR genotyping identified around 8 clusters, with all isolates being multidrug-resistant (MDR). Pyomelanin-producing isolates were strong biofilm formers, characterized by the concurrent presence of 'pgaB, BfmR, BfmS, ompA, and cusE' biofilm-related genes. These pigmented strains belonged to ST2Pas and co-harbored blaOXA-23, blaADC-25, aph (3')-VIa, armA, aph (6)-Id, tet(B) and msr(E) genes. Thirteen common IS elements and biosynthetic gene clusters of arylpolyene, NI-siderophore, and NRP-metallophore were identified. Notably, genomic islands containing aminoglycoside 3'-phosphotransferase, oxidative stress, two-component response regulators, efflux pump-related, toxin-antitoxin protein, and virulence-related genes were also mapped by WGS. CONCLUSION The pyomelanin-forming isolates were MDR and virulent. The elucidation of WGS analysis provided critical insights for understanding the epidemiology, virulome, and mobilome of rare pigment-producing A. baumannii strains.
Collapse
Affiliation(s)
- Lipsa Panda
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry, 605014, India
| | - Krishnapriya Gk
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry, 605014, India
| | - Ajit Ramesh Sawant
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry, 605014, India
| | | | - Minakshi Gupta
- Department of Microbiology, Manipal Tata Medical College, Jamshedpur, Jharkhand, India
| | - Sheela Devi C
- Department of Clinical Microbiology, Pondicherry Institute of Medical Sciences (PIMS), Pondicherry, 605014, India
| | - P Shashikala
- Department of Clinical Microbiology, Pondicherry Institute of Medical Sciences (PIMS), Pondicherry, 605014, India
| | - K Prashanth
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
3
|
Li LX, Yoon H. Dematiaceous Molds. Infect Dis Clin North Am 2024:S0891-5520(24)00081-3. [PMID: 39701900 DOI: 10.1016/j.idc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Dematiaceous molds are darkly pigmented environmental molds found worldwide, especially prevalent in tropical and subtropical regions. Common genera include Bipolaris, Cladophialophora, Exophiala, and Alternaria. They cause disease in both immunocompetent and immunocompromised individuals, presenting as cutaneous infections, allergic sinusitis, pneumonia, and, rarely, disseminated infections. Contaminated medical products have also led to fungal meningitis outbreaks. Treatment typically involves itraconazole, voriconazole, or posaconazole, along with source control and reduction in immunosuppression, if possible. Newer antifungals may have a role in treatment. Mortality is high in disseminated disease, especially with Lomentospora prolificans in immunocompromised individuals, prompting global efforts to improve diagnostics and treatments.
Collapse
Affiliation(s)
- Lucy X Li
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD 21205, USA
| | - Hyunah Yoon
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Avenue, Belfer 610, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
Liu T, Yu H, Qin J, Shang W, Chen J, Subbarao KV, Hu X. A Gene Cassette Vd276-280 in Verticillium dahliae Contains Two Genes that Affect Melanized Microsclerotium Formation and Virulence. PHYTOPATHOLOGY 2024; 114:2515-2524. [PMID: 39145683 DOI: 10.1094/phyto-11-23-0426-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Verticillium dahliae is a soilborne phytopathogenic fungus causing Verticillium wilt on hundreds of plant species. Several sequenced genomes of V. dahliae are available, but functional characterization of most genes has just begun. Based on our previous comparison of the transcriptome from the wild-type and ΔVdCf2 strains, a significant upregulation of the gene cassette, Vd276-280, in the ΔVdCf2 strain was observed. In this study, the functional characterization of the Vd276-280 gene cassette was performed. Agrobacterium-mediated knockout of this gene cassette in V. dahliae significantly inhibited conidiation, melanized microsclerotium formation in the mutant strains, and their virulence toward cotton. Furthermore, deletion of individual genes in the Vd276-280 gene cassette identified that the disruption of VDAG_07276 and VDAG_07280 delayed microsclerotium formation, inhibited conidiation, and reduced virulence toward cotton. Our data suggest that VDAG_07276 and VDAG_07280 in the Vd276-280 gene cassette mainly act as positive regulators of development and virulence in V. dahliae.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Haonan Yu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Qin
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenjing Shang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA 93905, U.S.A
| | - Xiaoping Hu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Wu G, Wan Q, Lu J, Wen G. Impact of metal ions on PMS/Cl - disinfection efficacy: Enhancing or impeding microbial inactivation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176087. [PMID: 39255943 DOI: 10.1016/j.scitotenv.2024.176087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Peroxymonosulfate (PMS) is an eco-friendly disinfectant gaining attention. This study examined the influence of metal ions (Co(II), Cu(II), Fe(II)) on PMS disinfection with chloride ions (Cl-) against waterborne microorganisms, encompassing both bacteria and fungal spores. The findings elucidated that metal ions augment the inactivation of bacteria in the PMS/Cl- system while concurrently impeding the inactivation of fungal spores. Specifically, the PMS/Co(II)/Cl- process increased E. coli inactivation rates by 2.25 and 2.75 times compared to PMS/Co(II) and PMS/Cl-, respectively. Conversely, PMS/Me(II)/Cl- generally exhibited a diminished inactivation capacity against the three fungal spores compared to PMS/Cl-, albeit surpassing the efficacy of PMS/Me(II). For instance, the inactivation levels of A. niger by PMS/Cl-, PMS/Cu(II)/Cl-, and PMS/Cu(II) are 4.47-log, 1.92-log, and 0.11-log, respectively. Notably, fungal spores demonstrated a substantially higher resistance to disinfectants compared to bacteria. Differences in microbial susceptibility were linked to cell wall structure, composition, antioxidant defenses, and reactive species generation, such as hydroxyl radicals (•OH), sulfate radicals (SO4•-), and reactive chlorine species (RCS). This study demonstrated the novel and unique phenomenon of metal ions' dual role in modulating the PMS/Cl- disinfection process, which has not been reported before and has important implications for the field of water treatment.
Collapse
Affiliation(s)
- Gehui Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
6
|
Ma Y, Xue P. Integrative Proteome and Metabolomics Analyses of Cryptococcus neoformans Responses to Melanin Substrates Niger seed and L-DOPA. Curr Microbiol 2024; 81:451. [PMID: 39514090 DOI: 10.1007/s00284-024-03979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Melanin, as a pivotal antioxidant pigment, plays a critical role in the pathogenicity of Cryptococcus neoformans. However, the underlying signaling pathways responsible for melanin biosynthesis in C. neoformans are not yet fully elucidated. In this study, proteome and metabolomics analyses were conducted to investigate the response of C. neoformans to melanin substrate Niger seed or L-DOPA. The proteome analysis identified significant differential expression of proteins in cells treated with Niger seed compared to L-DOPA, with distinct functional enrichment patterns observed. Subcellular localization analysis showed unique protein distribution in cells treated with each substrate. Metabolomics analysis revealed distinct metabolic profiles in response to Niger seed or L-DOPA, with notable differences in metabolite regulation between the two treatments. KEGG classification highlighted specific metabolic pathways affected by each substrate. Overall, this study provides valuable insights into the complex regulatory mechanisms underlying C. neoformans response to melanin substrates.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China.
| | - Peng Xue
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China.
| |
Collapse
|
7
|
Micheal HSR, Thyagarajan D, Govindaraj M, Saravanakumar VK, Mohammed NB, Murugasamy Maheswari K. Biosorption of halophilic fungal melanized membrane - PUR/melanin polymer for heavy metal detoxification with electrospinning technology. ENVIRONMENTAL TECHNOLOGY 2024; 45:5865-5877. [PMID: 38286341 DOI: 10.1080/09593330.2024.2310034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Eradication of heavy metal pollution has become the prime priority over the conservation of water resources in the upcoming era. Herein, the study involved the halophilic fungal melanin from Curvularia lunata showed a promising biosorbent for the removal of toxic heavy metals which shows eco-friendly, cost-effective, high stability, and adsorbent efficiency. Polyurethane blended with fungal melanin polymers, makes polymeric nanofibrous membranes through electrospinning techniques. BET isotherms revealed the raw fungal melanin holds a surface area of 3.54 m2/g exhibiting type IV isotherms. BJH results in a total pore volume of 5.79 cc/g with a pore diameter of 6.54 ± 1 nm for pores smaller than 4544.8 Å. Exhibits Eumelanin properties were characterized by FE - SEM and FTIR functional elements. ICPMS confirmed the metal adsorption proficiency on both raw and melanized membranes before and after treatments. Over 17 heavy metals, Ni2+ were adsorbed with 100% efficiency by raw melanin alone with 42.48 µg/L of Ni2+ concentration in the water sample, whereas, Cu2+, Zn2+, Co2+, Cr2+, Pb2+, Mn2+, Al3+, Mo6+, Sb3+, Ba2+, Fe2+, and Mg2+ stands next with 99%. In this study, gentle/simple application of raw fungal melanin (without PUR tailored) can detoxify the maximum concentration of heavy metals present in the water bodies which are further used for irrigation and even drinking purposes. This mycoremediation approach can be easily adapted to industrial production than other high-performance membrane materials with minimal process modification, making it a promising strategy for improving the adsorption properties used in various applications after still furthermore investigation.
