1
|
Resnik N, Tratnjek L, Kreft ME, Kisovec M, Aden S, Bedina Zavec A, Anderluh G, Podobnik M, Veranič P. Cytotoxic Activity of LLO Y406A Is Targeted to the Plasma Membrane of Cancer Urothelial Cells. Int J Mol Sci 2021; 22:ijms22073305. [PMID: 33805017 PMCID: PMC8037347 DOI: 10.3390/ijms22073305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Identification of novel agents for bladder cancer treatment is highly desirable due to the high incidence of tumor recurrence and the risk of progression to muscle-invasive disease. The key feature of the cholesterol-dependent toxin listeriolysin O mutant (LLO Y406A) is its preferential activity at pH 5.7, which could be exploited either directly for selective targeting of cancer cells or the release of accumulated therapeutics from acidic endosomes. Therefore, our goal was to compare the cytotoxic effect of LLO Y406A on cancer cells (RT4) and normal urothelial cells (NPU), and to identify which cell membranes are the primary target of LLO Y406A by viability assays, life-cell imaging, fluorescence, and electron microscopy. LLO Y406A decreased viability, altered cell morphology, provoked membrane blebbing, and induced apoptosis in RT4 cells, while it did not affect NPU cells. LLO Y406A did not cause endosomal escape in RT4 cells, while the plasma membrane of RT4 cells was revealed as the primary target of LLO Y406A. It has been concluded that LLO Y406A has the ability to selectively eliminate cancer urothelial cells through pore-forming activity at the plasma membrane, without cytotoxic effects on normal urothelial cells. This promising selective activity merits further testing as an anti-cancer agent.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Saša Aden
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (S.A.); (A.B.Z.); (G.A.); (M.P.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.R.); (L.T.); (M.E.K.)
- Correspondence: ; Tel.: +386-1-543-7682
| |
Collapse
|
2
|
The Production of Listeriolysin O and Subsequent Intracellular Infections by Listeria monocytogenes Are Regulated by Exogenous Short Chain Fatty Acid Mixtures. Toxins (Basel) 2020; 12:toxins12040218. [PMID: 32235519 PMCID: PMC7232371 DOI: 10.3390/toxins12040218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen capable of secreting listeriolysin O (LLO), a pore-forming toxin encoded by the hly gene. While the functions of LLO have been studied extensively, how the production of LLO is modulated by the intestinal environment, devoid of oxygen and enriched in short chain fatty acids (SCFAs), is not completely understood. Using L. monocytogenes strain 10403s, we found that hly transcription was moderately decreased by aerobic SCFA exposures but significantly increased by anaerobic SCFA exposures. Moreover, aerobic, but not anaerobic, exposure to low levels of SCFAs resulted in a significantly higher LLO activity. These results demonstrated that transcriptional and post-transcriptional regulations of LLO production were separately modulated by SCFAs and were responsive to oxygen levels. Examining isogenic mutants revealed that PrfA and SigB play a role in regulating LLO production in response to SCFAs. Effects of SCFAs were also present in the cardiotropic strain 07PF0776 but distinctly different from those in strain 10403s. For both strains, prior exposures to SCFAs altered intracellular infections in Caco-2 and RAW264.7 cells and the plaque sizes in L fibroblasts, a result confirming the ability of L. monocytogenes to adapt to SCFAs in ways that impact its subsequent infection outcomes.
Collapse
|
3
|
Coelho C, Brown L, Maryam M, Vij R, Smith DFQ, Burnet MC, Kyle JE, Heyman HM, Ramirez J, Prados-Rosales R, Lauvau G, Nakayasu ES, Brady NR, Hamacher-Brady A, Coppens I, Casadevall A. Listeria monocytogenes virulence factors, including listeriolysin O, are secreted in biologically active extracellular vesicles. J Biol Chem 2019; 294:1202-1217. [PMID: 30504226 PMCID: PMC6349127 DOI: 10.1074/jbc.ra118.006472] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/28/2018] [Indexed: 01/25/2023] Open
Abstract
Outer membrane vesicles produced by Gram-negative bacteria have been studied for half a century but the possibility that Gram-positive bacteria secrete extracellular vesicles (EVs) was not pursued until recently due to the assumption that the thick peptidoglycan cell wall would prevent their release to the environment. However, following their discovery in fungi, which also have cell walls, EVs have now been described for a variety of Gram-positive bacteria. EVs purified from Gram-positive bacteria are implicated in virulence, toxin release, and transference to host cells, eliciting immune responses, and spread of antibiotic resistance. Listeria monocytogenes is a Gram-positive bacterium that causes listeriosis. Here we report that L. monocytogenes produces EVs with diameters ranging from 20 to 200 nm, containing the pore-forming toxin listeriolysin O (LLO) and phosphatidylinositol-specific phospholipase C (PI-PLC). Cell-free EV preparations were toxic to mammalian cells, the murine macrophage cell line J774.16, in a LLO-dependent manner, evidencing EV biological activity. The deletion of plcA increased EV toxicity, suggesting PI-PLC reduced LLO activity. Using simultaneous metabolite, protein, and lipid extraction (MPLEx) multiomics we characterized protein, lipid, and metabolite composition of bacterial cells and secreted EVs and found that EVs carry the majority of listerial virulence proteins. Using immunogold EM we detected LLO at several organelles within infected human epithelial cells and with high-resolution fluorescence imaging we show that dynamic lipid structures are released from L. monocytogenes during infection. Our findings demonstrate that L. monocytogenes uses EVs for toxin release and implicate these structures in mammalian cytotoxicity.
