1
|
Simmons KM, Sims EK. Screening and Prevention of Type 1 Diabetes: Where Are We? J Clin Endocrinol Metab 2023; 108:3067-3079. [PMID: 37290044 PMCID: PMC11491628 DOI: 10.1210/clinem/dgad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
A diagnosis of type 1 diabetes (T1D) and the subsequent requirement for exogenous insulin treatment is associated with considerable acute and chronic morbidity and a substantial effect on patient quality of life. Importantly, a large body of work suggests that early identification of presymptomatic T1D can accurately predict clinical disease, and when paired with education and monitoring, can yield improved health outcomes. Furthermore, a growing cadre of effective disease-modifying therapies provides the potential to alter the natural history of early stages of T1D. In this mini review, we highlight prior work that has led to the current landscape of T1D screening and prevention, as well as challenges and next steps moving into the future of these rapidly evolving areas of patient care.
Collapse
Affiliation(s)
- Kimber M Simmons
- Barbara Davis Center for Diabetes, Division of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B Wells Center for Pediatric Research; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Lernmark Å, Akolkar B, Hagopian W, Krischer J, McIndoe R, Rewers M, Toppari J, Vehik K, Ziegler AG. Possible heterogeneity of initial pancreatic islet beta-cell autoimmunity heralding type 1 diabetes. J Intern Med 2023; 294:145-158. [PMID: 37143363 PMCID: PMC10524683 DOI: 10.1111/joim.13648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The etiology of type 1 diabetes (T1D) foreshadows the pancreatic islet beta-cell autoimmune pathogenesis that heralds the clinical onset of T1D. Standardized and harmonized tests of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A), and ZnT8 transporter (ZnT8A) allowed children to be followed from birth until the appearance of a first islet autoantibody. In the Environmental Determinants of Diabetes in the Young (TEDDY) study, a multicenter (Finland, Germany, Sweden, and the United States) observational study, children were identified at birth for the T1D high-risk HLA haploid genotypes DQ2/DQ8, DQ2/DQ2, DQ8/DQ8, and DQ4/DQ8. The TEDDY study was preceded by smaller studies in Finland, Germany, Colorado, Washington, and Sweden. The aims were to follow children at increased genetic risk to identify environmental factors that trigger the first-appearing autoantibody (etiology) and progress to T1D (pathogenesis). The larger TEDDY study found that the incidence rate of the first-appearing autoantibody was split into two patterns. IAA first peaked already during the first year of life and tapered off by 3-4 years of age. GADA first appeared by 2-3 years of age to reach a plateau by about 4 years. Prior to the first-appearing autoantibody, genetic variants were either common or unique to either pattern. A split was also observed in whole blood transcriptomics, metabolomics, dietary factors, and exposures such as gestational life events and early infections associated with prolonged shedding of virus. An innate immune reaction prior to the adaptive response cannot be excluded. Clarifying the mechanisms by which autoimmunity is triggered to either insulin or GAD65 is key to uncovering the etiology of autoimmune T1D.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD USA
| | | | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | | |
Collapse
|
3
|
Besser REJ, Bell KJ, Couper JJ, Ziegler AG, Wherrett DK, Knip M, Speake C, Casteels K, Driscoll KA, Jacobsen L, Craig ME, Haller MJ. ISPAD Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1175-1187. [PMID: 36177823 DOI: 10.1111/pedi.13410] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rachel E J Besser
- Wellcome Centre for Human Genetics, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kirstine J Bell
- Charles Perkins Centre and Faculty Medicine and Health, University of Sydney, Sydney, Australia
| | - Jenny J Couper
- Department of Pediatrics, University of Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Diane K Wherrett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mikael Knip
- Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kimberly A Driscoll
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Laura Jacobsen
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Maria E Craig
- Department of Pediatrics, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Michael J Haller
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
5
|
Determining the timing of pubertal onset via a multicohort analysis of growth. PLoS One 2021; 16:e0260137. [PMID: 34793547 PMCID: PMC8601458 DOI: 10.1371/journal.pone.0260137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Growth-based determination of pubertal onset timing would be cheap and practical. We aimed to determine this timing based on pubertal growth markers. Secondary aims were to estimate the differences in growth between cohorts and identify the role of overweight in onset timing. Design This multicohort study includes data from three Finnish cohorts—the Type 1 Diabetes Prediction and Prevention (DIPP, N = 2,825) Study, the Special Turku Coronary Risk Factor Intervention Project (STRIP, N = 711), and the Boy cohort (N = 66). Children were monitored for growth and Tanner staging (except in DIPP). Methods The growth data were analyzed using a Super-Imposition by Translation And Rotation growth curve model, and pubertal onset analyses were run using a time-to-pubertal onset model. Results The time-to-pubertal onset model used age at peak height velocity (aPHV), peak height velocity (PHV), and overweight status as covariates, with interaction between aPHV and overweight status for girls, and succeeded in determining the onset timing. Cross-validation showed a good agreement (71.0% for girls, 77.0% for boys) between the observed and predicted onset timings. Children in STRIP were taller overall (girls: 1.7 [95% CI: 0.9, 2.5] cm, boys: 1.0 [0.3, 2.2] cm) and had higher PHV values (girls: 0.13 [0.02, 0.25] cm/year, boys: 0.35 [0.21, 0.49] cm/year) than those in DIPP. Boys in the Boy cohort were taller (2.3 [0.3, 4.2] cm) compared with DIPP. Overweight girls showed pubertal onset at 1.0 [0.7, 1.4] year earlier compared with other girls. In boys, there was no such difference. Conclusions The novel modeling approach provides an opportunity to evaluate the Tanner breast/genital stage–based pubertal onset timing in cohort studies including longitudinal data on growth but lacking pubertal follow-up.
Collapse
|
6
|
So M, Speake C, Steck AK, Lundgren M, Colman PG, Palmer JP, Herold KC, Greenbaum CJ. Advances in Type 1 Diabetes Prediction Using Islet Autoantibodies: Beyond a Simple Count. Endocr Rev 2021; 42:584-604. [PMID: 33881515 DOI: 10.1210/endrev/bnab013] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Islet autoantibodies are key markers for the diagnosis of type 1 diabetes. Since their discovery, they have also been recognized for their potential to identify at-risk individuals prior to symptoms. To date, risk prediction using autoantibodies has been based on autoantibody number; it has been robustly shown that nearly all multiple-autoantibody-positive individuals will progress to clinical disease. However, longitudinal studies have demonstrated that the rate of progression among multiple-autoantibody-positive individuals is highly heterogenous. Accurate prediction of the most rapidly progressing individuals is crucial for efficient and informative clinical trials and for identification of candidates most likely to benefit from disease modification. This is increasingly relevant with the recent success in delaying clinical disease in presymptomatic subjects using immunotherapy, and as the field moves toward population-based screening. There have been many studies investigating islet autoantibody characteristics for their predictive potential, beyond a simple categorical count. Predictive features that have emerged include molecular specifics, such as epitope targets and affinity; longitudinal patterns, such as changes in titer and autoantibody reversion; and sequence-dependent risk profiles specific to the autoantibody and the subject's age. These insights are the outworking of decades of prospective cohort studies and international assay standardization efforts and will contribute to the granularity needed for more sensitive and specific preclinical staging. The aim of this review is to identify the dynamic and nuanced manifestations of autoantibodies in type 1 diabetes, and to highlight how these autoantibody features have the potential to improve study design of trials aiming to predict and prevent disease.
Collapse
Affiliation(s)
- Michelle So
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Cate Speake
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Andrea K Steck
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Markus Lundgren
- Department of Clinical Sciences Malmö, Lund University, Malmö 22200, Sweden
| | - Peter G Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Jerry P Palmer
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, WA 98108, USA
| | - Kevan C Herold
- Department of Immunobiology, and Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| |
Collapse
|
7
|
Kwon BC, Anand V, Severson KA, Ghosh S, Sun Z, Frohnert BI, Lundgren M, Ng K. DPVis: Visual Analytics With Hidden Markov Models for Disease Progression Pathways. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3685-3700. [PMID: 32275600 DOI: 10.1109/tvcg.2020.2985689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clinical researchers use disease progression models to understand patient status and characterize progression patterns from longitudinal health records. One approach for disease progression modeling is to describe patient status using a small number of states that represent distinctive distributions over a set of observed measures. Hidden Markov models (HMMs) and its variants are a class of models that both discover these states and make inferences of health states for patients. Despite the advantages of using the algorithms for discovering interesting patterns, it still remains challenging for medical experts to interpret model outputs, understand complex modeling parameters, and clinically make sense of the patterns. To tackle these problems, we conducted a design study with clinical scientists, statisticians, and visualization experts, with the goal to investigate disease progression pathways of chronic diseases, namely type 1 diabetes (T1D), Huntington's disease, Parkinson's disease, and chronic obstructive pulmonary disease (COPD). As a result, we introduce DPVis which seamlessly integrates model parameters and outcomes of HMMs into interpretable and interactive visualizations. In this article, we demonstrate that DPVis is successful in evaluating disease progression models, visually summarizing disease states, interactively exploring disease progression patterns, and building, analyzing, and comparing clinically relevant patient subgroups.
Collapse
|
8
|
Nygård L, Laine AP, Kiviniemi M, Toppari J, Härkönen T, Knip M, Veijola R, Lempainen J, Ilonen J. Tri-SNP polymorphism in the intron of HLA-DRA1 affects type 1 diabetes susceptibility in the Finnish population. Hum Immunol 2021; 82:912-916. [PMID: 34311991 DOI: 10.1016/j.humimm.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Genes in the HLA class II region include the most important inherited risk factors for type 1 diabetes (T1D) although also polymorphisms outside the HLA region modulate the predisposition to T1D. This study set out to confirm a recent observation in which a novel expression quantitative trait locus was formed by three single nucleotide polymorphisms (SNP) in the intron of HLA-DRA1 in DR3-DQ2 haplotypes. The SNPs significantly increased the risk for T1D in DR3-DQ2 homozygous individuals and we intended to further explore this association, in the Finnish population, by comparing two DR3-DQ2 positive genotypes. Cohorts with DR3-DQ2/DR3-DQ2 (N = 570) and DR3-DQ2/DR1-DQ5 (N = 1035) genotypes were studied using TaqMan analysis that typed for rs3135394, rs9268645 and rs3129877. The tri-SNP haplotype was significantly more common in cases than controls in the DR3-DQ2/DR3-DQ2 cohort (OR = 1.70 CI 95% = 1.15-2.51P = 0.007). However, no significant associations could be observed in the DR3-DQ2/DR1-DQ5 cohort.
