1
|
Ali S, Dwivedi Y. Early-Life Stress Influences the Transcriptional Activation of Alpha-2A Adrenergic Receptor and Associated Protein Kinase A Signaling Molecules in the Frontal Cortex of Rats. Mol Neurobiol 2025; 62:5297-5310. [PMID: 39532806 PMCID: PMC11880062 DOI: 10.1007/s12035-024-04578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Early life is a highly sensitive period associated with profound changes in brain structure and function. Adverse experiences of early-life stress (ELS) are prominent risk factors for the precipitation of major depressive disorder (MDD). In recent years, dysfunction of the central noradrenergic (NA) system and subsequent deficits in norepinephrine (NE) signaling have gained increasing attention in the pathophysiology of MDD. However, the role of the α-2A adrenergic receptor and its downstream second messenger signaling system has not been investigated in connection to early-life stress-induced depression, limiting valuable insights into neurobiological mechanisms underlying this disorder. In this study, we used maternal separation (MS) as a rodent model of ELS to investigate whether ELS-induced depressive behavior is related to the α-2A adrenergic receptor and its associated second messenger signaling cascade. To do so, we studied expression levels of the α-2A adrenergic receptor (Adra2a), G alpha proteins (stimulatory subunit-Gαs [Gnas] and inhibitory subunit-Gαi [Gnai1 and Gnai2]), and downstream protein kinase A (PKA) catalytic [Prkarcα and Prkarcβ] and regulatory subunits [Prkar1α, Prkar1β, Prkar2α, and Prkar2β]) in the frontal cortex (FC) of MS rats. We found reduced sucrose preference in MS animals, along with reduced transcript levels of Adra2a, Gnai2, Prkar1β, and Prkarcβ. These findings suggest that ELS exposure may contribute to depression symptomatology via alterations in the expression of key genes involved in the NA system, highlighting potential mechanisms underlying ELS-induced depressive behavior.
Collapse
Affiliation(s)
- Sarah Ali
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 2nd Avenue South, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 2nd Avenue South, Birmingham, AL, USA.
| |
Collapse
|
2
|
Xia Y, Xie M, Zhang R, Kong L, Yao L, Zhang L, Li Y. Effects of dexmedetomidine on depression-like behaviour in chronic restraint stress mice: Involvement of specific brain regions. Biochem Biophys Res Commun 2024; 734:150479. [PMID: 39088982 DOI: 10.1016/j.bbrc.2024.150479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
It is crucial to develop novel antidepressants. Dexmedetomidine (DEX) can exert antidepressant effects, but its underlying mechanism remains unclear. We used chronic restraint stress (CRS) to induce depression-like behaviour in mice and administered low-dose DEX (2 μg/kg per day) during CRS modelling or one injection of high-dose DEX (20 μg/kg) after CRS. The results of the behavioural tests revealed that both methods ameliorated CRS-induced depression. The brain slices of the mice were subjected to immunohistochemical staining for c-fos and phosphorylated ERK (pERK). Results showed that the continuous low-dose DEX-treated group, but not the single high-dose DEX-treated group expressed less c-fos in the nucleus locus coeruleus (LC) with a mean optical density (MOD) of 0.06. Other brain regions, including the dentate gyrus (DG), pyriform cortex (Pir), anterior part of paraventricular thalamic nucleus (PVA), arcuate nucleus (Arc), and core or shell of accumbens nucleus (Acbc or Acbs), presented differences in c-fos expression. In contrast, the low-dose DEX-treated group exhibited three-fold greater pERK expression in the LC of the CRS mice, with a MOD of 0.15. Pir, cingulate cortex (Cg) and, anterior and posterior part of paraventricular thalamic nucleus (PVA and PVP) exhibited pERK expression differences due to distinct reagent treatments. These changes indicate that the responses of brain regions to different DEX administration methods and doses vary. This study confirmed the ability of DEX to ameliorate CRS-induced depression and identified candidate target brain regions, thus providing new information for the antidepressant mechanism of DEX.
Collapse
Affiliation(s)
- Yin Xia
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China; Department of Anesthesiology, Anhui Provincial Children's Hospital, Hefei, Anhui, PR China
| | - Min Xie
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Ran Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Lingchao Kong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Lamei Yao
- Department of Anesthesiology, Hefei Maternal and Child Health Hospital, PR China
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, PR China
| | - Yuanhai Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
3
|
Yöyen E, Keleş M. First- and Second-Generation Psychological Theories of Suicidal Behaviour. Behav Sci (Basel) 2024; 14:710. [PMID: 39199106 PMCID: PMC11351948 DOI: 10.3390/bs14080710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Suicidal behaviour is defined as taking actions with the intention of killing oneself and thinking of performing these actions. Suicide is a serious public health problem with complex biological, social and psychological risk factors and a multidimensional clinical appearance, occurring all over the world and ranking among the leading causes of death. In this study, psychological approaches explaining suicide were evaluated under the headings of first-generation and second-generation suicide theories, the different aspects of these theories were put forward, and previously published studies and recent evidence were reviewed. A literature review on the theoretical foundations of suicide is presented. First-generation suicide theories were developed before the 2000s and second-generation suicide theories were developed after the 2000s. While Psychodynamic Theory, Social Learning Theory, Hopelessness Theory, Shneidman's Suicide Theory and Escape Theory are included under the title of first-generation suicide theories, Interpersonal Psychological Suicide Theory, Three Stage Suicide Theory, Complementary Motivational-Demotivational Theory and Variable Predisposition Theory are examined as second-generation suicide theories. The approaches of the theories provide important evidence in understanding suicidal behaviour and recognising various risk factors in the transition from suicidal ideation to suicidal action. Controlling the risk factors may contribute both in terms of preventive community mental health and in the development of health policies.
Collapse
Affiliation(s)
- Elif Yöyen
- Department of Psychology, Faculty of Humanities and Social Sciences, Sakarya University, Sakarya 54050, Türkiye
| | - Merve Keleş
- Department of Educational Psychology, College of Education, Texas Tech University, Lubbock, TX 79416, USA
| |
Collapse
|
4
|
Zhou Y, Bai Z, Zhang W, Xu S, Feng Y, Li Q, Li L, Ping A, Chen L, Wang S, Duan K. Effect of Dexmedetomidine on Postpartum Depression in Women With Prenatal Depression: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2353252. [PMID: 38270949 PMCID: PMC10811555 DOI: 10.1001/jamanetworkopen.2023.53252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Importance Postpartum depression (PPD) is emerging as a major public health problem worldwide. Although the particular period and context in which PPD occurs provides an opportunity for preventive interventions, there is still a lack of pharmacologic prevention strategies for PPD. Objective To assess the efficacy and safety of dexmedetomidine for prevention of PPD among women with prenatal depression undergoing cesarean delivery. Design, Setting, and Participants This randomized clinical trial enrolled 338 women who screened positive for prenatal depression at 2 hospitals in Hunan, China from March 28, 2022, to April 16, 2023. Women with an Edinburgh Postnatal Depression Scale score of more than 9 who were 18 years of age or older and were scheduled for elective cesarean delivery were eligible. Interventions Eligible participants were randomly assigned in a 1:1 ratio to either the dexmedetomidine group or the control group via centrally computer-generated group randomization. Dexmedetomidine, 0.5 μg/kg and 0.9% saline were intravenously infused for 10 minutes after delivery in the dexmedetomidine and control groups, respectively. After infusion, sufentanil or dexmedetomidine plus sufentanil was administered via patient-controlled intravenous analgesia for 48 hours in the control group and dexmedetomidine group, respectively. Main Outcomes and Measures The primary outcome was positive PPD screening results at 7 and 42 days post partum, defined as a postpartum Edinburgh Postnatal Depression Scale score of more than 9. Analysis was on an intention-to-treat basis. Results All 338 participants were female, with a mean (SD) age of 31.5 (4.1) years. Positive PPD screening incidence at 7 and 42 days post partum in the dexmedetomidine group vs the control group was significantly decreased (day 7, 21 of 167 [12.6%] vs 53 of 165 [32.1%]; risk ratio, 0.39 [95% CI, 0.25-0.62]; P < .001; day 42, 19 of 167 [11.4%] vs 50 of 165 [30.3%]; risk ratio, 0.38 [95% CI, 0.23-0.61]; P < .001). The dexmedetomidine group showed no significant difference in adverse events vs the control group (46 of 169 [27.2%] vs 33 of 169 [19.5%]; P = .10), but the incidence of hypotension increased (31 of 169 [18.3%] vs 16 of 169 [9.5%]; risk ratio, 2.15 [95% CI, 1.13-4.10]; P = .02). Conclusions and Relevance Dexmedetomidine administration in the early postpartum period significantly reduced the incidence of a positive PPD screening and maintained a favorable safety profile. Trial Registration Chinese Clinical Trial Registry Identifier: ChiCTR2200057213.
