1
|
Javed S, Fersini M, Bernardini G. Unleashing the Power of Induced Pluripotent stem Cells in in vitro Modelling of Lesch-Nyhan Disease. Stem Cell Rev Rep 2024:10.1007/s12015-024-10821-4. [PMID: 39495466 DOI: 10.1007/s12015-024-10821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lesch-Nyhan disease (LND) is a monogenic rare neurodevelopmental disorder caused by a deficiency in hypoxanthine-guanine phosphoribosyltransferase (HPRT), the key enzyme of the purines salvage pathway. Beyond its well-documented metabolic consequences, HPRT deficiency leads to a distinctive neurobehavioral syndrome characterized by motor disabilities, cognitive deficits, and self-injurious behavior. Although various cell and animal models have been developed to investigate LND pathology, none have adequately elucidated the underlying mechanisms of its neurological alterations. Recent advances in human pluripotent stem cell research and in vitro differentiation techniques have ushered in a new era in rare neurodevelopmental disorders research. Pluripotent stem cells, with their ability to propagate indefinitely and to differentiate into virtually any cell type, offer a valuable alternative for modeling rare diseases, allowing for the detection of pathological events from the earliest stages of neuronal network development. Furthermore, the generation of patient-derived induced pluripotent stem cells using reprogramming technology provides an opportunity to develop a disease-relevant model within the context of a patient-specific genome. In this review, we examine current stem cell-based models of LND and assess their potential as optimal models for exploring key pathological molecular events during neurogenesis and for the discovering novel treatment options. We also address the limitations, challenges, and future prospects for improving the use of iPSCs in LND research.
Collapse
Affiliation(s)
- Sundas Javed
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Marco Fersini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, Siena, 53100, Italy.
| |
Collapse
|
2
|
Lanza DG, Mao J, Lorenzo I, Liao L, Seavitt JR, Ljungberg MC, Simpson EM, DeMayo FJ, Heaney JD. An oocyte-specific Cas9-expressing mouse for germline CRISPR/Cas9-mediated genome editing. Genesis 2024; 62:e23589. [PMID: 38523431 PMCID: PMC10987075 DOI: 10.1002/dvg.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Cas9 transgenes can be employed for genome editing in mouse zygotes. However, using transgenic instead of exogenous Cas9 to produce gene-edited animals creates unique issues including ill-defined transgene integration sites, the potential for prolonged Cas9 expression in transgenic embryos, and increased genotyping burden. To overcome these issues, we generated mice harboring an oocyte-specific, Gdf9 promoter driven, Cas9 transgene (Gdf9-Cas9) targeted as a single copy into the Hprt1 locus. The X-linked Hprt1 locus was selected because it is a defined integration site that does not influence transgene expression, and breeding of transgenic males generates obligate transgenic females to serve as embryo donors. Using microinjections and electroporation to introduce sgRNAs into zygotes derived from transgenic dams, we demonstrate that Gdf9-Cas9 mediates genome editing as efficiently as exogenous Cas9 at several loci. We show that genome editing efficiency is independent of transgene inheritance, verifying that maternally derived Cas9 facilitates genome editing. We also show that paternal inheritance of Gdf9-Cas9 does not mediate genome editing, confirming that Gdf9-Cas9 is not expressed in embryos. Finally, we demonstrate that off-target mutagenesis is equally rare when using transgenic or exogenous Cas9. Together, these results show that the Gdf9-Cas9 transgene is a viable alternative to exogenous Cas9.
Collapse
Affiliation(s)
- Denise G. Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
| | - Jianqiang Mao
- Department of Molecular & Cellular Biology, Baylor College of Medicine Houston, TX, USA 77030
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
| | - Lan Liao
- Department of Molecular & Cellular Biology, Baylor College of Medicine Houston, TX, USA 77030
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
- Present address: The Jackson Laboratory 600 Main St., Bar Harbor, Maine, ME, USA 04609
| | - M. Cecilia Ljungberg
- Department of Pediatrics – Neurology, Baylor College of Medicine Houston, TX, USA 77030
- Duncan Neurological Research Institute, Texas Children’s Hospital Houston, TX, USA 77030
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital Department of Medical Genetics, The University of British Columbia Vancouver, British Columbia V5Z 4H4, Canada
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory National Institute of Environmental Health Sciences Research Triangle Park, NC, USA 27709
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine Houston, TX, USA 77030
| |
Collapse
|
3
|
Life B, Petkau TL, Cruz GNF, Navarro-Delgado EI, Shen N, Korthauer K, Leavitt BR. FTD-associated behavioural and transcriptomic abnormalities in 'humanized' progranulin-deficient mice: A novel model for progranulin-associated FTD. Neurobiol Dis 2023; 182:106138. [PMID: 37105261 DOI: 10.1016/j.nbd.2023.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is an early onset dementia characterized by neuropathology and behavioural changes. A common genetic cause of FTD is haploinsufficiency of the gene progranulin (GRN). Mouse models of progranulin deficiency have provided insight into progranulin neurobiology, but the description of phenotypes with preclinical relevance has been limited in the currently available heterozygous progranulin-null mice. The identification of robust and reproducible FTD-associated behavioural, neuropathological, and biochemical phenotypes in progranulin deficient mice is a critical step in the preclinical development of therapies for FTD. In this work, we report the generation of a novel, 'humanized' mouse model of progranulin deficiency that expresses a single, targeted copy of human GRN in the absence of mouse progranulin. We also report the in-depth, longitudinal characterization of humanized progranulin-deficient mice and heterozygous progranulin-null mice over 18 months. Our analysis yielded several novel progranulin-dependent physiological and behavioural phenotypes, including increased marble burying, open field hyperactivity, and thalamic microgliosis in both models. RNAseq analysis of cortical tissue revealed an overlapping profile of transcriptomic dysfunction. Further transcriptomic analysis offers new insights into progranulin neurobiology. In sum, we have identified several consistent phenotypes in two independent mouse models of progranulin deficiency that are expected to be useful endpoints in the development of therapies for progranulin-deficient FTD. Furthermore, the presence of the human progranulin gene in the humanized progranulin-deficient mice will expedite the development of clinically translatable gene therapy strategies.
Collapse
Affiliation(s)
- Benjamin Life
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Giuliano N F Cruz
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Erick I Navarro-Delgado
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ning Shen
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Keegan Korthauer
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver, BC V6T 2B5, Canada; Center for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
4
|
Dinasarapu AR, Sutcliffe DJ, Seifar F, Visser JE, Jinnah HA. Abnormalities of neural stem cells in Lesch-Nyhan disease. J Neurogenet 2022; 36:81-87. [PMID: 36226509 PMCID: PMC9847586 DOI: 10.1080/01677063.2022.2129632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/23/2022] [Indexed: 01/21/2023]
Abstract
Lesch-Nyhan disease (LND) is a neurodevelopmental disorder caused by variants in the HPRT1 gene, which encodes the enzyme hypoxanthine-guanine phosphoribosyl transferase (HGprt). HGprt deficiency provokes numerous metabolic changes which vary among different cell types, making it unclear which changes are most relevant for abnormal neural development. To begin to elucidate the consequences of HGprt deficiency for developing human neurons, neural stem cells (NSCs) were prepared from 6 induced pluripotent stem cell (iPSC) lines from individuals with LND and compared to 6 normal healthy controls. For all 12 lines, gene expression profiles were determined by RNA-seq and protein expression profiles were determined by shotgun proteomics. The LND lines revealed significant changes in expression of multiple genes and proteins. There was little overlap in findings between iPSCs and NSCs, confirming the impact of HGprt deficiency depends on cell type. For NSCs, gene expression studies pointed towards abnormalities in WNT signaling, which is known to play a role in neural development. Protein expression studies pointed to abnormalities in the mitochondrial F0F1 ATPase, which plays a role in maintaining cellular energy. These studies point to some mechanisms that may be responsible for abnormal neural development in LND.