Collapse
Affiliation(s)
| | | | - Mageswari Govindaraj
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | | | - Nazneen Bobby Mohammed
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, India
| | | |
Collapse
|
8
|
Williams SCP. Profile of Arturo Casadevall. Proc Natl Acad Sci U S A 2024; 121:e2418187121. [PMID: 39348532 PMCID: PMC11474023 DOI: 10.1073/pnas.2418187121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
|
9
|
Xie L, Liu Y, Zhang Y, Chen K, Yue Q, Wang C, Dun B, Xu Y, Zhang L. The divergence of DHN-derived melanin pathways in Metarhizium robertsii. World J Microbiol Biotechnol 2024; 40:323. [PMID: 39292329 DOI: 10.1007/s11274-024-04134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
The important role of dihydroxynaphthalene-(DHN) melanin in enhancing fungal stress resistance and its importance in fungal development and pathogenicity are well-established. This melanin also aids biocontrol fungi in surviving in the environment and effectively infecting insects. However, the biosynthetic origin of melanin in the biocontrol agents, Metarhizium spp., has remained elusive due to the complexity resulting from the divergence of two DHN-like biosynthetic pathways. Through the heterologous expression of biosynthetic enzymes from these two pathways in baker's yeast Saccharomyces cerevisiae, we have confirmed the presence of DHN biosynthesis in M. roberstii, and discovered a novel naphthopyrone intermediate, 8, that can produce a different type of pigment. These two pigment biosynthetic pathways differ in terms of polyketide intermediate structures and subsequent modification steps. Stress resistance studies using recombinant yeast cells have demonstrated that both DHN and its intermediates confer resistance against UV light prior to polymerization; a similar result was observed for its naphthopyrone counterpart. This study contributes to the understanding of the intricate and diverse biosynthetic mechanisms of fungal melanin and has the potential to enhance the application efficiency of biocontrol fungi such as Metarhizium spp. in agriculture.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yujie Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Kang Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Baoqing Dun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
10
|
Kolipakala R, Basu S, Sarkar S, Biju BM, Salazar D, Reddy L, Pradeep P, Yuvapriya MK, Nath S, Gall R, Samprathi AH, Balaji H, Koundinya EAB, Shetye A, Nagarajan D. Fungal Peptidomelanin: A Novel Biopolymer for the Chelation of Heavy Metals. ACS OMEGA 2024; 9:36353-36370. [PMID: 39220543 PMCID: PMC11359623 DOI: 10.1021/acsomega.4c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Melanin is an amorphous, highly heterogeneous polymer found across all kingdoms of life. Although the properties of melanin can greatly vary, most forms are insoluble and strongly absorb light, appearing dark brown to black. Here, we describe a water-soluble form of melanin (peptidomelanin) secreted by the spores of Aspergillus niger (strain: melanoliber) during germination. Peptidomelanin is composed of an insoluble L-DOPA core polymer that is solubilized via short, copolymerized heterogeneous peptide chains forming a "corona" with a mean amino acid length of 2.6 ± 2.3. Based on in vitro experiments, we propose a biochemical copolymerization mechanism involving the hydroxylation of tyrosynylated peptides. Peptidomelanin is capable of chelating heavy metals such as lead, mercury, and uranium (as uranyl) in large quantities. Preliminary data indicates that peptidomelanin may have applications for the remediation of heavy metals in situ, including in agricultural settings.
Collapse
Affiliation(s)
| | - Suranjana Basu
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Senjuti Sarkar
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Beneta Merin Biju
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Daniela Salazar
- Ecology
and Genetics Research Unit, University of
Oulu, Oulu 90014, Finland
| | - Likhit Reddy
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Pushya Pradeep
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Muniraj Krishnaveni Yuvapriya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Shrijita Nath
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Riley Gall
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Anish Hemanth Samprathi
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
- Department
of Biotechnology, Fergusson College (Autonomous), Pune 411004, India
| | - Harshitha Balaji
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
| | - Eeshaan A. B. Koundinya
- Department
of Biotechnology, Manipal Institute of Technology,
Manipal University, Manipal 576104, India
| | - Aparna Shetye
- Department
of Microbiology, St. Xavier’s College, Mumbai 400001, India
| | - Deepesh Nagarajan
- Department
of Biotechnology, M.S. Ramaiah University
of Applied Sciences, Bangalore 560054, India
- Department
of Microbiology, St. Xavier’s College, Mumbai 400001, India
| |
Collapse
|
11
|
Koellsch C, Poulin R, Salloum PM. Microbial artists: the role of parasite microbiomes in explaining colour polymorphism among amphipods and potential link to host manipulation. J Evol Biol 2024; 37:1009-1022. [PMID: 38989853 DOI: 10.1093/jeb/voae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Parasite infections are increasingly reported to change the microbiome of the parasitized hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites. Using colour quantification methods applied to digital images, we investigated colour variation among uninfected Transorchestia serrulata amphipods, as well as amphipods infected with Plagiorhynchus allisonae acanthocephalans and with a dilepidid cestode. We then characterized the bacteriota of amphipod hosts and of their parasites, looking for correlations between host phenotype and the bacterial taxa associated with hosts and parasites. We found large variation in amphipod colours, and weak support for a direct impact of parasites on the colour of their hosts. Conversely, and most interestingly, the parasite's bacteriota was more strongly correlated with colour variation among their amphipod hosts, with potential impact of amphipod-associated bacteria as well. Some bacterial taxa found associated with amphipods and parasites may have the ability to synthesize pigments, and we propose they may interact with colour determination in the amphipods. This study provides correlational support for an association between the parasite's microbiome and the evolution of host manipulation by parasites and host-parasite interactions more generally.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
12
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Black B, da Silva LBR, Hu G, Qu X, Smith DFQ, Magaña AA, Horianopoulos LC, Caza M, Attarian R, Foster LJ, Casadevall A, Kronstad JW. Glutathione-mediated redox regulation in Cryptococcus neoformans impacts virulence. Nat Microbiol 2024; 9:2084-2098. [PMID: 38956248 DOI: 10.1038/s41564-024-01721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
The fungal pathogen Cryptococcus neoformans is well adapted to its host environment. It has several defence mechanisms to evade oxidative and nitrosative agents released by phagocytic host cells during infection. Among them, melanin production is linked to both fungal virulence and defence against harmful free radicals that facilitate host innate immunity. How C. neoformans manipulates its redox environment to facilitate melanin formation and virulence is unclear. Here we show that the antioxidant glutathione is inextricably linked to redox-active processes that facilitate melanin and titan cell production, as well as survival in macrophages and virulence in a murine model of cryptococcosis. Comparative metabolomics revealed that disruption of glutathione biosynthesis leads to accumulation of reducing and acidic compounds in the extracellular environment of mutant cells. Overall, these findings highlight the importance of redox homeostasis and metabolic compensation in pathogen adaptation to the host environment and suggest new avenues for antifungal drug development.
Collapse
Affiliation(s)
- Braydon Black
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leandro Buffoni Roque da Silva
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xianya Qu
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel F Q Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Armando Alcázar Magaña
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Metabolomics Core Facility, Life Sciences Institute, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda C Horianopoulos
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Mélissa Caza
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Larissa Yarr Medical Microbiology Laboratory, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - Rodgoun Attarian
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Pfizer Canada, Kirkland, Quebec, Canada
| | - Leonard J Foster
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Metabolomics Core Facility, Life Sciences Institute, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James W Kronstad
- The Michael Smith Laboratories, Departments of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Moustafa DA, Wu L, Ivey M, Fankhauser SC, Goldberg JB. Mutation of hmgA, encoding homogentisate 1,2-dioxygenase, is responsible for pyomelanin production but does not impact the virulence of Burkholderia cenocepacia in a chronic granulomatous disease mouse lung infection. Microbiol Spectr 2024; 12:e0041024. [PMID: 38809005 PMCID: PMC11218447 DOI: 10.1128/spectrum.00410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis (CF) and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals; pigment production has been reported to enable Bcc strains to overcome the host cell oxidative burst. In this work, we investigated the role of pyomelanin in resistance to oxidative stress and virulence in strains J2315 and K56-2, two epidemic CF isolates belonging to the Burkholderia cenocepacia ET-12 lineage. We previously reported that a single amino acid change from glycine to arginine at residue 378 in homogentisate 1,2-dioxygenase (HmgA) affects the pigment production phenotype: pigmented J2315 has an arginine at position 378, while non-pigmented K56-2 has a glycine at this position. Herein, we performed allelic exchange to generate isogenic non-pigmented and pigmented strains of J2315 and K56-2, respectively, and tested these to determine whether pyomelanin contributes to the protection against oxidative stress in vitro as well as in a respiratory infection in CGD mice in vivo. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist oxidative stress with H2O2 and NO in vitro and did not change the virulence and infection outcome in CGD mice in vivo suggesting that other factors besides pyomelanin are contributing to the pathophysiology of these strains.IMPORTANCEThe Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria that are often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals and overcoming the host cell oxidative burst. We investigated the role of pyomelanin in Burkholderia cenocepacia strains J2315 (pigmented) and K56-2 (non-pigmented) and performed allelic exchange to generate isogenic non-pigmented and pigmented strains, respectively. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist H2O2 or NO in vitro and did not alter the outcome of a respiratory infection in CGD mice in vivo. These results suggest that pyomelanin may not always constitute a virulence factor and suggest that other features are contributing to the pathophysiology of these strains.
Collapse
Affiliation(s)
- Dina A Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linda Wu
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Melissa Ivey
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah C Fankhauser
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biology, Oxford College of Emory University, Oxford, Georgia, USA
| | - Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Muñoz-Torres P, Cárdenas-Ninasivincha S, Aguilar Y. Exploring the Agricultural Applications of Microbial Melanin. Microorganisms 2024; 12:1352. [PMID: 39065119 PMCID: PMC11278939 DOI: 10.3390/microorganisms12071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Microbial melanins are a group of pigments with protective effects against harsh conditions, showing fascinating photoprotective activities, mainly due to their capability to absorb UV radiation. In bacteria, they are produced by the oxidation of L-tyrosine, generating eumelanin and pheomelanin. Meanwhile, allomelanin is produced by fungi through the decarboxylative condensation of malonyl-CoA. Moreover, melanins possess antioxidant and antimicrobial activities, revealing significant properties that can be used in different industries, such as cosmetic, pharmaceutical, and agronomical. In agriculture, melanins have potential applications, including the development of new biological products based on this pigment for the biocontrol of phytopathogenic fungi and bacteria to reduce the excessive and toxic levels of agrochemicals used in fields. Furthermore, there are possibilities to develop and improve new bio-based pesticides that control pest insects through the use of melanin-producing and toxin-producing Bacillus thuringiensis or through the application of melanin to insecticidal proteins to generate a new product with improved resistance to UV radiation that can then be applied to the plants. Melanins and melanin-producing bacteria have potential applications in agriculture due to their ability to improve plant growth. Finally, the bioremediation of water and soils is possible through the application of melanins to polluted soils and water, removing synthetic dyes and toxic metals.