Collapse
Affiliation(s)
- Yingyong Zhou
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihong Bai
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wenchao Zhang
- Department of Anesthesiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Shouyu Xu
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yunfei Feng
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qiuwen Li
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lishan Li
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Anqi Ping
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liang Chen
- Department of Anesthesiology, The Maternal and Child Health Hospital of the Hu Nan Province, Changsha, China
| | - Saiying Wang
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Kaiming Duan
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Pittenger C, Jiang C, DiLeone R, Duman R. The endogenous opioid system in the medial prefrontal cortex mediates ketamine's antidepressant-like actions. RESEARCH SQUARE 2023:rs.3.rs-3190391. [PMID: 37886526 PMCID: PMC10602058 DOI: 10.21203/rs.3.rs-3190391/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Recent studies have implicated the endogenous opioid system in the antidepressant actions of ketamine, but the underlying mechanisms remain unclear. We used a combination of pharmacological, behavioral, and molecular approaches in rats to test the contribution of the prefrontal endogenous opioid system to the antidepressant-like effects of a single dose of ketamine. Both the behavioral actions of ketamine and their molecular correlates in the medial prefrontal cortex (mPFC) were blocked by acute systemic administration of naltrexone, a competitive opioid receptor antagonist. Naltrexone delivered directly into the mPFC similarly disrupted the behavioral effects of ketamine. Ketamine treatment rapidly increased levels of β-endorphin and the expression of the μ-opioid receptor gene (Oprm1) in the mPFC, and the expression of the gene that encodes proopiomelanocortin, the precursor of β-endorphin, in the hypothalamus, in vivo. Finally, neutralization of β-endorphin in the mPFC using a specific antibody prior to ketamine treatment abolished both behavioral and molecular effects. Together, these findings indicate that presence of β-endorphin and activation of opioid receptors in the mPFC are required for the antidepressant-like actions of ketamine.
Collapse
Affiliation(s)
| | | | | | - Ronald Duman
- Department of Psychiatry, Yale School of Medicine
| |
Collapse
|
6
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Structural Basis of the Interaction of the G Proteins, Gαi 1, Gβ 1γ 2 and Gαi 1β 1γ 2, with Membrane Microdomains and Their Relationship to Cell Localization and Activity. Biomedicines 2023; 11:biomedicines11020557. [PMID: 36831093 PMCID: PMC9953545 DOI: 10.3390/biomedicines11020557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
GPCRs receive signals from diverse messengers and activate G proteins that regulate downstream signaling effectors. Efficient signaling is achieved through the organization of these proteins in membranes. Thus, protein-lipid interactions play a critical role in bringing G proteins together in specific membrane microdomains with signaling partners. Significantly, the molecular basis underlying the membrane distribution of each G protein isoform, fundamental to fully understanding subsequent cell signaling, remains largely unclear. We used model membranes with lipid composition resembling different membrane microdomains, and monomeric, dimeric and trimeric Gi proteins with or without single and multiple mutations to investigate the structural bases of G protein-membrane interactions. We demonstrated that cationic amino acids in the N-terminal region of the Gαi1 and C-terminal region of the Gγ2 subunit, as well as their myristoyl, palmitoyl and geranylgeranyl moieties, define the differential G protein form interactions with membranes containing different lipid classes (PC, PS, PE, SM, Cho) and the various microdomains they may form (Lo, Ld, PC bilayer, charged, etc.). These new findings in part explain the molecular basis underlying amphitropic protein translocation to membranes and localization to different membrane microdomains and the role of these interactions in cell signal propagation, pathophysiology and therapies targeted to lipid membranes.
Collapse
|
8
|
Bouras NN, Mack NR, Gao WJ. Prefrontal modulation of anxiety through a lens of noradrenergic signaling. Front Syst Neurosci 2023; 17:1173326. [PMID: 37139472 PMCID: PMC10149815 DOI: 10.3389/fnsys.2023.1173326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Anxiety disorders are the most common class of mental illness in the U.S., affecting 40 million individuals annually. Anxiety is an adaptive response to a stressful or unpredictable life event. Though evolutionarily thought to aid in survival, excess intensity or duration of anxiogenic response can lead to a plethora of adverse symptoms and cognitive dysfunction. A wealth of data has implicated the medial prefrontal cortex (mPFC) in the regulation of anxiety. Norepinephrine (NE) is a crucial neuromodulator of arousal and vigilance believed to be responsible for many of the symptoms of anxiety disorders. NE is synthesized in the locus coeruleus (LC), which sends major noradrenergic inputs to the mPFC. Given the unique properties of LC-mPFC connections and the heterogeneous subpopulation of prefrontal neurons known to be involved in regulating anxiety-like behaviors, NE likely modulates PFC function in a cell-type and circuit-specific manner. In working memory and stress response, NE follows an inverted-U model, where an overly high or low release of NE is associated with sub-optimal neural functioning. In contrast, based on current literature review of the individual contributions of NE and the PFC in anxiety disorders, we propose a model of NE level- and adrenergic receptor-dependent, circuit-specific NE-PFC modulation of anxiety disorders. Further, the advent of new techniques to measure NE in the PFC with unprecedented spatial and temporal resolution will significantly help us understand how NE modulates PFC function in anxiety disorders.
Collapse
|
9
|
Noradrenergic activation induced by yohimbine decreases interoceptive accuracy in healthy individuals with childhood adversity. Dev Psychopathol 2021; 34:1013-1024. [PMID: 33446284 DOI: 10.1017/s0954579420001613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute stress affects interoception, but it remains unclear if this is due to activation of the sympatho-adreno-medullary (SAM) or hypothalamic-pituitary-adrenocortical axis. This study aimed to investigate the effect of SAM axis activation on interoceptive accuracy (IAcc). Central alpha2-adrenergic receptors represent a negative feedback mechanism of the SAM axis. Major depressive disorder and adverse childhood experiences (ACE) are associated with alterations in the biological stress systems, including central alpha2-adrenergic receptors. Here, healthy individuals with and without ACE as well as depressive patients with and without ACE (n = 114; all without antidepressant medication) were tested after yohimbine (alpha2-adrenergic antagonist) and placebo. We assessed IAcc and sensibility in a heartbeat counting task. Increases in systolic and diastolic blood pressure after yohimbine confirmed successful SAM axis activation. IAcc decreased after yohimbine only in the healthy group with ACE, but remained unchanged in all other groups (Group × Drug interaction). This effect may be due to selective upregulation of alpha2-adrenergic receptors after childhood trauma, which reduces capacity for attention focus on heartbeats. The sympathetic neural pathway including alpha2-adrenergic circuitries may be essential for mediating interoceptive signal transmission. Suppressed processing of physical sensations in stressful situations may represent an adaptive response in healthy individuals who experienced ACE.