Collapse
Affiliation(s)
- Ashok R Dinasarapu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Diane J Sutcliffe
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Fatemeh Seifar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jasper E Visser
- Department of Neurology, Cognition and Behavior, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Neurology, Amphia Hospital, Breda, The Netherlands
| | - H A Jinnah
- University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Del Bene VA, Crawford JL, Gómez-Gastiasoro A, Vannorsdall TD, Buchholz A, Ojeda N, Harris JC, Jinnah HA, Schretlen DJ. Microstructural white matter abnormalities in Lesch-Nyhan disease. Eur J Neurosci 2022; 55:264-276. [PMID: 34738666 PMCID: PMC9100837 DOI: 10.1111/ejn.15512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Lesch-Nyhan disease is a rare, sex-linked, genetic neurodevelopmental disorder that is characterized by hyperuricemia, dystonia, cognitive impairment and recurrent self-injury. We previously found reduced brain white matter volume in patients with Lesch-Nyhan disease compared with healthy adults using voxel-based morphometry. Here, we address the structural integrity of white matter via diffusion tensor imaging. We hypothesized that white matter integrity would be decreased in men with Lesch-Nyhan disease and to a lesser extent in men with a milder variant of the disease (Lesch-Nyhan variant) relative to healthy men. After acquiring diffusion-weighted brain images from Lesch-Nyhan disease (n = 5), Lesch-Nyhan variant (n = 6) and healthy participants (n = 10), we used both tract-based spatial statistics and a regions of interest approach to analyse between-group fractional anisotropy differences. We first replicated earlier findings of reduced intracranial, grey matter and white matter volumes in patients. We then discovered marked reductions of fractional anisotropy relative to the healthy control group. The Lesch-Nyhan disease group showed more pronounced reductions in white matter integrity than the Lesch-Nyhan variant group. In addition to whole brain fractional anisotropy group differences, reductions in white matter integrity were observed in the corpus callosum, corona radiata, cingulum, internal capsule and superior longitudinal fasciculus. Moreover, the variant group had attenuated dystonia severity symptoms and cognitive deficits. These findings highlight the need to better understand the role of white matter in Lesch-Nyhan disease.
Collapse
Affiliation(s)
- Victor A. Del Bene
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey L. Crawford
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Tracy D. Vannorsdall
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison Buchholz
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natalia Ojeda
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James C. Harris
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hyder A. Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David J. Schretlen
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Russell M. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Abstract
Abstract
Lesch-Nyhan Disease (LND) is a rare X-linked recessive metabolic and neurological syndrome due to the deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). Besides its well known “housekeeping” function this purine salvage enzyme has revealed an unexpected role in neurodevelopment, unveiled by the peculiar neurological symptoms flanking hyperuricemia in LND: dystonia, choreoathetosis, compulsive self-injurious behaviour. Several lines of research have tried to find the molecular basis for the neurological phenotype after the disease was first described in 1964. Dopaminergic deficit was then found to underlie the neurologic symptoms but the aetiology for such alteration seemed inexplicable. A number of detailed studies in the last 50 years addressed the genetic, metabolic, cognitive, behavioral and anatomical features of this disease. Initial investigations seeked for accumulation of toxic metabolites or depletion of essential molecules to disclose potential connections between purine recycling and neuronal dysfunction. In the last two decades sophisticated biotechnological methods were used for a deeper insight in the genetic and molecular aspects, unveiling a network of combined gene dysregulations in neuronal development and differentiation producing neurotransmission defects. These studies, conducted with several different approaches, allowed consistent steps forward, demonstrating transcriptional aberrations affecting different metabolic pathways in HPRT deficiency, yet leaving many questions still unsolved.
Collapse
|
7
|
Zizzo MG, Frinchi M, Nuzzo D, Jinnah HA, Mudò G, Condorelli DF, Caciagli F, Ciccarelli R, Di Iorio P, Mulè F, Belluardo N, Serio R. Altered gastrointestinal motility in an animal model of Lesch-Nyhan disease. Auton Neurosci 2017; 210:55-64. [PMID: 29305058 DOI: 10.1016/j.autneu.2017.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the HGPRT1 gene, which encodes hypoxanthine-guanine phosphoribosyltransferase (HGprt), housekeeping enzyme responsible for recycling purines, lead to Lesch-Nyhan disease (LND). Clinical expression of LND indicates that HGprt deficiency has adverse effects on gastrointestinal motility. Therefore, we aimed to evaluate intestinal motility in HGprt knockout mice (HGprt¯). Spontaneous and neurally evoked mechanical activity was recorded in vitro as changes in isometric tension in circular muscle strips of distal colon. HGprt¯ tissues showed a lower in amplitude spontaneous activity and atropine-sensitivity neural contraction compared to control mice. The responses to carbachol and to high KCl were reduced, demonstrating a widespread impairment of contractility. L-NAME was not able in the HGprt¯ tissues to restore the large amplitude contractile activity typical of control. In HGprt¯ colon, a reduced expression of dopaminergic D1 receptor was observed together with the loss of its tonic inhibitory activity present in control-mice. The analysis of inflammatory and oxidative stress in colonic tissue of HGprt¯ mice revealed a significant increase of lipid peroxidation associated with over production of oxygen free radicals. In conclusion, HGprt deficiency in mice is associated with a decrease in colon contractility, not dependent upon reduction of acetylcholine release from the myenteric plexus or hyperactivity of inhibitory signalling. By contrast the increased levels of oxidative stress could partially explain the reduced colon motility in HGprt¯ mice. Colonic dysmotility observed in HGprt¯ mice may mimic the gastrointestinal dysfunctions symptoms of human syndrome, providing a useful animal model to elucidate the pathophysiology of this problem in the LND.
Collapse
Affiliation(s)
- Maria G Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; ATeN (Advanced Technologies Network Center), University of Palermo, Viale delle Scienze, Palermo, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Domenico Nuzzo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), Via Ugo la Malfa, 153, 90146 Palermo, Italy
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Daniele F Condorelli
- Department of Bio-Medical Sciences, University of Catania, Via S. Sofia 97, 95100 Catania, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, Pal. B, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, Pal. B, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, Pal. B, 66100 Chieti, Italy
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Corso Tukory 129, 90134 Palermo, Italy.
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
8
|
Kozol RA, Abrams AJ, James DM, Buglo E, Yan Q, Dallman JE. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish. Front Mol Neurosci 2016; 9:55. [PMID: 27458342 PMCID: PMC4935692 DOI: 10.3389/fnmol.2016.00055] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
Zebrafish are a unique cell to behavior model for studying the basic biology of human inherited neurological conditions. Conserved vertebrate genetics and optical transparency provide in vivo access to the developing nervous system as well as high-throughput approaches for drug screens. Here we review zebrafish modeling for two broad groups of inherited conditions that each share genetic and molecular pathways and overlap phenotypically: neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), Intellectual Disability (ID) and Schizophrenia (SCZ), and neurodegenerative diseases, such as Cerebellar Ataxia (CATX), Hereditary Spastic Paraplegia (HSP) and Charcot-Marie Tooth Disease (CMT). We also conduct a small meta-analysis of zebrafish orthologs of high confidence neurodevelopmental disorder and neurodegenerative disease genes by looking at duplication rates and relative protein sizes. In the past zebrafish genetic models of these neurodevelopmental disorders and neurodegenerative diseases have provided insight into cellular, circuit and behavioral level mechanisms contributing to these conditions. Moving forward, advances in genetic manipulation, live imaging of neuronal activity and automated high-throughput molecular screening promise to help delineate the mechanistic relationships between different types of neurological conditions and accelerate discovery of therapeutic strategies.
Collapse
Affiliation(s)
- Robert A. Kozol
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | - Alexander J. Abrams
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of MiamiMiami, FL, USA
| | - David M. James
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | - Elena Buglo
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of MiamiMiami, FL, USA
| | - Qing Yan
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | | |
Collapse
|
9
|
Abstract
BACKGROUND Lesch-Nyhan disease (LND) is an X-chromosomal disorder of purine metabolism characterized by hyperuricemia, dystonia, and self-mutilation, leading to an extremely high burden of disease in affected patients and families. Although allopurinol therapy can control hyperuricemia, it has no effect on self-mutilation and neurological symptoms. Single reports describe a beneficial effect of S-adenosylmethionine (SAM) on the neurological symptoms, which motivated us to evaluate this alternative treatment. METHODS We performed a double-blind placebo-controlled trial to analyze the effects of SAM on self-mutilation attempts in a male patient affected by LND. The trial lasted for 282 days and comprised three alternating verum and placebo periods of 50 days each. The mother of the patient recorded attempts of self-mutilation during the entire trial. RESULTS While verum and placebo were both well tolerated, a total of 1,762 events of self-mutilation were recorded, of which 1,281 events were in the placebo period and 481 in the verum period. The daily mean of events was 8.6 with placebo and 4.5 with SAM corresponding to a 50 % decrease in self-mutilation events under SAM treatment (p < 0.05). CONCLUSION The results of this double-blind placebo-controlled single-case trial suggest that SAM can have a beneficial effect on self-mutilation in patients with LND, possibly by replenishing the purine pool in affected brain cells.