Collapse
Affiliation(s)
- Patricio Muñoz-Torres
- Laboratorio de Patología Vegetal y Bioproductos, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile; (S.C.-N.); (Y.A.)
| | | | | |
Collapse
|
16
|
Shan Y, Wang D, Zhao FH, Song J, Zhu H, Li Y, Zhang XJ, Dai XF, Han D, Chen JY. Insights into the biocontrol and plant growth promotion functions of Bacillus altitudinis strain KRS010 against Verticillium dahliae. BMC Biol 2024; 22:116. [PMID: 38764012 PMCID: PMC11103837 DOI: 10.1186/s12915-024-01913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Verticillium wilt, caused by the fungus Verticillium dahliae, is a soil-borne vascular fungal disease, which has caused great losses to cotton yield and quality worldwide. The strain KRS010 was isolated from the seed of Verticillium wilt-resistant Gossypium hirsutum cultivar "Zhongzhimian No. 2." RESULTS The strain KRS010 has a broad-spectrum antifungal activity to various pathogenic fungi as Verticillium dahliae, Botrytis cinerea, Fusarium spp., Colletotrichum spp., and Magnaporthe oryzae, of which the inhibition rate of V. dahliae mycelial growth was 73.97% and 84.39% respectively through confrontation test and volatile organic compounds (VOCs) treatments. The strain was identified as Bacillus altitudinis by phylogenetic analysis based on complete genome sequences, and the strain physio-biochemical characteristics were detected, including growth-promoting ability and active enzymes. Moreover, the control efficiency of KRS010 against Verticillium wilt of cotton was 93.59%. After treatment with KRS010 culture, the biomass of V. dahliae was reduced. The biomass of V. dahliae in the control group (Vd991 alone) was 30.76-folds higher than that in the treatment group (KRS010+Vd991). From a molecular biological aspect, KRS010 could trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Its extracellular metabolites and VOCs inhibited the melanin biosynthesis of V. dahliae. In addition, KRS010 had been characterized as the ability to promote plant growth. CONCLUSIONS This study indicated that B. altitudinis KRS010 is a beneficial microbe with a potential for controlling Verticillium wilt of cotton, as well as promoting plant growth.
Collapse
Affiliation(s)
- Yujia Shan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157012, China
| | - Dan Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Fu-Hua Zhao
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157012, China
| | - Jian Song
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - He Zhu
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Yue Li
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Xiao-Jun Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157012, China
| | - Xiao-Feng Dai
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing, 100081, China.
| | - Jie-Yin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
17
|
Reedy JL, Jensen KN, Crossen AJ, Basham KJ, Ward RA, Reardon CM, Harding HB, Hepworth OW, Simaku P, Kwaku GN, Tone K, Willment JA, Reid DM, Stappers MHT, Brown GD, Rajagopal J, Vyas JM. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534632. [PMID: 37034634 PMCID: PMC10081279 DOI: 10.1101/2023.03.28.534632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo . Aspergillus -derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Collapse
|
18
|
Perelomov L, Rajput VD, Gertsen M, Sizova O, Perelomova I, Kozmenko S, Minkina T, Atroshchenko Y. Ecological features of trace elements tolerant microbes isolated from sewage sludge of urban wastewater treatment plant. STRESS BIOLOGY 2024; 4:8. [PMID: 38273092 PMCID: PMC10810767 DOI: 10.1007/s44154-023-00144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
Worldwide wastewater treatment plants generate enormous amounts of sewage sludge, and their further disposal depends on the treatment technologies applied and spontaneously occurring microbiological processes. From different ages urban sewage sludge, 12 strains of bacteria with simultaneous tolerance to two or more trace elements: Co, Ni, Cu, Zn, Cd and Pb at concentration of 3-5 mmol were isolated and identified by PCR of target genes and Sanger sequencing methods. The isloated metal(loids) tolerant strains belong to the species, i.e., Serratia fonticola, Rhodococcus qingshengii, Pseudomonas fragi, Pseudomonas extremaustralis, Pseudomonas cedrina, Stenotrophomonas maltophilia, Serratia liquefaciens and Citrobacter freundii. The ecological features of the isolated strains were studied. The optimal growth temperatures for most strains was 15-30°C at pH range of 5-9, although some strains grew at 7°C (Pseudomonas fragi SS0-4, Serratia fonticola SS0-9 and Serratia fonticola SS12-11). Satisfactory growth of two strains (Serratia fonticola SS0-1and Citrobacter freundii SS60-12) was noted in an acidic medium at pH 4. Most of the strains grew in the NaCl concentration range of 1-5%. The isolated bacteria resistant to high concentrations of trace elements can be used for the effective mineralization of sewage sludge and for the decontamination of wastewater.
Collapse
Affiliation(s)
- L Perelomov
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia.
| | - V D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - M Gertsen
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
| | - O Sizova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| | - I Perelomova
- Tula State University, Lenin Avenue, 92, Tula, 300026, Russia
| | - S Kozmenko
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - T Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344006, Russia
| | - Y Atroshchenko
- Tula State Lev Tolstoy Pedagogical University (Lev Tolstoy University), Lenin Avenue, 125, Tula, 300026, Russia
| |
Collapse
|
19
|
El-Zawawy NA, Kenawy ER, Ahmed S, El-Sapagh S. Bioproduction and optimization of newly characterized melanin pigment from Streptomyces djakartensis NSS-3 with its anticancer, antimicrobial, and radioprotective properties. Microb Cell Fact 2024; 23:23. [PMID: 38229042 PMCID: PMC10792909 DOI: 10.1186/s12934-023-02276-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Melanin is a natural pigment that is considered a promising biomaterial for numerous biotechnological applications across several industries. Melanin has biomedical applications as antimicrobial, anticancer, and antioxidant properties. Additionally, in the pharmaceutical and cosmetic industries, it is used in drug delivery and as a radioprotective agent. Also, melanin has environmental uses in the fields of bioremediation and the food industry. The biosynthesis of melanin pigment is an area of interest for researchers due to its multifunctionality, high compatibility, and biodegradability. Therefore, our present work is the first attempt to characterize and optimize the productivity of melanin pigment from Streptomyces djakartensis NSS-3 concerning its radioprotection and biological properties. RESULTS Forty isolates of soil actinobacteria were isolated from the Wadi Allaqui Biosphere Reserve, Egypt. Only one isolate, ACT3, produced a dark brown melanin pigment extracellularly. This isolate was identified according to phenotypic properties and molecular phylogenetic analysis as Streptomyces djakartensis NSS-3 with accession number OP912881. Plackett-Burman experimental design (PBD) and response surface methodology (RSM) using a Box-Behnken design (BBD) were performed for optimum medium and culturing conditions for maximum pigment production, resulting in a 4.19-fold improvement in melanin production (118.73 mg/10 mL). The extracted melanin pigment was purified and characterized as belonging to nitrogen-free pyomelanin based on ultraviolet-visible spectrophotometry (UV-VIS), Fourier transform infrared (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and NMR studies. Purified melanin demonstrated potent scavenging activity with IC50 values of 18.03 µg/mL and revealed high potency as sunscreens (in vitro SPF = 18.5). Moreover, it showed a nontoxic effect on a normal cell line (WI38), while it had a concentration-dependent anticancer effect on HCT116, HEPG, and MCF7 cell lines with IC50 = 108.9, 43.83, and 81.99 µg/mL, respectively. Also, purified melanin had a detrimental effect on the tested MDR bacterial strains, of which PA-09 and SA-04 were clearly more susceptible to melanin compared with other strains with MICs of 6.25 and 25 µg/mL, respectively. CONCLUSION Our results demonstrated that the newly characterized pyomelanin from Streptomyces djakartensis NSS-3 has valuable biological properties due to its potential photoprotective, antioxidant, anticancer, antimicrobial, and lack of cytotoxic activities, which open up new prospects for using this natural melanin pigment in various biotechnological applications and avoiding chemical-based drugs.
Collapse
Affiliation(s)
- Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt.
| | - El-Refaie Kenawy
- Chemistry Department, Polymer Research Unit, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Ahmed
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Shimaa El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
20
|
Elattar KM, Ghoniem AA, Al-Askar AA, El-Gazzar UB, El-Hersh MS, Elsherbiny EA, Eldadamony NM, Saber WIA. Melanin Synthesized by the Endophytic Aureobasidium Pullulans AKW: A Multifaceted Biomolecule with Antioxidant, Wound Healing, and Selective Anti-Cancer Activity. Curr Top Med Chem 2024; 24:2141-2160. [PMID: 39161142 DOI: 10.2174/0115680266300091240730111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION This study explores the potential of the endophytic fungus Aureobasidium pullulans AKW for melanin production and its anticancer activity. METHOD We report a significant achievement: A. pullulans AKW synthesized 4.89 g/l of melanin in a simple fermentation medium devoid of tyrosine, a precursor typically required for melanin biosynthesis. This suggests a potentially novel pathway for melanin production compared to previous studies relying on complex media and tyrosine. Furthermore, the isolated and characterized melanin exhibited promising selectivity as an anti-cancer agent. It triggered apoptosis in A431 cancer cells, demonstrating some selectivity compared to normal cells. This selectivity was confirmed by IC50 values and further supported by gene expression changes in A431 cells. Melanin treatment downregulated the anti-apoptotic Bcl2 gene while upregulating pro-apoptotic Bax and p53 genes, indicating its ability to induce programmed cell death in cancer cells. RESULT Our results demonstrate that A. pullulans AKW-derived melanin exhibits cytotoxic effects against A431, HEPG2, and MCF7 cell lines. Interestingly, the present fungal strain synthesized melanin in a simple medium without requiring precursors. CONCLUSION The selective activity of the current melanin towards cancer cells, its ability to induce apoptosis, and its relatively low toxicity towards normal cells warrant further investigation for its development as a novel therapeutic option.
Collapse
Affiliation(s)
- Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza12619, Egypt
| | - Abdulaziz A Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Usama Bhgat El-Gazzar
- Department of Medical Biochemistry, Damietta Faculty of Medicine, Al-Azhar University, Egypt
| | - Mohammed S El-Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza12619, Egypt
| | - Elsherbiny A Elsherbiny
- Department of Biology, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU), 67663Kaiserslautern, Germany
| | - Noha M Eldadamony
- Seed Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Giza12619, Egypt
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza12619, Egypt
| |
Collapse
|
21
|
Dong Y, Guo L, Ma H, Rashid MT, Tuly JA, Moses GK, Zhou C, He R, Ye X, Gan B, Han X. Morphology of Four Strains of Phellinoid Agaricomycetes and Microstructural and Physiological Properties of Their Exudates. Int J Med Mushrooms 2024; 26:65-76. [PMID: 39093402 DOI: 10.1615/intjmedmushrooms.2024054258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
To study and compare the morphology of the phellinoid Agaricomycetes strains and find other strategies to improve Phellinus spp. growth and metabolism. In this study, the morphological characteristics of four Phellinus igniarius strains (phellinoid Agaricomycetes) were observed under a light microscope. The exudates from these fungi were observed using light microscopy, scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). The exudates were initially transparent with a water-like appearance, and became darker with time at neutral pH. Microscopy of air-dried exudates revealed regular shapes and crystals. Cl- (chloride) and K+ were the two key elements analyzed using EDS. Polyphenol oxidase (POD), catalase (CAT), and laccase activities were detected in mycelia from each of the four Phellinus strains. The K+ content of the three strains was higher than that of the wild strain. Cl- content correlated negatively with that of K+. Laccase activities associated with each mycelia and its corresponding media differed under cold and contaminated conditions.