Collapse
Affiliation(s)
- Carolina Coelho
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, , To whom correspondence may be addressed:
Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205. E-mail:
| | - Lisa Brown
- the Department of Microbiology and Immunology and
| | - Maria Maryam
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Raghav Vij
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Daniel F. Q. Smith
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Meagan C. Burnet
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Jennifer E. Kyle
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Heino M. Heyman
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Jasmine Ramirez
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | - Gregoire Lauvau
- the Department of Microbiology and Immunology and ,Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Ernesto S. Nakayasu
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Nathan R. Brady
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Anne Hamacher-Brady
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Isabelle Coppens
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Arturo Casadevall
- From the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, ,the Department of Microbiology and Immunology and ,Division of Infectious Diseases of the Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, , Supported by National Institutes of Health Grants 5R01HL059842, 5R01AI033774, 5R37AI033142, and 5R01AI052733. To whom correspondence may be addressed:
Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Baltimore, MD 21205. E-mail:
| |
Collapse
|
4
|
Lam JGT, Song C, Seveau S. High-throughput Measurement of Plasma Membrane Resealing Efficiency in Mammalian Cells. J Vis Exp 2019. [PMID: 30663635 DOI: 10.3791/58351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In their physiological environment, mammalian cells are often subjected to mechanical and biochemical stresses that result in plasma membrane damage. In response to these damages, complex molecular machineries rapidly reseal the plasma membrane to restore its barrier function and maintain cell survival. Despite 60 years of research in this field, we still lack a thorough understanding of the cell resealing machinery. With the goal of identifying cellular components that control plasma membrane resealing or drugs that can improve resealing, we have developed a fluorescence-based high-throughput assay that measures the plasma membrane resealing efficiency in mammalian cells cultured in microplates. As a model system for plasma membrane damage, cells are exposed to the bacterial pore-forming toxin listeriolysin O (LLO), which forms large 30-50 nm diameter proteinaceous pores in cholesterol-containing membranes. The use of a temperature-controlled multi-mode microplate reader allows for rapid and sensitive spectrofluorometric measurements in combination with brightfield and fluorescence microscopy imaging of living cells. Kinetic analysis of the fluorescence intensity emitted by a membrane impermeant nucleic acid-binding fluorochrome reflects the extent of membrane wounding and resealing at the cell population level, allowing for the calculation of the cell resealing efficiency. Fluorescence microscopy imaging allows for the enumeration of cells, which constitutively express a fluorescent chimera of the nuclear protein histone 2B, in each well of the microplate to account for potential variations in their number and allows for eventual identification of distinct cell populations. This high-throughput assay is a powerful tool expected to expand our understanding of membrane repair mechanisms via screening for host genes or exogenously added compounds that control plasma membrane resealing.
Collapse
Affiliation(s)
- Jonathan G T Lam
- Department of Microbial Infection and Immunity, The Ohio State University; Department of Microbiology, The Ohio State University; Infectious Diseases Institute, The Ohio State University
| | - Chi Song
- Division of Biostatistics, College of Public Health, The Ohio State University
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University; Department of Microbiology, The Ohio State University; Infectious Diseases Institute, The Ohio State University;
| |
Collapse
|
5
|
Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017; 33:429-455. [PMID: 28275881 PMCID: PMC7088210 DOI: 10.1007/s10565-017-9386-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
6
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
7
|
Podobnik M, Marchioretto M, Zanetti M, Bavdek A, Kisovec M, Cajnko MM, Lunelli L, Dalla Serra M, Anderluh G. Plasticity of listeriolysin O pores and its regulation by pH and unique histidine [corrected]. Sci Rep 2015; 5:9623. [PMID: 25854672 PMCID: PMC5381700 DOI: 10.1038/srep09623] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/12/2015] [Indexed: 12/12/2022] Open
Abstract
Pore formation of cellular membranes is an ancient mechanism of bacterial pathogenesis that allows efficient damaging of target cells. Several mechanisms have been described, however, relatively little is known about the assembly and properties of pores. Listeriolysin O (LLO) is a pH-regulated cholesterol-dependent cytolysin from the intracellular pathogen Listeria monocytogenes, which forms transmembrane β-barrel pores. Here we report that the assembly of LLO pores is rapid and efficient irrespective of pH. While pore diameters at the membrane surface are comparable at either pH 5.5 or 7.4, the distribution of pore conductances is significantly pH-dependent. This is directed by the unique residue H311, which is also important for the conformational stability of the LLO monomer and the rate of pore formation. The functional pores exhibit variations in height profiles and can reconfigure significantly by merging to other full pores or arcs. Our results indicate significant plasticity of large β-barrel pores, controlled by environmental cues like pH.