Collapse
|
10
|
Tschirner SK, Gutzki F, Schneider EH, Seifert R, Kaever V. Neurotransmitter and their metabolite concentrations in different areas of the HPRT knockout mouse brain. J Neurol Sci 2016; 365:169-74. [PMID: 27206901 DOI: 10.1016/j.jns.2016.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 01/25/2023]
Abstract
Lesch-Nyhan syndrome (LNS) is characterized by uric acid overproduction and severe neurobehavioral symptoms, such as recurrent self-mutilative behavior. To learn more about the pathophysiology of the disease, we quantified neurotransmitters and their metabolites in the cerebral hemisphere, cerebellum and the medulla oblongata of HPRT knockout mice, an animal model for LNS, in comparison to the corresponding wild-type. Our analyses included l-glutamate, 4-aminobutanoic acid (GABA), acetylcholine, serotonin, 5-hydroxyindoleacetic acid (5-HIAA), norepinephrine, l-normetanephrine, epinephrine and l-metanephrine and were conducted via high performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (MS/MS). Among these neurotransmitter systems, we did not find any abnormalities in the HPRT knockout mouse brains. On one side, this might indicate that HPRT deficiency most severely affects dopamine signaling, while brain functioning based on other neurotransmitters is more or less spared. On the other hand, our findings may reflect a compensating mechanism for impaired purine salvage that protects the brain in HPRT-deficient mice but not in LNS patients.
Collapse
Affiliation(s)
- Sarah K Tschirner
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany.
| | - Frank Gutzki
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany.
| | - Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany.
| | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany; Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Abstract
Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, 430 50, Gothenburg, Sweden.
| | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA
| |
Collapse
|
12
|
Knapp DJ, Breese GR. The Use of Perinatal 6-Hydroxydopamine to Produce a Rodent Model of Lesch-Nyhan Disease. Curr Top Behav Neurosci 2016; 29:265-277. [PMID: 27029809 DOI: 10.1007/7854_2016_444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lesch-Nyhan disease is a neurologically, metabolically, and behaviorally devastating condition that has eluded complete characterization and adequate treatment. While it is known that the disease is intimately associated with dysfunction of the hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene that codes for an enzyme of purine metabolism (hypoxanthine-guanine phosphoribosyltransferase) and is associated with neurological, behavioral, as well as metabolic dysfunction, the mechanisms of the neurobehavioral manifestations are as yet unclear. However, discoveries over the past few decades not only have created useful novel animal models (e.g., the HPRT-deficient mouse and the serendipitously discovered perinatal 6-hydroxydopamine (6-OHDA lesion model), but also have expanded into epigenetic, genomic, and proteomic approaches to better understand the mechanisms underlying this disease. The perinatal 6-OHDA model, in addition to modeling self-injury and dopamine depletion in the clinical condition, also underscores the profound importance of development in the differential course of maladaptive progression in the face of a common/single neurotoxic insult at different ages. Recent developments from clinical and basic science efforts attest to the fact that while the disease would seem to have a simple single gene defect at its core, the manifestations of this defect are profound and unexpectedly diverse. Future efforts employing the 6-OHDA model and others in the context of the novel technologies of genome editing, chemo- and opto-genetics, epigenetics, and further studies on the mechanisms of stress-induced maladaptations in brain all hold promise in taking our understanding of this disease to the next level.
Collapse
Affiliation(s)
- Darin J Knapp
- School of Medicine, Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - George R Breese
- School of Medicine, Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Altered histamine neurotransmission in HPRT-deficient mice. Neurosci Lett 2015; 609:74-80. [DOI: 10.1016/j.neulet.2015.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 01/03/2023]
|
14
|
Dammer EB, Göttle M, Duong DM, Hanfelt J, Seyfried NT, Jinnah HA. Consequences of impaired purine recycling on the proteome in a cellular model of Lesch-Nyhan disease. Mol Genet Metab 2015; 114:570-579. [PMID: 25769394 PMCID: PMC4390545 DOI: 10.1016/j.ymgme.2015.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The importance of specific pathways of purine metabolism for normal brain function is highlighted by several inherited disorders, such as Lesch-Nyhan disease (LND). In this disorder, deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt), causes severe neurological and behavioral abnormalities. Despite many years of research, the mechanisms linking the defect in purine recycling to the neurobehavioral abnormalities remain unclear. In the current studies, an unbiased approach to the identification of potential mechanisms was undertaken by examining changes in protein expression in a model of HGprt deficiency based on the dopaminergic rat PC6-3 line, before and after differentiation with nerve growth factor (NGF). Protein expression profiles of 5 mutant sublines carrying different mutations affecting HGprt enzyme activity were compared to the HGprt-competent parent line using the method of stable isotopic labeling by amino acids in cell culture (SILAC) followed by denaturing gel electrophoresis with liquid chromatography and tandem mass spectrometry (LC-MS/MS) of tryptic digests, and subsequent identification of affected biochemical pathways using the Database for Annotation, Visualization and Integrated Discovery (DAVID) functional annotation chart analysis. The results demonstrate that HGprt deficiency causes broad changes in protein expression that depend on whether the cells are differentiated or not. Several of the pathways identified reflect predictable consequences of defective purine recycling. Other pathways were not anticipated, disclosing previously unknown connections with purine metabolism and novel insights into the pathogenesis of LND.
Collapse
Affiliation(s)
- Eric B. Dammer
- Department of Biochemistry, Emory University, Atlanta, GA
| | - Martin Göttle
- Department of Neurology, Emory University, Atlanta, GA
| | - Duc M. Duong
- Department of Biochemistry, Emory University, Atlanta, GA
| | - John Hanfelt
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | | | - H. A. Jinnah
- Department of Neurology, Emory University, Atlanta, GA
- Department of Human Genetics & Pediatrics, Emory University, Atlanta, GA
| |
Collapse
|
15
|
Assessment of Movement Disorders in Rodents. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Göttle M, Prudente CN, Fu R, Sutcliffe D, Pang H, Cooper D, Veledar E, Glass JD, Gearing M, Visser JE, Jinnah HA. Loss of dopamine phenotype among midbrain neurons in Lesch-Nyhan disease. Ann Neurol 2014; 76:95-107. [PMID: 24891139 PMCID: PMC4827147 DOI: 10.1002/ana.24191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Lesch-Nyhan disease (LND) is caused by congenital deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt). Affected patients have a peculiar neurobehavioral syndrome linked with reductions of dopamine in the basal ganglia. The purpose of the current studies was to determine the anatomical basis for the reduced dopamine in human brain specimens collected at autopsy. METHODS Histopathological studies were conducted using autopsy tissue from 5 LND cases and 6 controls. Specific findings were replicated in brain tissue from an HGprt-deficient knockout mouse using immunoblots, and in a cell model of HGprt deficiency by flow-activated cell sorting (FACS). RESULTS Extensive histological studies of the LND brains revealed no signs suggestive of a degenerative process or other consistent abnormalities in any brain region. However, neurons of the substantia nigra from the LND cases showed reduced melanization and reduced immunoreactivity for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. In the HGprt-deficient mouse model, immunohistochemical stains for TH revealed no obvious loss of midbrain dopamine neurons, but quantitative immunoblots revealed reduced TH expression in the striatum. Finally, 10 independent HGprt-deficient mouse MN9D neuroblastoma lines showed no signs of impaired viability, but FACS revealed significantly reduced TH immunoreactivity compared to the control parent line. INTERPRETATION These results reveal an unusual phenomenon in which the neurochemical phenotype of dopaminergic neurons is not linked with a degenerative process. They suggest an important relationship between purine recycling pathways and the neurochemical integrity of the dopaminergic phenotype.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University, Atlanta, GA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Striatal neurodevelopment is dysregulated in purine metabolism deficiency and impacts DARPP-32, BDNF/TrkB expression and signaling: new insights on the molecular and cellular basis of Lesch-Nyhan Syndrome. PLoS One 2014; 9:e96575. [PMID: 24804781 PMCID: PMC4013014 DOI: 10.1371/journal.pone.0096575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/08/2014] [Indexed: 01/19/2023] Open
Abstract
Lesch-Nyhan Syndrome (LNS) is a neurodevelopmental disorder caused by mutations in the gene encoding the purine metabolic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). This syndrome is characterized by an array of severe neurological impairments that in part originate from striatal dysfunctions. However, the molecular and cellular mechanisms underlying these dysfunctions remain largely unidentified. In this report, we demonstrate that HPRT-deficiency causes dysregulated expression of key genes essential for striatal patterning, most notably the striatally-enriched transcription factor B-cell leukemia 11b (Bcl11b). The data also reveal that the down-regulated expression of Bcl11b in HPRT-deficient immortalized mouse striatal (STHdh) neural stem cells is accompanied by aberrant expression of some of its transcriptional partners and other striatally-enriched genes, including the gene encoding dopamine- and cAMP-regulated phosphoprotein 32, (DARPP-32). Furthermore, we demonstrate that components of the BDNF/TrkB signaling, a known activator of DARPP-32 striatal expression and effector of Bcl11b transcriptional activation are markedly increased in HPRT-deficient cells and in the striatum of HPRT knockout mouse. Consequently, the HPRT-deficient cells display superior protection against reactive oxygen species (ROS)-mediated cell death upon exposure to hydrogen peroxide. These findings suggest that the purine metabolic defect caused by HPRT-deficiency, while it may provide neuroprotection to striatal neurons, affects key genes and signaling pathways that may underlie the neuropathogenesis of LNS.