Collapse
Affiliation(s)
- Yating Dong
- Jiangsu university/ Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC)
| | - Lina Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, P.R. China
| | - Haile Ma
- School of Food and Biological Engineering, Institute of food physical processing, Jiangsu University
| | - Muhammad Tayyab Rashid
- School of Food Science and Technology, Henan University of Technology, 100 Lianhua Street, High-tech Zone, Zhengzhou Henan 450001, P.R. China
| | - Jamila Akter Tuly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang Jiangsu 212013, China
| | - Golly Kwaku Moses
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China; Faculty of Applied Sciences and Technology, Sunyani Technical University, Sunyani, Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering, Institute of Food Physical Processing, International Joint Research Center for Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang Jiangsu 212013, China
| | - Xiaofei Ye
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville 37996, Tennessee, USA
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 P.R. China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| |
Collapse
|
22
|
Li H, Sheng RC, Zhang CN, Wang LC, Li M, Wang YH, Qiao YH, Klosterman SJ, Chen JY, Kong ZQ, Subbarao KV, Chen FM, Zhang DD. Two zinc finger proteins, VdZFP1 and VdZFP2, interact with VdCmr1 to promote melanized microsclerotia development and stress tolerance in Verticillium dahliae. BMC Biol 2023; 21:237. [PMID: 37904147 PMCID: PMC10617112 DOI: 10.1186/s12915-023-01697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/08/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Melanin plays important roles in morphological development, survival, host-pathogen interactions and in the virulence of phytopathogenic fungi. In Verticillum dahliae, increases in melanin are recognized as markers of maturation of microsclerotia which ensures the long-term survival and stress tolerance, while decreases in melanin are correlated with increased hyphal growth in the host. The conserved upstream components of the VdCmr1-regulated pathway controlling melanin production in V. dahliae have been extensively identified, but the direct activators of this pathway are still unclear. RESULTS We identified two genes encoding conserved C2H2-type zinc finger proteins VdZFP1 and VdZFP2 adjacent to VdPKS9, a gene encoding a negative regulator of both melanin biosynthesis and microsclerotia formation in V. dahliae. Both VdZFP1 and VdZFP2 were induced during microsclerotia development and were involved in melanin deposition. Their localization changed from cytoplasmic to nuclear in response to osmotic pressure. VdZFP1 and VdZFP2 act as modulators of microsclerotia melanization in V. dahliae, as confirmed by melanin biosynthesis inhibition and supplementation with the melanin pathway intermediate scytalone in albino strains. The results indicate that VdZFP1 and VdZFP2 participate in melanin biosynthesis by positively regulating VdCmr1. Based on the results obtained with yeast one- and two-hybrid (Y1H and Y2H) and bimolecular fluorescence complementation (BiFC) systems, we determined the melanin biosynthesis relies on the direct interactions among VdZFP1, VdZFP2 and VdCmr1, and these interactions occur on the cell walls of microsclerotia. Additionally, VdZFP1 and/or VdZFP2 mutants displayed increased sensitivity to stress factors rather than alterations in pathogenicity, reflecting the importance of melanin in stress tolerance of V. dahliae. CONCLUSIONS Our results revealed that VdZFP1 and VdZFP2 positively regulate VdCmr1 to promote melanin deposition during microsclerotia development, providing novel insight into the regulation of melanin biosynthesis in V. dahliae.
Collapse
Affiliation(s)
- Huan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruo-Cheng Sheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chen-Ning Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Li-Chao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Min Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ya-Hong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yu-Hang Qiao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station,, Salinas, CA, USA.
| | - Feng-Mao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
23
|
Herrera M, Ravasi T, Laudet V. Anemonefishes: A model system for evolutionary genomics. F1000Res 2023; 12:204. [PMID: 37928172 PMCID: PMC10624958 DOI: 10.12688/f1000research.130752.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Anemonefishes are an iconic group of coral reef fish particularly known for their mutualistic relationship with sea anemones. This mutualism is especially intriguing as it likely prompted the rapid diversification of anemonefish. Understanding the genomic architecture underlying this process has indeed become one of the holy grails of evolutionary research in these fishes. Recently, anemonefishes have also been used as a model system to study the molecular basis of highly complex traits such as color patterning, social sex change, larval dispersal and life span. Extensive genomic resources including several high-quality reference genomes, a linkage map, and various genetic tools have indeed enabled the identification of genomic features controlling some of these fascinating attributes, but also provided insights into the molecular mechanisms underlying adaptive responses to changing environments. Here, we review the latest findings and new avenues of research that have led to this group of fish being regarded as a model for evolutionary genomics.
Collapse
Affiliation(s)
- Marcela Herrera
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi I-Lan 262, Taiwan
| |
Collapse
|
24
|
Billamboz M, Jawhara S. Anti- Malassezia Drug Candidates Based on Virulence Factors of Malassezia-Associated Diseases. Microorganisms 2023; 11:2599. [PMID: 37894257 PMCID: PMC10609646 DOI: 10.3390/microorganisms11102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Malassezia is a lipophilic unicellular fungus that is able, under specific conditions, to cause severe cutaneous and systemic diseases in predisposed subjects. This review is divided into two complementary parts. The first one discusses how virulence factors contribute to Malassezia pathogenesis that triggers skin diseases. These virulence factors include Malassezia cell wall resistance, lipases, phospholipases, acid sphingomyelinases, melanin, reactive oxygen species (ROS), indoles, hyphae formation, hydrophobicity, and biofilm formation. The second section describes active compounds directed specifically against identified virulence factors. Among the strategies for controlling Malassezia spread, this review discusses the development of aryl hydrocarbon receptor (AhR) antagonists, inhibition of secreted lipase, and fighting biofilms. Overall, this review offers an updated compilation of Malassezia species, including their virulence factors, potential therapeutic targets, and strategies for controlling their spread. It also provides an update on the most active compounds used to control Malassezia species.
Collapse
Affiliation(s)
- Muriel Billamboz
- INSERM, CHU Lille, Institut Pasteur Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France;
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Samir Jawhara
- CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, University of Lille, 1 Place Verdun, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| |
Collapse
|
25
|
Lee J, Park HS, Jung HJ, Park YJ, Kang MK, Kim HJ, Yoon D, Ullah S, Kang D, Park Y, Chun P, Chung HY, Moon HR. Anti-Browning Effect of 2-Mercaptobenzo[ d]imidazole Analogs with Antioxidant Activity on Freshly-Cut Apple Slices and Their Highly Potent Tyrosinase Inhibitory Activity. Antioxidants (Basel) 2023; 12:1814. [PMID: 37891893 PMCID: PMC10604187 DOI: 10.3390/antiox12101814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Ten 2-mercaptobenzimidazole (2-MBI) analogs were synthesized as potential tyrosinase inhibitors because mercapto-containing compounds can bind to copper ions at the active site of tyrosinase to inhibit enzyme activity. Nine 2-MBI analogs showed sub-micromolar IC50 values for mushroom tyrosinase monophenolase activity; analog 4 was 280-fold more potent than kojic acid, and in diphenolase activity, 6 was 970-fold more potent than kojic acid. The inhibition mode of the 2-MBI analogs was investigated using kinetic studies supported by docking simulations. Benzimidazoles without the 2-mercapto substituent of the 2-MBI analogs lost their tyrosinase inhibitory activity, implying that the 2-mercapto substituent plays an important role in tyrosinase inhibition. The 2-MBI analogs exerted potent antioxidant effects against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and reactive oxygen species (ROS). The results obtained from apple slices and human embryonic kidney cells (HEK-293) suggest that most 2-MBI analogs are sufficiently safe candidates to delay the browning of apple slices effectively. Thus, these results support the potential use of 2-MBI analogs as anti-browning agents in foods such as mushrooms, vegetables, and fruits.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (J.L.); (H.S.P.); (Y.J.P.); (M.K.K.); (H.J.K.); (D.Y.)
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (J.L.); (H.S.P.); (Y.J.P.); (M.K.K.); (H.J.K.); (D.Y.)
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.Y.C.)
| | - Yu Jung Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (J.L.); (H.S.P.); (Y.J.P.); (M.K.K.); (H.J.K.); (D.Y.)
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (J.L.); (H.S.P.); (Y.J.P.); (M.K.K.); (H.J.K.); (D.Y.)
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (J.L.); (H.S.P.); (Y.J.P.); (M.K.K.); (H.J.K.); (D.Y.)
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (J.L.); (H.S.P.); (Y.J.P.); (M.K.K.); (H.J.K.); (D.Y.)
| | - Sultan Ullah
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA;
| | - Dongwan Kang
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (D.K.); (Y.P.)
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (D.K.); (Y.P.)
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea;
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.Y.C.)