Collapse
Affiliation(s)
- Marjetka Podobnik
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Marta Marchioretto
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche &Fondazione Bruno Kessler, via alla Cascata 56/C, 38123 Trento, Italy
| | - Manuela Zanetti
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche &Fondazione Bruno Kessler, via alla Cascata 56/C, 38123 Trento, Italy
| | - Andrej Bavdek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Miša Mojca Cajnko
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Lorenzo Lunelli
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche &Fondazione Bruno Kessler, via alla Cascata 56/C, 38123 Trento, Italy
| | - Mauro Dalla Serra
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche &Fondazione Bruno Kessler, via alla Cascata 56/C, 38123 Trento, Italy
| | - Gregor Anderluh
- 1] Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia [2] Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
9
|
Seveau S. Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Subcell Biochem 2014; 80:161-95. [PMID: 24798012 DOI: 10.1007/978-94-017-8881-6_9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that are produced by numerous Gram-positive bacterial pathogens. These toxins are released in the extracellular environment as water-soluble monomers or dimers that bind to cholesterol-rich membranes and assemble into large pore complexes. Depending upon their concentration, the nature of the host cell and membrane (cytoplasmic or intracellular) they target, the CDCs can elicit many different cellular responses. Among the CDCs, listeriolysin O (LLO), which is a major virulence factor of the facultative intracellular pathogen Listeria monocytogenes, is involved in several stages of the intracellular lifecycle of the bacterium and displays unique characteristics. It has long been known that following L. monocytogenes internalization into host cells, LLO disrupts the internalization vacuole, enabling the bacterium to replicate into the host cell cytosol. LLO is then used by cytosolic bacteria to spread from cell to cell, avoiding bacterial exposure to the extracellular environment. Although LLO is continuously produced during the intracellular lifecycle of L. monocytogenes, several processes limit its toxicity to ensure the survival of infected cells. It was previously thought that LLO activity was limited to mediating vacuolar escape during bacterial entry and cell to cell spreading. This concept has been challenged by compelling evidence suggesting that LLO secreted by extracellular L. monocytogenes perforates the host cell plasma membrane, triggering important host cell responses. This chapter provides an overview of the well-established intracellular activity of LLO and the multiple roles attributed to LLO secreted by extracellular L. monocytogenes.
Collapse
Affiliation(s)
- Stephanie Seveau
- Department of Microbiology, Department of Microbial Infection and Immunity, The Ohio State University, 484 West, 12th Avenue, Columbus, OH, 43210-1292, USA,
| |
Collapse
|
10
|
Köster S, Hudel M, Chakraborty T, Yildiz Ö. Crystallization and X-ray crystallographic analysis of the cholesterol-dependent cytolysin listeriolysin O from Listeria monocytogenes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1212-5. [PMID: 24192351 PMCID: PMC3818035 DOI: 10.1107/s1744309113025761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/17/2013] [Indexed: 01/23/2023]
Abstract
The secreted pore-forming toxin listeriolysin O (LLO) from the intracellular pathogen Listeria monocytogenes is a member of the family of cholesterol-dependent cytolysins (CDC) with broad properties in pathogenesis. Its role as a virulence factor is enigmatic: it disrupts membranes and acts as an inductor of both pro- and anti-inflammatory responses in infected cells. In addition, LLO is also a potent target for immunogenicity during infection. Natively secreted LLO from a recombinant L. innocua strain was crystallized in its water-soluble monomeric form. The crystals obtained belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 26.7, b = 85.1, c = 230.0 Å, and diffracted to beyond 2.2 Å resolution. The Matthews coefficient and the solvent content were estimated to be 2.4 Å(3) Da(-1) and 49.2%, respectively. The structure with one molecule in the asymmetric unit was solved using Phaser employing the structure of the previously characterized CDC toxin perfringolysin O as a search model.
Collapse
Affiliation(s)
- Stefan Köster
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, 550 First Avenue, Smilow 907, New York, NY 10016, USA
| | - Martina Hudel
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Nipič D, Podlesek Z, Budič M, črnigoj M, Žgur-Bertok D. Escherichia coli Uropathogenic-Specific Protein, Usp, Is a Bacteriocin-Like Genotoxin. J Infect Dis 2013; 208:1545-52. [DOI: 10.1093/infdis/jit480] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Lai CH, Lai CK, Lin YJ, Hung CL, Chu CH, Feng CL, Chang CS, Su HL. Characterization of putative cholesterol recognition/interaction amino acid consensus-like motif of Campylobacter jejuni cytolethal distending toxin C. PLoS One 2013; 8:e66202. [PMID: 23762481 PMCID: PMC3675143 DOI: 10.1371/journal.pone.0066202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/02/2013] [Indexed: 12/17/2022] Open
Abstract
Cytolethal distending toxin (CDT) produced by Campylobacter jejuni comprises a heterotrimeric complex formed by CdtA, CdtB, and CdtC. Among these toxin subunits, CdtA and CdtC function as essential proteins that mediate toxin binding to cytoplasmic membranes followed by delivery of CdtB into the nucleus. The binding of CdtA/CdtC to the cell surface is mediated by cholesterol, a major component in lipid rafts. Although the putative cholesterol recognition/interaction amino acid consensus (CRAC) domain of CDT has been reported from several bacterial pathogens, the protein regions contributing to CDT binding to cholesterol in C. jejuni remain unclear. Here, we selected a potential CRAC-like region present in the CdtC from C. jejuni for analysis. Molecular modeling showed that the predicted functional domain had the shape of a hydrophobic groove, facilitating cholesterol localization to this domain. Mutation of a tyrosine residue in the CRAC-like region decreased direct binding of CdtC to cholesterol rather than toxin intermolecular interactions and led to impaired CDT intoxication. These results provide a molecular link between C. jejuni CdtC and membrane-lipid rafts through the CRAC-like region, which contributes to toxin recognition and interaction with cholesterol.