Collapse
Affiliation(s)
- Lucas Nygård
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Riitta Veijola
- Department of Paediatrics, PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
9
|
Abstract
Life is about timing. -Carl LewisThe understanding of autoimmune type 1 diabetes is increasing, and examining etiology separate from pathogenesis has become crucial. The components to explain type 1 diabetes development have been known for some time. The strong association with HLA has been researched for nearly 50 years. Genome-wide association studies added another 60+ non-HLA genetic factors with minor contribution to risk. Insulitis has long been known to be present close to clinical diagnosis. T and B cells recognizing β-cell autoantigens are detectable prior to diagnosis and in newly diagnosed patients. Islet autoantibody tests against four major autoantigens have been standardized and used as biomarkers of islet autoimmunity. However, to clarify the etiology would require attention to time. Etiology may be defined as the cause of a disease (i.e., type 1 diabetes) or abnormal condition (i.e., islet autoimmunity). Timing is everything, as neither the prodrome of islet autoimmunity nor the clinical onset of type 1 diabetes tells us much about the etiology. Rather, the islet autoantibody that appears first and persists would mark the diagnosis of an autoimmune islet disease (AID). Events after the diagnosis of AID would represent the pathogenesis. Several islet autoantibodies without (stage 1) or with impaired glucose tolerance (stage 2) or with symptoms (stage 3) would define the pathogenesis culminating in clinical type 1 diabetes. Etiology would be about the timing of events that take place before the first-appearing islet autoantibody.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
10
|
Dedrick S, Sundaresh B, Huang Q, Brady C, Yoo T, Cronin C, Rudnicki C, Flood M, Momeni B, Ludvigsson J, Altindis E. The Role of Gut Microbiota and Environmental Factors in Type 1 Diabetes Pathogenesis. Front Endocrinol (Lausanne) 2020; 11:78. [PMID: 32174888 PMCID: PMC7057241 DOI: 10.3389/fendo.2020.00078] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 Diabetes (T1D) is regarded as an autoimmune disease characterized by insulin deficiency resulting from destruction of pancreatic β-cells. The incidence rates of T1D have increased worldwide. Over the past decades, progress has been made in understanding the complexity of the immune response and its role in T1D pathogenesis, however, the trigger of T1D autoimmunity remains unclear. The increasing incidence rates, immigrant studies, and twin studies suggest that environmental factors play an important role and the trigger cannot simply be explained by genetic predisposition. Several research initiatives have identified environmental factors that potentially contribute to the onset of T1D autoimmunity and the progression of disease in children/young adults. More recently, the interplay between gut microbiota and the immune system has been implicated as an important factor in T1D pathogenesis. Although results often vary between studies, broad compositional and diversity patterns have emerged from both longitudinal and cross-sectional human studies. T1D patients have a less diverse gut microbiota, an increased prevalence of Bacteriodetes taxa and an aberrant metabolomic profile compared to healthy controls. In this comprehensive review, we present the data obtained from both animal and human studies focusing on the large longitudinal human studies. These studies are particularly valuable in elucidating the environmental factors that lead to aberrant gut microbiota composition and potentially contribute to T1D. We also discuss how environmental factors, such as birth mode, diet, and antibiotic use modulate gut microbiota and how this potentially contributes to T1D. In the final section, we focus on existing recent literature on microbiota-produced metabolites, proteins, and gut virome function as potential protectants or triggers of T1D onset. Overall, current results indicate that higher levels of diversity along with the presence of beneficial microbes and the resulting microbial-produced metabolites can act as protectors against T1D onset. However, the specifics of the interplay between host and microbes are yet to be discovered.
Collapse
Affiliation(s)
- Sandra Dedrick
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Qian Huang
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Claudia Brady
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tessa Yoo
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Catherine Cronin
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Caitlin Rudnicki
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Michael Flood
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Babak Momeni
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Johnny Ludvigsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Emrah Altindis
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
11
|
Lamichhane S, Kemppainen E, Trošt K, Siljander H, Hyöty H, Ilonen J, Toppari J, Veijola R, Hyötyläinen T, Knip M, Orešič M. Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia 2019; 62:2287-2297. [PMID: 31444528 PMCID: PMC6861356 DOI: 10.1007/s00125-019-04980-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Metabolic dysregulation may precede the onset of type 1 diabetes. However, these metabolic disturbances and their specific role in disease initiation remain poorly understood. In this study, we examined whether children who progress to type 1 diabetes have a circulatory polar metabolite profile distinct from that of children who later progress to islet autoimmunity but not type 1 diabetes and a matched control group. METHODS We analysed polar metabolites from 415 longitudinal plasma samples in a prospective cohort of children in three study groups: those who progressed to type 1 diabetes; those who seroconverted to one islet autoantibody but not to type 1 diabetes; and an antibody-negative control group. Metabolites were measured using two-dimensional GC high-speed time of flight MS. RESULTS In early infancy, progression to type 1 diabetes was associated with downregulated amino acids, sugar derivatives and fatty acids, including catabolites of microbial origin, compared with the control group. Methionine remained persistently upregulated in those progressing to type 1 diabetes compared with the control group and those who seroconverted to one islet autoantibody. The appearance of islet autoantibodies was associated with decreased glutamic and aspartic acids. CONCLUSIONS/INTERPRETATION Our findings suggest that children who progress to type 1 diabetes have a unique metabolic profile, which is, however, altered with the appearance of islet autoantibodies. Our findings may assist with early prediction of the disease.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520, Turku, Finland.
| | - Esko Kemppainen
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520, Turku, Finland
| | | | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 11, 00029 HUS, Helsinki, Finland
- Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Centre, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 11, 00029 HUS, Helsinki, Finland.
- Research Program Unit, University of Helsinki, Helsinki, Finland.
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| | - Matej Orešič
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistokatu 6, FI-20520, Turku, Finland.
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden.
| |
Collapse
|
12
|
Rusanen J, Toivonen A, Hepojoki J, Hepojoki S, Arikoski P, Heikkinen M, Vaarala O, Ilonen J, Hedman K. LFRET, a novel rapid assay for anti-tissue transglutaminase antibody detection. PLoS One 2019; 14:e0225851. [PMID: 31770411 PMCID: PMC6879146 DOI: 10.1371/journal.pone.0225851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
The diagnosis of celiac disease (CD) is currently based on serology and intestinal biopsy, with detection of anti-tissue transglutaminase (tTG) IgA antibodies recommended as the first-line test. Emphasizing the increasing importance of serological testing, new guidelines and evidence suggest basing the diagnosis solely on serology without confirmatory biopsy. Enzyme immunoassays (EIAs) are the established approach for anti-tTG antibody detection, with the existing point-of-care (POC) tests lacking sensitivity and/or specificity. Improved POC methods could help reduce the underdiagnosis and diagnostic delay of CD. We have previously developed rapid homogenous immunoassays based on time-resolved Förster resonance energy transfer (TR-FRET), and demonstrated their suitability in serodiagnostics with hanta- and Zika virus infections as models. In this study, we set out to establish a protein L -based TR-FRET assay (LFRET) for the detection of anti-tTG antibodies. We studied 74 patients with biopsy-confirmed CD and 70 healthy controls, with 1) the new tTG-LFRET assay, and for reference 2) a well-established EIA and 3) an existing commercial POC test. IgG depletion was employed to differentiate between anti-tTG IgA and IgG positivity. The sensitivity and specificity of the first-generation tTG-LFRET POC assay in detection of CD were 87.8% and 94.3%, respectively, in line with those of the reference POC test. The sensitivity and specificity of EIA were 95.9% and 91.9%, respectively. This study demonstrates the applicability of LFRET to serological diagnosis of autoimmune diseases in general and of CD in particular.
Collapse
Affiliation(s)
- Juuso Rusanen
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
- * E-mail:
| | - Anne Toivonen
- Laboratory Services (HUSLAB), Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jussi Hepojoki
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Satu Hepojoki
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
| | - Pekka Arikoski
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Markku Heikkinen
- Department of Gastroenterology, Kuopio University Hospital, Kuopio, Finland
| | - Outi Vaarala
- Clinicum, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Klaus Hedman
- University of Helsinki, Medicum, Department of Virology, Helsinki, Finland
- Laboratory Services (HUSLAB), Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
13
|
Pöllänen PM, Lempainen J, Laine AP, Toppari J, Veijola R, Ilonen J, Siljander H, Knip M. Characteristics of Slow Progression to Type 1 Diabetes in Children With Increased HLA-Conferred Disease Risk. J Clin Endocrinol Metab 2019; 104:5585-5594. [PMID: 31314077 DOI: 10.1210/jc.2019-01069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT Characterization of slow progression to type 1 diabetes (T1D) may reveal novel means for prevention of T1D. Slow progressors might carry natural immunomodulators that delay β-cell destruction and mediate preservation of β-cell function. OBJECTIVE To identify demographic, genetic, and immunological characteristics of slow progression from seroconversion to clinical T1D. DESIGN HLA-susceptible children (n = 7410) were observed from birth for islet cell antibody (ICA), insulin autoantibody (IAA), glutamic acid decarboxylase (GADA), and islet antigen-2 autoantibodies (IA-2A), and for clinical T1D. Disease progression that lasted ≥7.26 years (slowest) quartile from initial seroconversion to diagnosis was considered slow. Autoantibody and genetic characteristics including 45 non-HLA single nucleotide polymorphisms (SNPs) predisposing to T1D were analyzed. RESULTS By the end of 2015, 1528 children (21%) had tested autoantibody positive and 247 (16%) had progressed to T1D. The median delay from seroconversion to diagnosis was 8.7 years in slow (n = 62, 25%) and 3.0 years in other progressors. Compared with other progressors, slow progressors were less often multipositive, had lower ICA and IAA titers, and lower frequency of IA-2A at seroconversion. Slow progressors were born more frequently in the fall, whereas other progressors were born more often in the spring. Compared with multipositive nonprogressors, slow progressors were younger, had higher ICA titers, and higher frequency of IAA and multiple autoantibodies at seroconversion. We found no differences in the distributions of non-HLA SNPs between progressors. CONCLUSIONS We observed differences in autoantibody characteristics and the season of birth among progressors, but no characteristics present at seroconversion that were specifically predictive for slow progression.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
14
|
Dayan CM, Korah M, Tatovic D, Bundy BN, Herold KC. Changing the landscape for type 1 diabetes: the first step to prevention. Lancet 2019; 394:1286-1296. [PMID: 31533907 DOI: 10.1016/s0140-6736(19)32127-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Over several decades, studies have described the progression of autoimmune diabetes, from the first appearance of autoantibodies until, and after, the diagnosis of clinical disease with hyperglycaemia and insulin dependence. Despite the improved management of type 1 diabetes with exogenous insulin, most patients do not meet clinical glycaemic goals, and diabetes remains an important medical problem that affects children and adults. Clinical and preclinical studies have suggested strategies to prevent the diagnosis of type 1 diabetes in people at risk, but the outcomes of previous clinical trials have not met their primary endpoints of disease prevention or delay. The results from the TN-10 teplizumab prevention trial show that the diagnosis of type 1 diabetes can be delayed by treatment with a FcR non-binding monoclonal antibody to CD3 in people at high risk for disease. This Series paper discusses how this clinical achievement raises new questions about for whom, and when, immunological strategies might be developed to prevent type 1 diabetes, and how to achieve this goal.