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (J.L.); (H.S.P.); (Y.J.P.); (M.K.K.); (H.J.K.); (D.Y.)
| |
Collapse
|
26
|
Kurbessoian T, Murante D, Crocker A, Hogan DA, Stajich JE. In host evolution of Exophiala dermatitidis in cystic fibrosis lung micro-environment. G3 (BETHESDA, MD.) 2023; 13:jkad126. [PMID: 37293838 PMCID: PMC10484061 DOI: 10.1093/g3journal/jkad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/26/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Individuals with cystic fibrosis (CF) are susceptible to chronic lung infections that lead to inflammation and irreversible lung damage. While most respiratory infections that occur in CF are caused by bacteria, some are dominated by fungi such as the slow-growing black yeast Exophiala dermatitidis. Here, we analyze isolates of E. dermatitidis cultured from two samples, collected from a single subject 2 years apart. One isolate genome was sequenced using long-read Nanopore technology as an in-population reference to use in comparative single nucleotide polymorphism and insertion-deletion variant analyses of 23 isolates. We then used population genomics and phylo-genomics to compare the isolates to each other as well as the reference genome strain E. dermatitidis NIH/UT8656. Within the CF lung population, three E. dermatitidis clades were detected, each with varying mutation rates. Overall, the isolates were highly similar suggesting that they were recently diverged. All isolates were MAT 1-1, which was consistent with their high relatedness and the absence of evidence for mating or recombination between isolates. Phylogenetic analysis grouped sets of isolates into clades that contained isolates from both early and late time points indicating there are multiple persistent lineages. Functional assessment of variants unique to each clade identified alleles in genes that encode transporters, cytochrome P450 oxidoreductases, iron acquisition, and DNA repair processes. Consistent with the genomic heterogeneity, isolates showed some stable phenotype heterogeneity in melanin production, subtle differences in antifungal minimum inhibitory concentrations, and growth on different substrates. The persistent population heterogeneity identified in lung-derived isolates is an important factor to consider in the study of chronic fungal infections, and the analysis of changes in fungal pathogens over time may provide important insights into the physiology of black yeasts and other slow-growing fungi in vivo.
Collapse
Affiliation(s)
- Tania Kurbessoian
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Alex Crocker
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
27
|
Ormsby MJ, Akinbobola A, Quilliam RS. Plastic pollution and fungal, protozoan, and helminth pathogens - A neglected environmental and public health issue? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163093. [PMID: 36996975 DOI: 10.1016/j.scitotenv.2023.163093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
Plastic waste is ubiquitous in the environment and can become colonised by distinct microbial biofilm communities, known collectively as the 'plastisphere.' The plastisphere can facilitate the increased survival and dissemination of human pathogenic prokaryotes (e.g., bacteria); however, our understanding of the potential for plastics to harbour and disseminate eukaryotic pathogens is lacking. Eukaryotic microorganisms are abundant in natural environments and represent some of the most important disease-causing agents, collectively responsible for tens of millions of infections, and millions of deaths worldwide. While prokaryotic plastisphere communities in terrestrial, freshwater, and marine environments are relatively well characterised, such biofilms will also contain eukaryotic species. Here, we critically review the potential for fungal, protozoan, and helminth pathogens to associate with the plastisphere, and consider the regulation and mechanisms of this interaction. As the volume of plastics in the environment continues to rise there is an urgent need to understand the role of the plastisphere for the survival, virulence, dissemination, and transfer of eukaryotic pathogens, and the effect this can have on environmental and human health.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Ayorinde Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
28
|
Ayodeji FD, Shava B, Iqbal HMN, Ashraf SS, Cui J, Franco M, Bilal M. Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2023; 153:1932-1956. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
29
|
Guan M, Yao L, Zhen Y, Song Y, Liu X, Liu Y, Chen R, Cui Y, Li S. Sporothrix globosa melanin regulates autophagy via the TLR2 signaling pathway in THP-1 macrophages. PLoS Negl Trop Dis 2023; 17:e0011281. [PMID: 37141335 DOI: 10.1371/journal.pntd.0011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/19/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Melanin, an important virulence factor of pathogenic fungi, has been shown to suppress host immune responses in multiple ways. Autophagy is a vital cellular mechanism underlying the host's innate immunity against microbial infections. However, the potential influence of melanin on autophagy has not been explored. We investigated the effect of melanin on autophagy in macrophages, which play a key role in controlling Sporothrix spp. infection, as well as the mechanism of melanin interaction with Toll-like receptor (TLR)-induced pathways. Sporothrix globosa conidia (wild-type and melanin-deficient mutant strains) or yeast cells were co-cultured with THP-1 macrophages to demonstrate that, although S. globosa infection led to the activation of autophagy-related proteins and increased autophagic flux, S. globosa melanin suppressed macrophage autophagy. Incubation with S. globosa conidia also increased the expression levels of reactive oxygen species and multiple proinflammatory cytokines (interleukin-6, tumor necrosis factor-α, interleukin-1β and interferon-γ) in macrophages. These effects were attenuated as melanin presented. Furthermore, while S. globosa conidia significantly increased the expression of both TLR2 and TLR4 in macrophages, the knockdown of TLR2, but not TLR4, with small interfering RNA suppressed autophagy. Overall, this study revealed the novel immune defense ability of S. globosa melanin to inhibit macrophage functionality by resisting macrophage autophagy through the regulation of TLR2 expression.
Collapse
Affiliation(s)
- Mengqi Guan
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Lei Yao
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yu Zhen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Liu
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Ruili Chen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
- Department of Dermatology and Venereology, Zhuhai People's Hospital, Zhuhai, China
| | - Yan Cui
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Terranova ML. Prominent Roles and Conflicted Attitudes of Eumelanin in the Living World. Int J Mol Sci 2023; 24:ijms24097783. [PMID: 37175490 PMCID: PMC10178024 DOI: 10.3390/ijms24097783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Eumelanin, a macromolecule widespread in all the living world and long appreciated for its protective action against harmful UV radiation, is considered the beneficial component of the melanin family (ευ means good in ancient Greek). This initially limited picture has been rather recently extended and now includes a variety of key functions performed by eumelanin in order to support life also under extreme conditions. A lot of still unexplained aspects characterize this molecule that, in an evolutionary context, survived natural selection. This paper aims to emphasize the unique characteristics and the consequent unusual behaviors of a molecule that still holds the main chemical/physical features detected in fossils dating to the late Carboniferous. In this context, attention is drawn to the duality of roles played by eumelanin, which occasionally reverses its functional processes, switching from an anti-oxidant to a pro-oxidant behavior and implementing therefore harmful effects.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dipartimento Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
31
|
Fan X, Zhang P, Batool W, Liu C, Hu Y, Wei Y, He Z, Zhang SH. Contribution of the Tyrosinase (MoTyr) to Melanin Synthesis, Conidiogenesis, Appressorium Development, and Pathogenicity in Magnaporthe oryzae. J Fungi (Basel) 2023; 9:jof9030311. [PMID: 36983479 PMCID: PMC10059870 DOI: 10.3390/jof9030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Dihydroxynapthalene-(DHN) and L-dihydroxyphenylalanine (L-DOPA) are two types of dominant melanin in fungi. Fungal melanins with versatile functions are frequently associated with pathogenicity and stress tolerance. In rice blast fungus, Magnaporthe oryzae, DHN melanin is essential to maintain the integrity of the infectious structure, appressoria; but the role of the tyrosinase-derived L-DOPA melanin is still unknown. Here, we have genetically and biologically characterized a tyrosinase gene (MoTyr) in M. oryzae. MoTyr encodes a protein of 719 amino acids that contains the typical CuA and CuB domains of tyrosinase. The deletion mutant of MoTyr (ΔMoTyr) was obtained by using a homologous recombination approach. Phenotypic analysis showed that conidiophore stalks and conidia formation was significantly reduced in ΔMoTyr. Under different concentrations of glycerol and PEG, more appressoria collapsed in the mutant strains than in the wild type, suggesting MoTyr is associated with the integrity of the appressorium wall. Melanin measurement confirmed that MoTyr loss resulted in a significant decrease in melanin synthesis. Accordingly, the loss of MoTyr stunted the conidia germination under stress conditions. Importantly, the MoTyr deletion affected both infection and pathogenesis stages. These results suggest that MoTyr, like DHN pigment synthase, plays a key role in conidiophore stalks formation, appressorium integrity, and pathogenesis of M. oryzae, revealing a potential drug target for blast disease control.
Collapse
Affiliation(s)
- Xiaoning Fan
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Penghui Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wajjiha Batool
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chang Liu
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yan Hu
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, China
| | - Shi-Hong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence:
| |
Collapse
|
32
|
Pyomelanin production via heterologous expression of 4-hydroxyphenylpyruvate dioxygenase (HPPD) and construction of HPPD inhibitor screening model. J Biosci Bioeng 2023; 135:93-101. [PMID: 36470730 DOI: 10.1016/j.jbiosc.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022]
Abstract
Melanin has an increasing market demand in cosmetics, food, medicine as well as aerospace due to its unique properties. Heterologous expression of 4-hydroxyphenylpyruvate dioxygenase (HPPD) from the melanin-producing strain Streptomyces fungicidicus NW-EN1 in Escherichia coli shortened the fermentation cycle of melanin. HPPD catalyzed 4-hydrophenylpyruvate (HPP) to form homologous acid (HGA) and finally form melanin. The purified melanin had the highest absorption peak at 460 nm. Fourier transform infrared spectroscopy and scanning electron microscope scanning showed that the pigment had universal characteristic peaks. The presence of HGA, a predictor of pyomelanin, was identified by high-performance liquid chromatography analysis. The recombinant E. coli produced 804.4 ± 5.9 mg/L pyomelanin within 48 h. Metal ions had a great influence on the production of pyomelanin. Pyomelanin was stable in response to light intensity and had a protective effect against bacteria under UV irradiation. Meanwhile, we utilized the chromogenic effect after whole-cell catalysis to reflect the inhibition of the HPPD inhibitors (mesotrione and isoxaflutole) on HPPD by observing the color change. As a rapid method to test the action of inhibitors, this method is expected to be useful for the development of HPPD-inhibiting herbicides.
