1
|
Guadalupe Hernández J, Thangarasu P. Chromium Complex of Macrocyclic Ligands as Precursor for Nitric Oxide Release: A Theoretical Study. Chemphyschem 2024; 25:e202400700. [PMID: 39413354 DOI: 10.1002/cphc.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
Our research on the chromium complex of macrocyclic ligands as a precursor for nitric oxide release makes a significant contribution to the field of chemistry. We conduct a detailed analysis of nitrito chromium complexes, specifically trans-[M(III)L1-5(ONO)2]+, where M=Cr(III) and L1-L5 represent different ligands such as L1=1,4,8,11-tetraazacyclotetradecane, L2= (5,7-dimethyl-6-benzylcyclam), L3= (5,7-dimethyl-6-anthracylcyclam), L4= (5,7-dimethyl-6-(p-hydroxymethylbenzyl)-1,4, 8,11-cyclam) and L5= (5,7-dimethyl-6-(1¢-methyl-4'-(1"-carboxymethylpyrene) benzyl)-1,4,8,11-tetraazacyclotetradecane). Our objective is to comprehensively understand the mechanism of NO release and identify the key factors influencing NO delivery. The optimized structure of the complexes at spin states S=1/2 or 3/2 indicates a decrease in the Cr(III)-O bond length (1.669-1.671 Å) along with an increase in the Cr(III)O-NO bond length (2.735-2.741 Å), which facilitates the release of NO. Furthermore, there is a significant change in the bond angle (Cr-O-NO), from 120.4° to 116.9°, to S=3/2, thus enlarging the O-NO bond and supporting the β-cleavage of NO from the complex. The calculated activation energy for the complexes reflects the energy difference between the low-spin doublet and high-spin quartet state due to spin crossover (SCO). Moreover, the Natural Transition Orbitals (NTOs) confirm the involvement of a hole-particle in the excitation. Additionally, TD-DFT reveals the pendant chromophore's role in generating NO, as the chromophore antenna effectively enhances light absorption.
Collapse
Affiliation(s)
- José Guadalupe Hernández
- Centro Tecnológico, Facultad de Estudios Superiores (FES-Aragón), Universidad Nacional Autónoma de México (UNAM), Estado de México, CP 57130, México
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Cd. Universitaria, 04510, México, D.F., México
| |
Collapse
|
2
|
Hajhashemy Z, Golpour-Hamedani S, Eshaghian N, Sadeghi O, Khorvash F, Askari G. Practical supplements for prevention and management of migraine attacks: a narrative review. Front Nutr 2024; 11:1433390. [PMID: 39539367 PMCID: PMC11557489 DOI: 10.3389/fnut.2024.1433390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background Migraine is one of the most debilitating neurological disorders that causes frequent attacks of headaches and affects approximately 11% of the global population. Deficient or even insufficient levels of vital nutrients would increase the severity and frequency of migraine attacks. Therefore, we aimed to examine the practical supplements for the prevention and management of migraine attacks. Method This narrative review study was conducted by searching PubMed, ISI web of science, EMBASE, Google Scholar, and Scopus using the keywords of "dietary supplement" and "migraine" plus their MeSH terms. Original articles published in English language from their inception to July 27th, 2024, studies that investigated adult population (aged >18 years), and those assessing the impact of intended nutrient supplementation on clinical symptoms of migraine were included in the study. Result Oxidative stress and low intake of antioxidants would be risk factors for migraine attacks by inducing inflammation. The secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-a, would lead to neuroinflammation and migraine episodes by increasing the cellular permeability and interactions. Evidence also indicated a direct association between phases of migraine attacks and calcitonin gene-related peptide (CGRP), mitochondrial disorders, monoaminergic pathway, disruption in brain energy metabolism, and higher serum levels of glutamate and homocysteine. Therefore, supplementation with nutrients involved in mitochondrial function, brain energy metabolism, and even methyl donors would relieve migraine attacks. Conclusion Evidence indicated that supplementation with riboflavin, omega-3 fatty acids, alpha lipoic acid, magnesium, probiotics, coenzyme Q10, ginger, and caffeine would have favorable effects on migraine patients. However, more prospective studies are required to evaluate the effect of other nutrients on migraine patients.
Collapse
Affiliation(s)
- Zahra Hajhashemy
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Golpour-Hamedani
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloofar Eshaghian
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Sadeghi
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Mao J, Zhou M, Yanjun L, Zhao Y, Hu H, Yang X. Associations between environmental perchlorate, nitrate, and thiocyanate exposure and severe headache or migraine: a cross-sectional, population-based analysis. Front Neurol 2024; 15:1431704. [PMID: 39512278 PMCID: PMC11542639 DOI: 10.3389/fneur.2024.1431704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Background Environmental contaminants may play a significant role in the development of migraine. Perchlorate, nitrate, and thiocyanate were selected for this study due to their known impact on thyroid function, which is closely linked to neurological processes. Disruptions in thyroid function have been associated with various neurological disorders, including migraines. However, there is currently no evidence linking exposure to these specific chemicals to migraine. The study aims to evaluate the association between urinary concentrations of perchlorate, nitrate, and thiocyanate with the prevalence of severe headache or migraine in U.S. adults. Methods A cross-sectional study was conducted using data from the National Health and Nutrition Examination Survey (NHANES) 2001-2004. Utilizing electrospray tandem mass spectrometry in conjunction with ion chromatography, urinary concentrations of perchlorate, nitrate, and thiocyanate urine were measured. Multiple logistic regression models were employed to evaluate the linear correlation between perchlorate, nitrate, and thiocyanate exposure and severe headache or migraine. The non-linear relationship is described analytically using a fitted smoothing curve and a two-piecewise regression model. Subgroup analyses were used to further clarify the stability of this relationship across different populations. Results There were 1,446 participants in this population-based study, ranging in age from 20 to 85. After adjusting for potential confounding variables, the multiple logistic regression findings demonstrated that thiocyanate was significantly positively associated with the prevalence of migraine (odds ratio [OR] = 1.18; [1.06, 1.30]; p < 0.001). There was consistency in this connection across different subgroups (p for interaction >0.05). Furthermore, there was a non-linear correlation between urinary thiocyanate and migraine. Using a fitted smoothing curve and a two-piecewise regression model, it was found that the correlation between urinary thiocyanate and migraine was U-shaped (p for Log-likelihood ratio = 0.002). According to the findings of the multiple regression analysis, there was no significant correlation between urinary perchlorate and nitrate and migraine (both p > 0.05). Conclusion We should limit our exposure to thiocyanate by keeping it within a reasonable range, as indicated by the U-shaped correlation between urinary thiocyanate and migraine.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaokai Yang
- Postgraduate Training Base Alliance of Wenzhou Medical University, Third Affiliated Hospital of Shanghai University, Wenzhou People’s Hospital, Wenzhou, China
| |
Collapse
|
4
|
Guo S, Christensen SL, Al‐Karagholi MA, Olesen J. Molecular nociceptive mechanisms in migraine: The migraine cascade. Eur J Neurol 2024; 31:e16333. [PMID: 38894592 PMCID: PMC11235602 DOI: 10.1111/ene.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This review will explore the categorization of migraine-provoking molecules, their cellular actions, site of action and potential drug targets based on the migraine cascade model. METHODS Personal experience and literature. RESULTS Migraine impacts over 1 billion people worldwide but is underfunded in research. Recent progress, particularly through the human and animal provocation model, has deepened our understanding of its mechanisms. This model have identified endogenous neuropeptides such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP) that induces controlled migraine-like attacks leading to significant discoveries of their role in migraine. This knowledge led to the development of CGRP-inhibiting drugs; a groundbreaking migraine treatment now accessible globally. Also a PACAP-inhibiting drug was effective in a recent phase II trial. Notably, rodent studies have shed light on pain pathways and the mechanisms of various migraine-inducing substances identifying novel drug targets. This is primarily done by using selective inhibitors that target specific signaling pathways of the known migraine triggers leading to the hypothesized cellular cascade model of migraine. CONCLUSION The model of migraine presents numerous opportunities for innovative drug development. The future of new migraine treatments is limited only by the investment from pharmaceutical companies.