Collapse
|
18
|
Fu R, Ceballos-Picot I, Torres RJ, Larovere LE, Yamada Y, Nguyen KV, Hegde M, Visser JE, Schretlen DJ, Nyhan WL, Puig JG, O'Neill PJ, Jinnah HA. Genotype-phenotype correlations in neurogenetics: Lesch-Nyhan disease as a model disorder. ACTA ACUST UNITED AC 2013; 137:1282-303. [PMID: 23975452 DOI: 10.1093/brain/awt202] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Establishing meaningful relationships between genetic variations and clinical disease is a fundamental goal for all human genetic disorders. However, these genotype-phenotype correlations remain incompletely characterized and sometimes conflicting for many diseases. Lesch-Nyhan disease is an X-linked recessive disorder that is caused by a wide variety of mutations in the HPRT1 gene. The gene encodes hypoxanthine-guanine phosphoribosyl transferase, an enzyme involved in purine metabolism. The fine structure of enzyme has been established by crystallography studies, and its function can be measured with very precise biochemical assays. This rich knowledge of genetic alterations in the gene and their functional effect on its protein product provides a powerful model for exploring factors that influence genotype-phenotype correlations. The present study summarizes 615 known genetic mutations, their influence on the gene product, and their relationship to the clinical phenotype. In general, the results are compatible with the concept that the overall severity of the disease depends on how mutations ultimately influence enzyme activity. However, careful evaluation of exceptions to this concept point to several additional genetic and non-genetic factors that influence genotype-phenotype correlations. These factors are not unique to Lesch-Nyhan disease, and are relevant to most other genetic diseases. The disease therefore serves as a valuable model for understanding the challenges associated with establishing genotype-phenotype correlations for other disorders.
Collapse
Affiliation(s)
- Rong Fu
- 1 Departments of Neurology, Human Genetics and Paediatrics; Emory University, Atlanta GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Göttle M, Burhenne H, Sutcliffe D, Jinnah HA. Purine metabolism during neuronal differentiation: the relevance of purine synthesis and recycling. J Neurochem 2013; 127:805-18. [PMID: 23859490 DOI: 10.1111/jnc.12366] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 11/28/2022]
Abstract
Purines are a class of small organic molecules that are essential for all cells. They play critical roles in neuronal differentiation and function. Their importance is highlighted by several inherited disorders of purine metabolism, such as Lesch-Nyhan disease, which is caused by a deficiency of the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt). Despite the known importance of purines in the nervous system, knowledge regarding their metabolism in neurons is limited. In the current studies, purine pools and their metabolism were examined in rat PC6-3 cells, a PC12 pheochromocytoma subclone that undergoes robust differentiation with nerve growth factor. The results were compared with five new independent PC6-3 subclones with defective purine recycling because of different mutations affecting HGprt enzyme activity. The results demonstrate an increase in most purines and in energy state following neuronal differentiation, as well as specific abnormalities when purine recycling is lost. The loss of HGprt-mediated purine recycling also is associated with significant loss of dopamine and related metabolites in the mutant PC6-3 lines, suggesting an important connection between purine and dopamine pathways. These results provide insights into how purine pools and metabolism change with neuronal differentiation, and how specific enzyme defects may cause neuronal dysfunction. Differentiation of dopaminergic PC6-3 cells is accompanied by increased purine pools and energy state. The lack of a functional purine recycling pathway causes purine limitation in both undifferentiated and differentiated cells, as well as profound loss of dopamine content. The results imply an unknown mechanism by which intracellular purine levels regulate dopamine levels.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
20
|
Harris JC. Advances in understanding behavioral phenotypes in neurogenetic syndromes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:389-99. [DOI: 10.1002/ajmg.c.30276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Jinnah HA, Ceballos-Picot I, Torres RJ, Visser JE, Schretlen DJ, Verdu A, Laróvere LE, Chen CJ, Cossu A, Wu CH, Sampat R, Chang SJ, de Kremer RD, Nyhan W, Harris JC, Reich SG, Puig JG. Attenuated variants of Lesch-Nyhan disease. Brain 2010; 133:671-89. [PMID: 20176575 PMCID: PMC2842514 DOI: 10.1093/brain/awq013] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lesch–Nyhan disease is a neurogenetic disorder caused by deficiency of the enzyme hypoxanthine–guanine phosphoribosyltransferase. The classic form of the disease is described by a characteristic syndrome that includes overproduction of uric acid, severe generalized dystonia, cognitive disability and self-injurious behaviour. In addition to the classic disease, variant forms of the disease occur wherein some clinical features are absent or unusually mild. The current studies provide the results of a prospective and multi-centre international study focusing on neurological manifestations of the largest cohort of Lesch–Nyhan disease variants evaluated to date, with 46 patients from 3 to 65 years of age coming from 34 families. All had evidence for overproduction of uric acid. Motor abnormalities were evident in 42 (91%), ranging from subtle clumsiness to severely disabling generalized dystonia. Cognitive function was affected in 31 (67%) but it was never severe. Though none exhibited self-injurious behaviours, many exhibited behaviours that were maladaptive. Only three patients had no evidence of neurological dysfunction. Our results were compared with a comprehensive review of 78 prior reports describing a total of 127 Lesch–Nyhan disease variants. Together these results define the spectrum of clinical features associated with hypoxanthine–guanine phosphoribosyltransferase deficiency. At one end of the spectrum are patients with classic Lesch–Nyhan disease and the full clinical phenotype. At the other end of the spectrum are patients with overproduction of uric acid but no apparent neurological or behavioural deficits. Inbetween are patients with varying degrees of motor, cognitive, or behavioural abnormalities. Recognition of this spectrum is valuable for understanding the pathogenesis and diagnosis of all forms of hypoxanthine–guanine phosphoribosyltransferase deficiency.
Collapse
Affiliation(s)
- H A Jinnah
- Department of Neurology and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Camici M, Micheli V, Ipata PL, Tozzi MG. Pediatric neurological syndromes and inborn errors of purine metabolism. Neurochem Int 2009; 56:367-78. [PMID: 20005278 DOI: 10.1016/j.neuint.2009.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/25/2009] [Accepted: 12/03/2009] [Indexed: 11/17/2022]
Abstract
This review is devised to gather the presently known inborn errors of purine metabolism that manifest neurological pediatric syndromes. The aim is to draw a comprehensive picture of these rare diseases, characterized by unexpected and often devastating neurological symptoms. Although investigated for many years, most purine metabolism disorders associated to psychomotor dysfunctions still hide the molecular link between the metabolic derangement and the neurological manifestations. This basically indicates that many of the actual functions of nucleosides and nucleotides in the development and function of several organs, in particular central nervous system, are still unknown. Both superactivity and deficiency of phosphoribosylpyrophosphate synthetase cause hereditary disorders characterized, in most cases, by neurological impairments. The deficiency of adenylosuccinate lyase and 5-amino-4-imidazolecarboxamide ribotide transformylase/IMP cyclohydrolase, both belonging to the de novo purine synthesis pathway, is also associated to severe neurological manifestations. Among catabolic enzymes, hyperactivity of ectosolic 5'-nucleotidase, as well as deficiency of purine nucleoside phosphorylase and adenosine deaminase also lead to syndromes affecting the central nervous system. The most severe pathologies are associated to the deficiency of the salvage pathway enzymes hypoxanthine-guanine phosphoribosyltransferase and deoxyguanosine kinase: the former due to an unexplained adverse effect exerted on the development and/or differentiation of dopaminergic neurons, the latter due to a clear impairment of mitochondrial functions. The assessment of hypo- or hyperuricemic conditions is suggestive of purine enzyme dysfunctions, but most disorders of purine metabolism may escape the clinical investigation because they are not associated to these metabolic derangements. This review may represent a starting point stimulating both scientists and physicians involved in the study of neurological dysfunctions caused by inborn errors of purine metabolism with the aim to find novel therapeutical approaches.
Collapse
Affiliation(s)
- Marcella Camici
- Dipartimento di Biologia, Unità di Biochimica, Via S Zeno 51, 56127 Pisa, Italy.
| | | | | | | |
Collapse
|
23
|
Abstract
Lesch-Nyhan disease (LND) is a rare inherited disorder caused by mutations in the gene encoding hypoxanthine-guanine phosphoribosyltransferase (HPRT). LND is characterized by overproduction of uric acid, leading to gouty arthritis and nephrolithiasis. Affected patients also have characteristic neurological and behavioral anomalies. Multiple cell models have been developed to study the molecular and metabolic aspects of LND, and several animal models have been developed to elucidate the basis for the neurobehavioral syndrome. The models have different strengths and weaknesses rendering them suitable for studying different aspects of the disease. The extensive modeling efforts in LND have questioned the concept that an 'ideal' disease model is one that replicates all of its features because the pathogenesis of different elements of the disease involves different mechanisms. Instead, the modeling efforts have suggested a more fruitful approach that involves developing specific models, each tailored for addressing specific experimental questions.