Collapse
|
33
|
Mansouri N, Benslama O, Arhab R. Homology modeling, docking and molecular dynamics studies of some secondary metabolites of actinomycetes as biocontrol agents against the 3HNR enzyme of the phytopathogenic fungus Alternaria alternata. J Biomol Struct Dyn 2023; 41:871-883. [PMID: 34895071 DOI: 10.1080/07391102.2021.2014970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Early blight of tomatoes is a common disease caused by the phytopathogenic fungi Alternaria, in particular the species A. alternata. This disease causes significant losses in the tomato harvest. The enzyme 1,3,8-trihydroxynaphthalene reductase (3HNR) is a key enzyme involved in the production of melanin, that plays a crucial role in the process of fungi invasion. This enzyme is the target of some chemical fungicides, but the problem of resistance against these molecules requires the search for new molecules that are both effective and environment-friendly. Actinomycetes represent an important source of secondary metabolites with antimicrobial activity. Thus, in this study 110 secondary metabolites of actinomycetes were subjected to an in silico screening of their antifungal activity as possible inhibitors of the 3HNR of A. alternata. For this reason, the 3D structure of this enzyme was modeled. Then, a molecular docking study of the secondary actinomycetal metabolites was carried out within the catalytic site of the enzyme. Indole-3-carboxylic acid, Streptokordin, 3-Phenylpropionic acid, Phenylacetate, and 8-Hydroxyquinoline have shown the most promising results with binding energies of -6.1 kcal/mol, -6.1 kcal/mol, -5.4 kcal/mol, -5.3 kcal/mol, and -5.0 kcal/mol, respectively. These metabolites have also shown satisfactory results for drug-likeness and ADMET analysis. The interaction stability of the Streptokordin, Indole-3-carboxylic acid, Phenylacetate, and 8-Hydroxyquinoline within the catalytic site of 3HNR was confirmed by the results of the MD simulation and MM-PBSA analyzes. With their favorable interactive and pharmacokinetic characteristics, these metabolites may be potential antifungal molecules against A. alternata, and good candidates for further studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nedjwa Mansouri
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M'Hidi University, Oum El Bouaghi, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M'Hidi University, Oum El Bouaghi, Algeria
| | - Rabah Arhab
- Laboratory of Natural Substances, Biomolecules and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M'Hidi University, Oum El Bouaghi, Algeria
| |
Collapse
|
34
|
Rathnayaka AR, Chethana KWT, Phillips AJL, Liu JK, Samarakoon MC, Jones EBG, Karunarathna SC, Zhao CL. Re-Evaluating Botryosphaeriales: Ancestral State Reconstructions of Selected Characters and Evolution of Nutritional Modes. J Fungi (Basel) 2023; 9:184. [PMID: 36836299 PMCID: PMC9961722 DOI: 10.3390/jof9020184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Botryosphaeriales (Dothideomycetes, Ascomycota) occur in a wide range of habitats as endophytes, saprobes, and pathogens. The order Botryosphaeriales has not been subjected to evaluation since 2019 by Phillips and co-authors using phylogenetic and evolutionary analyses. Subsequently, many studies introduced novel taxa into the order and revised several families separately. In addition, no ancestral character studies have been conducted for this order. Therefore, in this study, we re-evaluated the character evolution and taxonomic placements of Botryosphaeriales species based on ancestral character evolution, divergence time estimation, and phylogenetic relationships, including all the novel taxa that have been introduced so far. Maximum likelihood, maximum parsimony, and Bayesian inference analyses were conducted on a combined LSU and ITS sequence alignment. Ancestral state reconstruction was carried out for conidial colour, septation, and nutritional mode. Divergence times estimates revealed that Botryosphaeriales originated around 109 Mya in the early epoch of the Cretaceous period. All six families in Botryosphaeriales evolved in the late epoch of the Cretaceous period (66-100 Mya), during which Angiosperms also appeared, rapidly diversified and became dominant on land. Families of Botryosphaeriales diversified during the Paleogene and Neogene periods in the Cenozoic era. The order comprises the families Aplosporellaceae, Botryosphaeriaceae, Melanopsaceae, Phyllostictaceae, Planistromellaceae and Saccharataceae. Furthermore, current study assessed two hypotheses; the first one being "All Botryosphaeriales species originated as endophytes and then switched into saprobes when their hosts died or into pathogens when their hosts were under stress"; the second hypothesis states that "There is a link between the conidial colour and nutritional mode in botryosphaerialean taxa". Ancestral state reconstruction and nutritional mode analyses revealed a pathogenic/saprobic nutritional mode as the ancestral character. However, we could not provide strong evidence for the first hypothesis mainly due to the significantly low number of studies reporting the endophytic botryosphaerialean taxa. Results also showed that hyaline and aseptate conidia were ancestral characters in Botryosphaeriales and supported the relationship between conidial pigmentation and the pathogenicity of Botryosphaeriales species.
Collapse
Affiliation(s)
- Achala R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Plant Medicine, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - K. W. Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Jian-Kui Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Chang-Lin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
35
|
Tan XT, binti Mohd Shuhairi N, Jane Ginsapu S, Binti Shukor S, Amran F. Comparison of in vitro Susceptibilities of Talaromyces marneffei in Mold and Yeast Forms in Malaysia. Infect Drug Resist 2023; 16:1629-1635. [PMID: 36987447 PMCID: PMC10040151 DOI: 10.2147/idr.s398743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 03/30/2023] Open
Abstract
Purpose This study was aimed to determine minimum inhibitory concentration (MIC) differences between yeast and mold forms of T. marneffei in Malaysia. Patients and Methods Ninety-seven clinical strains of T. marneffei were received from various Malaysian hospitals from the year 2020 until 2022. Their identities were determined using microscopic, macroscopic and molecular methods. Next, the susceptibility of yeast and mold forms of each isolate against amphotericin B, itraconazole, voriconazole, posaconazole, ketoconazole, isavuconazole, terbinafine, caspofungin and micafungin were tested according to the broth microdilution according to the Clinical and Laboratory Standards Institute (CLSI) M38 and M27 guidelines. The geometric means of minimal inhibitory concentration (GM MIC), MIC50, and MIC90 were determined for each antifungal. Additionally, Wilcoxon signed-rank test was used to compare the significant difference of GM MICs for each antifungal, GM MIC, MIC50 and MIC90 for the combined nine antifungals against different growth forms of T. marneffei. The significance was set at p<0.05. Results Micafungin had the highest GM MIC, MIC50 and MIC90 for mold form of T. marneffei. For yeast form, amphotericin B achieved the highest GM MIC and MIC50 while micafungin achieved the highest MIC90. However, the GM MIC, MIC50 and MIC90 of terbinafine and azole antifungals on T. marneffei were similar to each other, namely between 0.03 and 0.60µg/mL. The difference of GM MIC of all tested antifungals except caspofungin and micafungin was insignificant. Overall, GM MIC, MIC50 and MIC90 of the combined nine antifungals against two growth forms were insignificant. Conclusion The findings suggested either yeast or mold form can be used in the susceptibility testing of T. marneffei against amphotericin B, itraconazole, voriconazole, posaconazole, ketoconazole, isavuconazole and terbinafine.
Collapse
Affiliation(s)
- Xue Ting Tan
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
- Correspondence: Xue Ting Tan, Bacteriology unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia, Tel +60 333628968, Email
| | - Nurliyana binti Mohd Shuhairi
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Stephanie Jane Ginsapu
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Surianti Binti Shukor
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| | - Fairuz Amran
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Selangor, Malaysia
| |
Collapse
|
36
|
Lino V, Manini P, Galeotti M, Salamone M, Bietti M, Crescenzi O, Napolitano A, d'Ischia M. Antioxidant Activities of Hydroxylated Naphthalenes: The Role of Aryloxyl Radicals. Chempluschem 2023; 88:e202200449. [PMID: 36680302 DOI: 10.1002/cplu.202200449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Herein is delineated a first systematic framework for the definition of structure-antioxidant property relationships in the dihydroxynaphthalene (DHN) series. The results obtained by a combined experimental and theoretical approach revealed that 1,8-DHN is the best performing antioxidant platform, with its unique hydrogen-bonded peri-hydroxylation pattern contributing to a fast H atom transfer process. Moreover, the comparative analysis of the antioxidant properties of DHNs carried out by performing DPPH and FRAP assays and laser flash photolysis experiments, revealed the higher antioxidant power associated with an α-substitution pattern (i. e. in 1,8- and 1,6-DHN) with respect to DHNs exhibiting a β-substitution pattern (i. e. in 2,6- and 2,7-DHN). DFT calculations and isolation and characterization of the main oligomer intermediates formed during the oxidative polymerization of DHNs supported this evidence by providing unprecedented insight into the generation and fate of the intermediate naphthoxyl radicals, which emerged as the main factor governing the antioxidant activity of DHNs.
Collapse
Affiliation(s)
- Valeria Lino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
37
|
Lin L, Xu J. Production of Fungal Pigments: Molecular Processes and Their Applications. J Fungi (Basel) 2022; 9:44. [PMID: 36675865 PMCID: PMC9866555 DOI: 10.3390/jof9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Due to the negative environmental and health effects of synthetic colorants, pigments of natural origins of plants and microbes constitute an abundant source for the food, cosmetic, textile, and pharmaceutical industries. The demands for natural alternatives, which involve natural colorants and natural biological processes for their production, have been growing rapidly in recent decades. Fungi contain some of the most prolific pigment producers, and they excel in bioavailability, yield, cost-effectiveness, and ease of large-scale cell culture as well as downstream processing. In contrast, pigments from plants are often limited by seasonal and geographic factors. Here, we delineate the taxonomy of pigmented fungi and fungal pigments, with a focus on the biosynthesis of four major categories of pigments: carotenoids, melanins, polyketides, and azaphilones. The molecular mechanisms and metabolic bases governing fungal pigment biosynthesis are discussed. Furthermore, we summarize the environmental factors that are known to impact the synthesis of different fungal pigments. Most of the environmental factors that enhance fungal pigment production are related to stresses. Finally, we highlight the challenges facing fungal pigment utilization and future trends of fungal pigment development. This integrated review will facilitate further exploitations of pigmented fungi and fungal pigments for broad applications.
Collapse
Affiliation(s)
- Lan Lin
- Medical School, School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210009, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
38
|
Wang S, Lu Z, Lang B, Wang X, Li Y, Chen J. Curvularia lunata and Curvularia Leaf Spot of Maize in China. ACS OMEGA 2022; 7:47462-47470. [PMID: 36591195 PMCID: PMC9798514 DOI: 10.1021/acsomega.2c03013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Curvularia leaf spot (CLS), primarily caused by Curvularia lunata (Wakker) Boedijn (C. lunata), is widely distributed in maize production regions in China. It occurs in all the developmental stages of maize and causes economic losses. The epidemic and yield loss estimation models have been constructed for the disease. C. lunata has obvious virulence differentiation and produces multiple virulence factors. CLS is managed by application of chemical and biological agents and by quantitative resistance conferred by 5 to 6 quantitative trait loci (QTL). This review summarizes research on the understanding of CLS biological characteristics, virulence factors of C. lunata, host resistance genetics, and disease management strategies in China.