Collapse
Affiliation(s)
- Song Guo
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
- Department of NeurologyZealand University HospitalRoskildeDenmark
| | - Sarah Louise Christensen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Mohammad Al‐Mahdi Al‐Karagholi
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| |
Collapse
|
5
|
Lakhanpal V, Ray S, Chakravarty K, Sharma B, Bhatia V, Dogra M, Takkar A, Handa S, Mahesh KV, Khurana D, Lal V. Establishing continuum in Transcranial Doppler characteristics of IIH, migraine and healthy controls- An exploratory study. Clin Neurol Neurosurg 2024; 240:108240. [PMID: 38554529 DOI: 10.1016/j.clineuro.2024.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND IIH is a severe form of headache that often has superimposed migraine and often it is very difficult to distinguish the two forms of headache. Intracranial hemodynamics is a relatively unexplored means of distinguishing between the two forms of headache. OBJECTIVES We aimed to study intracranial flow dynamics using Transcranial Doppler in patients with IIH, migraine, and normal controls. MATERIALS AND METHODS It was a hospital-based observational study that included 51 people with IIH, 87 people with migraine, and 101 healthy controls and all were subjected to TCD study after detailed clinical examination. RESULTS Mean age of patients in three groups were similar with the mean age in IIH being 33.41 ± 10.75 (age in years ± SD). Vision loss was present in 66.67% of patients with IIH, and most common field defect was generalized constriction (27.5%). Neuroimaging was abnormal in 94.11% of patients of IIH with mean CSF pressure was 31.27±5.32 cm of water. Of all the TCD-measured velocities, mean flow velocity (MFV) showed a significant difference in all three groups with (p-value <0.001). The pulsatility index, both for middle cerebral arteries as well as ophthalmic arteries showed a significant difference in the three groups with the highest values in IIH patients (p-value<.001). The mean VMR in IIH (1.11±0.32) was lower than the mean VMR in migraine (1.34±0.43) as well as controls (1.49±0.46). CONCLUSION TCD parameters like MFV and PI are useful parameters that show considerable variation and can be used to differentiate between IIH and migraine.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Bhatia
- Department of Radiology, PGIMER, Chandigarh, India
| | - Mohit Dogra
- Department of Ophthalmology, PGIMER Chandigarh, India
| | | | - Sabia Handa
- Department of Ophthalmology, AIIMS Bathinda, India
| | | | | | - Vivek Lal
- Department of Neurology, PGIMER Chandigarh, India
| |
Collapse
|
6
|
Benedicter N, Vogler B, Kuhn A, Schramm J, Mackenzie KD, Stratton J, Dux M, Messlinger K. Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception-Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab. Cells 2024; 13:572. [PMID: 38607011 PMCID: PMC11011795 DOI: 10.3390/cells13070572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used to study CGRP actions in preclinical experiments. Fremanezumab (30 mg/kg) or an isotype control monoclonal antibody was subcutaneously injected to Wistar rats of both sexes. One to several days later, glyceroltrinitrate (GTN, 5 mg/kg) mimicking nitric oxide (NO) was intraperitoneally injected, either once or for three consecutive days. The trigeminal ganglia were removed to determine the concentration of CGRP using an enzyme-linked immunosorbent assay (ELISA). In one series of experiments, the animals were trained to reach an attractive sugar solution, the access to which could be limited by mechanical or thermal barriers. Using a semi-automated registration system, the frequency of approaches to the source, the residence time at the source, and the consumed solution were registered. The results were compared with previous data of rats not treated with GTN. The CGRP concentration in the trigeminal ganglia was generally higher in male rats and tended to be increased in animals treated once with GTN, whereas the CGRP concentration decreased after repetitive GTN treatment. No significant difference in CGRP concentration was observed between animals having received fremanezumab or the control antibody. Animals treated with GTN generally spent less time at the source and consumed less sugar solution. Without barriers, there was no significant difference between animals having received fremanezumab or the control antibody. Under mechanical barrier conditions, all behavioral parameters tended to be reduced but animals that had received fremanezumab tended to be more active, partly compensating for the depressive effect of GTN. In conclusion, GTN treatment seems to increase the production of CGRP in the trigeminal ganglion independently of the antibodies applied, but repetitive GTN administration may deplete CGRP stores. GTN treatment generally tends to suppress the animals' activity and increase facial sensitivity, which is partly compensated by fremanezumab through reduced CGRP signaling. If CGRP and NO signaling share the same pathway in sensitizing trigeminal afferents, GTN and NO may act downstream of CGRP to increase facial sensitivity.
Collapse
Affiliation(s)
- Nicola Benedicter
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| | - Annette Kuhn
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| | - Jana Schramm
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| | | | | | - Mária Dux
- Department of Physiology, University of Szeged, H-6720 Szeged, Hungary;
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University, D-91054 Erlangen, Germany; (N.B.)
| |
Collapse
|
7
|
Ferretti A, Gatto M, Velardi M, Di Nardo G, Foiadelli T, Terrin G, Cecili M, Raucci U, Valeriani M, Parisi P. Migraine, Allergy, and Histamine: Is There a Link? J Clin Med 2023; 12:3566. [PMID: 37240671 PMCID: PMC10218803 DOI: 10.3390/jcm12103566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between migraines and allergies is controversial. Though they are epidemiologically linked, the underlying pathophysiological connection between them remains unclear. Migraines and allergic disorders have various underlying genetic and biological causes. As per the literature, these conditions are epidemiologically linked, and some common pathophysiological pathways have been hypothesized. The histaminergic system may be the clue to understanding the correlation among these diseases. As a neurotransmitter in the central nervous system with a vasodilatory effect, histamine has a well-documented influence on the allergic response and could be involved in the pathophysiology of migraines. Histamine may influence hypothalamic activity, which may play a major role in migraines or may simply influence their severity. In both cases, antihistamine drugs could prove useful. This review examines whether the histaminergic system, particularly H3 and H4 receptors, may provide a mechanistic link between the pathophysiology of migraines and allergic disorders, two common and debilitating conditions. Identifying their connection could help identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Ferretti
- Pediatrics Unit, Neuroscience, Mental Health and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Mattia Gatto
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Margherita Velardi
- General and Emergency Department, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico, 00165 Rome, Italy
| | - Giovanni Di Nardo
- Pediatrics Unit, Neuroscience, Mental Health and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gianluca Terrin
- Department of Mother and Child, Gynecological and Urological Sciences, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Manuela Cecili
- Pediatrics Unit, Neuroscience, Mental Health and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Umberto Raucci
- General and Emergency Department, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico, 00165 Rome, Italy
| | - Massimiliano Valeriani
- Developmental Neurology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico, 00165 Rome, Italy
| | - Pasquale Parisi
- Pediatrics Unit, Neuroscience, Mental Health and Sense Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
8
|
Tasnim S, Nyholt DR. Migraine and thyroid dysfunction: Co-occurrence, shared genes and biological mechanisms. Eur J Neurol 2023; 30:1815-1827. [PMID: 36807966 DOI: 10.1111/ene.15753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND PURPOSE Migraine and thyroid dysfunction, particularly hypothyroidism, are common medical conditions and are known to have high heritability. Thyroid function measures, thyroid stimulating hormone (TSH) and free thyroxine (fT4), are also known to be genetically influenced. Although observational epidemiological studies report an increased co-occurrence of migraine and thyroid dysfunction, a clear and combined interpretation of the findings is currently lacking. A narrative review is provided of the epidemiological and genetic association evidence linking migraine, hypothyroidism, hyperthyroidism and thyroid hormones TSH and fT4. METHODS An extensive literature search was conducted in the PubMed database for epidemiological, candidate gene and genome-wide association studies using the terms migraine, headache, thyroid hormones, TSH, fT4, thyroid function, hypothyroidism and hyperthyroidism. RESULTS Epidemiological studies suggest a bidirectional relationship between migraine and thyroid dysfunction. However, the nature of the relationship remains unclear, with some studies suggesting migraine increases the risk for thyroid dysfunction whilst other studies suggest the reverse. Early candidate gene studies have provided nominal evidence for MTHFR and APOE, whilst more recently genome-wide association studies have provided robust evidence for THADA and ITPK1 being associated with both migraine and thyroid dysfunction. CONCLUSIONS These genetic associations improve our understanding of the genetic relationship between migraine and thyroid dysfunction, provide an opportunity to develop biomarkers to identify migraine patients most likely to benefit from thyroid hormone therapy, and indicate that further cross-trait genetic studies have excellent potential to provide biological insight into their relationship and inform clinical interventions.
Collapse
Affiliation(s)
- Sana Tasnim
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Yao L, Chen R, Ji H, Wang X, Zhang X, Yuan Y. Preventive and Therapeutic Effects of Low-Intensity Ultrasound Stimulation on Migraine in Rats. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2332-2340. [PMID: 35981071 DOI: 10.1109/tnsre.2022.3199813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study sought to systematically evaluate the prophylactic and therapeutic effects of low-intensity transcranial ultrasound stimulation on migraine in rats. We used video recordings to assess the head scratching behavior and laser speckle contrast imaging to record the changes in cerebral blood flow velocity of freely moving rats in a healthy group, migraine group, migraine group with ultrasound prevention, and migraine group with ultrasound therapy. Results demonstrated that (1) head scratching during migraine attacks in rats was accompanied by an decrease in cerebral blood flow; (2) both ultrasound prevention and therapy significantly reduced the number of head scratches but did not reduce the cerebral blood flow velocity; and (3) the number of head scratches in the ultrasound stimulation groups was not affected by the auditory effect. These results reveal that low-intensity ultrasound has the potential to be used clinically in the prevention and therapeutic treatment of migraine.
Collapse
|
10
|
Wei DY, Goadsby PJ. Comprehensive clinical phenotyping of nitroglycerin infusion induced cluster headache attacks. Cephalalgia 2021; 41:913-933. [PMID: 33615843 PMCID: PMC8217894 DOI: 10.1177/0333102421989617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Nitroglycerin administration allows the study of cluster headache attacks in their entirety in a standardised way. Methods A single-blind, placebo-controlled, cross-over study using weight-calculated intravenous nitroglycerin administration at 0.5 µg/kg/min over 20 minutes to study cluster headache attacks, including accompanying non-headache symptoms and cranial autonomic symptoms. Results Thirty-three subjects with cluster headache were included in the study; 24 completed all three study visits. Nitroglycerin-induced attacks developed in 26 out of 33 subjects (79%) receiving unblinded nitroglycerin infusion, and in 19 out of 25 subjects (76%) receiving single-blinded nitroglycerin infusion, compared with one out of 24 subjects (4%) receiving single-blinded placebo infusion. Episodic cluster headache subjects had a shorter latency period to a nitroglycerin-induced attack compared to the chronic cluster headache (CCH) subjects (U = 15, z = −2.399, p = 0.016). Sixteen of nineteen episodic cluster headache (mean, 84%; 95% confidence interval, 66–100%) and 11 of 14 chronic cluster headache subjects developed a nitroglycerin-induced attack (79%, 54–100%) following the unblinded nitroglycerin infusion. Following the single-blinded nitroglycerin infusion, eight out of 13 episodic cluster headache (62%, 31–92%) and 11 out of 12 chronic cluster headache (92%, 73–100%) subjects developed nitroglycerin-induced attacks. Nitroglycerin induced non-headache symptoms in the majority of subjects receiving it: 91% in the open unblinded nitroglycerin visit and 84% in the single-blinded nitroglycerin visits, compared with 33% in the single-blinded placebo visit. Cranial autonomic symptoms were induced by nitroglycerin infusion, 94% in the open unblinded nitroglycerin visit and 84% in the single-blinded nitroglycerin visit, compared with 17% in the single-blinded placebo visit. Conclusion Intravenous weight-adjusted nitroglycerin administration in both episodic cluster headache in bout and chronic cluster headache is effective and reliable in inducing cluster headache attacks, cranial autonomic symptoms and non-headache symptoms.