Collapse
Affiliation(s)
- H A Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
Micheli V, Jacomelli G, Di Marcello F, Notarantonio L, Sestini S, Cerboni B, Bertelli M, Pompucci G, Jinnah HA. NAD metabolism in HPRT-deficient mice. Metab Brain Dis 2009; 24:311-9. [PMID: 19319672 PMCID: PMC4876432 DOI: 10.1007/s11011-009-9134-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
The activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) is virtually absent in Lesch-Nyhan disease (LND), an X-linked genetic disorder characterized by uric acid accumulation and neurodevelopmental dysfunction. The biochemical basis for the neurological and behavioral abnormalities have not yet been completely explained. Prior studies of cells from affected patients have shown abnormalities of NAD metabolism. In the current studies, NAD metabolism was evaluated in HPRT gene knock-out mice. NAD content and the activities of the enzymes required for synthesis and breakdown of this coenzyme were investigated in blood, brain and liver of HPRT(-) and control mice. NAD concentration and enzyme activities were found to be significantly increased in liver, but not in brain or blood of the HPRT(-) mice. These results demonstrate that changes in NAD metabolism occur in response to HPRT deficiency depending on both species and tissue type.
Collapse
Affiliation(s)
- Vanna Micheli
- Dipartimento di Biologia Molecolare, Università di Siena, Siena, Italia.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ceballos-Picot I, Mockel L, Potier MC, Dauphinot L, Shirley TL, Torero-Ibad R, Fuchs J, Jinnah HA. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis. Hum Mol Genet 2009; 18:2317-27. [PMID: 19342420 DOI: 10.1093/hmg/ddp164] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency results in Lesch-Nyhan disease (LND), where affected individuals exhibit a characteristic neurobehavioral disorder that has been linked with dysfunction of dopaminergic pathways of the basal ganglia. Since the functions of HPRT, a housekeeping enzyme responsible for recycling purines, have no direct relationships with the dopaminergic pathways, the mechanisms whereby HPRT deficiency affect them remain unknown. The current studies demonstrate that HPRT deficiency influences early developmental processes controlling the dopaminergic phenotype, using several different cell models for HPRT deficiency. Microarray methods and quantitative PCR were applied to 10 different HPRT-deficient (HPRT(-)) sublines derived from the MN9D cell line. Despite the variation inherent in such mutant sublines, several consistent abnormalities were evident. Most notable were increases in the mRNAs for engrailed 1 and 2, transcription factors known to play a key role in the specification and survival of dopamine neurons. The increases in mRNAs were accompanied by increases in engrailed proteins, and restoration of HPRT reverted engrailed expression towards normal levels, demonstrating a functional relationship between HPRT and engrailed. The functional relevance of the abnormal developmental molecular signature of the HPRT(-) MN9D cells was evident in impoverished neurite outgrowth when the cells were forced to differentiate chemically. To verify that these abnormalities were not idiosyncratic to the MN9D line, HPRT(-) sublines from the SK-N-BE(2) M17 human neuroblastoma line were evaluated and an increased expression of engrailed mRNAs was also seen. Over-expression of engrailed occurred even in primary fibroblasts from patients with LND in a manner that suggested a correlation with disease severity. These results provide novel evidence that HPRT deficiency may affect dopaminergic neurons by influencing early developmental mechanisms.
Collapse
|
26
|
Chaudhry AM, Marsh-Rollo SE, Aksenov V, Rollo CD, Szechtman H. Modifier Selection by Transgenes: The Case of Growth Hormone Transgenesis and Hyperactive Circling Mice. Evol Biol 2008. [DOI: 10.1007/s11692-008-9036-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Meehan DT, Zink MA, Mahlen M, Nelson M, Sanger WG, Mitalipov SM, Wolf DP, Ouellette MM, Norgren RB. Gene targeting in adult rhesus macaque fibroblasts. BMC Biotechnol 2008; 8:31. [PMID: 18366794 PMCID: PMC2292692 DOI: 10.1186/1472-6750-8-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 03/26/2008] [Indexed: 11/28/2022] Open
Abstract
Background Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT) has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology. Results A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term in vitro manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer. Conclusion The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.
Collapse
Affiliation(s)
- Daniel T Meehan
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lewers JC, Ceballos-Picot I, Shirley TL, Mockel L, Egami K, Jinnah HA. Consequences of impaired purine recycling in dopaminergic neurons. Neuroscience 2008; 152:761-72. [PMID: 18313225 DOI: 10.1016/j.neuroscience.2007.10.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/04/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
A unique sensitivity to specific biochemical processes is responsible for selective vulnerability of midbrain dopamine neurons in several diseases. Prior studies have shown these neurons are susceptible to energy failure and mitochondrial dysfunction, oxidative stress, and impaired disposal of misfolded proteins. These neurons also are especially vulnerable to the loss of purine recycling. In the brains of humans or mice with inherited defects of the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT), the most prominent defect is loss of basal ganglia dopamine. To investigate the nature of the relationship between HPRT deficiency and dopamine, the mouse MN9D dopaminergic neuronal cell line was used to prepare 10 sublines lacking HPRT. The mutant sublines grew more slowly than the parent line, but without morphological signs of impaired viability. As a group, the mutant sublines had significantly lower dopamine than the parent line. The loss of dopamine in the mutants did not reflect impaired energy status, as judged by ATP levels or vulnerability to inhibitors of energy production. Indeed, the mutant lines as a group appeared energetically more robust than the parent line. The loss of dopamine also was not accompanied by enhanced susceptibility to oxidative stress or proteasome inhibitors. Instead, the loss of dopamine reflected only one aspect of a broad change in the molecular phenotype of the cells affecting mRNAs encoding tyrosine hydroxylase, the dopamine transporter, the vesicular monoamine transporter, monoamine oxidase B, catechol-O-methyltransferase, and GTP-cyclohydrolase. These changes were selective for the dopamine phenotype, since multiple control mRNAs were normal. These studies suggest purine recycling is an intrinsic metabolic process of particular importance to the molecular phenotype of dopaminergic neurons independent of previously established mechanisms involving energy failure, oxidative stress, or proteasome dysfunction.
Collapse
Affiliation(s)
- J C Lewers
- Department of Neurology, Meyer Room 6-181, 600 North Wolfe Street, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis 2007; 2:48. [PMID: 18067674 PMCID: PMC2234399 DOI: 10.1186/1750-1172-2-48] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 12/08/2007] [Indexed: 11/22/2022] Open
Abstract
Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of the enzymatic deficiency. The prevalence is estimated at 1/380,000 live births in Canada, and 1/235,000 live births in Spain. Uric acid overproduction is present inall HPRT-deficient patients and is associated with lithiasis and gout. Neurological manifestations include severe action dystonia, choreoathetosis, ballismus, cognitive and attention deficit, and self-injurious behaviour. The most severe forms are known as Lesch-Nyhan syndrome (patients are normal at birth and diagnosis can be accomplished when psychomotor delay becomes apparent). Partial HPRT-deficient patients present these symptoms with a different intensity, and in the least severe forms symptoms may be unapparent. Megaloblastic anaemia is also associated with the disease. Inheritance of HPRT deficiency is X-linked recessive, thus males are generally affected and heterozygous female are carriers (usually asymptomatic). Human HPRT is encoded by a single structural gene on the long arm of the X chromosome at Xq26. To date, more than 300 disease-associated mutations in the HPRT1 gene have been identified. The diagnosis is based on clinical and biochemical findings (hyperuricemia and hyperuricosuria associated with psychomotor delay), and enzymatic (HPRT activity determination in haemolysate, intact erythrocytes or fibroblasts) and molecular tests. Molecular diagnosis allows faster and more accurate carrier and prenatal diagnosis. Prenatal diagnosis can be performed with amniotic cells obtained by amniocentesis at about 15–18 weeks' gestation, or chorionic villus cells obtained at about 10–12 weeks' gestation. Uric acid overproduction can be managed by allopurinol treatment. Doses must be carefully adjusted to avoid xanthine lithiasis. The lack of precise understanding of the neurological dysfunction has precluded development of useful therapies. Spasticity, when present, and dystonia can be managed with benzodiazepines and gamma-aminobutyric acid inhibitors such as baclofen. Physical rehabilitation, including management of dysarthria and dysphagia, special devices to enable hand control, appropriate walking aids, and a programme of posture management to prevent deformities are recommended. Self-injurious behaviour must be managed by a combination of physical restraints, behavioural and pharmaceutical treatments.