Collapse
Affiliation(s)
- Shaoqing Wang
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhixiang Lu
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Bo Lang
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinhua Wang
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yaqian Li
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jie Chen
- School
of Agriculture and Biology, Shanghai Jiao
Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Key
Laboratory of Microbial Metabolism, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Ministry
of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
39
|
Zhao HX, Zhang TY, Wang H, Hu CY, Tang YL, Xu B. Occurrence of fungal spores in drinking water: A review of pathogenicity, odor, chlorine resistance and control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158626. [PMID: 36087680 DOI: 10.1016/j.scitotenv.2022.158626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Fungi in drinking water have been long neglected due to the lack of convenient analysis methods, widely accepted regulations and efficient control strategies. However, in the last few decades, fungi in drinking water have been widely recognized as opportunity pathogens that cause serious damage to the health of immune-compromised individuals. In drinking water treatment plants, fungal spores are more resistant to chlorine disinfection than bacteria and viruses, which can regrow in drinking water distribution systems and subsequently pose health threats to water consumers. In addition, fungi in drinking water may represent an ignored source of taste and odor (T&O). This review identified 74 genera of fungi isolated from drinking water and presented their detailed taxonomy, sources and biomass levels in drinking water systems. The typical pathways of exposure of water-borne fungi and the main effects on human health are clarified. The fungi producing T&O compounds and their products are summarized. Data on free chlorine or monochloramine inactivation of fungal spores and other pathogens are compared. At the first time, we suggested four chlorine-resistant mechanisms including aggregation to tolerate chlorine, strong cell walls, cellular responses to oxidative stress and antioxidation of melanin, which are instructive for the future fungi control attempts. Finally, the inactivation performance of fungal spores by various technologies are comprehensively analyzed. The purpose of this study is to provide an overview of fungi distribution and risks in drinking water, provide insight into the chlorine resistance mechanisms of fungal spores and propose approaches for the control of fungi in drinking water.
Collapse
Affiliation(s)
- Heng-Xuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
40
|
de Pádua APSL, Koehler A, Pagani DM, Bezerra JDP, de Souza-Motta CM, Scroferneker ML. Antifungal susceptibility of the endophytic fungus Rhinocladiella similis (URM 7800) isolated from the Caatinga dry forest in Brazil. Braz J Microbiol 2022; 53:2093-2100. [PMID: 36152271 PMCID: PMC9679080 DOI: 10.1007/s42770-022-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/26/2022] [Indexed: 01/13/2023] Open
Abstract
The present study reports a new occurrence of Rhinocladiella similis isolated as an endophytic fungus in the Caatinga dry tropical forest in Brazil and describes its antifungal susceptibility. The isolate R. similis URM 7800 was obtained from leaves of the medicinal plant Myracrodruon urundeuva. Its morphological characterization was performed on potato dextrose agar medium and molecular analysis using the ITS rDNA sequence. The antifungal susceptibility profile was defined using the Clinical and Laboratory Standards Institute (CLSI) protocol M38-A2. The colony of isolate URM 7800 showed slow growth, with an olivaceous-gray color and powdery mycelium; in microculture, it showed the typical features of R. similis. In the antifungal susceptibility test, isolate URM 7800 showed high minimal inhibitory concentration (MIC) values for amphotericin B (>16 μg/mL), voriconazole (16 μg/mL), terbinafine (>0.5 μg/mL), and caspofungin (>8 μg/mL), among other antifungal drugs. Pathogenic melanized fungi are frequently isolated in environments where humans may be exposed, and these data show that it is essential to know if these isolates possess antifungal resistance.
Collapse
Affiliation(s)
| | - Alessandra Koehler
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danielle Machado Pagani
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jadson Diogo Pereira Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Setor Universitário, Goiânia, GO, Brazil
| | | | - Maria Lúcia Scroferneker
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
| |
Collapse
|
41
|
Gouka L, Raaijmakers JM, Cordovez V. Ecology and functional potential of phyllosphere yeasts. TRENDS IN PLANT SCIENCE 2022; 27:1109-1123. [PMID: 35842340 DOI: 10.1016/j.tplants.2022.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 05/20/2023]
Abstract
The phyllosphere (i.e., the aerial parts of plants) harbors a rich microbial life, including bacteria, fungi, viruses, and yeasts. Current knowledge of yeasts stems primarily from industrial and medical research on Saccharomyces cerevisiae and Candida albicans, both of which can be found on plant tissues. For most other yeasts found in the phyllosphere, little is known about their ecology and functions. Here, we explore the diversity, dynamics, interactions, and genomics of yeasts associated with plant leaves and how tools and approaches developed for model yeasts can be adopted to disentangle the ecology and natural functions of phyllosphere yeasts. A first genomic survey exemplifies that we have only scratched the surface of the largely unexplored functional potential of phyllosphere yeasts.
Collapse
Affiliation(s)
- Linda Gouka
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| |
Collapse
|
42
|
StcU-2 Gene Mutation via CRISPR/Cas9 Leads to Misregulation of Spore-Cyst Formation in Ascosphaera apis. Microorganisms 2022; 10:microorganisms10102088. [PMID: 36296364 PMCID: PMC9607276 DOI: 10.3390/microorganisms10102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Ascosphaera apis is the causative agent of honey bee chalkbrood disease, and spores are the only known source of infections. Interference with sporulation is therefore a promising way to manage A. apis. The versicolorin reductase gene (StcU-2) is a ketoreductase protein related to sporulation and melanin biosynthesis. To study the StcU-2 gene in ascospore production of A. apis, CRISPR/Cas9 was used, and eight hygromycin B antibiotic-resistant transformants incorporating enhanced green fluorescent protein (EGFP) were made and analyzed. PCR amplification, gel electrophoresis, and sequence analysis were used for target gene editing analysis and verification. The CRISPR/Cas9 editing successfully knocked out the StcU-2 gene in A. apis. StcU-2 mutants had shown albino and non-functional spore-cyst development and lost effective sporulation. In conclusion, editing of StcU-2 gene has shown direct relation with sporulation and melanin biosynthesis of A. apis; this effective sporulation reduction would reduce the spread and pathogenicity of A. apis to managed honey bee. To the best of our knowledge, this is the first time CRISPR/Cas9-mediated gene editing has been efficiently performed in A. apis, a fungal honey bee brood pathogen, which offers a comprehensive set of procedural references that contributes to A. apis gene function studies and consequent control of chalkbrood disease.
Collapse
|
43
|
Yang X, Tai Y, Ma Y, Xu Z, Hao J, Han D, Li J, Deng X. Cecum microbiome and metabolism characteristics of Silky Fowl and White Leghorn chicken in late laying stages. Front Microbiol 2022; 13:984654. [PMID: 36338096 PMCID: PMC9633115 DOI: 10.3389/fmicb.2022.984654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Cecal microflora plays a key role in the production performance and immune function of chickens. White Leghorn (WL) is a well-known commercial layer line chicken with high egg production rate. In contrast, Silky Fowl (SF), a Chinese native chicken variety, has a low egg production rate, but good immune performance. This study analyzed the composition of cecal microbiota, metabolism, and gene expression in intestinal tissue of these varieties and the correlations among them. Significant differences were observed in the cecal microbes: Bacteroides was significantly enriched in WL, whereas Veillonellaceae and Parabacteroides were significantly enriched in SF. Carbohydrate biosynthesis and metabolism pathways were significantly upregulated in WL cecum, which might provide more energy to the host, leading to persistently high levels of egg production. The higher Parabacteroides abundance in SF increased volicitin content, enhanced α-linolenic acid metabolism, and significantly negatively correlated with metabolites of propanoate metabolism and carbohydrate metabolism. Genes related to lipid metabolism, immunity, and melanogenesis were significantly upregulated in the SF cecum, regulating lipid metabolism, and participating in the immune response, while genes related to glucose metabolism and bile acid metabolism were expressed at higher levels in WL, benefiting energy support. This study provided a mechanism for intestinal microorganisms and metabolic pathways to regulate chicken egg-laying performance and immunity.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yurong Tai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuhao Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zihan Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaqi Hao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junying Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuemei Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Smith DFQ, Mudrak NJ, Zamith-Miranda D, Honorato L, Nimrichter L, Chrissian C, Smith B, Gerfen G, Stark RE, Nosanchuk JD, Casadevall A. Melanization of Candida auris Is Associated with Alteration of Extracellular pH. J Fungi (Basel) 2022; 8:1068. [PMID: 36294632 PMCID: PMC9604884 DOI: 10.3390/jof8101068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Candida auris is a recently emerged global fungal pathogen, which causes life-threatening infections, often in healthcare settings. C. auris infections are worrisome because the fungus is often resistant to multiple antifungal drug classes. Furthermore, C. auris forms durable and difficult to remove biofilms. Due to the relatively recent, resilient, and resistant nature of C. auris, we investigated whether it produces the common fungal virulence factor melanin. Melanin is a black-brown pigment typically produced following enzymatic oxidation of aromatic precursors, which promotes fungal virulence through oxidative stress resistance, mammalian immune response evasion, and antifungal peptide and pharmaceutical inactivation. We found that certain strains of C. auris oxidized L-DOPA and catecholamines into melanin. Melanization occurred extracellularly in a process mediated by alkalinization of the extracellular environment, resulting in granule-like structures that adhere to the fungus' external surface. C. auris had relatively high cell surface hydrophobicity, but there was no correlation between hydrophobicity and melanization. Melanin protected the fungus from oxidative damage, but we did not observe a protective role during infection of macrophages or Galleria mellonella larvae. In summary, C. auris alkalinizes the extracellular medium, which promotes the non-enzymatic oxidation of L-DOPA to melanin that attaches to its surface, thus illustrating a novel mechanism for fungal melanization.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nathan J. Mudrak
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Krieger School of Arts & Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Christine Chrissian
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Barbara Smith
- Institute for Basic Biomedical Sciences Microscope Facility, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gary Gerfen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Ruth E. Stark
- Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, The City University of New York, New York, NY 10031, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
45
|
Pathogenesis of Fungal Infections in the Central Nervous System: Host and Pathogen Factors in Neurotropism. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Radotra B, Challa S. Pathogenesis and Pathology of COVID-Associated Mucormycosis: What Is New and Why. CURRENT FUNGAL INFECTION REPORTS 2022; 16:206-220. [PMID: 36193101 PMCID: PMC9520103 DOI: 10.1007/s12281-022-00443-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 12/02/2022]
Abstract
Purpose of Review There is global increase in the incidence of mucormycosis. However, a sudden increase in the COVID-associated mucormycosis (CAM) was noted, particularly in India, during the second wave of the COVID-19 pandemic. The interplay of factors involved in the pathogenesis is complex. In this review, the influence of pre-existing disease, exaggerated risk factors, altered milieu due to COVID-19 itself and the consequences of its treatment on the host pathogen interactions leading to the disease and morphology of the fungus will be highlighted. Recent Findings Hyperglycemia, acidosis, available free iron, lowered host defenses, and the fungal virulence factors promote the growth of Mucorales. There is a high background prevalence of diabetes mellitus (DM) in India. Uncontrolled or undiagnosed DM, COVID-19 itself, and inappropriate administration of corticosteroids in high doses and for prolonged periods result in hyperglycemia. Diabetic ketoacidosis (DKA) and metabolic acidosis due to hypoxia or renal failure contribute to acidic pH and dissociate bound iron from serum proteins. The host defenses are lowered due to COVID-19-induced immune dysregulation, hyperglycemia itself, and administration of corticosteroids and immune suppressants for the treatment of COVID-19. The altered metabolic milieu in the local microenvironment of nose and paranasal sinuses (PNS) promotes specific interaction of glucose-regulated protein-78 (GRP-78) on host cells with spore coat protein homologue (CotH 3) on Mucorales resulting in rhino-orbito-cerebral mucormycosis (ROCM) as the predominant clinical form in CAM. The pathology is extensive soft tissue involvement with angioinvasion and perineural invasion. Melanized hyphae and sporangia were seen on histopathology, which is unique to CAM. While many factors favor the growth of Mucorales in CAM, hyperglycemia, hyperferritinemia, and administration of hyperbaric oxygen result in reactive oxygen species (ROS) and inadequate humidification results in dehydration. Melanization is possibly the adaptive and protective mechanism of Mucorales to escape the unfavorable conditions due to the treatment of COVID-19. Summary High background prevalence of DM, inappropriate administration of corticosteroids and immune dysregulation due to COVID-19 favor the growth of Mucorales in CAM. Melanization of Mucorales hyphae and sporangia on histopathology probably represent adaptive and protective mechanism due to the treatment with hyperbaric oxygen with inadequate humidification as well as the metabolic alterations.