Collapse
|
10
|
Kuehl LK, Deuter CE, Nowacki J, Ueberrueck L, Wingenfeld K, Otte C. Attentional bias in individuals with depression and adverse childhood experiences: influence of the noradrenergic system? Psychopharmacology (Berl) 2021; 238:3519-3531. [PMID: 34605959 PMCID: PMC8629860 DOI: 10.1007/s00213-021-05969-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is a severe mental disorder with affective, cognitive, and somatic symptoms. Mood congruent cognitive biases, including a negative attentional bias, are important for development, maintenance, and recurrence of depressive symptoms. MDD is associated with maladaptive changes in the biological stress systems such as dysregulations of central noradrenergic alpha2-receptors in the locus coeruleus-noradrenergic system, which can affect cognitive processes including attention. Patients with adverse childhood experiences (ACE), representing severe stress experiences in early life, might be particularly affected. OBJECTIVES With an experimental design, we aimed to gain further knowledge about the role of noradrenergic activity for attentional bias in MDD patients with and without ACE. METHODS We tested the effect of increased noradrenergic activity induced by the alpha2-receptor blocker yohimbine on attentional bias in a placebo-controlled repeated measures design. Four groups were included as follows: MDD patients with and without ACE, and healthy participants with and without ACE (total N = 128, all without antidepressant medication). RESULTS A significant effect of MDD on attentional bias scores of sad face pictures (p = .037) indicated a facilitated attentional processing of sad face pictures in MDD patients (compared to non-MDD individuals). However, we found no such effect of ACE. For attentional bias of happy face pictures, we found no significant effects of MDD and ACE. Even though a higher increase of blood pressure and salivary alpha-amylase following yohimbine compared to placebo indicated successful noradrenergic stimulation, we found no significant effects of yohimbine on attentional bias of happy or sad face pictures. CONCLUSIONS Our results are consistent with the hypothesis of a negative attentional bias in MDD patients. However, as we found no effect of ACE or yohimbine, further research is needed to understand the mechanisms by which ACE increases the risk of MDD and to understand the biological basis of the MDD-related negative attentional bias.
Collapse
Affiliation(s)
- Linn K Kuehl
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Department of Psychiatry and Psychotherapy, Berlin, Germany.
- Department of Psychology, Clinical Psychology and Psychotherapy, MSB Medical School Berlin, Berlin, Germany.
| | - Christian E Deuter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Jan Nowacki
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Lisa Ueberrueck
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katja Wingenfeld
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Christian Otte
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
11
|
Deuter CE, Wingenfeld K, Otte C, Bustami J, Kaczmarczyk M, Kuehl LK. Noradrenergic system and cognitive flexibility: Disentangling the effects of depression and childhood trauma. J Psychiatr Res 2020; 125:136-143. [PMID: 32283407 DOI: 10.1016/j.jpsychires.2020.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Stress plays a fundamental role in the development and maintenance of major depressive disorder (MDD). Importantly, maladaptive changes in the physiological stress regulation systems have been demonstrated. In the locus coeruleus-noradrenergic (LC-NA) system, up-regulated central alpha2-adrenergic receptors in patients with MDD affect cognitive functions. Although cognitive deficits are core symptoms of MDD, the relationship between the LC-NA system and cognitive processes has rarely been investigated in depressed patients. The aim of our study was to investigate whether noradrenergic stimulation affects cognitive flexibility in MDD. In addition, we aimed to further disentangle the effects of MDD and adverse childhood experiences (ACE), such as physical or sexual abuse on cognitive function. In a double-blind placebo-controlled study, MDD patients with ACE, MDD patients without ACE, healthy participants with ACE and healthy control participants without MDD or ACE were tested with a task switching task (total N = 125). Participants were tested twice after treatment with either 10 mg yohimbine or a placebo. Switch costs (differences between switch and repetition trials) in reaction times and accuracy served as the independent variables. We found higher switch costs in MDD patients as compared with controls, while ACE did not affect task performance. Yohimbine administration had no effect on task switching. The results of this study contribute to a better understanding of the role of the LC-NA system as a neurobiological mechanism of cognitive processes in patients with MDD.
Collapse
Affiliation(s)
- Christian Eric Deuter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany.
| | - Katja Wingenfeld
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Christian Otte
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Jasmin Bustami
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Michael Kaczmarczyk
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Linn Kristina Kuehl
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
12
|
Retinoic acid and depressive disorders: Evidence and possible neurobiological mechanisms. Neurosci Biobehav Rev 2020; 112:376-391. [DOI: 10.1016/j.neubiorev.2020.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
|
13
|
Kuehl LK, Deuter CE, Hellmann-Regen J, Kaczmarczyk M, Otte C, Wingenfeld K. Enhanced noradrenergic activity by yohimbine and differential fear conditioning in patients with major depression with and without adverse childhood experiences. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109751. [PMID: 31446157 DOI: 10.1016/j.pnpbp.2019.109751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) has been associated with changes in the biological stress systems, including the locus coeruleus-noradrenergic system. Accumulated evidence suggests an upregulation of central alpha2-receptors, leading to decreased noradrenergic activity on a central level in MDD patients. Adverse childhood experiences (ACE) such as physical or sexual abuse might contribute to those changes. Furthermore, noradrenaline can affect cognitive processes, e.g. learning and memory. Cognitive dysfunctions constitute an important symptom of MDD. We aimed to investigate the relationship of alpha2-receptor dysregulation with learning processes in MDD by conducting a differential fear conditioning paradigm after double-blind administration of the alpha2-receptor antagonist yohimbine versus placebo. To investigate the role of ACE systematically, we included four groups of healthy participants and MDD patients with and without ACE (MDD-/ACE-: N = 44, MDD-/ACE+: N = 26, MDD+/ACE-: N = 24, MDD+/ACE+: N = 24; without antidepressant medication). We found increased noradrenergic activity after yohimbine administration across groups as measured by alpha-amylase and blood pressure. Overall, fear responses were higher after yohimbine as indicated by skin conductance responses and fear-potentiated startle responses. While we found no significant MDD effect, ACE had significant impact on the ability to discriminate between both conditioned stimuli (CS+ predicting an aversive stimulus, CS- predicting none), depending on drug condition. After yohimbine, CS discrimination decreased in individuals without ACE, but not in individuals with ACE. Differences in the response to yohimbine might be explained by aberrant alpha2-receptor regulation in individuals with ACE. Impaired discrimination of threat and safety signals might contribute to enhanced vulnerability following ACE.
Collapse
Affiliation(s)
- Linn K Kuehl
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany.
| | - Christian E Deuter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Michael Kaczmarczyk
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Christian Otte
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katja Wingenfeld
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
14
|
Mato S, Pilar-Cuéllar F, Valdizán EM, González-Maeso J, Rodríguez-Puertas R, Meana J, Sallés J, Crespo-Facorro B, Pazos Á. Selective up-regulation of cannabinoid CB 1 receptor coupling to Go-proteins in suicide victims with mood disorders. Biochem Pharmacol 2018; 157:258-265. [PMID: 30099006 PMCID: PMC6263149 DOI: 10.1016/j.bcp.2018.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 01/11/2023]
Abstract
Brain endocannabinoid system is proposed to play a role in the pathogenesis of affective disorders. In the present study, we analyzed the functionality of the cannabinoid receptor type 1 (CB1 receptor) at different transduction levels in prefrontal cortex (PFC) of depressed suicide victims. We examined stimulation of [35S]GTPγS binding, activation of Gα protein subunits and inhibition of adenylyl cyclase by the cannabinoid agonist WIN55,212-2, as well as [3H]CP55,940 binding, in PFC homogenates from suicide victims with major depression (MD) and matched control subjects. CB1 receptor-stimulated [35S]GTPγS binding was significantly greater in the PFC of MD compared with matched controls (23%, p < 0.05). This increase was most evident in the PFC from MD subgroup with negative blood test for antidepressants (AD) at the time of death (AD-free) (38%, p < 0.05), being absent when comparing the AD-treated MD cases with their controls. The density of CB1 receptors and their coupling to adenylyl cyclase were similar between MD and control cases, regardless of the existence of AD intake. Analysis of [35S]GTPγS-labelled Gα subunits allowed for the detection of upregulated CB1 receptor coupling to Gαo, but not to Gαi1, Gαi2, Gαi3, Gαz subunits, in the PFC from AD-free MD suicides. These results suggest that increased CB1 receptor functionality at the Gαi/o protein level in the PFC of MD subjects is due to enhanced coupling to Gαo proteins and might be modulated by AD intake. These data provide new insights into the role of endocannabinoid neurotransmission in the pathobiology of MD and suggest its regulation by ADs.