Collapse
|
30
|
Song S, Friedmann T. Tissue-specific Aberrations of Gene Expression in HPRT-deficient Mice: Functional Complexity in a Monogenic Disease? Mol Ther 2007; 15:1432-43. [PMID: 17505472 DOI: 10.1038/sj.mt.6300199] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have used the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme-deficient mouse model of human Lesch-Nyhan disease (LND) to examine the tissue-specificity of altered global gene expression in a genetically "simple" monogenic human disease. We have identified a number of genes and gene families whose expression is aberrant in the mouse knockout model of the LND, and we have identified different patterns of aberrant gene expression in two principal target tissues associated with the disease phenotype, i.e., the central nervous system and the liver. The major neurological phenotype reflects dysfunction of the dopamine neurotransmitter system in the basal ganglia, and we have now identified aberrant expression of a small number of genes in HPRT-deficient striata. The abnormal metabolic phenotype of hyperuricemia in HPRT-deficient mice is also reflected in an aberrant gene expression in the liver. We interpret these findings to suggest that the genetic consequences of a primary HPRT knockout in the mouse produces transcriptional aberrations in a number of other genes that may play a role in the disease phenotype. Knowledge of these secondary genetic defects may help in the identification of targets for drug- and gene-based therapy.
Collapse
Affiliation(s)
- Shaochun Song
- Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, California 92093, USA
| | | |
Collapse
|
31
|
Shirley TL, Lewers JC, Egami K, Majumdar A, Kelly M, Ceballos-Picot I, Seidman MM, Jinnah HA. A human neuronal tissue culture model for Lesch-Nyhan disease. J Neurochem 2007; 101:841-53. [PMID: 17448149 DOI: 10.1111/j.1471-4159.2007.04472.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the gene encoding the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause Lesch-Nyhan disease, a neurodevelopmental disorder characterized by cognitive, neurological, and behavioral abnormalities. Despite detailed knowledge of the enzyme's function, the key pathophysiological changes that accompany loss of purine recycling are unclear. To facilitate delineating the consequences of HPRT deficiency, four independent HPRT-deficient sublines of the human dopaminergic neuroblastoma, SK-N-BE(2) M17, were isolated by targeted mutagenesis with triple helix-forming oligonucleotides. As a group, these HPRT-deficient cells showed several significant abnormalities: (i) impaired purine recycling with accumulation of hypoxanthine, guanine, and xanthine, (ii) reduced guanylate energy charge and GTP:GDP ratio, but normal adenylate energy charge and no changes in any adenine nucleotide ratios, (iii) increased levels of UTP and NADP+, (iv) reduced DOPA decarboxylase, but normal monoamines, and (v) reduction in cell soma size. These cells combine the analytical power of multiple lines and a human, neuronal origin to provide an important tool to investigate the pathophysiology of HPRT deficiency.
Collapse
Affiliation(s)
- Thomas L Shirley
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA, and Department of Biology, Necker-Enfants Malades Hospital, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Lesch-Nyhan disease is a debilitating disorder caused by a lack of purine salvage activity. Basal ganglia dopamine deficits manifest in both patients and hypoxanthine phosphoribosyltransferase (HPRT) mutant mice. We previously reported decreased activity in an oxidant sensitive enzyme in the brain of HPRT-deficient mice. In the present study, we have investigated whether one source of free radicals, neuronal nitric oxide synthase (NOS1), contributes to the dopamine deficit associated with HPRT deficiency. HPRT knockout and wild-type mice were bred, either to lack, or to have the full complement of NOS1 alleles. Double mutant mice had striatal dopamine and dopamine metabolite levels indistinguishable from the HPRT single mutant counterparts. These results indicate that NOS1 produced nitric oxide does not contribute to the dopamine deficit seen in HPRT deficiency.
Collapse
Affiliation(s)
- Doug W Smith
- Center for Molecular Genetics, Department of Pediatrics, University of California, San Diego, CA, USA.
| | | |
Collapse
|
33
|
Egami K, Yitta S, Kasim S, Lewers JC, Roberts RC, Lehar M, Jinnah HA. Basal ganglia dopamine loss due to defect in purine recycling. Neurobiol Dis 2007; 26:396-407. [PMID: 17374562 PMCID: PMC1930158 DOI: 10.1016/j.nbd.2007.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/17/2007] [Accepted: 01/20/2007] [Indexed: 11/22/2022] Open
Abstract
Several rare inherited disorders have provided valuable experiments of nature highlighting specific biological processes of particular importance to the survival or function of midbrain dopamine neurons. In both humans and mice, deficiency of hypoxanthine-guanine phosphoribosyl transferase (HPRT) is associated with profound loss of striatal dopamine, with relative preservation of other neurotransmitters. In the current studies of knockout mice, no morphological signs of abnormal development or degeneration were found in an exhaustive battery that included stereological and morphometric measures of midbrain dopamine neurons, electron microscopic studies of striatal axons and terminals, and stains for degeneration or gliosis. A novel culture model involving HPRT-deficient dopaminergic neurons also exhibited significant loss of dopamine without a morphological correlate. These results suggest that dopamine loss in HPRT deficiency has a biochemical rather than anatomical basis and imply that purine recycling to be a biochemical process of particular importance to the function of dopaminergic neurons.
Collapse
Affiliation(s)
- Kiyoshi Egami
- Department of Neurology, Johns Hopkins University, Baltimore MD 21287
| | - Silaja Yitta
- Department of Neurology, Johns Hopkins University, Baltimore MD 21287
| | - Suhail Kasim
- Department of Neurology, Johns Hopkins University, Baltimore MD 21287
| | - J. Chris Lewers
- Department of Neurology, Johns Hopkins University, Baltimore MD 21287
| | - Rosalinda C. Roberts
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21228
| | - Mohamed Lehar
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, Baltimore MD 21287
| | - H. A. Jinnah
- Department of Neurology, Johns Hopkins University, Baltimore MD 21287
| |
Collapse
|
34
|
Kasim S, Blake BL, Fan X, Chartoff E, Egami K, Breese GR, Hess EJ, Jinnah HA. The role of dopamine receptors in the neurobehavioral syndrome provoked by activation of L-type calcium channels in rodents. Dev Neurosci 2006; 28:505-17. [PMID: 17028428 PMCID: PMC2951315 DOI: 10.1159/000095113] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 11/16/2005] [Indexed: 11/19/2022] Open
Abstract
In rodents, activation of L-type calcium channels with +/-BayK 8644 causes an unusual behavioral syndrome that includes dystonia and self-biting. Prior studies have linked both of these behaviors to dysfunction of dopaminergic transmission in the striatum. The current studies were designed to further elucidate the relationship between +/-BayK 8644 and dopaminergic transmission in the expression of the behavioral syndrome. The drug does not appear to release presynaptic dopamine stores, since microdialysis of the striatum revealed dopamine release was unaltered by +/-BayK 8644. In addition, the behaviors were preserved or even exaggerated in mice or rats with virtually complete dopamine depletion. On the other hand, pretreatment of mice with D(3) or D(1/5) dopamine receptor antagonists attenuated the behavioral effects of +/-BayK 8644, while pretreatment with D(2) or D(4) antagonists had no effect. In D(3) receptor knockout mice, +/-BayK 8644 elicited both dystonia and self-biting, but these behaviors were less severe than in matched controls. In D(1) receptor knockout mice, behavioral responses to +/-BayK 8644 appeared exaggerated. These results argue that the behavioral effects of +/-BayK 8644 are not mediated by a presynaptic influence. Instead, the behaviors appear to result from a postsynaptic activation of the drug, which does not require but can be modified by D(3) or D(1/5) receptors.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Central Nervous System Stimulants/pharmacology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/physiopathology
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Antagonists/pharmacology
- Dystonia/chemically induced
- Dystonia/metabolism
- Dystonia/physiopathology
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/genetics
- Receptors, Dopamine/metabolism
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D3/drug effects
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/metabolism
- Self-Injurious Behavior/chemically induced
- Self-Injurious Behavior/metabolism
- Self-Injurious Behavior/physiopathology
- Synaptic Membranes/drug effects
- Synaptic Membranes/genetics
- Synaptic Membranes/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Syndrome
Collapse
Affiliation(s)
- Suhail Kasim