Collapse
Affiliation(s)
- Colin M Dayan
- Diabetes Research Group, Cardiff University School of Medicine, Cardiff, UK
| | - Maria Korah
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Danijela Tatovic
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Brian N Bundy
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Mäkinen M, Löyttyniemi E, Koskinen M, Vähä-Mäkilä M, Siljander H, Nurmio M, Mykkänen J, Virtanen SM, Simell O, Hyöty H, Ilonen J, Knip M, Veijola R, Toppari J. Serum 25-Hydroxyvitamin D Concentrations at Birth in Children Screened for HLA-DQB1 Conferred Risk for Type 1 Diabetes. J Clin Endocrinol Metab 2019; 104:2277-2285. [PMID: 30657906 PMCID: PMC6489691 DOI: 10.1210/jc.2018-02094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/11/2019] [Indexed: 01/05/2023]
Abstract
CONTEXT Vitamin D has several effects on the immune system that might be of relevance for the pathogenesis of type 1 diabetes (T1D). OBJECTIVE To evaluate whether umbilical cord serum concentrations of 25-hydroxy-vitamin D (25[OH]D) differ in children developing either islet autoimmunity (IA) or overt T1D during childhood and adolescence. DESIGN Umbilical cord serum samples from 764 children born from 1994 to 2004 with HLA-DQB1 conferred risk for T1D participating in the Type 1 Diabetes Prediction and Prevention Study were analyzed for 25(OH)D using an enzyme immunoassay. SETTING DIPP clinics in Turku, Oulu, and Tampere University Hospitals, Finland. PARTICIPANTS Two hundred fifty children who developed T1D diabetes at a median age of 6.7 years (interquartile range [IQR] 4.0 to 10.1 years) and 132 additional case children who developed IA, i.e., positivity for multiple islet autoantibodies. Cases were matched for date of birth, gender, and area of birth with 382 control children who remained autoantibody negative. The median duration of follow up was 9.8 years (IQR 5.7 to 13.1 years). MAIN OUTCOME MEASURE The median 25(OH)D concentrations. RESULTS The median 25(OH)D concentration in cord serum was low [31.1 nmol/L (IQR 24.0 to 41.8); 88% <50 nmol/L], but not statistically different between children who developed T1D or IA and their control groups (P = 0.70). The levels were associated mainly with geographical location, year and month of birth, age of the mother, and maternal intake of vitamin D during pregnancy. CONCLUSIONS The 25(OH)D concentrations at birth are not associated with the development of T1D during childhood.
Collapse
Affiliation(s)
- Marjaana Mäkinen
- MediCity, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Correspondence and Reprint Requests: Marjaana Mäkinen, MSc, Department of Pediatrics, University of Turku and Turku University Hospital, DIPP Study, MediCity, Tykistökatu 6A 4th Floor, 20520 Turku, Finland. E-mail:
| | | | - Maarit Koskinen
- MediCity, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Mari Vähä-Mäkilä
- MediCity, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Heli Siljander
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mirja Nurmio
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Juha Mykkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Suvi M Virtanen
- Public Health Promotion Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Faculty of Social Sciences/Health Sciences, University of Tampere, Tampere, Finland
- Tampere Center for Child Health Research, Tampere University and University Hospital and Science Center, Tampere University Hospital, Tampere, Finland
| | - Olli Simell
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- 11Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University and University Hospital and Science Center, Tampere University Hospital, Tampere, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Lamichhane S, Ahonen L, Dyrlund TS, Siljander H, Hyöty H, Ilonen J, Toppari J, Veijola R, Hyötyläinen T, Knip M, Orešič M. A longitudinal plasma lipidomics dataset from children who developed islet autoimmunity and type 1 diabetes. Sci Data 2018; 5:180250. [PMID: 30422126 PMCID: PMC6233478 DOI: 10.1038/sdata.2018.250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Early prediction and prevention of type 1 diabetes (T1D) are currently unmet medical needs. Previous metabolomics studies suggest that children who develop T1D are characterised by a distinct metabolic profile already detectable during infancy, prior to the onset of islet autoimmunity. However, the specificity of persistent metabolic disturbances in relation T1D development has not yet been established. Here, we report a longitudinal plasma lipidomics dataset from (1) 40 children who progressed to T1D during follow-up, (2) 40 children who developed single islet autoantibody but did not develop T1D and (3) 40 matched controls (6 time points: 3, 6, 12, 18, 24 and 36 months of age). This dataset may help other researchers in studying age-dependent progression of islet autoimmunity and T1D as well as of the age-dependence of lipidomic profiles in general. Alternatively, this dataset could more broadly used for the development of methods for the analysis of longitudinal multivariate data.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Linda Ahonen
- Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | | | - Heli Siljander
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Paediatrics, PEDEGO Research Unit, Medical Research Centre, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Mikael Knip
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| |
Collapse
|
17
|
Dynamics of Plasma Lipidome in Progression to Islet Autoimmunity and Type 1 Diabetes - Type 1 Diabetes Prediction and Prevention Study (DIPP). Sci Rep 2018; 8:10635. [PMID: 30006587 PMCID: PMC6045612 DOI: 10.1038/s41598-018-28907-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the most prevalent autoimmune diseases among children in Western countries. Earlier metabolomics studies suggest that T1D is preceded by dysregulation of lipid metabolism. Here we used a lipidomics approach to analyze molecular lipids in a prospective series of 428 plasma samples from 40 children who progressed to T1D (PT1D), 40 children who developed at least a single islet autoantibody but did not progress to T1D during the follow-up (P1Ab) and 40 matched controls (CTR). Sphingomyelins were found to be persistently downregulated in PT1D when compared to the P1Ab and CTR groups. Triacylglycerols and phosphatidylcholines were mainly downregulated in PT1D as compared to P1Ab at the age of 3 months. Our study suggests that distinct lipidomic signatures characterize children who progressed to islet autoimmunity or overt T1D, which may be helpful in the identification of at-risk children before the initiation of autoimmunity.
Collapse
|
18
|
Haider MZ, Rasoul MA, Al-Mahdi M, Al-Kandari H, Dhaunsi GS. Association of protein tyrosine phosphatase non-receptor type 22 gene functional variant C1858T, HLA-DQ/DR genotypes and autoantibodies with susceptibility to type-1 diabetes mellitus in Kuwaiti Arabs. PLoS One 2018; 13:e0198652. [PMID: 29924845 PMCID: PMC6010291 DOI: 10.1371/journal.pone.0198652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/11/2018] [Indexed: 12/18/2022] Open
Abstract
The incidence of type-1 Diabetes Mellitus (T1DM) has increased steadily in Kuwait during recent years and it is now considered amongst the high-incidence countries. An interaction between susceptibility genes, immune system mediators and environmental factors predispose susceptible individuals to T1DM. We have determined the prevalence of protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene functional variant (C1858T; R620W, rs2476601), HLA-DQ and DR alleles and three autoantibodies in Kuwaiti children with T1DM to evaluate their impact on genetic predisposition of the disease. This study included 253 Kuwaiti children with T1DM and 214 ethnically matched controls. The genotypes of PTPN22 gene functional variant C1858T (R620W; rs2476601) were detected by PCR-RFLP method and confirmed by DNA sequencing. HLA-DQ and DR alleles were determined by sequence-specific PCR. Three autoantibodies were detected in the T1DM patients using radio-immunoassays. A significant association was detected between the variant genotype of the PTPN22 gene (C1858T, rs2476601) and T1DM in Kuwaiti Arabs. HLA-DQ2 and DQ8 alleles showed a strong association with T1DM. In T1DM patients which carried the variant TT-genotype of the PTPN22 gene, 93% had at least one DQ2 allele and 60% carried either a DQ2 or a DQ8 allele. Amongst the DR alleles, the DR3-DRB5, DR3-3, DR3-4 and DR4-4 showed a strong association with T1DM. Majority of T1DM patients who carried homozygous variant (TT) genotype of the PTPN22 gene had either DR3-DRB5 or DRB3-DRB4 genotypes. In T1DM patients who co-inherited the high risk HLA DQ, DR alleles with the variant genotype of PTPN22 gene, the majority were positive for three autoantibodies. Our data demonstrate that the variant T-allele of the PTPN22 gene along with HLA-DQ2 and DQ8 alleles constitute significant determinants of genetic predisposition of T1DM in Kuwaiti children.
Collapse
Affiliation(s)
- Mohammad Z. Haider
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Majedah A. Rasoul
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | - Maria Al-Mahdi
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | | | - Gursev S. Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Medical Laboratories, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
19
|
Ilonen J, Lempainen J, Hammais A, Laine AP, Härkönen T, Toppari J, Veijola R, Knip M. Primary islet autoantibody at initial seroconversion and autoantibodies at diagnosis of type 1 diabetes as markers of disease heterogeneity. Pediatr Diabetes 2018; 19:284-292. [PMID: 28597949 DOI: 10.1111/pedi.12545] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The relationship between patterns of islet autoantibodies at diagnosis and specificity of the first islet autoantibody at the initiation of autoimmunity was analyzed with the aim of identifying patterns informative of the primary autoantibodies. METHODS Information about a single first autoantibody at seroconversion and autoantibody data at diagnosis were available for 128 children participating in the follow-up cohort of the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study. Autoantibody data at diagnosis and genotyping results were also obtained from children in the Finnish Pediatric Diabetes Register (FPDR). RESULTS Insulin autoantibodies (IAA) were the most common primary antibodies (N = 68), followed by those for glutamic acid decarboxylase (GADA; N = 38), IA-2 antigen (IA-2A; N = 13), and zinc transporter 8 (ZnT8A; N = 9), whereas at diagnosis, IA-2A were most frequent (N = 103), followed by IAA (N = 78), ZnT8A (N = 73), and GADA (N = 71). Accordingly, the presence of many specific autoantibodies at diagnosis was due to the secondary antibodies appearing after primary antibodies, and in some cases, the primary autoantibody, most often IAA, had already disappeared at the time of diagnosis. Many of the autoantibody combinations present at diagnosis could be assembled into groups associated with either IAA or GADA as first autoantibodies. These combinations, in children diagnosed below the age of 10 years in the FPDR, were found to be strongly associated with risk genotypes in either INS (IAA first) or IKZF4-ERBB3 (GADA first) genes. CONCLUSIONS Autoantibody patterns at diagnosis may be informative on primary autoantibodies initiating autoimmunity in young children developing type 1 diabetes.