Collapse
Affiliation(s)
- Susana Mato
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), E-39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain
| | - Elsa M Valdizán
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), E-39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain
| | - Javier González-Maeso
- Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | | | - Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Joan Sallés
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain; Department of Pharmacology, University of the Basque Country UPV/EHU, E-48940 Leioa, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain; Hospital Universitario Marqués de Valdecilla, University of Cantabria-IDIVAL, School of Medicine, Department of Psychiatry, Santander, Spain
| | - Ángel Pazos
- Department of Physiology and Pharmacology, University of Cantabria, E-39011 Santander, Spain; Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), E-39011 Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), E-28029 Madrid, Spain.
| |
Collapse
|
15
|
Abstract
Suicide is a world health priority. Studies over the last few decades have revealed the complexity underlying the neurobiological mechanisms of suicide. Researchers have found dysregulations in the serotonergic system, the stress system, neural plasticity, lipid metabolism, and cell signaling pathways in relation to suicidal behaviors. These findings have provided more insight into the final path leading to suicide, at which medical intervention should be applied to prevent the action. However, because these molecular mechanisms have been implicated in both depression and suicide, the specificity of the mechanisms has been obscured. In this review, we summarize the main findings of studies on molecular mechanisms of suicidal behavior from the last 2 decades, with particular emphasis on the potential, independent role of each mechanism that is not contingent upon an underlying psychopathology, such as depression. The act of suicide is multifactorial; no single molecular mechanism is sufficient to fully account for the act. Knowledge of the reciprocal interactions among these molecular mechanisms and studying them in the context of brain circuitry by using neuroimaging techniques will provide a better understanding of the neurobiology of suicide.
Collapse
Affiliation(s)
- Sangha Kim
- Department of Psychiatry, Yeouido St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyoung-Uk Lee
- Department of Psychiatry, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
16
|
Radioligand binding analysis of α 2 adrenoceptors with [ 11C]yohimbine in brain in vivo: Extended Inhibition Plot correction for plasma protein binding. Sci Rep 2017; 7:15979. [PMID: 29167492 PMCID: PMC5700124 DOI: 10.1038/s41598-017-16020-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/23/2017] [Indexed: 11/23/2022] Open
Abstract
We describe a novel method of kinetic analysis of radioligand binding to neuroreceptors in brain in vivo, here applied to noradrenaline receptors in rat brain. The method uses positron emission tomography (PET) of [11C]yohimbine binding in brain to quantify the density and affinity of α2 adrenoceptors under condition of changing radioligand binding to plasma proteins. We obtained dynamic PET recordings from brain of Spraque Dawley rats at baseline, followed by pharmacological challenge with unlabeled yohimbine (0.3 mg/kg). The challenge with unlabeled ligand failed to diminish radioligand accumulation in brain tissue, due to the blocking of radioligand binding to plasma proteins that elevated the free fractions of the radioligand in plasma. We devised a method that graphically resolved the masking of unlabeled ligand binding by the increase of radioligand free fractions in plasma. The Extended Inhibition Plot introduced here yielded an estimate of the volume of distribution of non-displaceable ligand in brain tissue that increased with the increase of the free fraction of the radioligand in plasma. The resulting binding potentials of the radioligand declined by 50–60% in the presence of unlabeled ligand. The kinetic unmasking of inhibited binding reflected in the increase of the reference volume of distribution yielded estimates of receptor saturation consistent with the binding of unlabeled ligand.
Collapse
|
17
|
Wang J, Luo J, Aryal DK, Wetsel WC, Nass R, Benovic JL. G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans. J Biol Chem 2017; 292:5943-5956. [PMID: 28213524 DOI: 10.1074/jbc.m116.760850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many animal behaviors. GPCR signaling is mediated by agonist-promoted interactions of GPCRs with heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. To further elucidate the role of GRKs in regulating GPCR-mediated behaviors, we utilized the genetic model system Caenorhabditis elegans Our studies demonstrate that grk-2 loss-of-function strains are egg laying-defective and contain low levels of serotonin (5-HT) and high levels of the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA). The egg laying defect could be rescued by the expression of wild type but not by catalytically inactive grk-2 or by the selective expression of grk-2 in hermaphrodite-specific neurons. The addition of 5-HT or inhibition of 5-HT metabolism also rescued the egg laying defect. Furthermore, we demonstrate that AMX-2 is the primary monoamine oxidase that metabolizes 5-HT in C. elegans, and we also found that grk-2 loss-of-function strains have abnormally high levels of AMX-2 compared with wild-type nematodes. Interestingly, GRK-2 was also found to interact with and promote the phosphorylation of AMX-2. Additional studies reveal that 5-HIAA functions to inhibit egg laying in a manner dependent on the 5-HT receptor SER-1 and the G protein GOA-1. These results demonstrate that GRK-2 modulates 5-HT metabolism by regulating AMX-2 function and that 5-HIAA may function in the SER-1 signaling pathway.
Collapse
Affiliation(s)
- Jianjun Wang
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jiansong Luo
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences.,Cell Biology, and.,Neurobiology and.,Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jeffrey L Benovic
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| |
Collapse
|
18
|
Maletic V, Eramo A, Gwin K, Offord SJ, Duffy RA. The Role of Norepinephrine and Its α-Adrenergic Receptors in the Pathophysiology and Treatment of Major Depressive Disorder and Schizophrenia: A Systematic Review. Front Psychiatry 2017; 8:42. [PMID: 28367128 PMCID: PMC5355451 DOI: 10.3389/fpsyt.2017.00042] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Norepinephrine (NE) is recognized as having a key role in the pathophysiology of major depressive disorder (MDD) and schizophrenia, although its distinct actions via α-adrenergic receptors (α-ARs) are not well defined. We performed a systematic review examining the roles of NE and α-ARs in MDD and schizophrenia. PubMed and ProQuest database searches were performed to identify English language papers published between 2008 and 2015. In total, 2,427 publications (PubMed, n = 669; ProQuest, n = 1,758) were identified. Duplicates, articles deemed not relevant, case studies, reviews, meta-analyses, preclinical reports, or articles on non-target indications were excluded. To limit the review to the most recent data representative of the literature, the review further focused on publications from 2010 to 2015, which were screened independently by all authors. A total of 16 research reports were identified: six clinical trial reports, six genetic studies, two biomarker studies, and two receptor studies. Overall, the studies provided indirect evidence that α-AR activity may play an important role in aberrant regulation of cognition, arousal, and valence systems associated with MDD and schizophrenia. Characterization of the NE pathway in patients may provide clinicians with information for more personalized therapy of these heterogeneous diseases. Current clinical studies do not provide direct evidence to support the role of NE α-ARs in the pathophysiology of MDD and schizophrenia and in the treatment response of patients with these diseases, in particular with relation to specific valence systems. Clinical studies that attempt to define associations between specific receptor binding profiles of psychotropics and particular clinical outcomes are needed.
Collapse
Affiliation(s)
- Vladimir Maletic
- Department of Neuropsychiatry and Behavioral Science, University of South Carolina , Columbia, SC , USA
| | - Anna Eramo
- Medical Affairs - Psychiatry, Lundbeck LLC , Deerfield, IL , USA
| | - Keva Gwin
- Medical Affairs - Psychiatry, Lundbeck LLC , Deerfield, IL , USA
| | - Steve J Offord
- Medical Affairs, Otsuka Pharmaceutical Development and Commercialization, Inc. , Princeton, NJ , USA
| | - Ruth A Duffy
- Medical Affairs, Otsuka Pharmaceutical Development and Commercialization, Inc. , Princeton, NJ , USA
| |
Collapse
|
19
|
Guccione M, Ettari R, Taliani S, Da Settimo F, Zappalà M, Grasso S. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives. J Med Chem 2016; 59:9277-9294. [PMID: 27362616 DOI: 10.1021/acs.jmedchem.5b01939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.