Collapse
Affiliation(s)
- Bishan Radotra
- Department of Histopathology, Group “C” Departments, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Sundaram Challa
- Department of Pathology and Lab Medicine, Basavatarakam Indo-American Cancer Hospital & Research Institute, Hyderabad, Telangana State 50034 India
| |
Collapse
|
47
|
Yu L, Lyu C, Tang Y, Lan G, Li Z, She X, He Z. Anthracnose: A New Leaf Disease on Radermachera sinica (China Doll) in China. PLANT DISEASE 2022; 106:2304-2309. [PMID: 35224987 DOI: 10.1094/pdis-01-22-0072-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Radermachera sinica (China doll) is a popular evergreen horticultural crop worldwide. However, little information has been provided to describe the anthracnose disease of R. sinica. In 2018, symptoms suspected of leaf anthracnose were observed on R. sinica in gardens and commercial greenhouses in Guangzhou, China. Lesions on diseased leaves showed thinned and grayish white centers, dark-brown to black borders, and raised black spots. Twenty-seven single-conidia isolates were obtained from symptomatic leaf lesions. Based on morphological characteristics and multilocus phylogenetic analysis, 19 isolates were identified as Colletotrichum siamense and six and two isolates were identified as C. fructicola and C. karstii, respectively. An in vivo pathogenicity test was conducted on leaves of R. sinica plants, and it was discovered that C. siamense was more aggressive under wounded conditions than under unwounded conditions, and caused symptomatic necrotic lesions on the leaf. Afterward, the same pathogen was reisolated from lesions of inoculated leaves to fulfill Koch's postulates. However, neither C. fructicola nor C. karstii caused visible lesions on leaves of R. sinica under wounded or unwounded conditions, indicating that they may be asymptomatic endophytes or opportunistic pathogens on R. sinica. To our knowledge, this study is the first report of Colletotrichum spp. associated with anthracnose disease on R. sinica in China.
Collapse
Affiliation(s)
- Lin Yu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Chuang Lyu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yafei Tang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guobing Lan
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenggang Li
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoman She
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zifu He
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| |
Collapse
|
48
|
Kipouros I, Stańczak A, Ginsbach JW, Andrikopoulos PC, Rulíšek L, Solomon EI. Elucidation of the tyrosinase/O 2/monophenol ternary intermediate that dictates the monooxygenation mechanism in melanin biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2205619119. [PMID: 35939688 PMCID: PMC9389030 DOI: 10.1073/pnas.2205619119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Melanins are highly conjugated biopolymer pigments that provide photoprotection in a wide array of organisms, from bacteria to humans. The rate-limiting step in melanin biosynthesis, which is the ortho-hydroxylation of the amino acid L-tyrosine to L-DOPA, is catalyzed by the ubiquitous enzyme tyrosinase (Ty). Ty contains a coupled binuclear copper active site that binds O2 to form a μ:η2:η2-peroxide dicopper(II) intermediate (oxy-Ty), capable of performing the regioselective monooxygenation of para-substituted monophenols to catechols. The mechanism of this critical monooxygenation reaction remains poorly understood despite extensive efforts. In this study, we have employed a combination of spectroscopic, kinetic, and computational methods to trap and characterize the elusive catalytic ternary intermediate (Ty/O2/monophenol) under single-turnover conditions and obtain molecular-level mechanistic insights into its monooxygenation reactivity. Our experimental results, coupled with quantum-mechanics/molecular-mechanics calculations, reveal that the monophenol substrate docks in the active-site pocket of oxy-Ty fully protonated, without coordination to a copper or cleavage of the μ:η2:η2-peroxide O-O bond. Formation of this ternary intermediate involves the displacement of active-site water molecules by the substrate and replacement of their H bonds to the μ:η2:η2-peroxide by a single H bond from the substrate hydroxyl group. This H-bonding interaction in the ternary intermediate enables the unprecedented monooxygenation mechanism, where the μ-η2:η2-peroxide O-O bond is cleaved to accept the phenolic proton, followed by substrate phenolate coordination to a copper site concomitant with its aromatic ortho-hydroxylation by the nonprotonated μ-oxo. This study provides insights into O2 activation and reactivity by coupled binuclear copper active sites with fundamental implications in biocatalysis.
Collapse
Affiliation(s)
- Ioannis Kipouros
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Agnieszka Stańczak
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
- Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Prokopis C. Andrikopoulos
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025
| |
Collapse
|
49
|
Ma Z, Huang Y, Zhang Z, Liu X, Xuan Y, Liu B, Gao Z. Comparative genomic analysis reveals cellulase plays an important role in the pathogenicity of Setosphaeria turcica f. sp. zeae. Front Microbiol 2022; 13:925355. [PMID: 35935234 PMCID: PMC9355644 DOI: 10.3389/fmicb.2022.925355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Setosphaeria turcica f. sp. zeae and S. turcica f. sp. sorghi, the two formae speciales of S. turcica, cause northern leaf blight disease of corn and sorghum, respectively, and often cause serious economic losses. They have obvious physiological differentiation and show complete host specificity. Host specificity is often closely related to pathogen virulence factors, including secreted protein effectors and secondary metabolites. Genomic sequencing can provide more information for understanding the virulence mechanisms of pathogens. However, the complete genomic sequence of S. turcica f. sp. sorghi has not yet been reported, and no comparative genomic information is available for the two formae speciales. In this study, S. turcica f. sp. zeae was predicted to have fewer secreted proteins, pathogen-host interaction (PHI) genes and carbohydrate-active enzymes (CAZys) than S. turcica f. sp. sorghi. Fifteen and 20 polyketide synthase (PKS) genes were identified in S. turcica f. sp. zeae and S. turcica f. sp. sorghi, respectively, which maintained high homology. There were eight functionally annotated effector protein-encoding genes specifically in S. turcica f. sp. zeae, among which the encoding gene StCEL2 of endo-1, 4-β-D-glucanase, an important component of cellulase, was significantly up-regulated during the interaction process. Finally, gluconolactone inhibited cellulase activity and decreased infection rate and pathogenicity, which indicates that cellulase is essential for maintaining virulence. These findings demonstrate that cellulase plays an important role in the pathogenicity of S. turcica f. sp. zeae. Our results also provide a theoretical basis for future research on the molecular mechanisms underlying the pathogenicity of the two formae speciales and for identifying any associated genes.
Collapse
Affiliation(s)
- Zhoujie Ma
- Institute of Plant Immunology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yufei Huang
- Institute of Plant Immunology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhaoran Zhang
- Institute of Plant Immunology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiaodi Liu
- Institute of Plant Immunology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- Institute of Plant Immunology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Bo Liu
- College of Life Sciences, Yan’an University, Yan’an, China
- *Correspondence: Bo Liu,
| | - Zenggui Gao
- Institute of Plant Immunology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Zenggui Gao,
| |
Collapse
|
50
|
Kassaza K, Wasswa F, Nielsen K, Bazira J. Cryptococcus neoformans Genotypic Diversity and Disease Outcome among HIV Patients in Africa. J Fungi (Basel) 2022; 8:734. [PMID: 35887489 PMCID: PMC9325144 DOI: 10.3390/jof8070734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cryptococcal meningoencephalitis, a disease with poor patient outcomes, remains the most prevalent invasive fungal infection worldwide, accounting for approximately 180,000 deaths each year. In several areas of sub-Saharan Africa with the highest HIV prevalence, cryptococcal meningitis is the leading cause of community-acquired meningitis, with a high mortality among HIV-infected individuals. Recent studies show that patient disease outcomes are impacted by the genetics of the infecting isolate. Yet, there is still limited knowledge of how these genotypic variations contribute to clinical disease outcome. Further, it is unclear how the genetic heterogeneity of C. neoformans and the extensive phenotypic variation observed between and within isolates affects infection and disease. In this review, we discuss current knowledge of how various genotypes impact disease progression and patient outcome in HIV-positive populations in sub-Saharan African, a setting with a high burden of cryptococcosis.
Collapse
Affiliation(s)
- Kennedy Kassaza
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Fredrickson Wasswa
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joel Bazira
- Department of Microbiology and Parasitology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda; (K.K.); (F.W.)
| |
Collapse
|