Collapse
Affiliation(s)
- Diana Y Wei
- Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Neurology, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Yilmaz S. Serum NO, S100B, NSE concentrations in migraine and their relationship. J Clin Neurosci 2020; 82:32-35. [PMID: 33317735 DOI: 10.1016/j.jocn.2020.10.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Migraine pathogenesis still remains uncertain. Studies have found contradictory results regarding NO, S100B and NSE parameters in migraine patients. Therefore, in our study, we aimed to measure NO, S100B and NSE concentrations in migraine patients, compare them with the control group and find the relationship between these parameters. MATERIALS AND METHODS Fifty-two patients (35 women and 17 men) diagnosed with migraine according to the International Headache Classification II criteria were included in the study. 30 healthy participants without any history of disease were included in the control group. Serum NO, S100B and NSE levels were determined in all participants. RESULTS It was found that NO, S100B parameters increased compared to the control group, and NSE parameter decreased compared to the control group in the migraine patients participating in this study (p = 0,004, p = 0,002, p = 0,000) It was found that there was a moderate positive linear correlation between serum S100B and NSE in the migraine patients in our study (r = 442, p = 0.011). CONCLUSION In our study, the fact that there was a statistically significant difference in the NO, S100b and NSE parameters of migraine and control group patients indicates that these molecules can be effective in the pathogenesisof migraine. The moderate positive linear correlation found between serum S100B and NSE in migraine patients in our study demonstrates that these molecules together can be effective in the pathogenesis.
Collapse
Affiliation(s)
- Sedat Yilmaz
- Department of Medical Biochemistry, Medicine Faculty of Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
12
|
Christensen SL, Munro G, Petersen S, Shabir A, Jansen-Olesen I, Kristensen DM, Olesen J. ATP sensitive potassium (K ATP) channel inhibition: A promising new drug target for migraine. Cephalalgia 2020; 40:650-664. [PMID: 32418458 DOI: 10.1177/0333102420925513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recently, the adenosine triphosphate (ATP) sensitive potassium channel opener levcromakalim was shown to induce migraine attacks with a far higher incidence than any previous provoking agent such as calcitonin gene-related peptide. Here, we show efficacy of ATP sensitive potassium channel inhibitors in two validated rodent models of migraine. METHODS In female spontaneous trigeminal allodynic rats, the sensitivity of the frontal region of the head was tested by an electronic von Frey filament device. In mice, cutaneous hypersensitivity was induced by repeated glyceryl trinitrate or levcromakalim injections over nine days, as measured with von Frey filaments in the hindpaw. Release of calcitonin gene-related peptide from dura mater and trigeminal ganglion was studied ex vivo. RESULTS The ATP sensitive potassium channel inhibitor glibenclamide attenuated the spontaneous cephalic hypersensitivity in spontaneous trigeminal allodynic rats and glyceryl trinitrate-induced hypersensitivity of the hindpaw in mice. It also inhibited CGRP release from dura mater and the trigeminal ganglion isolated from spontaneous trigeminal allodynic rats. The hypersensitivity was also diminished by the structurally different ATP sensitive potassium channel inhibitor gliquidone. Mice injected with the ATP sensitive potassium channel opener levcromakalim developed a progressive hypersensitivity that was completely blocked by glibenclamide, confirming target engagement. CONCLUSION The results suggest that ATP sensitive potassium channel inhibitors could be novel and highly effective drugs in the treatment of migraine.
Collapse
Affiliation(s)
- Sarah L Christensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Gordon Munro
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Steffen Petersen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Anmool Shabir
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - David M Kristensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark.,Univ Rennes, Inserm, EHESP, Irset (Research Center for Environmental and Occupational Health), Rennes, France
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
13
|
Razeghi Jahromi S, Togha M, Ghorbani Z, Hekmatdoost A, Khorsha F, Rafiee P, Shirani P, Nourmohammadi M, Ansari H. The association between dietary tryptophan intake and migraine. Neurol Sci 2019; 40:2349-2355. [PMID: 31254181 DOI: 10.1007/s10072-019-03984-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/15/2019] [Indexed: 12/22/2022]
Abstract
Migraineurs have been identified to have chronically decreased serotonin levels while its concentrations markedly increase during ictal periods. Regarding the importance of adequate tryptophan intake in regulating serotonin homeostasis and subsequent effect on migraine attacks, we designed the current study. The migraine group (n = 514, diagnosed according to the ICHDIII criteria) was recruited from a tertiary headache clinic. The controls consisted of 582 sex-matched healthy volunteers who were randomly selected from general population. After collecting demographic and anthropometric data, a validated 168-item semi-quantitative food frequency questionnaire (FFQ) was used for dietary intake assessments. Multiple regression models were applied to explore the relationship between migraine and tryptophan intake. The mean (SD) of the age of participants in the controls and migraine group was 44.85 (13.84) and 36.20 (9.78) years, respectively. The multiple regression models were adjusted for age (year), sex, body mass index (BMI) (kg/m2), total daily energy intake (kcal/day), dietary intakes of total carbohydrates (g/day), animal-based protein (g/day), plant-based protein (g/day), total fat (g/day), saturated fat (g/day), and cholesterol (mg/day). It was shown that there is a negative association between tryptophan intake and migraine risk ((OR in the 3rd quartile = 0.46; 95% CI = 0.25-0.85) (OR in the 4th quartile = 0.40; 95% CI = 0.16-0.98) compared with the first quartile; P for trend = 0.045). Therefore, our results showed that subjects who had a median intake of 0.84-1.06 g of tryptophan per day had reduced odds of developing migraine by approximately 54-60%, relative to those consumed ≤ 0.56 g/day.
Collapse
Affiliation(s)
- Soodeh Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Khorsha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Rafiee
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Shirani
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Morvarid Nourmohammadi
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ansari
- Department of Neurology, University of California San Diego (UCSD), 9500 Gilman Drive, M/C: 0662, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Togha M, Razeghi Jahromi S, Ghorbani Z, Martami F, Seifishahpar M. Serum Vitamin B12 and Methylmalonic Acid Status in Migraineurs: A Case-Control Study. Headache 2019; 59:1492-1503. [PMID: 31471907 DOI: 10.1111/head.13618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although the exact pathophysiological mechanistic pathways that result in the initiation of migraine attacks remain unclear, there are some proposed mechanisms including neurogenic inflammation, trigeminovascular system activation, vascular dysfunction, and augmented release of nitric oxide (NO) and homocysteine (Hcy). Vitamin B12 is thought to be involved in important pathways that seem to be related to the pathogenesis of migraine including scavenging against NO and prevention of hyperhomocysteinemia. Therefore, the aim of the current study was to evaluate the serum vitamin B12 and methylmalonic acid (MMA) status in a group of migraine patients compared to healthy controls. METHODS After the recruitment of cases and controls, demographic data and migraine characteristics (including the number of headache days, severity of headaches, and duration of each attack in hours) were recorded. Serum vitamin B12 and MMA levels were measured using the enzyme-linked immunosorbent assay technique. RESULTS Seventy migraine patients and 70 healthy subjects were enrolled in this case control study. The serum levels of B12 were found to be significantly lower in migraine patients than in healthy subjects (512 ± 300 vs 667 ± 351 pg/mL, P = .007); whereas migraineurs had higher levels of MMA than controls (1.39 [0.59,4.01] vs 1.01 [0.49,1.45] µg/dL, P = .027). In the fully adjusted multiple regression model, those in the highest vs the lowest serum B12 quartile had 80% decrease in the odds of having migraine ([OR = 0.20, 95% CI = 0.05-0.73], [P for trend = .008]); while, patients in the highest quartile of MMA had more than 5 times increased risk of having migraine ([OR = 5.44, 95% CI = 1.49-19.87] [P for trend = .002]). There was no association between serum B12 and MMA levels and headache characteristics. CONCLUSION Taken together, these findings suggest that participants with lower vitamin B12 and higher MMA levels that considered as lower functional activity of B12 had higher odds of migraine.
Collapse
Affiliation(s)
- Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soodeh Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Martami
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Seifishahpar
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, Tassorelli C. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Prog Neurobiol 2019; 177:15-32. [DOI: 10.1016/j.pneurobio.2019.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/19/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
|
16
|
Hansen JM, Schankin CJ. Cerebral hemodynamics in the different phases of migraine and cluster headache. J Cereb Blood Flow Metab 2019; 39:595-609. [PMID: 28857642 PMCID: PMC6446414 DOI: 10.1177/0271678x17729783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022]
Abstract
Headache is one of the most common ailments; migraine is one of the most prevalent and disabling neurological disorders and cluster headache presents as one of the most excruciating pain disorders. Both are complex disorder characterized by recurrent episodes of headache. A key feature is that various triggers can set off an attack providing the opportunity to explore disease mechanisms by experimentally inducing attacks. This review summarizes neuroimaging and hemodynamic studies in human in provoked and spontaneous attacks of migraine and cluster headache. Cerebral hemodynamics during different phases of the migraine attack demonstrate alterations in cerebral blood flow and perfusion, vessel caliber, cortical and sub-cortical function, underscoring that migraine pathophysiology is highly complex. Migraine attacks might begin in diencephalic and brainstem areas, whereas migraine aura is a cortical phenomenon. In cluster headache pathophysiology, the hypothalamus might also play a pivotal role, whereas the pattern of cerebral blood flood differs from migraine. For both disorders, alterations of arterial blood vessel diameter might be more an epiphenomenon of the attack than a causative trigger. Studying cerebral hemodynamics in provocation models are important in the search for specific biomarkers in the hope to discover future targets for more specific and effective mechanism-based anti-headache treatment.