Collapse
Affiliation(s)
- Manuela Guccione
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Roberta Ettari
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Maria Zappalà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
20
|
Joana PT, Amaia A, Arantza A, Garikoitz B, Eneritz GL, Larraitz G. Central immune alterations in passive strategy following chronic defeat stress. Behav Brain Res 2016; 298:291-300. [DOI: 10.1016/j.bbr.2015.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/03/2023]
|
21
|
Landau AM, Dyve S, Jakobsen S, Alstrup AK, Gjedde A, Doudet DJ. Acute Vagal Nerve Stimulation Lowers α2 Adrenoceptor Availability: Possible Mechanism of Therapeutic Action. Brain Stimul 2015; 8:702-7. [DOI: 10.1016/j.brs.2015.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 12/13/2022] Open
|
22
|
Rivero G, Gabilondo AM, García-Sevilla JA, La Harpe R, Callado LF, Meana JJ. Increased α2- and β1-adrenoceptor densities in postmortem brain of subjects with depression: differential effect of antidepressant treatment. J Affect Disord 2015; 167:343-50. [PMID: 25020269 DOI: 10.1016/j.jad.2014.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brain α2- and β-adrenoceptor alterations have been suggested in suicide and major depressive disorder. METHODS The densities of α2-, β1- and β2-adrenoceptors in postmortem prefrontal cortex of 26 subjects with depression were compared with those of age-, gender- and postmortem delay-matched controls. The effect of antidepressant treatment on α2- and β-adrenoceptor densities was also evaluated. α2- and β-adrenoceptor densities were measured by saturation experiments with respective radioligands [(3)H]UK14304 and [(3)H]CGP12177. β1- and β2-adrenoceptor subtype densities were dissected by means of β1-adrenoceptor selective antagonist CGP20712A. RESULTS Both, α2- and β1-adrenoceptors densities were higher in antidepressant-free depressed subjects (n=14) than those in matched controls (Δ~24%, p=0.013 and Δ~20%, p=0.044, respectively). In antidepressant-treated subjects (n=12), α2-adrenoceptor density remained increased over that in controls (Δ~20%), suggesting a resistance of α2-adrenoceptors to the down-regulatory effect of antidepressants. By contrast, β1-adrenoceptor density in antidepressant-treated depressed subjects was not different from controls, suggesting a possible down-regulation by antidepressants. The down-regulation of β1-adrenoceptor density in antidepressant-treated depressed subjects differs from the unaltered β1-adrenoceptor density observed in citalopram-treated rats and in a group of non-depressed subjects also treated with antidepressants (n=6). β2-adrenoceptor density was not altered in depressed subjects independently of treatment. LIMITATIONS Antidepressant-treated subjects had been treated with a heterogeneous variety of antidepressant drugs. The results should be understood in the context of suicide victims with depression. CONCLUSIONS These results show the up-regulation of brain α2- and β1-adrenoceptors in depression and suggest that the regulation induced by chronic antidepressant treatment would be altered in these subjects.
Collapse
MESH Headings
- Adult
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Depression/drug therapy
- Depression/pathology
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/pathology
- Female
- Humans
- Male
- Middle Aged
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/pathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-2/analysis
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, beta-1/analysis
- Receptors, Adrenergic, beta-1/drug effects
- Reference Values
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Guadalupe Rivero
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Ane M Gabilondo
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Spain; BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, Spain
| | - Romano La Harpe
- Centre Universitaire Romand de Médicine Légale-site Genève, University of Geneva, Switzerland
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Spain; BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Spain; BioCruces Health Research Institute, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
23
|
Quantification of [(11)C]yohimbine binding to α2 adrenoceptors in rat brain in vivo. J Cereb Blood Flow Metab 2015; 35:501-11. [PMID: 25564241 PMCID: PMC4348393 DOI: 10.1038/jcbfm.2014.225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/21/2014] [Accepted: 11/19/2014] [Indexed: 11/09/2022]
Abstract
We quantified the binding potentials (BPND) of [(11)C]yohimbine binding in rat brain to alpha-2 adrenoceptors to evaluate [(11)C]yohimbine as an in vivo marker of noradrenergic neurotransmission and to examine its sensitivity to the level of noradrenaline. Dual [(11)C]yohimbine dynamic positron emission tomography (PET) recordings were applied to five Sprague Dawley rats at baseline, followed by acute amphetamine administration (2 mg/kg) to induce elevation of the endogenous level of noradrenaline. The volume of distribution (VT) of [(11)C]yohimbine was obtained using Logan plot with arterial plasma input. Because alpha-2 adrenoceptors are distributed throughout the brain, the estimation of the BPND is complicated by the absence of an anatomic region of no displaceable binding. We used the Inhibition plot to acquire the reference volume, VND, from which we calculated the BPND. Acute pharmacological challenge with amphetamine induced a significant decline of [(11)C]yohimbine BPND of ~38% in all volumes of interest. The BPND was greatest in the thalamus and striatum, followed in descending order by, frontal cortex, pons, and cerebellum. The experimental data demonstrate that [(11)C]yohimbine binding is sensitive to a challenge known to increase the extracellular level of noradrenaline, which can benefit future PET investigations of pathologic conditions related to disrupted noradrenergic neurotransmission.
Collapse
|
24
|
Sokolowski M, Wasserman J, Wasserman D. An overview of the neurobiology of suicidal behaviors as one meta-system. Mol Psychiatry 2015; 20:56-71. [PMID: 25178164 DOI: 10.1038/mp.2014.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/19/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022]
Abstract
Suicidal behaviors (SB) may be regarded as the outmost consequence of mental illnesses, or as a distinct entity per se. Regardless, the consequences of SB are very large to both society and affected individuals. The path leading to SB is clearly a complex one involving interactions between the subject's biology and environmental influences throughout life. With the aim to generate a representative and diversified overview of the different neurobiological components hypothesized or shown implicated across the entire SB field up to date by any approach, we selected and compiled a list of 212 gene symbols from the literature. An increasing number of novel gene (products) have been introduced as candidates, with half being implicated in SB in only the last 4 years. These candidates represent different neuro systems and functions and might therefore be regarded as competing or redundant explanations. We then adopted a unifying approach by treating them all as parts of the same meta-system, using bioinformatic tools. We present a network of all components connected by physical protein-protein interactions (the SB interactome). We proceeded by exploring the differences between the highly connected core (~30% of the candidate genes) and its peripheral parts, observing more functional homogeneity at the core, with multiple signal transduction pathways and actin-interacting proteins connecting a subset of receptors in nerve cell compartments as well as development/morphology phenotypes and the stress-sensitive synaptic plasticity processes of long term potentiation/depression. We suggest that SB neurobiology might also be viewed as one meta-system and perhaps be explained as intrinsic unbalances acting within the core or as imbalances arising between core and specific peripheral components.