Collapse
Affiliation(s)
- Chih-Ho Lai
- Department of Microbiology, School of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- * E-mail: (CHL); (HLS)
| | - Cheng-Kuo Lai
- Department of Microbiology, School of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Chia-Han Chu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Lung Feng
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Shuo Chang
- Department of Microbiology, School of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
- * E-mail: (CHL); (HLS)
| |
Collapse
|
13
|
Lai CH, Hsu YM, Wang HJ, Wang WC. Manipulation of host cholesterol by Helicobacter pylori for their beneficial ecological niche. Biomedicine (Taipei) 2013. [DOI: 10.1016/j.biomed.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
14
|
Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect Immun 2010; 78:4101-9. [PMID: 20696826 DOI: 10.1128/iai.00523-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A hallmark of enteroaggregative Escherichia coli (EAEC) infection is a formation of biofilm, which comprises a mucus layer with immersed bacteria in the intestines of patients. While studying the mucinolytic activity of Pic in an in vivo system, rat ileal loops, we surprisingly found that EAEC induced hypersecretion of mucus, which was accompanied by an increase in the number of mucus-containing goblet cells. Interestingly, an isogenic pic mutant (EAEC Δpic) was unable to cause this mucus hypersecretion. Furthermore, purified Pic was also able to induce intestinal mucus hypersecretion, and this effect was abolished when Pic was heat denatured. Site-directed mutagenesis of the serine protease catalytic residue of Pic showed that, unlike the mucinolytic activity, secretagogue activity did not depend on this catalytic serine protease motif. Other pathogens harboring the pic gene, such as Shigella flexneri and uropathogenic E. coli (UPEC), also showed results similar to those for EAEC, and construction of isogenic pic mutants of S. flexneri and UPEC confirmed this secretagogue activity. Thus, Pic mucinase is responsible for one of the pathophysiologic features of the diarrhea mediated by EAEC and the mucoid diarrhea induced by S. flexneri.
Collapse
|
15
|
Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 2010; 102:391-407. [PMID: 20377525 PMCID: PMC7161784 DOI: 10.1042/bc20090138] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The lipid raft hypothesis proposed that these microdomains are small (10-200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.
Collapse
Affiliation(s)
- Flávia Sarmento Vieira
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
16
|
Two atypical enteropathogenic Escherichia coli strains induce the production of secreted and membrane-bound mucins to benefit their own growth at the apical surface of human mucin-secreting intestinal HT29-MTX cells. Infect Immun 2010; 78:927-38. [PMID: 20065027 DOI: 10.1128/iai.01115-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In rabbit ligated ileal loops, two atypical enteropathogenic Escherichia coli (aEPEC) strains, 3991-1 and 0421-1, intimately associated with the cell membrane, forming the characteristic EPEC attachment and effacement lesion of the brush border, induced a mucous hypersecretion, whereas typical EPEC (tEPEC) strain E2348/69 did not. Using cultured human mucin-secreting intestinal HT29-MTX cells, we demonstrate that apically aEPEC infection is followed by increased production of secreted MUC2 and MUC5AC mucins and membrane-bound MUC3 and MUC4 mucins. The transcription of the MUC5AC and MUC4 genes was transiently upregulated after aEPEC infection. We provide evidence that the apically adhering aEPEC cells exploit the mucins' increased production since they grew in the presence of membrane-bound mucins, whereas tEPEC did not. The data described herein report a putative new virulence phenomenon in aEPEC.
Collapse
|
17
|
Claudins and Renal Magnesium Handling. CURRENT TOPICS IN MEMBRANES 2010. [DOI: 10.1016/s1063-5823(10)65007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
18
|
Barbuddhe S, Chakraborty T. Biotechnological applications of Listeria's sophisticated infection strategies. Microb Biotechnol 2008; 1:361-72. [PMID: 21261856 PMCID: PMC3815243 DOI: 10.1111/j.1751-7915.2008.00037.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is a Gram‐positive bacterium that is able to survive both in the environment and to invade and multiply within eukaryotic cells. Currently L. monocytogenes represents one of the most well‐studied and characterized microorganisms in bacterial pathogenesis. A hallmark of L. monocytogenes virulence is its ability to breach bodily barriers such as the intestinal epithelium, the blood–brain barrier as well as the placental barrier to cause severe systemic disease. Curiously, this theme is repeated at the level of the interaction between the individual cell and the bacterium where its virulence factors contribute to the ability of the bacteria to breach cellular barriers. L. monocytogenes is a model to study metabolic requirements of bacteria growing in an intracellular environment, modulation of signalling pathways in the infected cell and interactions with cellular defences involving innate and adaptive immunity. Technical advances such as the creation of LISTERIA‐susceptible mouse strains, had added interest in the study of the natural pathogenesis of the disease via oral infection. The use of attenuated strains of L. monocytogenes as vaccines has gained considerable interest because they can be used to express heterologous antigens as well as to somatically deliver recombinant DNA to eukaryotic cells. A novel vaccine concept, the use of non‐viable but metabolically active bacteria to induced immunoprotective responses, has been developed with L. monocytogenes. In this mini‐review, we review the strategies used by L. monocytogenes to subvert the cellular functions at different stages of the infection cycle in the host and examine how these properties are being exploited in biotechnological and clinical applications.