Collapse
Affiliation(s)
- Jakob M Hansen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Christoph J Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Okada S, Saito H, Matsuura Y, Mikuzuki L, Sugawara S, Onose H, Asaka J, Ohara K, Lee J, Iinuma T, Katagiri A, Iwata K. Upregulation of calcitonin gene-related peptide, neuronal nitric oxide synthase, and phosphorylated extracellular signal-regulated kinase 1/2 in the trigeminal ganglion after bright light stimulation of the eye in rats. J Oral Sci 2019; 61:146-155. [PMID: 30918211 DOI: 10.2334/josnusd.18-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bright light stimulation of the eye activates trigeminal subnucleus caudalis (Vc) neurons in rats. Sensory information is conveyed to the Vc via the trigeminal ganglion (TG). Thus, it is likely that TG neurons respond to photic stimulation and are involved in photic hypersensitivity. However, the mechanisms underlying this process are unclear. Therefore, the hypothesis in this study is bright light stimulation enhances the excitability of TG neurons involved in photic hypersensitivity. Expressions of calcitonin gene-related peptide (CGRP) and neuronal nitric oxide synthase (nNOS) were significantly higher in TG neurons from 5 min to 12 h after photic stimulation of the eye. Phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2) was enhanced in TG neurons within 5 min after photic stimulation, while pERK1/2 immunoreactivity in satellite glial cells (SGCs) persisted for more than 12 h after the stimulus. Activation of SGCs was observed from 5 min to 2 h. Expression of CGRP, nNOS, and pERK1/2 was observed in small and medium TG neurons, and activation of SGCs and pERK1/2-immunoreactive SGCs encircling large TG neurons was accelerated after stimulation. These results suggest that upregulation of CGRP, nNOS, and pERK1/2 within the TG is involved in photic hypersensitivity.
Collapse
Affiliation(s)
- Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Yutaka Matsuura
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Hiroki Onose
- Department of Physiology, Nihon University School of Dentistry
| | - Junichi Asaka
- Department of Physiology, Nihon University School of Dentistry
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry.,Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
18
|
Gazerani P, Cairns BE, Yassin H, Yousefi JT, Sherzaman AR, Nedergaard BS, Boldsen SK. Amplification of glyceryl trinitrate-induced headache features by noxious craniofacial stimuli in pain-free healthy humans. Pain Manag 2019; 9:17-35. [PMID: 30501556 DOI: 10.2217/pmt-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Glyceryl trinitrate (GTN) provokes an immediate migraine-like headache, followed by a delayed migraine attack in migraineurs. In healthy volunteers, only an immediate, less severe and shorter headache occurs. The presence of an already sensitized nervous system in migraineurs may underlie the more intense and prolonged GTN-evoked headaches. We tested if in healthy humans, application of noxious cutaneous and/or mechanical stimulation within craniofacial region would enhance or prolong GTN-evoked headache. MATERIALS & METHODS Noxious stimuli with a capsaicin patch on forehead, a mechanical headband, or both were applied prior to sublingual GTN (0.5 mg) in 20 healthy volunteers. GTN-induced headache characteristics and sensory responsiveness were recorded. RESULTS A more intense GTN-evoked headache was produced following application of headband. CONCLUSION Noxious mechanical stimulation prior to GTN resulted in a more intense GTN-evoked headache.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Brian Edwin Cairns
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Hanim Yassin
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Jasmin Tannaz Yousefi
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Asiah Rahi Sherzaman
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Denmark
| | | | - Søren Kjærgaard Boldsen
- Unit of Clinical Biostatistics and Bioinformatics, Aalborg University Hospital North, Aalborg, Denmark
| |
Collapse
|
19
|
Fujioka K, Oishi M, Fujioka A, Nakayama T. Increased nitroglycerin-mediated vasodilation in migraineurs without aura in the interictal period. J Med Ultrason (2001) 2018; 45:605-610. [PMID: 29796732 PMCID: PMC6339883 DOI: 10.1007/s10396-018-0880-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023]
Abstract
PURPOSE Migraine is associated with vascular disorders, but the underlying mechanism is unknown. Nitric oxide (NO) sensitivity is believed to play a major role in migraine pathophysiology. We investigated flow-mediated vasodilatation (FMD) and nitroglycerin-mediated vasodilatation (NMD) of the brachial artery by means of a key molecular mediator, NO, in patients with migraine without aura in the interictal period whether the abnormality is found. METHODS A total of 12 patients with migraine without aura and 12 matched healthy controls were enrolled in this study. FMD and NMD were measured in all patients and controls using brachial artery ultrasonography. RESULTS There was no significant difference in brachial artery diameter between migraineurs and nonmigraineurs (3.39 ± 0.68 vs 3.89 ± 0.67 mm, respectively; p = 0.083). A significant difference in FMD was not found between migraineurs and nonmigraineurs (6.94 ± 5.72 vs 6.08 ± 2.98%, respectively; p = 0.651). However, NMD in migraineurs was significant higher than that in nonmigraineurs (21.56 ± 7.36 vs 14.23 ± 7.41%, respectively; p = 0.024). CONCLUSION We think that patients with migraine without aura in the interictal period have selective sensitivity in dilator response to nitroglycerin and may have systemic NO sensitivity.
Collapse
Affiliation(s)
- Kazumi Fujioka
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Minoru Oishi
- Department of Internal Medicine, Izutobu General Hospital, Shizuoka, Japan
| | | | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| |
Collapse
|
20
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
- 4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
21
|
Abstract
Migraine is a complex disorder characterized by recurrent episodes of headache, and is one of the most prevalent and disabling neurological disorders. A key feature of migraine is that various factors can trigger an attack, and this phenomenon provides a unique opportunity to investigate disease mechanisms by experimentally inducing migraine attacks. In this Review, we summarize the existing experimental models of migraine in humans, including those that exploit nitric oxide, histamine, neuropeptide and prostaglandin signalling. We describe the development and use of these models in the discovery of molecular pathways that are responsible for initiation of migraine attacks. Combining experimental human models with advanced imaging techniques might help to identify biomarkers of migraine, and in the ongoing search for new and better migraine treatments, human models will have a key role in the discovery of future targets for more-specific and more-effective mechanism-based antimigraine drugs.
Collapse
|
22
|
Sampaolo S, Liguori G, Vittoria A, Napolitano F, Lombardi L, Figols J, Melone MAB, Esposito T, Di Iorio G. First study on the peptidergic innervation of the brain superior sagittal sinus in humans. Neuropeptides 2017; 65:45-55. [PMID: 28460791 DOI: 10.1016/j.npep.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/15/2017] [Accepted: 04/22/2017] [Indexed: 11/24/2022]
Abstract
The superior sagittal sinus (SSS) of the mammalian brain is a pain-sensitive intracranial vessel thought to play a role in the pathogenesis of migraine headaches. Here, we aimed to investigate the presence and the potential co-localization of some neurotransmitters in the human SSS. Immunohistochemical and double-labeling immunofluorescence analyses were applied to paraformaldehyde-fixed, paraffin-embedded, coronal sections of the SSS. Protein extraction and Western blotting technique were performed on the same material to confirm the morphological data. Our results showed nerve fibers clustered mainly in large bundles tracking parallel to the longitudinal axis of the sinus, close in proximity to the vascular endothelium. Smaller fascicles of fibers encircled the vascular lumen in a spiral fashion, extending through the subendothelial connective tissue. Isolated nerve fibers were observed around the openings of bridging veins in the sinus or around small vessels extending into the perisinusal dura. The neurotransmitters calcitonin gene related peptide (CGRP), substance P (SP), neuronal nitric oxide synthase (nNOS), vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), and neuropeptide Y (NPY) were found in parietal nerve structures, distributed all along the length of the SSS. Overall, CGRP- and TH-containing nerve fibers were the most abundant. Neurotransmitters co-localized in the same fibers in the following pairs: CGRP/SP, CGRP/NOS, CGRP/VIP, and TH/NPY. Western blotting analysis confirmed the presence of such neurosubstances in the SSS wall. Overall our data provide the first evidence of the presence and co-localization of critical neurotransmitters in the SSS of the human brain, thus contributing to a better understanding of the sinus functional role.
Collapse
Affiliation(s)
- Simone Sampaolo
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alfredo Vittoria
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Filomena Napolitano
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy; Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Luca Lombardi
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy
| | - Javier Figols
- Department of Pathology, Hospital Valdecilla, University of Cantabria Medical School, Santander, Spain
| | - Mariarosa Anna Beatrice Melone
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy; URT-IGB IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Giuseppe Di Iorio
- Department of Medicine, Surgery, Neurology, Metabolic and Aging Science and Interuniversity Center for Research in Neurosciences, Second University of Naples, Italy.
| |
Collapse
|
23
|
Al-Karagholi MAM, Hansen JM, Severinsen J, Jansen-Olesen I, Ashina M. The K ATP channel in migraine pathophysiology: a novel therapeutic target for migraine. J Headache Pain 2017; 18:90. [PMID: 28831746 PMCID: PMC5567577 DOI: 10.1186/s10194-017-0800-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION KATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Johanne Severinsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
- Danish Headache Center, Department of Neurology, Glostrup Research Park, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| |
Collapse
|
24
|
Ozan B, Demiryürek S, Safdar M, Inanc Y, Demiryürek AT. Lack of association between urotensin-II (UTS2) gene polymorphisms (Thr21Met and Ser89Asn) and migraine. Bosn J Basic Med Sci 2017; 17:268-273. [PMID: 28686849 DOI: 10.17305/bjbms.2017.2138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022] Open
Abstract
Migraine is a common neurovascular brain disorder with heterogeneous clinical presentation, including recurrent headache attacks. The pathophysiology of migraine is complex, and a number of genomic regions have been associated with the development of migraine. In this study, we analyzed the allele and genotype frequencies of the urotensin-II gene (UTS2) polymorphisms, Thr21Met and Ser89Asn, among Turkish patients with migraine. A total of 146 patients with migraine (14 with aura [MA group] and 132 without aura [MO group]) were genotyped for Thr21Met and Ser89Asn polymorphisms and compared with 154 age- and sex-matched healthy controls. The UTS2 gene polymorphisms were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). No significant differences were observed in allele and genotype frequencies for Thr21Met and Ser89Asn polymorphisms between the patients with migraine and control group. Similarly, we did not observe significant differences in allele and genotype frequencies between MA and MO and control group. Moreover, the haplotype analysis showed no association between UTS2 gene haplotypes (MN, MS, TN, and TS) and migraine. In summary, Thr21Met and Ser89Asn polymorphisms of the UTS2 gene are not risk factors for migraine in our sample of Turkish migraine patients.