Collapse
Affiliation(s)
- M Sokolowski
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - J Wasserman
- National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden
| | - D Wasserman
- 1] National Centre for Suicide Research and Prevention of Mental Ill-Health (NASP), Karolinska Institute (KI), Stockholm, Sweden [2] WHO Collaborating Centre for Research, Methods Development and Training in Suicide Prevention, Stockholm, Sweden
| |
Collapse
|
25
|
Ivanets NN, Tikhonova YG, Kinkulkina MA, Avdeeva TI. Current state and potential of pharmacogenetic studies in the treatment of depression. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:113-121. [DOI: 10.17116/jnevro201511531113-121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
α2 Adrenergic Receptor Trafficking as a Therapeutic Target in Antidepressant Drug Action. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:207-25. [DOI: 10.1016/bs.pmbts.2015.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Kuffel A, Eikelmann S, Terfehr K, Mau G, Kuehl LK, Otte C, Löwe B, Spitzer C, Wingenfeld K. Noradrenergic blockade and memory in patients with major depression and healthy participants. Psychoneuroendocrinology 2014; 40:86-90. [PMID: 24485479 DOI: 10.1016/j.psyneuen.2013.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/01/2013] [Accepted: 11/02/2013] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Patients with major depressive disorder (MDD) often suffer from impaired declarative, episodic and working memory. Further, MDD is associated with alterations in the noradrenergic system. There is evidence that presynaptic α2 receptors that inhibit release of noradrenaline are upregulated in MDD. Results from our recent study demonstrated that increasing noradrenergic activity by blocking the α2 receptor with yohimbine leads to stronger memory consolidation in MDD patients. In the current study, we further examined the role of noradrenaline on memory in MDD by administering clonidine that activates presynaptic α2 receptors and thereby globally suppresses the noradrenergic output. METHODS In a placebo-controlled, within-subject crossover design, 20 patients with MDD and 20 healthy controls received either 0.15 mg of clonidine or placebo orally before memory testing. A word list paradigm (memory consolidation), an autobiographical memory test (retrieval) and a working memory test were applied. Salivary alpha-amylase and blood pressure were measured. RESULTS Across groups, clonidine decreased blood pressure and alpha-amylase. Clonidine impaired memory consolidation (word list learning) in depressed patients and controls. Memory retrieval and working memory were not affected by clonidine. CONCLUSIONS Reducing noradrenergic activity had a specific effect on memory consolidation in patients with MDD and healthy controls. The underlying mechanisms need further scrutiny.
Collapse
Affiliation(s)
- Anja Kuffel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Hamburg-Eppendorf & Schön Klinik Hamburg-Eilbek, Hamburg, Germany
| | - Sarah Eikelmann
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Hamburg-Eppendorf & Schön Klinik Hamburg-Eilbek, Hamburg, Germany
| | - Kirsten Terfehr
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Hamburg-Eppendorf & Schön Klinik Hamburg-Eilbek, Hamburg, Germany
| | - Gunnar Mau
- Department of Marketing, University of Siegen, Siegen, Germany
| | - Linn K Kuehl
- Department of Psychiatry, Charité University Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry, Charité University Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Bernd Löwe
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Hamburg-Eppendorf & Schön Klinik Hamburg-Eilbek, Hamburg, Germany
| | | | - Katja Wingenfeld
- Department of Psychiatry, Charité University Berlin, Campus Benjamin Franklin, Berlin, Germany.
| |
Collapse
|
28
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
29
|
Abstract
OBJECTIVE Suicide is a major public health concern as each year 30000 people die by suicide in the USA alone. In the teenage population, it is the second leading cause of death. There have been extensive studies of psychosocial factors associated with suicide and suicidal behavior. However, very little is known about the neurobiology of suicide. Recent research has provided some understanding of the neurobiology of suicide, which is the topic of this review. METHODS Neurobiology of suicide has been studied using peripheral tissues such as platelets, lymphocytes, and cerebrospinal fluid obtained from suicidal patients or from the postmortem brains of suicide victims. RESULTS These studies have provided encouraging information with regard to the neurobiology of suicide. They show an abnormality of the serotonergic mechanism, such as increased serotonin receptor subtypes and decreased serotonin metabolites (e.g. 5-hydroxyindoleacetic acid). These studies also suggest abnormalities of receptor-linked signaling mechanisms such as phosphoinositide and adenylyl cyclase. Other biological systems that appear to be dysregulated in suicide involve the hypothalamic-pituitary-adrenal axis, and neurotrophins and neurotrophin receptors. More recently, several studies have also indicated abnormalities of neuroimmune functions in suicide. CONCLUSIONS Some encouraging information emerged from the present review, primarily related to some of the neurobiological mechanisms mentioned above. It is hoped that neurobiological studies may eventually result in the identification of appropriate biomarkers for suicidal behavior as well as appropriate therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Ghanshyam N Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
30
|
Furczyk K, Schutová B, Michel TM, Thome J, Büttner A. The neurobiology of suicide - A Review of post-mortem studies. J Mol Psychiatry 2013; 1:2. [PMID: 25408895 PMCID: PMC4223890 DOI: 10.1186/2049-9256-1-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 01/15/2023] Open
Abstract
The neurobiology of suicidal behaviour, which constitutes one of the most serious problems both in psychiatry and general medical practice, still remains to a large degree unclear. As a result, scientists constantly look for new opportunities of explaining the causes underlying suicidality. In order to elucidate the biological changes occurring in the brains of the suicide victims, studies based on post-mortem brain tissue samples are increasingly being used. These studies employ different research methods to provide an insight into abnormalities in brain functioning on various levels, including gene and protein expression, neuroplasticity and neurotransmission, as well as many other areas. The aim of this paper to summarize the available data on the post-mortem studies, to provide an overview of main research directions and the most up-to-date findings, and to indicate the possibilities of further research in this field.
Collapse
Affiliation(s)
- Karolina Furczyk
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Barbora Schutová
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Tanja M Michel
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Gehlsheimerstrasse 20, 18147 Rostock, Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 PP UK
| | - Andreas Büttner
- Institute of Forensic Medicine, University of Rostock, St.-Georg-Strasse 108, 18055 Rostock, Germany
| |
Collapse
|
31
|
Wingenfeld K, Kuffel A, Uhlmann C, Terfehr K, Schreiner J, Kuehl LK, Otte C, Löwe B, Spitzer C. Effects of noradrenergic stimulation on memory in patients with major depressive disorder. Stress 2013; 16:191-201. [PMID: 22746337 DOI: 10.3109/10253890.2012.708951] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Major depressive disorder (MDD) has been associated with alterations in the noradrenergic system and impaired memory function. In turn, enhanced memory function has been associated with noradrenergic stimulation. In this study, we examined whether noradrenergic stimulation would differentially improve memory function in patients with MDD and healthy controls. In a placebo-controlled crossover study, 20 patients with MDD and 18 age- and sex-matched healthy controls received either placebo or 5 mg of yohimbine, an alpha-2-adrenoceptor antagonist that causes increased noradrenergic activity, orally before memory testing. A word list paradigm was used to test memory consolidation. Furthermore, the autobiographical memory test assessing memory retrieval and a working memory test were administered. Salivary alpha-amylase and blood pressure were measured. Yohimbine improved memory consolidation (word list learning) across groups (main effect of yohimbine: p = 0.05). This effect was more prominent in depressed patients compared with controls (post hoc t-test: MDD p = 0.01, controls p = 0.77). Memory retrieval (autobiographical memory specificity) and working memory were not affected by yohimbine. Across groups, yohimbine administration resulted in an increase in blood pressure and alpha-amylase. In sum, these results further support the hypothesis that noradrenergic stimulation enhances memory consolidation. The mechanism by which yohimbine leads to stronger memory consolidation in depressed patients compared with healthy controls remains to be elucidated.
Collapse
Affiliation(s)
- Katja Wingenfeld
- Department of Psychiatry, Charité University Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lochman J, Balcar VJ, Sťastný F, Serý O. Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory Regions of the ADRA2A, DRD3 and SNAP-25 Genes. Psychiatry Res 2013; 205:7-12. [PMID: 22940547 DOI: 10.1016/j.psychres.2012.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/18/2012] [Accepted: 08/03/2012] [Indexed: 10/27/2022]
Abstract
The results of linkage and candidate gene association studies have led to a range of hypotheses about the pathogenesis of schizophrenia. We limited our study to polymorphisms in candidate genes involved in dopaminergic and noradrenergic systems, and in the 25KDa synaptosomal-associated protein (SNAP-25) gene that is related to neurotransmitter exocytosis. Eight single nucleotide polymorphisms (SNPs) in regulating or coding regions of genes for the alpha-2A adrenergic receptor (ADRA2A), dopamine receptors D1 and D3 (DRD1 and DRD3), dopamine β-hydroxylase (DBH) and SNAP-25 were genotyped in male patients with schizophrenia (n=192) and in healthy controls (n=213). These polymorphisms were previously associated with schizophrenia. The allelic association between schizophrenia and ADRA2A rs1800544 polymorphism, SNAP-25 rs1503112 polymorphism, and DRD3 rs6280 polymorphism was found in our study. However, only observations for rs1503112 survived correction for multiple testing. Association was also evaluated by considering the polymorphisms as interactions; in this case, a likelihood ratio test (LRT) revealed evidence for association with schizophrenia in four polymorphism combinations: two DRD3*SNAP-25 combinations (rs6280*rs3746544 and rs6280*rs3746544, P=0.02), one ADRA2A*SNAP25 combination (rs1800544*rs3746544) and one ADRA2A*DBH combination (rs1800544*rs2519152). Our results are in agreement with the previously proposed role of DNA polymorphisms involved in dopaminergic, noradrenergic and synaptic functions in the pathogenesis of schizophrenia. Further relevant studies including larger sample size and more markers are needed to confirm our results.