Collapse
Affiliation(s)
- Jorma Ilonen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland.,Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Anna Hammais
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.,Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, Research Unit for Pediatrics, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Institute, Helsinki, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
20
|
Arif Z, Neelofar K, Arfat MY, Zaman A, Tarannum A, Parveen I, Ahmad S, Khan MA, Badar A, Islam SN. Hyperglycemia induced reactive species trigger structural changes in human serum albumin of type 1 diabetic subjects. Int J Biol Macromol 2018; 107:2141-2149. [DOI: 10.1016/j.ijbiomac.2017.10.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 01/01/2023]
|
21
|
Lynch KF, Lee HS, Törn C, Vehik K, Krischer JP, Larsson HE, Haller MJ, Hagopian WA, Rewers MJ, She JX, Simell OG, Toppari J, Ziegler AG, Akolkar B, Hyöty H, Bonifacio E, Lernmark Å. Gestational respiratory infections interacting with offspring HLA and CTLA-4 modifies incident β-cell autoantibodies. J Autoimmun 2018; 86:93-103. [PMID: 28941965 PMCID: PMC5747989 DOI: 10.1016/j.jaut.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 01/01/2023]
Abstract
β-cell autoantibodies against insulin (IAA), GAD65 (GADA) and IA-2 (IA-2A) precede onset of childhood type 1 diabetes (T1D). Incidence of the first appearing β-cell autoantibodies peaks at a young age and is patterned by T1D-associated genes, suggesting an early environmental influence. Here, we tested if gestational infections and interactions with child's human leukocyte antigen (HLA) and non-HLA genes affected the appearance of the first β-cell autoantibody. Singletons of mothers without diabetes (n = 7472) with T1D-associated HLA-DR-DQ genotypes were prospectively followed quarterly through the first 4 years of life, then semiannually until age 6 years, using standardized autoantibody analyses. Maternal infections during pregnancy were assessed via questionnaire 3-4.5 months post-delivery. Polymorphisms in twelve non-HLA genes associated with the first appearing β-cell autoantibodies were included in a Cox regression analysis. IAA predominated as the first appearing β-cell autoantibody in younger children (n = 226, median age at seroconversion 1.8 years) and GADA (n = 212; 3.2 years) in children aged ≥2 years. Gestational infections were not associated with the first appearing β-cell autoantibodies overall. However, gestational respiratory infections (G-RI) showed a consistent protective influence on IAA (HR 0.64, 95% CI 0.45-0.91) among CTLA4-(AG, GG) children (G-RI*CTLA4 interaction, p = 0.002). The predominant associations of HLA-DR-DQ 4-8/8-4 with IAA and HLA-DR-DQ 3-2/3-2 with GADA were not observed if a G-RI was reported (G-RI*HLA-DR-DQ interaction, p = 0.03). The role of G-RI may depend on offspring HLA and CTLA-4 alleles and supports a bidirectional trigger for IAA or GADA as a first appearing β-cell autoantibody in early life.
Collapse
Affiliation(s)
- Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Hye-Seung Lee
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Carina Törn
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Michael J Haller
- Department of Pediatrics, University of Florida Gainesville, Gainesville, FL, USA
| | | | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Olli G Simell
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland; Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany; Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany; Forschergruppe Diabetes e.V., Neuherberg, Germany
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Lifesciences, University of Tampere, Tampere, Finland; Fimlab Laboratories, Pirkannmaa Hospital District, Tampere, Finland
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| |
Collapse
|
22
|
Pöllänen PM, Lempainen J, Laine AP, Toppari J, Veijola R, Vähäsalo P, Ilonen J, Siljander H, Knip M. Characterisation of rapid progressors to type 1 diabetes among children with HLA-conferred disease susceptibility. Diabetologia 2017; 60:1284-1293. [PMID: 28364254 DOI: 10.1007/s00125-017-4258-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 02/17/2017] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS In this study, we aimed to characterise rapid progressors to type 1 diabetes among children recruited from the general population, on the basis of HLA-conferred disease susceptibility. METHODS We monitored 7410 HLA-predisposed children participating in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study for the development of beta cell autoimmunity and type 1 diabetes from birth over a median follow-up time of 16.2 years (range 0.9-21.1 years). Islet cell antibodies (ICA) and autoantibodies to insulin (IAA), GAD (GADA) and islet antigen 2 (IA-2A) were assessed as markers of beta cell autoimmunity. Rapid progression was defined as progression to clinical type 1 diabetes within 1.5 years of autoantibody seroconversion. We analysed the association between rapid progression and demographic and autoantibody characteristics as well as genetic markers, including 25 non-HLA SNPs predisposing to type 1 diabetes. RESULTS Altogether, 1550 children (21%) tested positive for at least one diabetes-associated autoantibody in at least two samples, and 248 (16%) of seroconverters progressed to type 1 diabetes by the end of 2015. The median time from seroconversion to diagnosis was 0.51 years in rapid progressors (n = 42, 17%) and 5.4 years in slower progressors. Rapid progression was observed both among young (<5 years) and early pubertal children (>7 years), resulting in a double-peak distribution of seroconversion age. Compared with slower progressors, rapid progressors had a higher frequency of positivity for multiple (≥2) autoantibodies and had higher titres of ICA, IAA and IA-2A at seroconversion, and there was a higher prevalence of the secretor genotype in the FUT2 gene among those carrying the high-risk HLA genotype. Compared with autoantibody-positive non-progressors, rapid progressors were younger, were more likely to carry the high-risk HLA genotype and a predisposing SNP in the PTPN22 gene, had higher frequency of ICA, IAA, GADA and IA-2A positivity and multipositivity, and had higher titres of all four autoantibodies at seroconversion. CONCLUSIONS/INTERPRETATION At seroconversion, individuals with rapid progression to type 1 diabetes were characterised by a younger age, higher autoantibody titres, positivity for multiple autoantibodies and higher prevalence of a FUT2 SNP. The double-peak profile for seroconversion age among the rapid progressors demonstrates for the first time that rapid progression may take place not only in young children but also in children in early puberty. Rapid progressors might benefit from careful clinical follow-up and early preventive measures.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, P.O. Box 22, FI-00014, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, P.O. Box 22, FI-00014, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, P.O. Box 22, FI-00014, Helsinki, Finland.
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
23
|
Abstract
Type 1 diabetes mellitus (T1DM), also known as autoimmune diabetes, is a chronic disease characterized by insulin deficiency due to pancreatic β-cell loss and leads to hyperglycaemia. Although the age of symptomatic onset is usually during childhood or adolescence, symptoms can sometimes develop much later. Although the aetiology of T1DM is not completely understood, the pathogenesis of the disease is thought to involve T cell-mediated destruction of β-cells. Islet-targeting autoantibodies that target insulin, 65 kDa glutamic acid decarboxylase, insulinoma-associated protein 2 and zinc transporter 8 - all of which are proteins associated with secretory granules in β-cells - are biomarkers of T1DM-associated autoimmunity that are found months to years before symptom onset, and can be used to identify and study individuals who are at risk of developing T1DM. The type of autoantibody that appears first depends on the environmental trigger and on genetic factors. The pathogenesis of T1DM can be divided into three stages depending on the absence or presence of hyperglycaemia and hyperglycaemia-associated symptoms (such as polyuria and thirst). A cure is not available, and patients depend on lifelong insulin injections; novel approaches to insulin treatment, such as insulin pumps, continuous glucose monitoring and hybrid closed-loop systems, are in development. Although intensive glycaemic control has reduced the incidence of microvascular and macrovascular complications, the majority of patients with T1DM are still developing these complications. Major research efforts are needed to achieve early diagnosis, prevent β-cell loss and develop better treatment options to improve the quality of life and prognosis of those affected.
Collapse
|
24
|
Mikk ML, Heikkinen T, El-Amir MI, Kiviniemi M, Laine AP, Härkönen T, Veijola R, Toppari J, Knip M, Ilonen J. The association of the HLA-A*24:02, B*39:01 and B*39:06 alleles with type 1 diabetes is restricted to specific HLA-DR/DQ haplotypes in Finns. HLA 2017; 89:215-224. [PMID: 28185422 DOI: 10.1111/tan.12967] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/09/2016] [Accepted: 01/05/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND We analysed the previously reported association of the HLA-A*24:02, B*18 and B*39 alleles with type 1 diabetes and diabetes associated autoimmunity in the Finnish population applying HLA-DR/DQ stratification. MATERIALS & METHODS Haplotype transmission was analysed in 2424 nuclear families from the Finnish Paediatric Diabetes Register. Survival analysis was applied to study the development of islet autoantibodies and further progression to clinical diabetes in the prospective follow-up cohort from the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study. The subjects were genotyped for specific HLA class I alleles by sequence-specific hybridization using lanthanide labelled nucleotide probes. RESULTS The HLA-B*39:06 allele was found almost exclusively on the (DR8)-DQB1*04 haplotype in which its presence changed the disease risk status of the whole haplotype from neutral to predisposing. The HLA-A*24:02 and the B*39:01 alleles increased the diabetes-associated risk of the DRB1*04:04-DQA1*03-DQB1*03:02 haplotype but the alleles were in linkage disequilibrium and no independent effect could be detected. Within the DIPP cohort, neither the A*24:02 nor the B*39:01 allele were associated with seroconversion but were in contrast associated with increased progression from seroconversion to clinical disease. DISCUSSION & CONCLUSIONS The independent predisposing effect of the HLA-B*39:06 allele with type 1 diabetes was confirmed in the Finnish population but the association of the A*24:02 and B*39:01 alleles remained inconclusive whilst both A*24:02 and B*39:01 affected the progression rate from seroconversion to autoantibody positivity to overt type 1 diabetes.