Collapse
Affiliation(s)
- Betül Ozan
- Department of Physiology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | | | | | | | | |
Collapse
|
25
|
High asymmetric dimethylarginine, symmetric dimethylarginine and L-arginine levels in migraine patients. Neurol Sci 2017; 38:1287-1291. [PMID: 28455769 DOI: 10.1007/s10072-017-2970-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Experimental and clinical data strongly suggests that nitric oxide (NO) plays a pivotal role in migraine. This is also supported by studies of migraine induced by substances that release NO. NO is synthesized from L-arginine by endothelial NO synthase (NOS). Asymmetric dimethylarginine (ADMA) is the major endogenous competitive inhibitor of NOS. Symmetric dimethylarginine (SDMA) is an inactive stereoisomer of ADMA. It may reduce NO production by competing with arginine for cellular uptake. The aim of this study was to measure the levels of ADMA, SDMA and L-arginine in migraine patients during the interictal period. One hundred migraine patients and 100 healthy volunteers were recruited. The patients were in the interictal period and classified into two groups as having migraine with aura and migraine without aura. Their serum ADMA, SDMA and L-arginine levels were measured by high-performance liquid chromotography (HPLC) method. ADMA, SDMA and L-arginine levels were significantly higher in migraine patients compared to the control group. But there was no difference between the patients with and without aura. These results suggest that NOS inhibitors and L-arginine/NO pathway plays an important role in migraine pathopysiology.
Collapse
|
26
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1166] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Holland PR, Strother L. Cilostazol as a chemically induced preclinical model of migraine. Cephalalgia 2017; 38:415-416. [PMID: 28952338 DOI: 10.1177/0333102417693832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Philip R Holland
- Department of Basic and Clinical Neuroscience, Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lauren Strother
- Department of Basic and Clinical Neuroscience, Headache Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
28
|
Abstract
Neurotrophins (NTs) have been implicated in generation and modulation of nociceptive pathways. Change in NTs levels is associated with painful conditions and neurological diseases such as migraine. Currently, it is generally recognized that migraine headaches result from the activation and sensitization of trigeminal sensory afferent fibers leading to neuropeptides release such as calcitonin gene-related peptide (CGRP) and substance P (SP). This triggers an inflammatory cascade causing a neurogenic inflammation. The agents responsible for trigeminal activation and release of neuropeptides are still unclear. It is known that the transient receptor potential vanilloid receptor-1 (TRPV1) is an important mediator of CGRP and SP release. TRPV1 is closely associated with tyrosine receptors kinases (Trk), which are NTs receptors. NTs can act on TRPV1 increasing its sensitivity to painful stimuli, therefore predisposing to hyperalgesia. Upregulation of ion channels and pain receptors in dorsal root ganglion neurons may be alternative mechanisms by which NTs contribute to pain development. Only a few studies have been performed to investigate the role of NTs in migraine. These studies have reported changes in NTs levels in migraine patients either during the migraine attack or in free-headache periods.
Collapse
|
29
|
Abstract
The need for experimental models is obvious. In animal models it is possible to study vascular responses, neurogenic inflammation, c-fos expression etc. However, the pathophysiology of migraine remains unsolved, why results from animal studies not directly can be related to the migraine attack, which is a human experience. A set-up for investigations of experimental headache and migraine in humans, has been evaluated and headache mechanisms explored by using nitroglycerin and other headache-inducing agents. Nitric oxide (NO) or other parts of the NO activated cascade seems to be responsible for the induced headache and migraine. Perspectives are discussed.
Collapse
Affiliation(s)
- HK Iversen
- Department of Neurology, Glostrup Hospital, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Christensen SL, Petersen S, Sørensen DB, Olesen J, Jansen-Olesen I. Infusion of low dose glyceryl trinitrate has no consistent effect on burrowing behavior, running wheel activity and light sensitivity in female rats. J Pharmacol Toxicol Methods 2016; 80:43-50. [DOI: 10.1016/j.vascn.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/14/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
|
31
|
Offenhauser N, Zinck T, Hoffmann J, Schiemann K, Schuh-Hofer S, Rohde W, Arnold G, Dirnagl U, Jansen-Olesen I, Reuter U. CGRP Release and c-fos Expression within Trigeminal Nucleus Caudalis of the Rat following Glyceryltrinitrate Infusion. Cephalalgia 2016; 25:225-36. [PMID: 15689199 DOI: 10.1111/j.1468-2982.2004.00845.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropeptide release and the expression of c-fos like immunoreactivity (c-fos LI) within trigeminal nucleus caudalis neurons (TNC) are activation markers of the trigeminal nerve system. Glyceryltrinitrate (GTN) is believed to stimulate the trigeminal nerve system, thereby causing headache. We examined the effects of a 30 min NO-donor infusion on CGRP release in jugular vein blood and c-fos LI within TNC of the rat. GTN (2 and 50 μg/kg/min) or NONOate infusion (25 nmol/kg/min) did not cause any CGRP release during and shortly after infusion, whereas administration of capsaicin resulted in strongly increased CGRP levels. GTN infusion (2 μg/kg/min for 30 min) did not lead to enhanced c-fos LI after 2 h and 4 h, whereas capsaicin infusion caused a time- and dose-dependent expression of c-fos LI within laminae I and II of the TNC. Surprisingly, GTN attenuated capsaicin-induced c-fos expression by 64%. The nitric oxide synthase (NOS) inhibitor L-NAME (5 and 50 mg/kg) reduced capsaicin-induced c-fos LI dose dependently (reduction by 13% and 59%). We conclude that GTN may lead to headaches by mechanisms independent of CGRP release from trigeminal nerve fibres. GTN doses comparable to those used in humans did not activate or sensitize the trigeminal nerve system. Both GTN and L-NAME reduced capsaicin-induced c-fos LI. This is most likely due to a feedback inhibition of nitric oxide synthases, which indicates that the c-fos response to capsaicin within TNC is mediated by NO dependent mechanisms.
Collapse
Affiliation(s)
- N Offenhauser
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Buture A, Gooriah R, Nimeri R, Ahmed F. Current Understanding on Pain Mechanism in Migraine and Cluster Headache. Anesth Pain Med 2016; 6:e35190. [PMID: 27642579 PMCID: PMC5018152 DOI: 10.5812/aapm.35190] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/15/2016] [Accepted: 03/02/2016] [Indexed: 02/08/2023] Open
Abstract
CONTEXT Migraine and cluster headache are undoubtedly painful conditions. The respective pathogenesis of these two conditions is incompletely understood. In both cases, the treatments used have largely been empirical and have relied to a much lesser extent on our understanding of the mechanisms causing pain. We hereby review the pain mechanisms in migraine and cluster headache, two of the commonest primary headache disorders. EVIDENCE ACQUISITION A review of the English literature was conducted by searching PubMed for studies on pain mechanism in migraine and cluster headache. We entered [migraine] and [pain mechanism] in Pubmed and 488 articles were obtained. Articles were then included according to their relevance to the topic. Similarly, [cluster headache] and [pain mechanism] revealed 79 search results. RESULTS There is evidence that the trigeminovascular system and neurogenic inflammation play important roles, together with certain areas of the brain, leading to these conditions being termed 'neurovascular headaches'. Functional imaging findings suggest a possible role of the dorsolateral pons in generating migraine attacks while the role of the hypothalamus in cluster headache is more firmly established. CONCLUSIONS Migraine and cluster headache have complex pathophysiologies. The exact mechanism causing pain in both conditions is incompletely understood and more research needs to be undertaken in this area.
Collapse
Affiliation(s)
- Alina Buture
- Department of Neurology, Hull Royal Infirmary, Hull, UK
| | | | - Randa Nimeri
- Department of Neurology, Hull Royal Infirmary, Hull, UK
| | - Fayyaz Ahmed
- Department of Neurology, Hull Royal Infirmary, Hull, UK
| |
Collapse
|
33
|
Segelcke D, Messlinger K. Putative role of 5-HT2B receptors in migraine pathophysiology. Cephalalgia 2016; 37:365-371. [DOI: 10.1177/0333102416646760] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective In this review we attempt to characterize the acute and chronic role of 5-HT2B receptors with regard to meningeal nociception in animal experiments and clinical data targeting migraine therapy. Background Migraine is a common disabling neurovascular primary headache disease, the pathomechanism of which is still unclear. Serotonin (5-HT) and its receptors might play an important role in some aspects of migraine pathogenesis. The ability of the unselective 5-HT2B receptor agonist m-chlorophenylpiperazine to induce migraine attacks in migraine sufferers, the high affinity of prophylactic antimigraine drugs to this receptor and its expression in migraine-relevant structures like the dura mater argue for a role of 5-HT2B receptors in the pathogenesis of migraine attacks. Methods For this review, the relevant databases such as PubMed, MEDLINE®, Cochrane Library and EMBASE, respectively, were searched to December 2015 using the keywords “migraine, 5-HT2, trigeminal, neurogenic inflammation, nitric oxide, nitroxyl, vasodilatation, plasma protein extravasation” and combinations thereof. Conclusion Our literature review suggests an important role of 5-HT2B receptor activation in meningeal nociception and the generation of migraine pain.
Collapse
Affiliation(s)
- Daniel Segelcke
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich Alexander University Erlangen-Nuernberg, Germany
| |
Collapse
|
34
|
Ferrari LF, Levine JD, Green PG. Mechanisms mediating nitroglycerin-induced delayed-onset hyperalgesia in the rat. Neuroscience 2016; 317:121-9. [PMID: 26779834 DOI: 10.1016/j.neuroscience.2016.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
Abstract
Nitroglycerin (glycerol trinitrate, GTN) induces headache in migraineurs, an effect that has been used both diagnostically and in the study of the pathophysiology of this neurovascular pain syndrome. An important feature of this headache is a delay from the administration of GTN to headache onset that, because of GTN's very rapid metabolism, cannot be due to its pharmacokinetic profile. It has recently been suggested that activation of perivascular mast cells, which has been implicated in the pathophysiology of migraine, may contribute to this delay. We reported that hyperalgesia induced by intradermal GTN has a delay to onset of ∼ 30 min in male and ∼ 45 min in female rats. This hyperalgesia was greater in females, was prevented by pretreatment with the anti-migraine drug, sumatriptan, as well as by chronic pretreatment with the mast cell degranulator, compound 48/80. The acute administration of GTN and compound 48/80 both induced hyperalgesia that was prevented by pretreatment with octoxynol-9, which attenuates endothelial function, suggesting that GTN and mast cell-mediated hyperalgesia are endothelial cell-dependent. Furthermore, A-317491, a P2X3 antagonist, which inhibits endothelial cell-dependent hyperalgesia, also prevents GTN and mast cell-mediated hyperalgesia. We conclude that delayed-onset mechanical hyperalgesia induced by GTN is mediated by activation of mast cells, which in turn release mediators that stimulate endothelial cells to release ATP, to act on P2X3, a ligand-gated ion channel, in perivascular nociceptors. A role of the mast and endothelial cell in GTN-induced hyperalgesia suggests potential novel risk factors and targets for the treatment of migraine.