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Thöny B, Gibson KM. Murine models of inherited monoaminergic and GABAergic neurotransmitter disorders. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.5.665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monoamine and amino acid neurotransmitters perform diverse biological functions in mammals, including the regulation of inhibitory/excitatory neurotransmission in the brain and spinal cord, movement and sleep, autonomic function, mood and reward, and numerous other processes. The primary transmitters involved include dopamine, serotonin, epinephrine, norepinephrine and γ-aminobutyric acid (GABA). With the exception of the amino acid transmitter GABA, the cofactor integrating these systems is tetrahydrobiopterin, an oxidizable intermediate found in high concentrations in dopaminergic neurons. With growing awareness of the clinical phenotypes, expanding numbers of patients with monoaminergic and GABAergic neurotransmitter disorders are being identified. For some people, therapeutic intervention demonstrates remarkably positive benefits; conversely, for most other disorders therapy offers limited efficacy. Decoding of the complete mouse genome, coupled with methodology capable of ablating specific genes, has revolutionized how geneticists understand and treat human genetic disease. This is well-exemplified in the disorders covered in this review, which focuses predominantly on monoaminergic (tetrahydrobiopterin-dependent) and GABAergic signaling neurotransmitter disorders.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Clinical Chemistry & Biochemistry, Department of Pediatrics, University of Zurich, Switzerland
| | - K Michael Gibson
- Children’s Hospital, Department of Pediatrics, Rangos Research Center, Room 2111, 3460 Fifth Avenue, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Abstract
Now that sequencing of the mouse genome has been completed, the function of each gene remains to be elucidated through phenotypic analysis. The "genetic background" (in which each gene functions) is defined as the genotype of all other related genes that may interact with the gene of interest, and therefore potentially influences the specific phenotype. To understand the nature and importance of genetic background on phenotypic expression of specific genes, it is necessary to know the origin and evolutionary history of the laboratory mouse genome. Molecular analysis has indicated that the fancy mice of Japan and Europe contributed significantly to the origin of today's laboratory mice. The genetic background of present-day laboratory mice varies by mouse strain, but is mainly derived from the European domesticus subspecies group and to a lesser degree from Asian mice, probably Japanese fancy mice, which belong to the musculus subspecies group. Inbred laboratory mouse strains are genetically uniform due to extensive inbreeding, and they have greatly contributed to the genetic analysis of many Mendelian traits. Meanwhile, for a variety of practical reasons, many transgenic and targeted mutant mice have been created in mice of mixed genetic backgrounds to elucidate the function of the genes, although efforts have been made to create inbred transgenic mice and targeted mutant mice with coisogenic embryonic stem cell lines. Inbred mouse strains have provided uniform genetic background for accurate evaluation of specific genes phenotypes, thus eliminating the phenotypic variations caused by mixed genetic backgrounds. However, the process of inbreeding and selection of various inbred strain characteristics has resulted in inadvertent selection of other undesirable genetic characteristics and mutations that may influence the genotype and preclude effective phenotypic analysis. Because many of the common inbred mouse stains have been established from relatively small gene pools, common inbred strains have limitations in their genetic polymorphisms and phenotypic variations. Wild-derived mouse strains can complement deficiencies of common inbred mouse strains, providing novel allelic variants and phenotypes. Although wild-derived strains are not as tame as the common laboratory strains, their genetic characteristics are attractive for the future study of gene function.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, Department of Biological Systems, RIKEN BioResource Center
| | | |
Collapse
|
37
|
Mikolaenko I, Rao LM, Roberts RC, Kolb B, Jinnah HA. A Golgi study of neuronal architecture in a genetic mouse model for Lesch–Nyhan disease. Neurobiol Dis 2005; 20:479-90. [PMID: 15908225 DOI: 10.1016/j.nbd.2005.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/15/2005] [Accepted: 04/08/2005] [Indexed: 11/18/2022] Open
Abstract
Lesch-Nyhan disease (LND) is an inherited disorder associated with deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT), an enzyme essential for purine recycling. The clinical manifestations of the disorder and several neurochemical studies have pointed towards a defect in the striatum, but histological studies of autopsied brain specimens have not revealed any consistent abnormalities. An HPRT-deficient (HPRT-) mouse that has been produced as a model for the disease also exhibits neurochemical abnormalities of the striatum without obvious histological correlates. In the current studies, Golgi-Cox histochemistry was used to evaluate the fine structure of medium spiny I neurons from the striatum in the HPRT- mice. To determine if any abnormalities might be restricted to striatal neurons, the pyramidal projection neurons of layer 5 of the cerebral cortex were also evaluated. Neurons from both regions demonstrated a normal distribution, orientation, and gross morphology. There was no evidence for an abnormal developmental process or degeneration. However, both regions demonstrated a paucity of neurons with very long dendrites and a reduction in dendritic spines that depended upon the distance from the cell body. These findings demonstrate that HPRT deficiency is associated with changes in neuronal architecture in the HPRT- mice. Similar abnormalities in the LND brain could underlie some of the clinical manifestations.
Collapse
Affiliation(s)
- Ivan Mikolaenko
- Department of Neurology, Meyer Room 6-181, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
38
|
Dunnett SB. Chapter V Motor function(s) of the nigrostriatal dopamine system: Studies of lesions and behavior. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0924-8196(05)80009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
39
|
Hyland K, Kasim S, Egami K, Arnold LA, Jinnah HA. Tetrahydrobiopterin deficiency and dopamine loss in a genetic mouse model of Lesch-Nyhan disease. J Inherit Metab Dis 2004; 27:165-78. [PMID: 15159647 DOI: 10.1023/b:boli.0000028728.93113.4d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) is an enzyme that catalyses the conversion of hypoxanthine and guanine into their respective nucleotides. Inherited deficiency of the enzyme is associated with a loss of striatal dopamine in both mouse and man. Although HPRT is not directly involved in the metabolism of dopamine, it contributes to the supply of GTP, which is used in the first and rate-limiting step in the synthesis of tetrahydrobiopterin (BH4). Since BH4 is required as a cofactor for tyrosine hydroxylase in the synthesis of dopamine, any limitation in the supply of GTP could interfere with the synthesis of dopamine. The current studies were designed to address the hypothesis that the reduced striatal dopamine in mice with HPRT deficiency results from reduced availability of BH4. The mutant mice had small reductions in striatal BH4, with normal BH4 levels in other brain regions. Liver BH4 was normal in HPRT-deficient mutant mice, and a phenylalanine challenge test failed to reveal any evidence for impaired hepatic phenylalanine hydroxylase, another BH4-dependent enzyme. Although striatal BH4 content is not normal, supplementation with BH4 or L-dopa failed to correct the striatal dopamine deficiency of the mutant mice, suggesting that BH4 limitation is not responsible for the dopamine loss.
Collapse
Affiliation(s)
- K Hyland
- Institute for Metabolic Diseases, Baylor University Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
40
|
Kasim S, Egami K, Jinnah HA. Self-biting induced by activation of L-type calcium channels in mice: serotonergic influences. Dev Neurosci 2003; 24:322-7. [PMID: 12457070 DOI: 10.1159/000066747] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The L-type calcium channel activator +/-Bay K 8644 has recently been shown to provoke self-injurious biting in young mice. Since the serotonergic systems have been implicated in the expression of self-injurious behavior in both humans and animals, the present studies tested whether drugs influencing serotonin systems could modify the ability of +/-Bay K 8644 to cause this behavior. The ability of +/-Bay K 8644 to provoke self-biting behavior was increased by the serotonin uptake inhibitor fluoxetine or the monoamine oxidase inhibitor clorgyline. On the other hand, the ability of +/-Bay K 8644 to provoke self-biting was decreased by depletion of serotonin with p-chlorophenylalanine or 5,7-dihyroxytryptamine. These results suggest that the ability of +/-Bay K 8644 to provoke self-injurious behaviors may be mediated by serotonergic influences.