Collapse
Affiliation(s)
- Sukhadeo Barbuddhe
- Institute for Medical Microbiology, Justus-Liebig University, Frankfurter strasse 107, D-35392 Giessen, Germany
| | | |
Collapse
|
19
|
Föller M, Shumilina E, Lam R, Mohamed W, Kasinathan R, Huber S, Chakraborty T, Lang F. Induction of suicidal erythrocyte death by listeriolysin from Listeria monocytogenes. Cell Physiol Biochem 2007; 20:1051-60. [PMID: 17975307 DOI: 10.1159/000110715] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Listeriolysin, the secreted cytolysin of the facultative intracellular bacterium Listeria monocytogenes, is its major virulence factor. Previously, non-lytic concentrations of listeriolysin were shown to induce Ca2+-permeable nonselective cation channels in human embryonic kidney cells. In erythrocytes, Ca2+ entry is followed by activation of K+ channels resulting in K+-exit as well as by membrane scrambling resulting in phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. Phosphatidylserine exposure is a key event of eryptosis, the suicidal death of erythrocytes. The present study utilized patch-clamp technique, Fluo3-fluorescence, and annexin V-binding in FACS analysis to determine the effect of listeriolysin on cell membrane conductance, cytosolic free Ca2+ concentration, and phosphatidylserine exposure, respectively. Within 30 minutes, exposure of human peripheral blood erythrocytes to low concentrations of listeriolysin (which were non-hemolytic for the majority of cells) induced a Ca2+-permeable cation conductance in the erythrocyte cell membrane, increased cytosolic Ca2+ concentration, and triggered annexin V-binding. Increase of extracellular K+ concentration blunted, but did not prevent, listeriolysin-induced annexin V-binding. In conclusion, listeriolysin triggers suicidal death of erythrocytes, an effect at least partially due to depletion of intracellular K+. Listeriolysin induced suicidal erythrocyte death could well contribute to the pathophysiology of L. monocytogenes infection.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, Eberhard Karls University, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Listeriolysin O (LLO) is a pore-forming toxin of the cholesterol-dependent cytolysin family and a primary virulence factor of the gram-positive, facultative intracellular pathogen Listeria monocytogenes. During the intracellular life cycle of L. monocytogenes, LLO is largely responsible for mediating rupture of the phagosomal membrane, thereby allowing the bacterium access to the host cytosol, its replicative niche. In the host cytosol, LLO activity is controlled at numerous levels to prevent perforation of the plasma membrane and loss of the intracellular environment. In this review, we focus primarily on the role of LLO in phagosomal escape and the multiple regulatory mechanisms that control LLO activity in the host cytosol.
Collapse
Affiliation(s)
- Pamela Schnupf
- Graduate Group in Microbiology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
21
|
Seveau S, Pizarro-Cerda J, Cossart P. Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion. Microbes Infect 2007; 9:1167-75. [PMID: 17761447 DOI: 10.1016/j.micinf.2007.05.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The facultative intracellular bacterial pathogen Listeria monocytogenes has evolved multiple strategies to invade a large panel of mammalian cells. Host cell invasion is critical for several stages of listeriosis pathology such as the initial crossing of the host intestinal barrier and the successive colonization of diverse target organs including the placenta. In this review, we address the main molecular mechanisms known to be used by L. monocytogenes during invasion of nonphagocytic cells and host tissues.
Collapse
Affiliation(s)
- Stéphanie Seveau
- Departments of Microbiology and Internal Medicine, Center for Microbial Interface Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
22
|
Liévin-Le Moal V, Servin AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 2006; 19:315-37. [PMID: 16614252 PMCID: PMC1471992 DOI: 10.1128/cmr.19.2.315-337.2006] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal tract is a complex ecosystem that combines resident microbiota and the cells of various phenotypes with complex metabolic activities that line the epithelial wall. The intestinal cells that make up the epithelium provide physical and chemical barriers that protect the host against the unwanted intrusion of microorganisms that hijack the cellular molecules and signaling pathways of the host and become pathogenic. Some of the organisms making up the intestinal microbiota also have microbicidal effects that contribute to the barrier against enteric pathogens. This review describes the two cell lineages present in the intestinal epithelium: the goblet cells and the Paneth cells, both of which play a pivotal role in the first line of enteric defense by producing mucus and antimicrobial peptides, respectively. We also analyze recent insights into the intestinal microbiota and the mechanisms by which some resident species act as a barrier to enteric pathogens. Moreover, this review examines whether the cells producing mucins or antimicrobial peptides and the resident microbiota act in partnership and whether they function individually and/or synergistically to provide the host with an effective front line of defense against harmful enteric pathogens.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Unité 756 INSERM, Faculté de Pharmacie Paris XI, Signalisation et Physiopathologie des Cellules Epithéliales, Institut National de la Santé et de la Recherche Médicale, F-92296 Chātenay-Malabry, France
| | | |
Collapse
|
23
|
Blanco LP, DiRita VJ. Bacterial-associated cholera toxin and GM1 binding are required for transcytosis of classical biotype Vibrio cholerae through an in vitro M cell model system. Cell Microbiol 2006; 8:982-98. [PMID: 16681839 DOI: 10.1111/j.1462-5822.2005.00681.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To elucidate mechanisms involved in M cell uptake and transcytosis of Vibrio cholerae, we used an in vitro model of human M-like cells in a Caco-2 monolayer. Interspersed among the epithelial monolayer of Caco-2 cells we detect cells that display M-like features with or without prior lymphocyte treatment and we have established key parameters for V. cholerae transcytosis in this model. Cholera toxin (CT) mutants lacking the A subunit alone or both the A and B subunits were deficient for transcytosis. We explored this finding further and showed that expression of both subunits is required for binding by whole V. cholerae to immobilized CT receptor, the glycosphingolipid GM1. Confocal microscopy showed CT associated with transcytosing bacteria, and transcytosis was inhibited by pre-incubation with GM1 before infection. Finally, heat treatment of the bacterial cells caused a loss of binding to GM1 that was correlated with a significant decrease in uptake and transcytosis by the monolayer. Our data support a model in which the ability of bacteria to interact with GM1 in a CT-dependent fashion plays a critical role in transcytosis of V. cholerae by M cells.