Collapse
Affiliation(s)
- L F Ferrari
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States
| | - J D Levine
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Department of Dental Science and Medicine, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States.
| | - P G Green
- Department of Oral & Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Department of Preventative & Restorative, University of California at San Francisco, San Francisco, CA 94143-0440, United States; Division of Neuroscience, University of California at San Francisco, San Francisco, CA 94143-0440, United States
| |
Collapse
|
35
|
Greco R, Ferrigno A, Demartini C, Zanaboni A, Mangione AS, Blandini F, Nappi G, Vairetti M, Tassorelli C. Evaluation of ADMA-DDAH-NOS axis in specific brain areas following nitroglycerin administration: study in an animal model of migraine. J Headache Pain 2015; 16:560. [PMID: 26272684 PMCID: PMC4536246 DOI: 10.1186/s10194-015-0560-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is known to play a key role in migraine pathogenesis, but modulation of NO synthesis has failed so far to show efficacy in migraine treatment. Asymmetric dimethylarginine (ADMA) is a NO synthase (NOS) inhibitor, whose levels are regulated by dimethylarginine dimethylaminohydrolase (DDAH). Systemic administration of nitroglycerin (or glyceryl trinitrate, GTN) is a NO donor that consistently induces spontaneous-like headache attacks in migraneurs. GTN administration induces an increase in neuronal NOS (nNOS) that is simultaneous with a hyperalgesic condition. GTN administration has been used for years as an experimental animal model of migraine. In order to gain further insights in the precise mechanisms involved in the relationships between NO synthesis and migraine, we analyzed changes induced by GTN administration in ADMA levels, DDHA-1 mRNA expression and the expression of neuronal and endothelial NOS (nNOS and eNOS) in the brain. We also evaluated ADMA levels in the serum. METHODS Male Sprague-Dawley rats were injected with GTN (10 mg/kg, i.p.) or vehicle and sacrificed 4 h later. Brain areas known to be activated by GTN administration were dissected out and utilized for the evaluation of nNOS and eNOS expression by means of western blotting. Cerebral and serum ADMA levels were measured by means of ELISA immunoassay. Cerebral DDAH-1 mRNA expression was measured by means of RT-PCR. Comparisons between experimental groups were performed using the Mann Whitney test. RESULTS ADMA levels and nNOS expression increased in the hypothalamus and medulla following GTN administration. Conversely, a significant decrease in DDAH-1 mRNA expression was observed in the same areas. By contrast, no significant change was reported in eNOS expression. GTN administration did not induce any significant change in serum levels of ADMA. CONCLUSION The present data suggest that ADMA accumulates in the brain after GTN administration via the inhibition of DDAH-1. This latter may represent a compensatory response to the excessive local availability of NO, released directly by GTN or synthetized by nNOS. These findings prompt an additional mediator (ADMA) in the modulation of NO axis following GTN administration and offer new insights in the pathophysiology of migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Miao J, Wang F, Zheng W, Zhuang X. Association of the Apolipoprotein E polymorphism with migraine: a meta-analysis. BMC Neurol 2015; 15:138. [PMID: 26264634 PMCID: PMC4534059 DOI: 10.1186/s12883-015-0385-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/17/2015] [Indexed: 11/17/2022] Open
Abstract
Background Apolipoprotein E (ApoE) gene has been reported to be associated with migraine and tension-type headache (TTH), but the results are conflicting. This study aimed to evaluate the association of ApoE with migraine by a meta-analysis. Methods MEDLINE, ISI Web of Knowledge, The Cochrane Central Register of Controlled Trials, and EMBASE databases were searched to identify eligible studies published in English from 2000 to 2014. Data were extracted using standardized forms. The association was assessed by relative risk (RR) with 95 % confidence intervals (CIs) using a fixed or random effects model. Results Four studies, comprising 649 migraineurs, 229 TTH subjects and 975 controls, met all the criteria and were included in the meta-analysis. No significant difference was found comparing genotypic and allelic frequencies in the case of migraineurs versus controls and TTH subjects versus controls. Only when migraineurs and TTH subjects were considered as a whole group, ApoE4 was found to increase the relative risk of headache by 1.48 (95 % CI 1.16, 1.90; P = 0.002), compared to controls. Conclusions ApoE ε4 allele is not associated with migraine susceptibility, but is positively related to headache (including migraine and TTH).
Collapse
Affiliation(s)
- Jiayin Miao
- Department of Neurology, Affiliated Zhongshan Hospital of Xiamen University, 201 Hubinnan Road, Xiamen, 361004, China.
| | - Feng Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, China. .,College of Computer Engineering, Jimei University, Xiamen, 361021, China.
| | - Weihong Zheng
- Department of Neurology, Affiliated Zhongshan Hospital of Xiamen University, 201 Hubinnan Road, Xiamen, 361004, China.
| | - Xiaorong Zhuang
- Department of Neurology, Affiliated Zhongshan Hospital of Xiamen University, 201 Hubinnan Road, Xiamen, 361004, China.
| |
Collapse
|
37
|
Spatiotemporally varying visual hallucinations: II. Spectral classification and comparison with theory. J Theor Biol 2014; 357:210-9. [PMID: 24874516 DOI: 10.1016/j.jtbi.2014.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/24/2022]
Abstract
In order to better understand the nature of visual hallucinations, and to test predictions of spatiotemporally oscillating hallucinations from a recent corticothalamic model of visual dynamics, clinical descriptions of hallucinations are used to establish boundaries on the spatiotemporal frequencies observed in various disorders. Detailed comparisons with hallucinations during migraine aura demonstrate that key features are consistent with corticothalamic origin and specific abnormalities, but underline the need for more detailed quantitative data to be obtained on temporally oscillating hallucinations more generally.
Collapse
|
38
|
Djupesland PG, Messina JC, Mahmoud RA. Breath powered nasal delivery: a new route to rapid headache relief. Headache 2014; 53 Suppl 2:72-84. [PMID: 24024605 PMCID: PMC3786533 DOI: 10.1111/head.12186] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 12/02/2022]
Abstract
The nose offers an attractive noninvasive alternative for drug delivery. Nasal anatomy, with a large mucosal surface area and high vascularity, allows for rapid systemic absorption and other potential benefits. However, the complex nasal geometry, including the narrow anterior valve, poses a serious challenge to efficient drug delivery. This barrier, plus the inherent limitations of traditional nasal delivery mechanisms, has precluded achievement of the full potential of nasal delivery. Breath Powered bi-directional delivery, a simple but novel nasal delivery mechanism, overcomes these barriers. This innovative mechanism has now been applied to the delivery of sumatriptan. Multiple studies of drug deposition, including comparisons of traditional nasal sprays to Breath Powered delivery, demonstrate significantly improved deposition to superior and posterior intranasal target sites beyond the nasal valve. Pharmacokinetic studies in both healthy subjects and migraineurs suggest that improved deposition of sumatriptan translates into improved absorption and pharmacokinetics. Importantly, the absorption profile is shifted toward a more pronounced early peak, representing nasal absorption, with a reduced late peak, representing predominantly gastrointestinal (GI) absorption. The flattening and “spreading out” of the GI peak appears more pronounced in migraine sufferers than healthy volunteers, likely reflecting impaired GI absorption described in migraineurs. In replicated clinical trials, Breath Powered delivery of low-dose sumatriptan was well accepted and well tolerated by patients, and onset of pain relief was faster than generally reported in previous trials with noninjectable triptans. Interestingly, Breath Powered delivery also allows for the potential of headache-targeted medications to be better delivered to the trigeminal nerve and the sphenopalatine ganglion, potentially improving treatment of various types of headache. In brief, Breath Powered bi-directional intranasal delivery offers a new and more efficient mechanism for nasal drug delivery, providing an attractive option for improved treatment of headaches by enabling or enhancing the benefits of current and future headache therapies.
Collapse
|
39
|
Barbanti P, Egeo G, Aurilia C, Fofi L, Della-Morte D. Drugs targeting nitric oxide synthase for migraine treatment. Expert Opin Investig Drugs 2014; 23:1141-8. [PMID: 24818644 DOI: 10.1517/13543784.2014.918953] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Ample evidence that nitric oxide (NO) is a causative molecule in migraine has encouraged research to develop drugs that target the NO-cGMP cascade for migraine treatment. NO synthase (NOS) inhibition is an innovative therapeutic principle. AREAS COVERED This paper reviews the rationale underlying NOS inhibition in migraine treatment. It also provides a review on the efficacy and safety data for NOS inhibitors (nonselective NOS inhibitor L-N(G)-methyl-arginine hydrochloride [L-NMMA], selective inducible NOS [iNOS] inhibitors GW273629 and GW274150, combined neuronal NOS [nNOS] inhibitor and 5-HT1B/1D receptor agonist NXN-188) in acute or preventive migraine treatment. EXPERT OPINION The data highlighted herein, from four placebo-controlled trials and 1 open-labeled clinical trial using 4 different NOS inhibitors on a total of 705 patients, provide convincing efficacy data only for the nonselective NOS inhibitor L-NMMA. Unfortunately, this NOS inhibitor raises cardiovascular safety concerns and has an unfavorable pharmacokinetic profile. As experimental studies predicted, iNOS inhibitors are ineffective in migraine. Still, upcoming selective nNOS inhibitors are a hope for migraine treatment, with the nNOS isoform being most clearly involved in trigeminovascular transmission and central sensitization. Future studies should help to clarify whether NOS inhibition is equally fruitful in acute and preventive treatment. It should also clarify if nNOS inhibition holds promise as a therapeutic tool for the treatment of chronic migraine and other forms of headache.