Collapse
Affiliation(s)
- Suhail Kasim
- Department of Neurology, Johns Hopkins Hospital, Baltimore, Md 21287, USA
| | | | | |
Collapse
|
41
|
Fairbanks LD, Jacomelli G, Micheli V, Slade T, Simmonds HA. Severe pyridine nucleotide depletion in fibroblasts from Lesch-Nyhan patients. Biochem J 2002; 366:265-72. [PMID: 11996669 PMCID: PMC1222752 DOI: 10.1042/bj20020148] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 04/23/2002] [Accepted: 05/08/2002] [Indexed: 11/17/2022]
Abstract
The relationship between a complete deficiency of the purine enzyme hypoxanthine-guanine phosphoribosyltransferase and the neurobehavioural abnormalities in Lesch-Nyhan disease remains an enigma. In vitro studies using lymphoblasts or fibroblasts have evaluated purine and pyrimidine metabolism with conflicting results. This study focused on pyridine nucleotide metabolism in control and Lesch-Nyhan fibroblasts using radiolabelled salvage precursors to couple the extent of uptake with endocellular nucleotide concentrations. The novel finding, highlighted by specific culture conditions, was a marked NAD depletion in Lesch-Nyhan fibroblasts. ATP and GTP were also 50% of the control, as reported in lymphoblasts. A 6-fold greater incorporation of [(14)C]nicotinic acid into nicotinic acid- adenine dinucleotide by Lesch-Nyhan fibroblasts, with no unmetabolized substrate (20% in controls), supported disturbed pyridine metabolism, NAD depletion being related to utilization by poly(ADP-ribose) polymerase in DNA repair. Although pyrimidine nucleotide concentrations were similar to controls, Lesch-Nyhan cells showed reduced [(14)C]cytidine/uridine salvage into UDP sugars. Incorporation of [(14)C]uridine into CTP by both was minimal, with more than 50% [(14)C]cytidine metabolized to UTP, indicating that fibroblasts, unlike lymphoblasts, lack active CTP synthetase, but possess cytidine deaminase. Restricted culture conditions may be neccesary to mimic the situation in human brain cells at an early developmental stage. Cell type may be equally important. NAD plus ATP depletion in developing brain could restrict DNA repair, leading to neuronal damage/loss by apoptosis, and, with GTP depletion, affect neurotransmitter synthesis and basal ganglia dopaminergic neuronal systems. Thus aberrant pyridine nucleotide metabolism could play a vital role in the pathophysiology of Lesch-Nyhan disease.
Collapse
Affiliation(s)
- Lynette D Fairbanks
- Purine Research Unit, Department of Chemical Pathology, GKT, Guy's Hospital, London SE1 9RT, U.K.
| | | | | | | | | |
Collapse
|
42
|
Elsea SH, Lucas RE. The mousetrap: what we can learn when the mouse model does not mimic the human disease. ILAR J 2002; 43:66-79. [PMID: 11917158 DOI: 10.1093/ilar.43.2.66] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, mouse models for human metabolic diseases have become commonplace because the information gained from in vivo study of biochemical pathways is invaluable, and many metabolic diseases are relatively easy to recreate in mice through gene knockout technology in embryonic stem cells. In certain cases, however, the knockout mice may reproduce only some of the human disease phenotype, may be more severely affected than human cases, or may have no clinical phenotype at all. Under these circumstances, the disease pathology can become more complex, causing the researcher to evaluate basic differences in mouse and human biology as well as questions of genetic background, alternate pathways, and possible gene interactions. This review is a brief analysis of gene knockout models for Lesch-Nyhan syndrome, Lowe syndrome, X-linked adrenoleukodystrophy, Fabry disease, galactosemia, glycogen storage disease type II, metachromatic leukodystrophy, and Tay-Sachs disease, which produce a biochemical model of disease but often do not reproduce clinical symptoms. These mice may be useful for studying the biochemical and physiological pathways in which certain metabolites function toward embryonic and fetal development, as well as specific functions in various organs, and they may provide an inexpensive and useful model system for development of new therapeutic techniques.
Collapse
Affiliation(s)
- Sarah H Elsea
- Department of Zoology, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
43
|
Visser JE, Smith DW, Moy SS, Breese GR, Friedmann T, Rothstein JD, Jinnah HA. Oxidative stress and dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 133:127-39. [PMID: 11882343 DOI: 10.1016/s0165-3806(02)00280-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lesch-Nyhan disease, a neurogenetic disorder caused by congenital deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase, is associated with a prominent loss of striatal dopamine. The current studies address the hypothesis that oxidant stress causes damage or dysfunction of nigrostriatal dopamine neurons in a knockout mouse model of the disease, by assessing several markers of oxidative damage and free radical scavenging systems. Some of these measures provided evidence for an increase in oxidative stress in the mutant mice (aconitase activity, oxidized glutathione, and lipid peroxides), but others did not (superoxide dismutase, protein thiol content, carbonyl protein content, total glutathione, glutathione peroxidase, catalase, and thiobarbituric reducing substances). Immunolocalization of heme-oxygenase 1 provided no evidence for oxidative stress restricted to specific elements of the striatum or midbrain in the mutants. Striatal dopamine systems of the mutant mice were more vulnerable to a challenge with the neurotoxin 6-hydroxydopamine, but they were not protected by cross-breeding the mutants with transgenic mice over-expressing superoxide dismutase. Overall, these data provide evidence for increased oxidative stress, but the failure to protect the knockout mice by over-expressing SOD1 argues that oxidative stress is not the sole process responsible for the loss of striatal dopamine.
Collapse
Affiliation(s)
- Jasper E Visser
- Department of Neurology, Meyer 6-181, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Despite the previous development of single-gene knock-out mice that exhibit alterations in aggressive behavior, very little progress has been made toward identifying the natural gene variants (alleles) that contribute to individual or strain differences in aggression. Whereas most inbred mouse strains show an intermediate level of inter-male aggression in the resident-intruder or dangler behavioral tests, NZB/B1NJ mice are extremely aggressive and A/J mice are extremely unaggressive. We took advantage of the large phenotypic difference between these strains and used an outcross-backcross breeding protocol and a genome-wide scan to identify aggression quantitative trait loci (QTLs) on distal chromosome 10 (Aggr1; p = 6 x 10(-7)) and proximal chromosome X (Aggr2; p = 2.14 x 10(-5)). Candidate genes for Aggr1 and Aggr2, respectively, include the diacylglycerol kinase alpha subunit gene (Dagk1) and the glutamate receptor subunit AMPA3 gene (Gria3). This is the first report of significant aggression QTLs established through a genome-wide scan in any mammal. The mapping of these QTLs is a step toward the definitive identification of mouse alleles that affect aggression and may lead, ultimately, to the discovery of homologous alleles that affect individual differences in aggression within other mammalian species.
Collapse
|
45
|
Smith DW, Friedmann T. Characterization of the dopamine defect in primary cultures of dopaminergic neurons from hypoxanthine phosphoribosyltransferase knockout mice. Mol Ther 2000; 1:486-91. [PMID: 10933970 DOI: 10.1006/mthe.2000.0057] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lesch-Nyhan disease (LND) is an X-linked metabolic disorder caused by lack of activity of the purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT) and characterized by hyperuricemia and debilitating neurological manifestations. The mechanisms underlying the neuropathology are not well understood and the principal neurochemical lesion characterized to date is a deficiency of the dopamine system in the basal ganglia. To facilitate the study of mechanism(s) by which HPRT deficiency causes the dopamine defect, we have compared the survival and dopamine phenotype of primary cultures of dopamine neurons derived from HPRT-deficient mice with the dopaminergic neurons from wild-type mice. The survival of dopaminergic neurons from both sources was promoted to an equal extent by glial cell line-derived neurotrophic factor (GDNF), a potent survival factor for dopamine neurons in vitro. Although the survival of the HPRT-deficient neurons was indistinguishable from that of cells derived from wild-type counterparts, the HPRT-deficient cells demonstrated a persistent deficiency of dopamine content and dopamine uptake with increasing neuritic differentiation, indicating that GDNF does not restore the normal phenotype in HPRT-deficient dopamine neurons despite its well-known protective and regenerative properties in several neurodegeneration models. Nevertheless, the demonstration that GDNF trophic support promotes the survival of these dopaminergic neurons will facilitate gaining a better understanding of the neuropathological mechanisms of LND by allowing a more extensive analysis of the cells central to the Lesch-Nyhan phenotype, the dopaminergic neurons of the basal ganglia.
Collapse
Affiliation(s)
- D W Smith
- Center for Molecular Genetics, Room 122, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0634, USA.
| | | |
Collapse
|
46
|
Visser JE, Bär PR, Jinnah HA. Lesch-Nyhan disease and the basal ganglia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:449-75. [PMID: 10760551 DOI: 10.1016/s0165-0173(99)00094-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The purpose of this review is to summarize emerging evidence that the neurobehavioral features of Lesch-Nyhan disease (LND), a developmental disorder caused by congenital deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT), may be attributable to dysfunction of the basal ganglia. Affected individuals have severe motor disability described by prominent extrapyramidal features that are characteristic of dysfunction of the motor circuits of the basal ganglia. They also display disturbances of ocular motility, cognition, and behavioral control that may reflect disruption of other circuits of the basal ganglia. Though neuropathologic studies of autopsy specimens have revealed no obvious neuroanatomical abnormalities in LND, neurochemical studies have demonstrated 60-90% reductions in the dopamine content of the basal ganglia. In addition, recent PET studies have documented significant reductions in dopamine transporters and [18F]fluorodopa uptake in the basal ganglia. These findings support the proposal that many of the neurobehavioral features of LND might be related to dysfunction of the basal ganglia.
Collapse
Affiliation(s)
- J E Visser
- Laboratory of Experimental Neurology, Rudolf Magnus Institute for Neurosciences, Utrecht University, Utrecht, Netherlands
| | | | | |
Collapse
|