Collapse
Affiliation(s)
- M-L Mikk
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - T Heikkinen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - M I El-Amir
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland.,Department of Microbiology and Immunology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - M Kiviniemi
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - A-P Laine
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - T Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - R Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Centre, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - J Toppari
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - M Knip
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - J Ilonen
- Immunogenetics Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | | |
Collapse
|
25
|
Buzzetti R, Prudente S, Copetti M, Dauriz M, Zampetti S, Garofolo M, Penno G, Trischitta V. Clinical worthlessness of genetic prediction of common forms of diabetes mellitus and related chronic complications: A position statement of the Italian Society of Diabetology. Nutr Metab Cardiovasc Dis 2017; 27:99-114. [PMID: 28063875 DOI: 10.1016/j.numecd.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 02/08/2023]
Abstract
AIM We are currently facing several attempts aimed at marketing genetic data for predicting multifactorial diseases, among which diabetes mellitus is one of the more prevalent. The present document primarily aims at providing to practicing physicians a summary of available data regarding the role of genetic information in predicting diabetes and its chronic complications. DATA SYNTHESIS Firstly, general information about characteristics and performance of risk prediction tools will be presented in order to help clinicians to get acquainted with basic methodological information related to the subject at issue. Then, as far as type 1 diabetes is concerned, available data indicate that genetic information and counseling may be useful only in families with many affected individuals. However, since no disease prevention is possible, the utility of predicting this form of diabetes is at question. In the case of type 2 diabetes, available data really question the utility of adding genetic information on top of well performing, easy available and inexpensive non-genetic markers. Finally, the possibility of using the few available genetic data on diabetic complications for improving our ability to predict them will also be presented and discussed. For cardiovascular complication, the addition of genetic information to models based on clinical features does not translate in a substantial improvement in risk discrimination. For all other diabetic complications genetic information are currently very poor and cannot, therefore, be used for improving risk stratification. CONCLUSIONS In all, nowadays the use of genetic testing for predicting diabetes and its chronic complications is definitively of little value in clinical practice.
Collapse
Affiliation(s)
- R Buzzetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; UOC Diabetology, Polo Pontino, "Sapienza" University of Rome, Rome, Italy
| | - S Prudente
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - M Copetti
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - M Dauriz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona School of Medicine and Hospital Trust of Verona, Verona, Italy
| | - S Zampetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; UOC Diabetology, Polo Pontino, "Sapienza" University of Rome, Rome, Italy
| | - M Garofolo
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - G Penno
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - V Trischitta
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Research Unit of Diabetes and Endocrine Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
26
|
Natural Development of Antibodies against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis Protein Antigens during the First 13 Years of Life. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:878-883. [PMID: 27581439 DOI: 10.1128/cvi.00341-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/26/2016] [Indexed: 12/27/2022]
Abstract
Conserved protein antigens have been investigated as vaccine candidates against respiratory pathogens. We evaluated the natural development of antibodies against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis proteins during childhood. Serum samples were collected from 50 healthy children from their first months to age 13 years (median sampling interval, 6 months). We also analyzed serum samples from 24 adults. Serum IgG antibodies against eight pneumococcal proteins (Ply, CbpA, PspA 1 and 2, PcpA, PhtD, StkP-C, and PcsB-N), three H. influenzae proteins, and five M. catarrhalis proteins were measured using a multiplexed bead-based immunoassay. Antibody levels were analyzed using multilevel mixed-effects regression and Spearman's correlation. Antibody levels against pneumococcal proteins peaked at 3 to 5 years of age and then reached a plateau. Antibody levels against H. influenzae proteins peaked during the second year and then stabilized. Antibody levels against M. catarrhalis proteins peaked during the first year and then slowly decreased. Peak antibody levels during childhood were higher than those of adults. Correlations among pneumococcal antibody levels were highest among anti-CbpA, anti-PcpA, and anti-PhtD antibodies (r = 0.71 to 0.75; P < 0.001). The children presented 854 symptomatic respiratory infections on 586 occasions. Symptomatic respiratory infections did not improve prediction of antibody levels in the regression model. The maturation of immune responses against the investigated pneumococcal proteins shares similarities, especially among CbpA, PcpA, and PhtD. Antibody production against H. influenzae and M. catarrhalis proteins starts early in life and reaches peak levels earlier than antibody production against the pneumococcal proteins. Basal antibody levels are not related to the occurrence of symptomatic respiratory infections.
Collapse
|
27
|
Lernmark Å. Environmental factors in the etiology of type 1 diabetes, celiac disease, and narcolepsy. Pediatr Diabetes 2016; 17 Suppl 22:65-72. [PMID: 27411439 PMCID: PMC5473290 DOI: 10.1111/pedi.12390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/25/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023] Open
Abstract
The etiology of human leukocyte antigen (HLA)-associated organ-specific autoimmune diseases is incomplete. In type 1 diabetes and celiac disease, the strongest associations are with the HLA-DR3-DQ2 and DR4-DQ8 haplotypes, whereas the DQB1*06:02 allele has a strong negative association. In contrast, narcolepsy, especially as recently triggered by the Pandemrix(®) H1N1 vaccine (GlaxoKlineSmith (GSK), Brentford, Middlesex, UK), did not seem to develop without at least one copy of the latter allele. The overall hypothesis is that the role of these different HLA haplotypes, especially in Finland and Sweden, is related to the immune response to infectious agents that are common in these two populations. The high incidence of both type 1 diabetes and celiac disease in Scandinavia may be the result of the HLA-DR3-DQ2 and DR4-DQ8 haplotypes, and the DQB1*06:02 allele are common because they protected people from succumbing to common infections. The timing of dissecting the autoimmune response is critical to understand the possible role of environmental factors. First, an etiological trigger may be a common virus infecting beta cells or with antigens inducing beta-cell cross reactivity. Second, an autoimmune reaction may ensue, perhaps in response to beta-cell apoptosis or autophagy, resulting in autoantigen-specific T cells and autoantibodies. It is critical in at-risk children to dissect the immune response prior to the appearance of autoantibodies in order to identify cellular reactions in response to environmental factors that are able to induce an HLA-associated immune reaction.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
28
|
Abstract
Type 1 diabetes is diagnosed at the end of a prodrome of β-cell autoimmunity. The disease is most likely triggered at an early age by autoantibodies primarily directed against insulin or glutamic acid decarboxylase, or both, but rarely against islet antigen-2. After the initial appearance of one of these autoantibody biomarkers, a second, third, or fourth autoantibody against either islet antigen-2 or the ZnT8 transporter might also appear. The larger the number of β-cell autoantibody types, the greater the risk of rapid progression to clinical onset of diabetes. This association does not necessarily mean that the β-cell autoantibodies are pathogenic, but rather that they represent reproducible biomarkers of the pathogenesis. The primary risk factor for β-cell autoimmunity is genetic, mainly occurring in individuals with either HLA-DR3-DQ2 or HLA-DR4-DQ8 haplotypes, or both, but a trigger from the environment is generally needed. The pathogenesis can be divided into three stages: 1, appearance of β-cell autoimmunity, normoglycaemia, and no symptoms; 2, β-cell autoimmunity, dysglycaemia, and no symptoms; and 3, β-cell autoimmunity, dysglycaemia, and symptoms of diabetes. The genetic association with each one of the three stages can differ. Type 1 diabetes could serve as a disease model for organ-specific autoimmune disorders such as coeliac disease, thyroiditis, and Addison's disease, which show similar early markers of a prolonged disease process before clinical diagnosis.
Collapse
Affiliation(s)
- Flemming Pociot
- Department of Pediatrics, Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden.
| |
Collapse
|
29
|
Kantola K, Hedman L, Tanner L, Simell V, Mäkinen M, Partanen J, Sadeghi M, Veijola R, Knip M, Ilonen J, Hyöty H, Toppari J, Simell O, Hedman K, Söderlund-Venermo M. B-Cell Responses to Human Bocaviruses 1-4: New Insights from a Childhood Follow-Up Study. PLoS One 2015; 10:e0139096. [PMID: 26418064 PMCID: PMC4587975 DOI: 10.1371/journal.pone.0139096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023] Open
Abstract
Human bocaviruses (HBoVs) 1-4 are recently discovered, antigenically similar parvoviruses. We examined the hypothesis that the antigenic similarity of these viruses could give rise to clinically and diagnostically important immunological interactions. IgG and IgM EIAs as well as qPCR were used to study ~2000 sera collected from infancy to early adolescence at 3-6-month intervals from 109 children whose symptoms were recorded. We found that HBoV1-4-specific seroprevalences at age 6 years were 80%, 48%, 10%, and 0%, respectively. HBoV1 infections resulted in significantly weaker IgG responses among children who had pre-existing HBoV2 IgG, and vice versa. Furthermore, we documented a complete absence of virus type-specific immune responses in six viremic children who had pre-existing IgG for another bocavirus, indicating that not all HBoV infections can be diagnosed serologically. Our results strongly indicate that interactions between consecutive HBoV infections affect HBoV immunity via a phenomenon called "original antigenic sin", cross-protection, or both; however, without evident clinical consequences but with important ramifications for the serodiagnosis of HBoV infections. Serological data is likely to underestimate human exposure to these viruses.