Collapse
Affiliation(s)
- Piero Barbanti
- Headache and Pain Unit, IRCCS San Raffaele Pisana , Rome , Italy
| | | | | | | | | |
Collapse
|
40
|
Cairns BE, Laursen JC, Dong XD, Gazerani P. Intraganglionic injection of a nitric oxide donator induces afferent mechanical sensitization that is attenuated by palmitoylethanolamide. Cephalalgia 2014; 34:686-694. [PMID: 24519701 DOI: 10.1177/0333102414521510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM The aim of this article is to investigate whether the nitric oxide (NO) donator diethylenetriamine/nitric oxide (DETA/NO) affects trigeminal sensory processing through the trigeminal ganglion in part by activating trigeminal satellite glial cells (SGCs) and whether this effect is attenuated by the anti-inflammatory compound palmitoylethanolamide (PEA). METHODS DETA/NO was administered to isolated rat trigeminal SGCs in vitro, and injected into the rat trigeminal ganglion in vivo, in the presence or absence of PEA. RESULTS Administration of DETA/NO (1000 µM) increased the release of prostaglandin E2 by SGCs. PEA (1 and 10 µM) significantly attenuated prostaglandin E2 release. Two intraganglionic injections of DETA/NO (10 mM, 3 µl) or prostaglandin E2 at a 30-minute interval did not evoke discharge in trigeminal ganglion neurons that innervate the rat jaw-closer muscles, but did reduce the mechanical activation threshold of their peripheral endings by 30%-50%. Intravenous administration of PEA (1 mg/kg) or ketorolac (0.5 mg/kg) prevented DETA/NO-induced afferent mechanical sensitization. CONCLUSIONS Elevation of NO in the trigeminal ganglion results in the sensitization of the peripheral endings of masticatory muscle nociceptors to mechanical stimulation through a mechanism that involves prostaglandin E2 release from SGCs. Attenuation of this sensitization by PEA suggests a possible option for acute management of craniofacial pain and headache.
Collapse
Affiliation(s)
- Brian E Cairns
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark Faculty of Pharmaceutical Sciences, The University of British Columbia, Canada
| | - Jens C Laursen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| | - Xu-Dong Dong
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Canada College of Stomatology, Tianjin Medical University, PR China
| | - Parisa Gazerani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Denmark
| |
Collapse
|
41
|
Abstract
BACKGROUND Histamine has been studied in both health and disease since the initial description a century ago. With its vasodilative effect, it was suggested early on to be involved in the pathophysiology of migraine. Over the past 25 years, much has been learned about histamine as a neurotransmitter in the central nervous system. The role of this neurotransmitter system in migraine has not been previously reviewed. OBJECTIVE Discuss a potential role of the brain histaminergic system in migraine. METHODS Unstructured literature search with a no specific hypothesis-driven approach. RESULTS There is substantial evidence that systemically given histamine may elicit, maintain, and aggravate headache. The mechanisms for this are not known, and histamines do not penetrate the blood-brain barrier (BBB). However, circulating histamine may influence hypothalamic activity via the circumventricular organs that lack BBB. In the rat, prolonged activation of meningeal nociceptors induced by dural mast cell degranulation has been observed. Subcutaneous injections of N-alpha-methyl histamine, a catabolite of histamine with high affinity to the histamine H3 receptor, probably have some migraine preventive effect. A negative feedback on histamine release from mast cells in proximity to C-fiber endings has been a postulated mechanism. Most antihistamines have shown to be ineffective as acute medication for migraine. Two centrally acting potent H1 receptor antagonists (cinnarizine and cyproheptadine) have been reported to be efficacious in preventing migraine. However, the proof for this is limited, and their efficacy has been ascribed other actions than the antihistaminergic. In general, lack of specificity and side effects limit the potential use of centrally acting H1 and H2 antagonists. Brain histamine is synthesized by neurons that are restricted to the posterior basal hypothalamus, more specific to the tuberomamillary nucleus (TMN), and that project practically to the whole central nervous system. The posterior hypothalamus is a suspected locus in quo in several primary headaches. Recently, a positron emission tomography study performed in the prodromal phase of migraine attacks supported the idea of initial involvement of this area. In another recent study, the thalamic nuclei receiving trigeminal output was also shown to have direct connections with the ventral TMN. The central histaminergic system plays an important role in the complex sleep-wake cycle, promoting cortical excitability during wakening and attention, and it consolidates the wake state. The period of the day, in the evenings and during the night, when there is reduced susceptibility for migraine attacks corresponds with less central histaminergic firing. Activation of both the H3 and the H4 receptor promotes inhibitory actions on neurons. The H3 receptor causes autoinhibition of the histaminergic neurons themselves, and centrally acting H3 receptor agonist prodrugs have shown to both inhibit neurogenic inflammation in dura, to induce sleep, and to produce antinociception. There are no registered ongoing studies on H3 and H4 receptor ligands in migraine. CONCLUSION The role of the central histaminergic system in migraine is largely unexplored, but findings from preclinical research may be linked to several aspects of the disorder. The histaminergic system of the brain may play an important role, especially in the initial phase of an attack, and histamine H3 and H4 receptor ligands may potentially have migraine prophylactic properties. However, the basis for this is still circumstantial, and the evidence is lacking.
Collapse
Affiliation(s)
- Karl B Alstadhaug
- Department of Neurology, Nordland Hospital Trust, Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
42
|
Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. ACTA ACUST UNITED AC 2013; 137:232-41. [PMID: 24277718 DOI: 10.1093/brain/awt320] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our aim was identify brain areas involved in the premonitory phase of migraine using functional neuroimaging. To this end, we performed positron emission tomography scans with H2(15)O to measure cerebral blood flow as a marker of neuronal activity. We conducted positron emission tomography scans at baseline, in the premonitory phase without pain and during migraine headache in eight patients. We used glyceryl trinitrate (nitroglycerin) to trigger premonitory symptoms and migraine headache in patients with episodic migraine without aura who habitually experienced premonitory symptoms during spontaneous attacks. The main outcome was comparing the first premonitory scans in all patients to baseline scans in all patients. We found activations in the posterolateral hypothalamus, midbrain tegmental area, periaqueductal grey, dorsal pons and various cortical areas including occipital, temporal and prefrontal cortex. Brain activations, in particular of the hypothalamus, seen in the premonitory phase of glyceryl trinitrate-triggered migraine attacks can explain many of the premonitory symptoms and may provide some insight into why migraine is commonly activated by a change in homeostasis.
Collapse
Affiliation(s)
- Farooq Husain Maniyar
- Headache Group, Department of Neurology, University of California-San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
43
|
The calcitonin gene-related peptide receptor antagonist MK-8825 decreases spinal trigeminal activity during nitroglycerin infusion. J Headache Pain 2013; 14:93. [PMID: 24256609 PMCID: PMC3845525 DOI: 10.1186/1129-2377-14-93] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/16/2013] [Indexed: 01/04/2023] Open
Abstract
Background Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) are regarded as key mediators in migraine and other primary headaches. Migraineurs respond to infusion of nitroglycerin with delayed headaches, and inhibition of CGRP receptors has been shown to be effective in migraine therapy. In animal experiments nitrovasodilators like nitroglycerin induced increases in spinal trigeminal activity, which were reversed after inhibition of CGRP receptors. In the present study we asked if CGRP receptor inhibition can also prevent spinal trigeminal activity induced by nitroglycerin. Methods In isoflurane anaesthetised rats extracellular recordings were made from neurons in the spinal trigeminal nucleus with meningeal afferent input. The non-peptide CGRP receptor inhibitor MK-8825 (5 mg/kg) dissolved in acidic saline (pH 3.3) was slowly infused into rats one hour prior to prolonged glyceryl trinitrate (nitroglycerin) infusion (250 μg/kg/h for two hours). Results After infusion of MK-8825 the activity of spinal trigeminal neurons with meningeal afferent input did not increase under continuous nitroglycerin infusion but decreased two hours later below baseline. In contrast, vehicle infusion followed by nitroglycerin was accompanied by a transient increase in activity. Conclusions CGRP receptors may be important in an early phase of nitroglycerin-induced central trigeminal activity. This finding may be relevant for nitroglycerin-induced headaches.
Collapse
|
44
|
Seiler K, Nusser JI, Lennerz JK, Neuhuber WL, Messlinger K. Changes in calcitonin gene-related peptide (CGRP) receptor component and nitric oxide receptor (sGC) immunoreactivity in rat trigeminal ganglion following glyceroltrinitrate pretreatment. J Headache Pain 2013; 14:74. [PMID: 24004534 PMCID: PMC3847895 DOI: 10.1186/1129-2377-14-74] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is thought to play an important role in the pathophysiology of migraine. Infusion of the nitrovasodilator glyceroltrinitrate (nitroglycerin, GTN), which mobilizes NO in the organism, is an approved migraine model in humans. Calcitonin gene-related peptide (CGRP) is regarded as another key mediator in migraine. Increased plasma levels of CGRP have been found during spontaneous as well as nitrovasodilator-induced migraine attacks. The nociceptive processes and interactions underlying the NO and CGRP mediated headache are poorly known but can be examined in animal experiments. In the present study we examined changes in immunofluorescence of CGRP receptor components (CLR and RAMP1) and soluble guanylyl cyclase (sGC), the intracellular receptor for NO, in rat trigeminal ganglia after pretreatment with GTN. METHODS Isoflurane anaesthetised rats were intravenously infused with GTN (1 mg/kg) or saline for four hours and two hours later the trigeminal ganglia were processed for immunohistochemistry. Different primary antibodies recognizing CLR, RAMP1, CGRP and sGC coupled to fluorescent secondary antibodies were used to examine immunoreactive cells in serial sections of trigeminal ganglia with epifluorescence and confocal laser scanning microscopy. Several staining protocols were examined to yield optimized immunolabeling. RESULTS In vehicle-treated animals, 42% of the trigeminal ganglion neurons were immunopositive for RAMP1 and 41% for CLR. After GTN pretreatment CLR-immunopositivity was unchanged, while there was an increase in RAMP1-immunopositive neurons to 46%. RAMP1 and CLR immunoreactivity was also detected in satellite cells. Neurons immunoreactive for sGC were on average smaller than sGC-immunonegative neurons. The percentage of sGC-immunopositive neurons (51% after vehicle) was decreased after GTN infusion (48%). CONCLUSIONS Prolonged infusion of GTN caused increased fractions of RAMP1- and decreased fractions of sGC-immunopositive neurons in the trigeminal ganglion. The observed alterations are likely immunophenotypic correlates of the pathophysiological processes underlying nitrovasodilator-induced migraine attacks and indicate that signalling via CGRP receptors but not sGC-mediated mechanisms may be enhanced through endogenous NO production.