Collapse
Affiliation(s)
- Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
33
|
β-Arrestins in the Central Nervous System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:267-95. [DOI: 10.1016/b978-0-12-394440-5.00011-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Williams MS. Platelets and depression in cardiovascular disease: A brief review of the current literature. World J Psychiatry 2012; 2:114-23. [PMID: 24175177 PMCID: PMC3782186 DOI: 10.5498/wjp.v2.i6.114] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 09/19/2012] [Accepted: 11/17/2012] [Indexed: 02/05/2023] Open
Abstract
Major depression is an independent risk factor for cardiovascular mortality and morbidity. The exact mechanisms linking depression and increased cardiovascular risk remain poorly understood. Several mechanisms have been proposed including increased platelet reactivity. This review focuses on the current literature that examines the platelet hypothesis of depression. To date studies show increased serotonin response, increased platelet serotonin receptor density, decreased serotonin transporter binding, and decreased platelet serotonin levels in individuals with depression. However other studies have shown no change in serotonin uptake. In addition to platelet serotonin specific pathways, other platelet pathways that have shown significant changes in depressed individuals include blunting of the platelet adenosine response, increased platelet thrombin response, increased glycoprotein Ib expression, increased P-selectin, β thromboglobulin, and platelet factor four, as well as decreased platelet brain derived neurotrophic factor. However there are other studies that show conflicting evidence of increased platelet activation as measured by integrin receptor α2bβ3. Other conflicting data include α adrenergic density and platelet response to augmented serotonin. The direction of future research in platelet functional changes in depression and coronary artery disease should continue to focus on serotonin specific pathways with emphasis on potential mechanisms of specific pathway changes.
Collapse
Affiliation(s)
- Marlene S Williams
- Marlene S Williams, Division of Cardiology, Johns Hopkins Bayview Medical Center, The Johns Hopkins University, Baltimore, MD 21224, United States
| |
Collapse
|
35
|
Abstract
Stress is known to activate distinct neuronal circuits in the brain and induce multiple changes on the cellular level, including alterations in neuronal structures. On the basis of clinical observations that stress often precipitates a depressive disease, chronic psychosocial stress serves as an experimental model to evaluate the cellular and molecular alterations associated with the consequences of major depression. Antidepressants are presently believed to exert their primary biochemical effects by readjusting aberrant intrasynaptic concentrations of neurotransmitters, such as serotonin or noradrenaline, suggesting that imbalances viihin the monoaminergic systems contribute to the disorder (monoaminergic hypothesis of depression). Here, we reviev the results that comprise our understanding of stressful experience on cellular processes, with particular focus on the monoaminergic systems and structural changes within brain target areas of monoaminergic neurons.
Collapse
Affiliation(s)
- Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany
| | | |
Collapse
|
36
|
Cottingham C, Wang Q. α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev 2012; 36:2214-25. [PMID: 22910678 DOI: 10.1016/j.neubiorev.2012.07.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
Abstract
Dysfunction in noradrenergic neurotransmission has long been theorized to occur in depressive disorders. The α2 adrenergic receptor (AR) family, as a group of key players in regulating the noradrenergic system, has been investigated for involvement in the neurobiology of depression and mechanisms of antidepressant therapies. However, a clear picture of the α2ARs in depressive disorders has not been established due to the existence of apparently conflicting findings in the literature. In this article, we report that a careful accounting of methodological differences within the literature can resolve the present lack of consensus on involvement of α2ARs in depression. In particular, the pharmacological properties of the radioligand (e.g. agonist versus antagonist) utilized for determining receptor density are crucial in determining study outcome. Upregulation of α2AR density detected by radiolabeled agonists but not by antagonists in patients with depressive disorders suggests a selective increase in the density of high-affinity conformational state α2ARs, which is indicative of enhanced G protein coupling to the receptor. Importantly, this high-affinity state α2AR upregulation can be normalized with antidepressant treatments. Thus, depressive disorders appear to be associated with increased α2AR sensitivity and responsiveness, which may represent a physiological basis for the putative noradrenergic dysfunction in depressive disorders. In addition, we review changes in some key α2AR accessory proteins in depressive disorders and discuss their potential contribution to α2AR dysfunction.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
37
|
Chandley M, Ordway G. Noradrenergic Dysfunction in Depression and Suicide. THE NEUROBIOLOGICAL BASIS OF SUICIDE 2012. [DOI: 10.1201/b12215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Tonello R, Villarinho JG, da Silva Sant'Anna G, Tamiozzo L, Machado P, Trevisan G, Pinto Martins MA, Ferreira J, Rubin MA. The potential antidepressant-like effect of imidazoline I2 ligand 2-BFI in mice. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:15-21. [PMID: 22122878 DOI: 10.1016/j.pnpbp.2011.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 12/17/2022]
Abstract
The compound 2-(2-benzofuranyl)-2-imidazoline (2-BFI) is a 2-imidazoline derivative that selectively inhibits the in vitro activity of monoamine oxidase-A and it is also an imidazoline I(2) agonist. However, the antidepressant potential of this compound and its mechanism of action have not been well defined. Therefore, in this study we investigated the antidepressant-like effect of 2-BFI in mice. 2-BFI (100 and 300μmol/kg, s.c.) significantly reduced the immobility time on the tail suspension test (TST) without changing locomotion in the open field test. The reduced the immobility time of 2-BFI (100μmol/kg, s.c.) was confirmed with the forced swimming test (FST). The antidepressant-like effect of 2-BFI (100μmol/kg, s.c.) in the TST was prevented by pretreatment with idazoxan (0.4μmol/kg, i.p., a I(2) site antagonist), methysergide (4μmol/kg, i.p., a non-selective serotonergic receptor antagonist) and haloperidol (0.1μmol/kg, i.p., a non-selective dopaminergic receptor antagonist). The anxiolytic effect of 2-BFI was also evaluated, using the elevated plus-maze test. 2-BFI (300μmol/kg, s.c.) was able to significantly increase the % of number of entries and the % of time spent in the open arms, indicating that it possesses an anxiolytic effect at high doses. In conclusion, these results suggest that the antidepressant-like effect of 2-BFI might involve serotonergic, dopaminergic and imidazoline systems, and then the imidazoline site could represent a new pharmacological target for the treatment of depression.
Collapse
Affiliation(s)
- Raquel Tonello
- Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2011; 133:40-69. [PMID: 21903131 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
40
|
Lin Y, Sarfraz Y, Jensen A, Dunn AJ, Stone EA. Participation of brainstem monoaminergic nuclei in behavioral depression. Pharmacol Biochem Behav 2011; 100:330-9. [PMID: 21893082 DOI: 10.1016/j.pbb.2011.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 01/15/2023]
Abstract
Several lines of research have now suggested the controversial hypothesis that the central noradrenergic system acts to exacerbate depression as opposed to having an antidepressant function. If correct, lesions of this system should increase resistance to depression, which has been partially but weakly supported by previous studies. The present study reexamined this question using two more recent methods to lesion noradrenergic neurons in mice: intraventricular (ivt) administration of either the noradrenergic neurotoxin, DSP4, or of a dopamine-β-hydroxylase-saporin immunotoxin (DBH-SAP ITX) prepared for mice. Both agents given 2 weeks prior were found to significantly increase resistance to depressive behavior in several tests including acute and repeated forced swims, tail suspension and endotoxin-induced anhedonia. Both agents also increased locomotor activity in the open field. Cell counts of brainstem monoaminergic neurons, however, showed that both methods produced only partial lesions of the locus coeruleus and also affected the dorsal raphe or ventral tegmental area. Both the cell damage and the antidepressant and hyperactive effects of ivt DSP4 were prevented by a prior i.p. injection of the NE uptake blocker, reboxetine. The results are seen to be consistent with recent pharmacological experiments showing that noradrenergic and serotonergic systems function to inhibit active behavior. Comparison with previous studies utilizing more complete and selective LC lesions suggest that mouse strain, lesion size or involvement of multiple neuronal systems are critical variables in the behavioral and affective effects of monoaminergic lesions and that antidepressant effects and hyperactivity may be more likely to occur if lesions are partial and/or involve multiple monoaminergic systems.