Collapse
Affiliation(s)
- Kalle Kantola
- University of Helsinki, Department of Virology, Helsinki, Finland
- * E-mail:
| | - Lea Hedman
- University of Helsinki, Department of Virology, Helsinki, Finland
- Helsinki University Hospital Laboratory Services, Helsinki, Finland
| | - Laura Tanner
- Turku University Hospital, Department of Pediatrics, Turku, Finland
| | | | | | - Juulia Partanen
- University of Helsinki, Department of Virology, Helsinki, Finland
| | | | - Riitta Veijola
- University of Oulu, Department of Pediatrics, Oulu, Finland
| | - Mikael Knip
- University of Helsinki and Helsinki University Hospital, Children's Hospital and Research Programs Unit, Diabetes and Obesity, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Tampere University Hospital, Tampere Center for Child Health Research, Tampere, Finland
| | - Jorma Ilonen
- Turku University Hospital, Department of Pediatrics, Turku, Finland
- Medicity, University of Turku, Turku, Finland
- University of Eastern Finland, Department of Clinical Microbiology, Kuopio, Finland
- University of Turku, Immunogenetics Laboratory, Turku, Finland
| | - Heikki Hyöty
- University of Tampere, Department of Virology, Tampere, Finland
| | - Jorma Toppari
- Turku University Hospital, Department of Pediatrics, Turku, Finland
- Medicity, University of Turku, Turku, Finland
| | - Olli Simell
- Medicity, University of Turku, Turku, Finland
| | - Klaus Hedman
- University of Helsinki, Department of Virology, Helsinki, Finland
- Helsinki University Hospital Laboratory Services, Helsinki, Finland
| | | |
Collapse
|
30
|
Abstract
OBJECTIVES Determination of antibodies to synthetic deamidated gliadin peptides (anti-DGPs) may work as an alternative or complement the commonly used test for tissue transglutaminase antibodies (TGA) in the diagnosis of celiac disease (CD). We analyzed the performance of a time-resolved immunofluorometric anti-DGP assay (TR-IFMA) in the diagnosis of CD in children and also retrospectively analyzed the appearance of anti-DGP antibodies before TGA seroconversion. METHODS The study included 92 children with biopsy-confirmed CD. Serum samples were taken at the time or just before the clinical diagnosis. The control group comprised 82 TGA-negative children who were positive for human leucocyte antigen-DQ2 or -DQ8. RESULTS Based on receiver operating characteristic curves, the optimal cutoff value for immunoglobulin (Ig) A anti-DGP positivity was 153 arbitrary units (AUs) with a sensitivity of 92.4% and specificity of 97.6% and that for IgG anti-DGP 119 AU, with a sensitivity of 97.8% and specificity of 97.6%. All 92 children with CD were either IgA or IgG anti-DGP positive at the time of diagnosis. Sera from 48 children with CD were also analyzed retrospectively before the diagnosis. Anti-DGP antibodies preceded TGA positivity in 35 of the 48 children with CD and appeared a median of 1 year earlier. CONCLUSIONS The TR-IFMA assay for detecting anti-DGP antibodies shows high sensitivity and specificity for the diagnosis of CD in children. In a majority of our study population, anti-DGP seropositivity preceded TGA positivity, indicating that earlier detection of CD may be possible by monitoring anti-DGP antibodies frequently in genetically susceptible children.
Collapse
|
31
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by destruction of insulin-producing β cells in the pancreas. The incidence of T1D is increasing dramatically, and the prevalence has doubled in the last 2 decades, further increasing the morbidity and mortality associated with the disease. T1D is now predictable with the measurement of antibodies directed against β cell proteins. Islet autoantibodies (IAs) are detectable from the peripheral blood months to years before clinical diagnosis. With the presence of two or more antibodies, the risk for developing T1D is nearly 100 % given enough time. Targeted screening for T1D risk has been carried out in first-degree relatives and those with a significant genetic risk. However, more than 85 % of individuals who are diagnosed with T1D do not have a family history. In light of the predictability of T1D and recent advances in IA measurement, general population screening is on the horizon. We provide an overview of the history of general population screening and discuss the rationale for and arguments against screening the general population for T1D risk.
Collapse
Affiliation(s)
- Kimber M Simmons
- Pediatric Endocrinology and Diabetes Fellow, Children's Hospital Colorado, Aurora, Colorado, US
| | - Aaron W Michels
- Assistant Professor of Pediatrics & Medicine, Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, US
| |
Collapse
|
32
|
Environmental trigger(s) of type 1 diabetes: why so difficult to identify? BIOMED RESEARCH INTERNATIONAL 2015; 2015:321656. [PMID: 25883954 PMCID: PMC4390105 DOI: 10.1155/2015/321656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases with childhood onset, and the disease has increased two- to fivefold over the past half century by as yet unknown means. T1D occurs when the body's immune system turns against itself so that, in a very specific and targeted way, it destroys the pancreatic β-cells. T1D results from poorly defined interactions between susceptibility genes and environmental determinants. In contrast to the rapid progress in finding T1D genes, identification and confirmation of environmental determinants remain a formidable challenge. This review article will focus on factors which have to be evaluated and decision to take before starting a new prospective cohort study. Considering all the large ongoing prospective studies, new and more conclusive data than that obtained so far should instead come from international collaboration on the ongoing cohort studies.
Collapse
|
33
|
Davis-Richardson AG, Ardissone AN, Dias R, Simell V, Leonard MT, Kemppainen KM, Drew JC, Schatz D, Atkinson MA, Kolaczkowski B, Ilonen J, Knip M, Toppari J, Nurminen N, Hyöty H, Veijola R, Simell T, Mykkänen J, Simell O, Triplett EW. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 2014; 5:678. [PMID: 25540641 PMCID: PMC4261809 DOI: 10.3389/fmicb.2014.00678] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/19/2014] [Indexed: 01/15/2023] Open
Abstract
The incidence of the autoimmune disease, type 1 diabetes (T1D), has increased dramatically over the last half century in many developed countries and is particularly high in Finland and other Nordic countries. Along with genetic predisposition, environmental factors are thought to play a critical role in this increase. As with other autoimmune diseases, the gut microbiome is thought to play a potential role in controlling progression to T1D in children with high genetic risk, but we know little about how the gut microbiome develops in children with high genetic risk for T1D. In this study, the early development of the gut microbiomes of 76 children at high genetic risk for T1D was determined using high-throughput 16S rRNA gene sequencing. Stool samples from children born in the same hospital in Turku, Finland were collected at monthly intervals beginning at 4-6 months after birth until 2.2 years of age. Of those 76 children, 29 seroconverted to T1D-related autoimmunity (cases) including 22 who later developed T1D, the remaining 47 subjects remained healthy (controls). While several significant compositional differences in low abundant species prior to seroconversion were found, one highly abundant group composed of two closely related species, Bacteroides dorei and Bacteroides vulgatus, was significantly higher in cases compared to controls prior to seroconversion. Metagenomic sequencing of samples high in the abundance of the B. dorei/vulgatus group before seroconversion, as well as longer 16S rRNA sequencing identified this group as Bacteroides dorei. The abundance of B. dorei peaked at 7.6 months in cases, over 8 months prior to the appearance of the first islet autoantibody, suggesting that early changes in the microbiome may be useful for predicting T1D autoimmunity in genetically susceptible infants. The cause of increased B. dorei abundance in cases is not known but its timing appears to coincide with the introduction of solid food.
Collapse
Affiliation(s)
- Austin G Davis-Richardson
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Alexandria N Ardissone
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Ville Simell
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Michael T Leonard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Kaisa M Kemppainen
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Jennifer C Drew
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Desmond Schatz
- Department of Pediatrics, University of Florida Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Gainesville, FL, USA
| | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Jorma Ilonen
- Department of Clinical Microbiology, University of Eastern Finland Kuopio, Finland ; Immunogenetics Laboratory, University of Turku Turku, Finland
| | - Mikael Knip
- Department of Pediatrics, Children's Hospital, University of Helsinki and Helsinki University Central Hospital Helsinki, Finland ; Diabetes and Obesity Research Program, University of Helsinki Helsinki, Finland ; Department of Pediatrics, Tampere University Hospital Tampere, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Noora Nurminen
- School of Medicine, University of Tampere Tampere, Finland
| | - Heikki Hyöty
- School of Medicine, University of Tampere Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, University of Oulu, and Oulu University Hospital Oulu, Finland
| | - Tuula Simell
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Juha Mykkänen
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital and University of Turku Turku, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| |
Collapse
|
34
|
Rasmussen T, Yap SE, Stray-Pedersen B, Akselsen HE, McKinney PA, Rønningen KS. HLA associated type 1 diabetes risk in children of Pakistani migrants to Norway. Med Hypotheses 2014; 83:664-7. [PMID: 25441839 DOI: 10.1016/j.mehy.2014.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 09/10/2014] [Indexed: 11/17/2022]
Abstract
Type 1 diabetes (T1D) results from poorly defined interaction between susceptibility genes and environmental factors. The objective was to investigate Human Leukocyte Antigens (HLA) associated T1D risk among Pakistani newborns in Norway based on what published globally. DNA samples from 189 newborns, whose parents were first generation migrants from Pakistan, were analyzed. The hypothesis was tested using high resolution HLA genotyping for the -DRB1 and -DQB1 loci and high/intermediate for the -DQA1 locus. We identified 28 different DRB1, 13 DQB1 and 9 DQA1 alleles. Of the 39 different haplotypes identified, only five have been reported to confer T1D susceptibility. Among these the DR3-DQ2 (DRB1*03:01:01-DQA1*05-DQB1*02:01:01) haplotype was found in 18.5% (n=70) of the newborns, and 18.6% (n=13) of these were homozygotes. A diverse range of HLA haplotypes were identified amongst an ethnically homogenous group of newborns, with only a small proportion associated with T1D risk. The incidence of T1D among immigrants form South/East Asia is the lowest in the Norwegian Type 1 Diabetes Registry. The few included so far, are children of first generation immigrants. If incidence of T1D rises in the Norwegian Pakistani childhood population, as observed in the UK, then environmental triggers rather than genetic susceptibility will be the explanation.