Collapse
Affiliation(s)
- Kristin Seiler
- Institute of Physiology & Pathophysiology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
45
|
Galeotti N, Ghelardini C. St. John's wort reversal of meningeal nociception: a natural therapeutic perspective for migraine pain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:930-938. [PMID: 23578992 DOI: 10.1016/j.phymed.2013.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/24/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
Despite a number of antimigraine drugs belonging to different pharmacological classes are available, there is a huge unmet need for better migraine pharmacotherapy. We here demonstrated the capability of Hypericum perforatum, popularly called St. John's wort (SJW), to relieve meningeal nociception in an animal model induced by administration of the nitric oxide (NO) donors glyceryl trinitrate (GTN) and sodium nitroprusside (SNP). GTN and SNP produced a delayed meningeal inflammation, as showed by the upregulation of interleukin (IL)-1β and inducible NO synthase (iNOS), and a prolonged cold allodynia and heat hyperalgesia with a time-course consistent with NO-induced migraine attacks. A single oral administration of a SJW dried extract (5mg/kg p.o.) counteracted the nociceptive behaviour and the overexpression of IL-1β and iNOS. To clarify the cellular pathways involved, the expression of protein kinase C (PKC) and downstream effectors was detected. NO donors increased expression and phosphorylation of PKCγ, PKCɛ and transcription factors, such as nuclear factor (NF)-κB, cyclic AMP response element binding protein (CREB), Signal Transducer and Activator of Transcription (STAT)-1. All these molecular events were prevented by SJW and hypericin, a SJW main component. In conclusion, SJW counteracted the NO donor-induced pain hypersensitivity and meningeal activation by blocking PKC-mediated pathways involving NF-κB, CREB, STAT1. These results might suggest SJW as an innovative and safe perspective for migraine pain.
Collapse
Affiliation(s)
- N Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | | |
Collapse
|
46
|
Ashina M, Hansen JM, Olesen J. Pearls and pitfalls in human pharmacological models of migraine: 30 years' experience. Cephalalgia 2013; 33:540-53. [DOI: 10.1177/0333102412475234] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro studies have contributed to the characterization of receptors in cranial blood vessels and the identification of new possible anti-migraine agents. In vivo animal models enable the study of vascular responses, neurogenic inflammation, peptide release and genetic predisposition and thus have provided leads in the search for migraine mechanisms. All animal-based results must, however, be validated in human studies because so far no animal models can predict the efficacy of new therapies for migraine. Given the nature of migraine attacks, fully reversible and treatable, the headache- or migraine-provoking property of naturally occurring signaling molecules can be tested in a human model. If such an endogenous substance can provoke migraine in human patients, then it is likely, although not certain, that blocking its effect will be effective in the treatment of acute migraine attacks. To this end, a human in vivo model of experimental headache and migraine in humans has been developed. Human models of migraine offer unique possibilities to study mechanisms responsible for migraine and to explore the mechanisms of action of existing and future anti-migraine drugs. The human model has played an important role in translational migraine research leading to the identification of three new principally different targets in the treatment of acute migraine attacks and has been used to examine other endogenous signaling molecules as well as genetic susceptibility factors. New additions to the model, such as advanced neuroimaging, may lead to a better understanding of the complex events that constitute a migraine attack, and better and more targeted ways of intervention.
Collapse
Affiliation(s)
- Messoud Ashina
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
47
|
Romero-Reyes M, Ye Y. Pearls and pitfalls in experimental in vivo models of headache: Conscious behavioral research. Cephalalgia 2013; 33:566-76. [DOI: 10.1177/0333102412472557] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Physiological studies have been determinant for the understanding of migraine pathophysiology and the screening of novel therapeutics. At present, there is no animal model that translates fully the clinical symptoms of migraine, and generally these studies are conducted on anesthetized animals. Methodology Pain as well as non-painful symptoms such as photophobia, need to have a conscious individual to be experienced; therefore, the new development and adaptation of behavioral assays assessing pain and other non-painful symptomatology in conscious animals represents a great opportunity for headache research and it is exciting that more and more researchers are using behavioral paradigms. Summary This review will describe the different behavioral models for the study of headache that are performed in non-anesthetized conscious animals. The pearls and challenges for measuring hypersensitivity in rodents such as the common tests for measuring mechanical allodynia and thermal hyperalgesia have been the landmark for the development of assays that measure hypersensitivity in the craniofacial region. Here we describe the different behavioral assays that measure hypersensitivity in the craniofacial region as well as the established behavioral models of trigeminovascular nociception and non-nociceptive migrainous symptoms.
Collapse
Affiliation(s)
- Marcela Romero-Reyes
- NYU Orofacial and Head Pain Service, Department of Oral and Maxillofacial Pathology Radiology and Medicine, NYU College of Dentistry, USA
| | - Yi Ye
- Bluestone Center for Clinical Research, NYU College of Dentistry, USA
| |
Collapse
|
48
|
Rathnasiri Bandara SM. Paranasal sinus nitric oxide and migraine: a new hypothesis on the sino rhinogenic theory. Med Hypotheses 2013; 80:329-40. [PMID: 23394937 DOI: 10.1016/j.mehy.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 12/31/2022]
Abstract
Migraine is a debilitating illness that has no exact bio molecule to explain its pathology. After reviewing the neurophysiological and biochemical basis of the research findings of nitric oxide and migraine, I present to the best of my knowledge the first para sinus nitric oxide mediated neurobiophysiological hypothesis for migraine of sino rhinogenic origin. The diffused paranasal sinus nitric oxide in the nasal mucosa could be the primary molecule that initiates migraine and is termed Sinus Hypoxic Nitric Oxide Theory. This hypothesis regards repetitive or intermittent activation of the trigeminal sensory nerve and blood vessels in the nasal mucosa. Production of paranasal sinus nitric oxide is mainly induced by hypoxia due to several independent factors and the diffusion of paranasal sinus nitric oxide depends on the vulnerable surface area in the nasal cavity. Apart from the known trigeminal nociceptive impulse in the migraine, two main peripheral trigeminal nerve activating mechanisms may induce migraine. First the nerve endings of the nasal mucosa which are directly stimulated by diffused paranasal sinus nitric oxide are indirectly stimulated by vasoactive substances released by antidromic activation of the nerve, parasympathetic efferent of the nerve and sterile neurogenic inflammation. Secondly, the perivascular nerve of nasal mucosal and the meningial blood vessels are directly stimulated by either diffused paranasal sinus nitric oxide or by shear stress mediation. The nerve impulses of the trigeminal sensory nerve, projected at trigeminal nucleus caudalis to the central nerve system and low plasma magnesium due to the consequence of shear stress gives rise to the symptoms of migraine. Moreover sino rhinogenic impulses may mediate to disruption of inhibitory sensitization modulated of sensory input and cause sensory hiperexcitability. In addition neuronal stimulation proposed by some migraine hypotheses could also give rise to migraine headache when the sino rhinogenic vulnerable factors induce the migraine pathophysiology. Indeed this article explains a new pathophysiological initiation between sino rhinogenic nitric oxide effects and migraine and provides an initial step for the obscured or neglected etiologically important neuro vascular impulse generating pathway. The patients who are clinically suspected of having headaches should receive comprehensive sino rhinological examination and evaluation based on the sinus hypoxic nitric oxide theory. A standard surgical and medical management of migraine that links with the sinus hypoxic nitric oxide theory may restore the hypoxic state or reduce or remove the paranasal sinus nitric oxide diffusing surface. It warrants clinical testing.
Collapse
|
49
|
Virarkar M, Alappat L, Bradford PG, Awad AB. L-Arginine and Nitric Oxide in CNS Function and Neurodegenerative Diseases. Crit Rev Food Sci Nutr 2013; 53:1157-67. [DOI: 10.1080/10408398.2011.573885] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Oterino A, Toriello M, Palacio E, Quintanilla VG, Ruiz-Lavilla N, Montes S, Vega MSDL, Martinez-Nieto R, Castillo J, Pascual J. Analysis of endothelial precursor cells in chronic migraine: a case-control study. Cephalalgia 2012; 33:236-44. [PMID: 23223547 DOI: 10.1177/0333102412469737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Migraine has been considered a vascular risk factor especially in young women. Factors predisposing to endothelial damage in migraine are still being debated. The insufficiency of circulating endothelial precursor circulating cells (EPCs) suggested a link between migraine and cardiovascular risk. This research aimed to study a subtype of EPCs, those expressing e-selectin, to assess endothelial activation and, therefore, endothelial dysfunction in migraine. METHODS Consecutive headache patients (n = 99) and 35 adjusted controls were recruited. Total EPCs, defined as CD34+/KDR+ cells, and EPC colony-forming units (CFUs) were assayed. We identified as "early" EPCs those CD62E- EPCs, and "late" EPCs, CD62E+, a surrogate marker for endothelial damage. Plasmatic calcitonin-gene related protein (CGRP) and vascular-endothelial growth factor (VEGF) were analyzed. RESULTS We did not find differences in the total number of CFUs among clinical groups. Means of total CD34+/KDR+ and "early" EPCs were not significant among clinical groups. Nevertheless, the mean of "late" EPCs was lower (log(10)-transformed mean = 1.715; SD = 0.393) in the control group than in the migraine patients (log(10)-transformed mean = 2.167; SD = 0.685), even after adjustment by VEGF plasma level and other confounding factors. Linear regression analyses disclosed significant predictors for "late" EPCs for controls vs migraine (β = 0.452 SE ± 0.13; p = 0.001). We did not observe differences between migraine with or without aura. CONCLUSION We observed higher number of activated EPCs in migraine patients than in controls. CD62E+ EPCs might be considered a marker for vascular damage in migraine patients.
Collapse
|