Collapse
Affiliation(s)
- Luz P Blanco
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
24
|
Kausalya PJ, Amasheh S, Günzel D, Wurps H, Müller D, Fromm M, Hunziker W. Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 2006; 116:878-91. [PMID: 16528408 PMCID: PMC1395478 DOI: 10.1172/jci26323] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 01/10/2006] [Indexed: 12/20/2022] Open
Abstract
Claudin-16 (Cldn16) is selectively expressed at tight junctions (TJs) of renal epithelial cells of the thick ascending limb of Henle's loop, where it plays a central role in the reabsorption of divalent cations. Over 20 different mutations in the CLDN16 gene have been identified in patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), a disease of excessive renal Mg2+ and Ca2+ excretion. Here we show that disease-causing mutations can lead to the intracellular retention of Cldn16 or affect its capacity to facilitate paracellular Mg2+ transport. Nine of the 21 Cldn16 mutants we characterized were retained in the endoplasmic reticulum, where they underwent proteasomal degradation. Three mutants accumulated in the Golgi complex. Two mutants were efficiently delivered to lysosomes, one via clathrin-mediated endocytosis following transport to the cell surface and the other without appearing on the plasma membrane. The remaining 7 mutants localized to TJs, and 4 were found to be defective in paracellular Mg2+ transport. We demonstrate that pharmacological chaperones rescued surface expression of several retained Cldn16 mutants. We conclude that FHHNC can result from mutations in Cldn16 that affect intracellular trafficking or paracellular Mg2+ permeability. Knowledge of the molecular defects associated with disease-causing Cldn16 mutations may open new venues for therapeutic intervention.
Collapse
Affiliation(s)
- P. Jaya Kausalya
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Salah Amasheh
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Dorothee Günzel
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Henrik Wurps
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Dominik Müller
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Michael Fromm
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Singapore.
Department of Clinical Physiology, Charité, Campus Benjamin Franklin, and
Department of Pediatric Nephrology and Center for Cardiovascular Research, Charité, Berlin, Germany
| |
Collapse
|
25
|
Gekara NO, Jacobs T, Chakraborty T, Weiss S. The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 2006; 7:1345-56. [PMID: 16098221 DOI: 10.1111/j.1462-5822.2005.00561.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pore-forming toxin listeriolysin O (LLO) is the main virulence factor of Listeria monocytogenes. LLO is known to act as a pseudo cytokine/chemokine, which induces a broad spectrum of host responses that ultimately influences the outcome of listeriosis. In the present study we demonstrate that LLO is a potent aggregator of lipid rafts. LLO was found to aggregate the raft associated molecules GM1, the GPI-anchored proteins CD14 and CD16 as well as the tyrosine kinase Lyn. Abrogation of the cytolytic activity of LLO by cholesterol pretreatment was found not to interfere with LLO's ability to aggregate rafts or trigger tyrosine phosphorylation in cells. However, a monoclonal antibody that blocks the oligomerization of LLO was found to inhibit rafts' aggregation as well as the induction of tyrosine phosphorylation. This implies that rafts aggregation by LLO which is independent of cytolytic activity, is due to the oligomerization of its membrane bound toxin monomers. Thus, LLO most likely induces signalling through the coaggregation of rafts' associated receptors, kinases and adaptors.
Collapse
Affiliation(s)
- Nelson O Gekara
- Molecular Immunology, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
26
|
Liévin-Le Moal V, Servin AL, Coconnier-Polter MH. The increase in mucin exocytosis and the upregulation of MUC genes encoding for membrane-bound mucins induced by the thiol-activated exotoxin listeriolysin O is a host cell defence response that inhibits the cell-entry of Listeria monocytogenes. Cell Microbiol 2005; 7:1035-48. [PMID: 15953034 DOI: 10.1111/j.1462-5822.2005.00532.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vivo Listeria monocytogenes infection results in the massive release of mucus by goblet cells into the lumen of the intestine. We have previously reported that apical infection by L. monocytogenes is followed by listeriolysin O (LLO)-dependent stimulation of mucus exocytosis, and the upregulation of the MUC genes. Here, we report that L. monocytogenes EGD wild-type bacteria enter cultured human polarized, mucin-secreting, HT29-MTX cells apically by an InlA-dependent mechanism. The LLO-induced increase in mucin secretion together with an increase in transcription of the MCU4 and MUC12 genes encoding for membrane-bound mucins, results in the inhibition of the cell-entry of L. monocytogenes into mucin-secreting, HT29-MTX cells. Moreover, we report that sialic acid residues in mucins are crucial for the inhibition of L. monocytogenes internalization. Based on these findings, we suggest that the LLO-induced mucin exocytosis and upregulation of the MUC genes encoding for membrane-bound mucins constitute a host cell defence response that inhibits the cell-entry of L. monocytogenes.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France
| | | | | |
Collapse
|
27
|
Seveau S, Bierne H, Giroux S, Prévost MC, Cossart P. Role of lipid rafts in E-cadherin-- and HGF-R/Met--mediated entry of Listeria monocytogenes into host cells. ACTA ACUST UNITED AC 2004; 166:743-53. [PMID: 15337781 PMCID: PMC2172418 DOI: 10.1083/jcb.200406078] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Listeria monocytogenes uptake by nonphagocytic cells is promoted by the bacterial invasion proteins internalin and InlB, which bind to their host receptors E-cadherin and hepatocyte growth factor receptor (HGF-R)/Met, respectively. Here, we present evidence that plasma membrane organization in lipid domains is critical for Listeria uptake. Cholesterol depletion by methyl-β-cyclodextrin reversibly inhibited Listeria entry. Lipid raft markers, such as glycosylphosphatidylinositol-linked proteins, a myristoylated and palmitoylated peptide and the ganglioside GM1 were recruited at the bacterial entry site. We analyzed which molecular events require membrane cholesterol and found that the presence of E-cadherin in lipid domains was necessary for initial interaction with internalin to promote bacterial entry. In contrast, the initial interaction of InlB with HGF-R did not require membrane cholesterol, whereas downstream signaling leading to F-actin polymerization was cholesterol dependent. Our work, in addition to documenting for the first time the role of lipid rafts in Listeria entry, provides the first evidence that E-cadherin and HGF-R require lipid domain integrity for their full activity.