Collapse
Affiliation(s)
- Trond Rasmussen
- Division of Society Contact and Information, Norwegian Institute of Public Health, Oslo, Norway.
| | - Soen Eng Yap
- Women and Children's Division, Oslo University Hospital, Rikshospitalet and Institute of Clinical Medicine, Medical Faculty, Oslo University, Oslo, Norway
| | - Babill Stray-Pedersen
- Women and Children's Division, Oslo University Hospital, Rikshospitalet and Institute of Clinical Medicine, Medical Faculty, Oslo University, Oslo, Norway
| | - Hanne E Akselsen
- Department of Medical Genetics, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Patricia A McKinney
- Paediatric Epidemiology Group, Centre for Epidemiology and Biostatistics, University of Leeds, Leeds, UK
| | - Kjersti S Rønningen
- Women and Children's Division, Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
35
|
Ludwig B, Barthel A, Reichel A, Block NL, Ludwig S, Schally AV, Bornstein SR. Modulation of the pancreatic islet-stress axis as a novel potential therapeutic target in diabetes mellitus. VITAMINS AND HORMONES 2014; 95:195-222. [PMID: 24559919 DOI: 10.1016/b978-0-12-800174-5.00008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Loss of pancreatic islet function and insulin-producing beta cell mass is a central hallmark in the pathogenesis of both type 1 and type 2 diabetes. While in type 1 diabetes this phenomenon is due to an extensive destruction of beta cells caused by an autoimmune process, the mechanisms resulting in beta cell failure in type 2 diabetes are different and less clear. Also, beta cell destruction in type 1 diabetes occurs early and is the initial step in the pathogenetic process, while beta cell loss in type 2 diabetes after an initial phase of hyperinsulinemia due to the underlying insulin resistance occurs relatively late and it is less pronounced. Since diabetes mellitus is the most frequent endocrine disease, with an increasing high prevalence worldwide, huge efforts have been made over the past many decades to identify predisposing genetic, environmental, and nutritional factors in order to develop effective strategies to prevent the disease. In parallel, extensive studies in different cell systems and animal models have helped to elucidate our understanding of the physiologic function of islets and to gain insight into the immunological and non-immunological mechanisms of beta cell destruction and failure. Furthermore, currently emerging concepts of beta cell regeneration (e.g., the restoration of the beta cell pool by regenerative, proliferative and antiapoptotic processes, and recovery of physiologic islet function) apparently is yielding the first promising results. Recent insights into the complex endocrine and paracrine mechanisms regulating the physiologic function of pancreatic islets, as well as beta cell life and death, constitute an essential part of this new and exciting area of diabetology. For example, understanding of the physiological role of glucagon-like peptide 1 has resulted in the successful clinical implementation of incretin-based therapies over the last years. Further, recent data suggesting paracrine effects of growth hormone-releasing hormone and corticotropin-releasing hormone on the regulation of pancreatic islet function, survival, and proliferation as well as on local glucocorticoid metabolism provide evidence for a potential role of the pancreatic islet-stress axis in the pathophysiology of diabetes mellitus. In this chapter, we provide a comprehensive overview of current preventive and regenerative concepts as a basis for the development of novel therapeutic approaches to the treatment of diabetes mellitus. A particular focus is given on the potential of the pancreatic islet-stress axis in the development of novel regenerative strategies.
Collapse
Affiliation(s)
- Barbara Ludwig
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; The Paul Langerhans Institute, Dresden, Germany; Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany.
| | - Andreas Barthel
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; Endokrinologikum Ruhr, Bochum, Germany
| | - Andreas Reichel
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Norman L Block
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA; Veterans Administration Medical Center, Miami, Florida, USA
| | - Stefan Ludwig
- Department of Visceral, Thorax and Vascular Surgery, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Andrew V Schally
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Endocrinology, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Medicine, Division of Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA; Veterans Administration Medical Center, Miami, Florida, USA
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany; The Paul Langerhans Institute, Dresden, Germany; Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
36
|
The HLA-B∗39 allele increases type 1 diabetes risk conferred by HLA-DRB1∗04:04-DQB1∗03:02 and HLA-DRB1∗08-DQB1∗04 class II haplotypes. Hum Immunol 2014; 75:65-70. [DOI: 10.1016/j.humimm.2013.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/22/2013] [Accepted: 09/11/2013] [Indexed: 01/08/2023]
|
37
|
Oresic M, Gopalacharyulu P, Mykkänen J, Lietzen N, Mäkinen M, Nygren H, Simell S, Simell V, Hyöty H, Veijola R, Ilonen J, Sysi-Aho M, Knip M, Hyötyläinen T, Simell O. Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes. Diabetes 2013; 62:3268-74. [PMID: 23630305 PMCID: PMC3749353 DOI: 10.2337/db13-0159] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies show that children who later progress to type 1 diabetes (T1D) have decreased preautoimmune concentrations of multiple phospholipids as compared with nonprogressors. It is still unclear whether these changes associate with development of β-cell autoimmunity or specifically with clinical T1D. Here, we studied umbilical cord serum lipidome in infants who later developed T1D (N = 33); infants who developed three or four (N = 31) islet autoantibodies, two (N = 31) islet autoantibodies, or one (N = 48) islet autoantibody during the follow-up; and controls (N = 143) matched for sex, HLA-DQB1 genotype, city of birth, and period of birth. The analyses of serum molecular lipids were performed using the established lipidomics platform based on ultra-performance liquid chromatography coupled to mass spectrometry. We found that T1D progressors are characterized by a distinct cord blood lipidomic profile that includes reduced major choline-containing phospholipids, including sphingomyelins and phosphatidylcholines. A molecular signature was developed comprising seven lipids that predicted high risk for progression to T1D with an odds ratio of 5.94 (95% CI, 1.07-17.50). Reduction in choline-containing phospholipids in cord blood therefore is specifically associated with progression to T1D but not with development of β-cell autoimmunity in general.
Collapse
Affiliation(s)
- Matej Oresic
- VTT Technical Research Centre of Finland, Espoo, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Type 1 Diabetes: Prospective Cohort Studies for Identification of the Environmental Trigger. Arch Immunol Ther Exp (Warsz) 2013; 61:459-68. [DOI: 10.1007/s00005-013-0247-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 08/05/2013] [Indexed: 11/27/2022]
|
39
|
Andersson C, Carlsson A, Cilio C, Cedervall E, Ivarsson SA, Jonsdottir B, Jönsson B, Larsson K, Neiderud J, Lernmark A, Elding Larsson H. Glucose tolerance and beta-cell function in islet autoantibody-positive children recruited to a secondary prevention study. Pediatr Diabetes 2013; 14:341-9. [PMID: 23469940 DOI: 10.1111/pedi.12023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/06/2012] [Accepted: 01/04/2013] [Indexed: 01/27/2023] Open
Abstract
AIMS Children with type 1 diabetes (T1D) risk and islet autoantibodies are recruited to a secondary prevention study. The aims were to determine metabolic control in relation to human leukocyte antigen (HLA) genetic risk and islet autoantibodies in prepubertal children. METHODS In 47 healthy children with GADA and at least one additional islet autoantibody, intravenous glucose tolerance test (IvGTT) and oral glucose tolerance test (OGTT) were performed 8-65 d apart. Hemoglobin A1c, plasma glucose as well as serum insulin and C-peptide were determined at fasting and during IvGTT and OGTT. RESULTS All children aged median 5.1 (4.0-9.2) yr had autoantibodies to two to six of the beta-cell antigens GAD65, insulin, IA-2, and the three amino acid position 325 variants of the ZnT8 transporter. In total, 20/47 children showed impaired glucose metabolism. Decreased (≤ 30 μU/mL insulin) first-phase insulin response (FPIR) was found in 14/20 children while 11/20 had impaired glucose tolerance in the OGTT. Five children had both impaired glucose tolerance and FPIR ≤ 30 μU/mL insulin. Number and levels of autoantibodies were not associated with glucose metabolism, except for an increased frequency (p = 0.03) and level (p = 0.01) of ZnT8QA in children with impaired glucose metabolism. Among the children with impaired glucose metabolism, 13/20 had HLA-DQ2/8, compared to 9/27 of the children with normal glucose metabolism (p = 0.03). CONCLUSION Secondary prevention studies in children with islet autoantibodies are complicated by variability in baseline glucose metabolism. Evaluation of metabolic control with both IvGTT and OGTT is critical and should be taken into account before randomization. All currently available autoantibody tests should be analyzed, including ZnT8QA.
Collapse
Affiliation(s)
- Cecilia Andersson
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Upadhyaya S. Immunology of type I diabetes: The journey from animal models to human therapeutics. APOLLO MEDICINE 2013. [DOI: 10.1016/j.apme.2013.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Nokoff N, Rewers M. Pathogenesis of type 1 diabetes: lessons from natural history studies of high-risk individuals. Ann N Y Acad Sci 2013; 1281:1-15. [PMID: 23360422 PMCID: PMC3715099 DOI: 10.1111/nyas.12021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by known genetic risk factors with T cell-mediated infiltration and destruction of the beta cells within pancreatic islets. Autoantibodies are the most significant preclinical marker of T1D, and birth cohort studies have provided important insights into the natural history of autoimmunity and T1D. While HLA remains the strongest genetic risk factor, a number of novel gene variants associated with T1D have been found through genome-wide studies, some of which have been linked to suspected environmental risk factors. Multiple environmental factors that have been suggested to play a role in the development of T1D await confirmation. Current risk-stratification models for T1D take into account genetic risk factors and autoantibodies. In the future, metabolic profiles, epigenetics, as well as environmental risk factors may be included in such models.
Collapse
Affiliation(s)
- Natalie Nokoff
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
42
|
Virtanen SM, Uusitalo L, Knip M. Early introduction of complementary foods: is there a link with Type 1 diabetes? ACTA ACUST UNITED AC 2013. [DOI: 10.2217/dmt.12.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Gastrointestinal Tract and Endocrine System. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
44
|
Parikka V, Näntö-Salonen K, Saarinen M, Simell T, Ilonen J, Hyöty H, Veijola R, Knip M, Simell O. Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk. Diabetologia 2012; 55:1926-36. [PMID: 22441569 DOI: 10.1007/s00125-012-2523-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/10/2012] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS The aim of the study was to investigate the timing of the appearance of autoantibodies associated with type 1 diabetes between birth and puberty, the natural fate of these autoantibodies and the predictive power of autoantibody concentrations for early progression to clinical diabetes. METHODS Children were recruited to the Type 1 Diabetes Prediction and Prevention Project, an ongoing study based on HLA-conferred genetic risk. Autoantibodies against islet cells, insulin, GAD65 and islet antigen 2 were analysed at 3-12 month intervals, starting from birth. RESULTS During the follow-up, 1,320 children (18.4% of the cohort of 7,165 children) were autoantibody positive in at least one sample. Altogether, 184 autoantibody-positive children progressed to type 1 diabetes. Seroconversion occurred at an early age in the progressors (median 1.5 years), among whom 118 (64%) and 150 (82%) seroconverted to autoantibody positivity before the age of 2 and 3 years, respectively. The incidence of seroconversion peaked at 1 year of age. Compared with other autoantibody-positive children, the median autoantibody levels were already markedly higher 3 to 6 months after the seroconversion in children who later progressed to diabetes. CONCLUSIONS/INTERPRETATION Early initiation of autoimmunity and rapid increases in autoantibody titres strongly predict progression to overt diabetes before puberty, emphasising the importance of early life events in the development of type 1 diabetes.