Collapse
Affiliation(s)
- Stéphanie Seveau
- Unité des Interactions Bactéries-Cellules, INSERM U604, Institut Pasteur, 75015 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
28
|
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a severe human foodborne infection characterized by gastroenteritis, meningitis, encephalitis, abortions, and perinatal infections. This gram-positive bacterium is a facultative intracellular pathogen that induces its own uptake into nonphagocytic cells and spreads from cell to cell using an actin-based motility process. This review covers both well-established and recent advances in the characterization of L. monocytogenes virulence determinants and their role in the pathophysiology of listeriosis.
Collapse
Affiliation(s)
- Olivier Dussurget
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, INSERM U604, 75015 Paris, France.
| | | | | |
Collapse
|
29
|
Kansau I, Berger C, Hospital M, Amsellem R, Nicolas V, Servin AL, Bernet-Camard MF. Zipper-like internalization of Dr-positive Escherichia coli by epithelial cells is preceded by an adhesin-induced mobilization of raft-associated molecules in the initial step of adhesion. Infect Immun 2004; 72:3733-42. [PMID: 15213113 PMCID: PMC427432 DOI: 10.1128/iai.72.7.3733-3742.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 12/18/2003] [Accepted: 02/26/2004] [Indexed: 11/20/2022] Open
Abstract
We undertook a study of the mechanism by which Dr-positive bacteria invade epithelial cells. Our findings show that Dr-positive bacteria enter via a zipper-like mechanism that is independent of the Dr-induced mobilization of F-actin and of the signaling molecules that control Dr-induced F-actin rearrangements. We also observed that Dr-positive IH11128 bacteria entered cells that were positive for the caveola marker VIP21/caveolin (HeLa and Caco-2/Cav-1 cells) to the same extent as those that were not (parental Caco-2 cells). Using fluorescence labeling and confocal laser scanning microscopy, we provide evidence that during the adhesion step, the alpha5beta1 integrin, which plays a pivotal role in Afa/Dr diffusely adhering Escherichia coli bacterial entry, is mobilized around adhering Dr-positive bacteria. We show that the receptor for Afa/Dr adhesins, glycosylphosphatidylinositol-anchored CD55; the raft marker, ganglioside GM1; and VIP21/caveolin are all recruited around adhering Dr-positive bacteria. We also observed that extracting membrane cholesterol with methyl-beta-cyclodextrin (MBCD) did not affect the recruitment of CD55, GM1, or beta1 integrin to adhering Dr-positive bacteria. In contrast, extracting or changing membrane-bound cholesterol by means of drugs that modify lipid rafts (MBCD, filipin III, or mevalonate plus lovastatin plus MBCD) inhibited the entry of Dr-positive IH11128 both into cells that expressed VIP21/caveolin (HeLa and Caco-2/Cav-1 cells) and into those that did not (parental Caco-2 cells). Finally, restoring cholesterol within the cell membrane of MBCD-treated cells restored Dr-positive IH11128 internalization.
Collapse
Affiliation(s)
- Imad Kansau
- Unité 510 INSERM, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Ivanov AI, Nusrat A, Parkos CA. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 2003; 15:176-88. [PMID: 14528017 PMCID: PMC307538 DOI: 10.1091/mbc.e03-05-0319] [Citation(s) in RCA: 305] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The adherens junction (AJ) and tight junction (TJ) are key regulators of epithelial polarity and barrier function. Loss of epithelial phenotype is accompanied by endocytosis of AJs and TJs via unknown mechanisms. Using a model of calcium depletion, we defined the pathway of internalization of AJ and TJ proteins (E-cadherin, p120 and beta-catenins, occludin, JAM-1, claudins 1 and 4, and ZO-1) in T84 epithelial cells. Proteinase protection assay and immunocytochemistry revealed orchestrated internalization of AJs and TJs into a subapical cytoplasmic compartment. Disruption of caveolae/lipid rafts did not prevent endocytosis, nor did caveolin-1 colocalize with internalized junctional proteins. Furthermore, AJ and TJ proteins did not colocalize with the macropinocytosis marker dextran. Inhibitors of clathrin-mediated endocytosis blocked internalization of AJs and TJs, and junctional proteins colocalized with clathrin and alpha-adaptin. AJ and TJ proteins were observed to enter early endosomes followed by movement to organelles that stained with syntaxin-4 but not with markers of late and recycling endosomes, lysosomes, or Golgi. These results indicate that endocytosis of junctional proteins is a clathrin-mediated process leading into a unique storage compartment. Such mechanisms may mediate the disruption of intercellular contacts during normal tissue remodeling and in pathology.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
31
|
Abstract
Throughout evolution, organisms have developed immune-surveillance networks to protect themselves from potential pathogens. At the cellular level, the signalling events that regulate these defensive responses take place in membrane rafts--dynamic microdomains that are enriched in cholesterol and glycosphingolipids--that facilitate many protein-protein and lipid-protein interactions at the cell surface. Pathogens have evolved many strategies to ensure their own survival and to evade the host immune system, in some cases by hijacking rafts. However, understanding the means by which pathogens exploit rafts might lead to new therapeutic strategies to prevent or alleviate certain infectious diseases, such as those caused by HIV-1 or Ebola virus.
Collapse
Affiliation(s)
- Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Spanish Council for Scientific Research, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain
| | | | | |
Collapse
|
32
|
Dramsi S, Cossart P. Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infect Immun 2003; 71:3614-8. [PMID: 12761148 PMCID: PMC155716 DOI: 10.1128/iai.71.6.3614-3618.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate factors which modulate the entry of Listeria monocytogenes into mammalian cells, we have analyzed the role of Ca(2+). We show that L. monocytogenes induced Ca(2+) transients into the human Hep-2 epithelial cell line. The nonpathogenic species L. innocua or a L. monocytogenes mutant strain defective in listeriolysin O (LLO) production was unable to induce these calcium fluxes. Addition of plasma membrane calcium channel antagonists or chelation of extracellular calcium markedly reduced L. monocytogenes entry. In contrast, chelation of host cytosolic Ca(2+) or blockade of Ca(2+) release from intracellular stores did not affect invasion. These results indicate that L. monocytogenes-induced mobilization of extracellular Ca(2+) by LLO and activation of downstream Ca(2+)-dependent signaling are required for efficient cell invasion.
Collapse
Affiliation(s)
- Shaynoor Dramsi
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | |
Collapse
|
33
|
II, 8. Effects of rotavirus infection on the structure and functions of intestinal cells. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0168-7069(03)09015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Liévin-Le Moal V, Huet G, Aubert JP, Bara J, Forgue-Lafitte ME, Servin AL, Coconnier MH. Activation of mucin exocytosis and upregulation of MUC genes in polarized human intestinal mucin-secreting cells by the thiol-activated exotoxin listeriolysin O. Cell Microbiol 2002; 4:515-29. [PMID: 12174086 DOI: 10.1046/j.1462-5822.2002.00210.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secreted thiol-activated cytolysin listeriolysin O (LLO) was responsible for L. monocytogenes-induced high-molecular glycoproteins (HMGs) exocytosis in cultured human mucosecreting HT29-MTX cells. By biochemical analysis we demonstrate that the majority of secreted HMGs in LLO-stimulated cells are of mucin origin. In parallel, analysis of the expression of MUCs genes showed that the transcription of the MUC3, MUC4 and MUC12 genes encoding for membrane-bound mucins was increased in LLO-stimulated cells. Upregulation of the MUC3 gene correlates with an increased expression of the membrane-bound MUC3 mucin. In contrast, increase in secretion of the gel-forming MUC5AC mucin develops without upregulation of the MUC5AC gene. Finally, results showed that NF-kappaB and AP-1 transcription factors were not involved in LLO-induced upregulation of MUCs genes in HT29-MTX cells, whereas L. monocytogenes infection was able to promote the degradation of IkappaB proteins in the cells.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhuang M, Oltean DI, Gómez I, Pullikuth AK, Soberón M, Bravo A, Gill SS. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J Biol Chem 2002; 277:13863-72. [PMID: 11836242 DOI: 10.1074/jbc.m110057200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid rafts are characterized by their insolubility in nonionic detergents such as Triton X-100 at 4 degrees C. They have been studied in mammals, where they play critical roles in protein sorting and signal transduction. To understand the potential role of lipid rafts in lepidopteran insects, we isolated and analyzed the protein and lipid components of these lipid raft microdomains from the midgut epithelial membrane of Heliothis virescens and Manduca sexta. Like their mammalian counterparts, H. virescens and M. sexta lipid rafts are enriched in cholesterol, sphingolipids, and glycosylphosphatidylinositol-anchored proteins. In H. virescens and M. sexta, pretreatment of membranes with the cholesterol-depleting reagent saponin and methyl-beta-cyclodextrin differentially disrupted the formation of lipid rafts, indicating an important role for cholesterol in lepidopteran lipid rafts structure. We showed that several putative Bacillus thuringiensis Cry1A receptors, including the 120- and 170-kDa aminopeptidases from H. virescens and the 120-kDa aminopeptidase from M. sexta, were preferentially partitioned into lipid rafts. Additionally, the leucine aminopeptidase activity was enriched approximately 2-3-fold in these rafts compared with brush border membrane vesicles. We also demonstrated that Cry1A toxins were associated with lipid rafts, and that lipid raft integrity was essential for in vitro Cry1Ab pore forming activity. Our study strongly suggests that these microdomains might be involved in Cry1A toxin aggregation and pore formation.
Collapse
Affiliation(s)
- Meibao Zhuang
- Environmental Toxicology Graduate Program, Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | |
Collapse
|