Collapse
Affiliation(s)
- V Parikka
- Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4-8, PO Box 52, 20521 Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Meriluoto M, Hedman L, Tanner L, Simell V, Mäkinen M, Simell S, Mykkänen J, Korpelainen J, Ruuskanen O, Ilonen J, Knip M, Simell O, Hedman K, Söderlund-Venermo M. Association of human bocavirus 1 infection with respiratory disease in childhood follow-up study, Finland. Emerg Infect Dis 2012; 18:264-71. [PMID: 22305021 PMCID: PMC3310460 DOI: 10.3201/eid1802.111293] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Since its discovery in 2005, human bocavirus type 1 has often been found in the upper airways of young children with respiratory disease. But is this virus the cause of the respiratory disease or just an innocent bystander? A unique study in Finland, which examined follow-up blood samples of 109 healthy children with no underlying illness starting at birth and until they were 13 years of age, found that acute bocavirus infection resulted in respiratory disease. All children had been infected by age 6. Most retained their antibodies to this virus; some lost them. Children who were later re-exposed to bocavirus did not get sick from this virus. Thus, human bocavirus type 1 is a major cause of respiratory disease in childhood. Human bocavirus 1 (HBoV1) DNA is frequently detected in the upper airways of young children with respiratory symptoms. Because of its persistence and frequent co-detection with other viruses, however, its etiologic role has remained controversial. During 2009–2011, using HBoV1 IgM, IgG, and IgG-avidity enzyme immunoassays and quantitative PCR, we examined 1,952 serum samples collected consecutively at 3- to 6-month intervals from 109 constitutionally healthy children from infancy to early adolescence. Primary HBoV1 infection, as indicated by seroconversion, appeared in 102 (94%) of 109 children at a mean age of 2.3 years; the remaining 7 children were IgG antibody positive from birth. Subsequent secondary infections or IgG antibody increases were evident in 38 children and IgG reversions in 10. Comparison of the seroconversion interval with the next sampling interval for clinical events indicated that HBoV1 primary infection, but not secondary immune response, was significantly associated with acute otitis media and respiratory illness.
Collapse
|
46
|
Rønningen KS, Yap SE, Brandal K, Stormyr A, Lie BA, Rasmussen T, Stray-Pedersen B, Akselsen HE. HLA-DRB1, -DQA1 and -DQB1 Alleles and Haplotypes in First-Generation Pakistani Immigrants in Norway. Scand J Immunol 2012; 75:426-30. [DOI: 10.1111/j.1365-3083.2011.02669.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Rydén A, Bolmeson C, Jonson CO, Cilio CM, Faresjö M. Low expression and secretion of circulating soluble CTLA-4 in peripheral blood mononuclear cells and sera from type 1 diabetic children. Diabetes Metab Res Rev 2012; 28:84-96. [PMID: 22218756 DOI: 10.1002/dmrr.1286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND High levels of soluble cytotoxic T-lymphocyte antigen 4 (soluble CTLA-4), an alternative splice form of the regulatory T-cell (Treg) associated CTLA-4 gene, have been associated with type 1 diabetes (T1D) and other autoimmune diseases, such as Grave's disease and myasthenia gravis. At the same time, studies have shown soluble CTLA-4 to inhibit T-cell activation through B7 binding. This study aimed to investigate the role of soluble CTLA-4 in relation to full-length CTLA-4 and other Treg-associated markers in T1D children and in individuals with high or low risk of developing the disease. METHODS T1D children were studied at 4 days, 1 and 2 years after diagnosis in comparison to individuals with high or low risk of developing the disease. Isolated peripheral blood mononuclear cells were stimulated with the T1D-associated glutamic acid decarboxylase 65 and phytohaemagglutinin. Subsequently, soluble CTLA-4, full-length CTLA-4, FOXP3 and TGF-β mRNA transcription were quantified and protein concentrations of soluble CTLA-4 were measured in culture supernatant and sera. RESULTS AND CONCLUSIONS Low protein concentrations of circulating soluble CTLA-4 and a positive correlation between soluble CTLA-4 mRNA and protein were seen in T1D, in parallel with a negative correlation in healthy subjects. Further, low levels of mitogen-induced soluble CTLA-4 were accompanied by low C-peptide levels. Interestingly, low mitogen-induced soluble CTLA-4 mRNA and low TGF-β mRNA expression were seen in high risk individuals, suggesting an alteration in activation and down-regulating immune mechanisms during the pre-diabetic phase.
Collapse
Affiliation(s)
- Anna Rydén
- Division of Paediatrics & Diabetes Research Centre, Department of Molecular & Clinical Medicine, Linköping University, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
48
|
Hagopian WA, Erlich H, Lernmark A, Rewers M, Ziegler AG, Simell O, Akolkar B, Vogt R, Blair A, Ilonen J, Krischer J, She J. The Environmental Determinants of Diabetes in the Young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants. Pediatr Diabetes 2011; 12:733-43. [PMID: 21564455 PMCID: PMC3315186 DOI: 10.1111/j.1399-5448.2011.00774.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIMS The Environmental Determinants of Diabetes in the Young (TEDDY) study seeks to identify environmental factors influencing the development of type 1 diabetes (T1D) using intensive follow-up of children at elevated genetic risk. This study requires a cost-effective yet accurate screening strategy to identify the high-risk cohort. METHODS The TEDDY cohort was identified through newborn screening using human leukocyte antigen (HLA) class II genes based on criteria established with pre-TEDDY data. HLA typing was completed at six international centers using different genotyping methods that can achieve >98% accuracy. RESULTS TEDDY developed separate inclusion criteria for the general population (GP) and first-degree relatives (FDRs) of T1D patients. The FDR eligibility includes nine haplogenotypes (DR3/4, DR4/4, DR4/8, DR3/3, DR4/4b, DR4/1, DR4/13, DR4/9, and DR3/9) for broad HLA diversity, whereas the GP eligibility includes only the first four haplogenotypes with DRB1*0403 as an exclusion allele. TEDDY has screened 414 714 GP infants, of which 19 906 (4.8%) were eligible, whereas 1415 of the 6333 screened FDR infants (22.2%) were eligible. High-resolution confirmation testing of the eligible subjects indicated that the low-cost and low-resolution genotyping techniques employed at the screening centers yielded an accuracy of 99%. There were considerable variations in eligibility rates among the centers for GP (3.5-7.4%) and FDR (19-32%) subjects. The eligibility rates among US ethnic groups were 0.9, 1.3, 5.0, and 6.9% for Asians, Black, Caucasians, and Hispanics, respectively. CONCLUSIONS Different low-cost and low-resolution genotyping methods are useful for the efficient and accurate identification of a high-risk cohort for follow-up based on the TEDDY HLA inclusion criteria.
Collapse
|
49
|
Elding Larsson H, Vehik K, Bell R, Dabelea D, Dolan L, Pihoker C, Knip M, Veijola R, Lindblad B, Samuelsson U, Holl R, Haller MJ. Reduced prevalence of diabetic ketoacidosis at diagnosis of type 1 diabetes in young children participating in longitudinal follow-up. Diabetes Care 2011; 34:2347-52. [PMID: 21972409 PMCID: PMC3198296 DOI: 10.2337/dc11-1026] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/17/2011] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Young children have an unacceptably high prevalence of diabetic ketoacidosis (DKA) at the clinical diagnosis of type 1 diabetes. The aim of this study was to determine whether knowledge of genetic risk and close follow-up for development of islet autoantibodies through participation in The Environmental Determinants of Diabetes in the Young (TEDDY) study results in lower prevalence of DKA at diabetes onset in children aged <2 and <5 years compared with population-based incidence studies and registries. RESEARCH DESIGN AND METHODS Symptoms and laboratory data collected on TEDDY participants diagnosed with type 1 diabetes between 2004 and 2010 were compared with data collected during the similar periods from studies and registries in all TEDDY-participating countries (U.S., SEARCH for Diabetes in Youth Study; Sweden, Swediabkids; Finland, Finnish Pediatric Diabetes Register; and Germany, Diabetes Patienten Verlaufsdokumenation [DPV] Register). RESULTS A total of 40 children younger than age 2 years and 79 children younger than age 5 years were diagnosed with type 1 diabetes in TEDDY as of December 2010. In children <2 years of age at onset, DKA prevalence in TEDDY participants was significantly lower than in all comparative registries (German DPV Register, P < 0.0001; Swediabkids, P = 0.02; SEARCH, P < 0.0001; Finnish Register, P < 0.0001). The prevalence of DKA in TEDDY children diagnosed at <5 years of age (13.1%) was significantly lower compared with SEARCH (36.4%) (P < 0.0001) and the German DPV Register (32.2%) (P < 0.0001) but not compared with Swediabkids or the Finnish Register. CONCLUSIONS Participation in the TEDDY study is associated with reduced risk of DKA at diagnosis of type 1 diabetes in young children.
Collapse
Affiliation(s)
- Helena Elding Larsson
- Department of Pediatrics, Skåne University Hospital, Lund University, Malmö, Sweden,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ryhänen SJ, Härkönen T, Siljander H, Näntö-Salonen K, Simell T, Hyöty H, Ilonen J, Veijola R, Simell O, Knip M. Impact of intranasal insulin on insulin antibody affinity and isotypes in young children with HLA-conferred susceptibility to type 1 diabetes. Diabetes Care 2011; 34:1383-8. [PMID: 21515841 PMCID: PMC3114329 DOI: 10.2337/dc10-1449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Despite promising results from studies on mouse models, intranasal insulin failed to prevent or delay the development of type 1 diabetes in autoantibody-positive children with HLA-conferred disease susceptibility. To analyze whether the insulin dose was inadequate to elicit an immunomodulatory response, we compared the changes observed in insulin antibody (IA) affinity and isotypes after treatment with nasal insulin or placebo. RESEARCH DESIGN AND METHODS Ninety-five children (47 in the placebo group and 48 in the insulin group of the total of 224 children randomized for the trial) with HLA-conferred susceptibility to type 1 diabetes derived from the intervention arm of the Finnish Type 1 Diabetes Prediction and Prevention study were included in these analyses. Blood samples drawn before or at the beginning of the treatment and after treatment for 3 and 6 months were analyzed for IA affinity and isotype-specific IAs (IgG1-4, IgA, IgM, and IgE). RESULTS IgG3- and IgA-IA levels (P = 0.031 and 0.015, respectively) and the number of IgG3-IA-positive subjects (P = 0.022) were significantly higher at 6 months after the initiation of the treatment in the insulin group. No significant differences were observed between the two groups in IA affinity or other IA isotypes. CONCLUSIONS The insulin dose administered induced a modest change in the IA isotype profile. The lack of impact of nasal insulin on IA affinity implies that the immune response of study subjects was already mature at the beginning of the intervention.
Collapse
Affiliation(s)
- Samppa J Ryhänen
- Scientific Laboratory, Hospital for Children and Adolescents and Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|