Collapse
Affiliation(s)
- Yan Lin
- Department of Psychiatry, New York University Langone School of Medicine, 550 First Ave, New York, NY 10016, United States
| | | | | | | | | |
Collapse
|
41
|
Cottingham C, Chen Y, Jiao K, Wang Q. The antidepressant desipramine is an arrestin-biased ligand at the α(2A)-adrenergic receptor driving receptor down-regulation in vitro and in vivo. J Biol Chem 2011; 286:36063-36075. [PMID: 21859713 DOI: 10.1074/jbc.m111.261578] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The neurobiological mechanisms of action underlying antidepressant drugs remain poorly understood. Desipramine (DMI) is an antidepressant classically characterized as an inhibitor of norepinephrine reuptake. Available evidence, however, suggests a mechanism more complex than simple reuptake inhibition. In the present study, we have characterized the direct interaction between DMI and the α(2A)-adrenergic receptor (α(2A)AR), a key regulator of noradrenergic neurotransmission with altered expression and function in depression. DMI alone was found to be sufficient to drive receptor internalization acutely and a robust down-regulation of α(2A)AR expression and signaling following prolonged stimulation in vitro. These effects are achieved through arrestin-biased regulation of the receptor, as DMI selectively induces recruitment of arrestin but not activation of heterotrimeric G proteins. Meanwhile, a physiologically relevant concentration of endogenous agonist (norepinephrine) was unable to sustain a down-regulation response. Prolonged in vivo administration of DMI resulted in significant down-regulation of synaptic α(2A)AR expression, a response that was lost in arrestin3-null animals. We contend that direct DMI-driven arrestin-mediated α(2A)AR down-regulation accounts for the therapeutically desirable but mechanistically unexplained adaptive alterations in receptor expression associated with this antidepressant. Our results provide novel insight into both the pharmacology of this antidepressant drug and the targeting of the α(2A)AR in depression.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Yunjia Chen
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Qin Wang
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294.
| |
Collapse
|
42
|
The role of the central noradrenergic system in behavioral inhibition. ACTA ACUST UNITED AC 2011; 67:193-208. [PMID: 21315760 DOI: 10.1016/j.brainresrev.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/30/2011] [Accepted: 02/03/2011] [Indexed: 02/06/2023]
Abstract
Although the central noradrenergic system has been shown to be involved in a number of behavioral and neurophysiological processes, the relation of these to its role in depressive illness has been difficult to define. The present review discusses the hypothesis that one of its chief functions that may be related to affective illness is the inhibition of behavioral activation, a prominent symptom of the disorder. This hypothesis is found to be consistent with most previous neuropsychopharmacological and immunohistochemical experiments on active behavior in rodents in a variety of experimental conditions using manipulation of neurotransmission at both locus coeruleus and forebrain adrenergic receptors. The findings support a mechanism in which high rates of noradrenergic neural activity suppress the neural activity of principal neurons in forebrain regions mediating active behavior. The suppression may be mediated through postsynaptic galaninergic and adrenergic receptors, and via the release of corticotrophin-releasing hormone. The hypothesis is consistent with clinical evidence for central noradrenergic system hyperactivity in depressives and with the view that this hyperactivity is a contributing etiological factor in the disorder. A similar mechanism may underlie the ability of the noradrenergic system to suppress seizure activity suggesting that inhibition of the spread of neural activation may be a unifying function.
Collapse
|
43
|
Affiliation(s)
- Ghanshyam N Pandey
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612
| |
Collapse
|
44
|
Involvement of monoaminergic systems in the antidepressant-like effect of nobiletin. Physiol Behav 2011; 102:1-6. [DOI: 10.1016/j.physbeh.2010.10.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/23/2010] [Accepted: 10/11/2010] [Indexed: 01/21/2023]
|
45
|
Cottingham C, Chen H, Chen Y, Peng Y, Wang Q. Genetic variations of α(2)-adrenergic receptors illuminate the diversity of receptor functions. CURRENT TOPICS IN MEMBRANES 2011; 67:161-90. [PMID: 21771490 DOI: 10.1016/b978-0-12-384921-2.00008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Behavioral and neurochemical effects of chronic L-DOPA treatment on nonmotor sequelae in the hemiparkinsonian rat. Behav Pharmacol 2010; 21:627-37. [PMID: 20838211 DOI: 10.1097/fbp.0b013e32833e7e80] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Depression and anxiety are the prevalent nonmotor symptoms that worsen quality of life for Parkinson's disease (PD) patients. Although dopamine (DA) cell loss is a commonly proposed mechanism, the reported efficacy of DA replacement therapy with L-DOPA on affective symptoms is inconsistent. To delineate the effects of DA denervation and chronic L-DOPA treatment on affective behaviors, male Sprague-Dawley rats received unilateral 6-hydroxydopamine or sham lesions and were treated daily with L-DOPA (12 mg/kg+benserazide, 15 mg/kg, subcutaneously) or vehicle (0.9% NaCl, 0.1% ascorbic acid) for 28 days before commencing investigations into anxiety (locomotor chambers, social interaction) and depression-like behaviors (forced swim test) during the OFF phase of L-DOPA. One hour after the final treatments, rats were killed and striatum, prefrontal cortex, hippocampus, and amygdala were analyzed through high-performance liquid chromatography for monoamine levels. In locomotor chambers and social interaction, DA lesions exerted mild anxiogenic effects. Surprisingly, chronic L-DOPA treatment did not improve these effects. Although DA lesion reduced climbing behaviors on day 2 of exposure to the forced swim test, chronic L-DOPA treatment did not reverse these effects. Neurochemically, L-DOPA treatment in hemiparkinsonian rats reduced norepinephrine levels in the prefrontal cortex, striatum, and hippocampus. Collectively, these data suggest that chronic L-DOPA therapy in severely DA-lesioned rats does not improve nonmotor symptoms and may impair nondopaminergic processes, indicating that long-term L-DOPA therapy does not exert necessary neuroplastic changes for improving affect.
Collapse
|
47
|
Differential modulation of α-1 adrenoceptor subtypes by antidepressants in the rat brain. J Neural Transm (Vienna) 2010; 117:1423-30. [PMID: 21136124 DOI: 10.1007/s00702-010-0522-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to examine the effect of chronic antidepressants treatment on the density of α₁-adrenoceptor (AR) subtypes in rat brain. Density of total α₁ and α(1A)- and α(1Β)-ARs was measured in cortex and cerebellum of rats treated with amitriptyline (AMI), desipramine (DMI) and fluoxetine (FLX), (10 mg/kg body wt), for 30 days, using [³H]prazosin in presence and absence of WB-4101. The density of cortical total α₁-ARs was significantly decreased with AMI (54%) and DMI (25%) treatment, without altering the affinity of the receptor. Fluoxetine did not alter the density of cortical α₁-ARs. The density of cortical α(1A)-ARs was also significantly decreased with AMI (85%) and DMI (50%) treatment, without affecting the affinity. The density of cerebellar total α₁-ARs was significantly decreased with AMI (37%), DMI (50%) and FLX (70%) treatment, without affecting the affinity for [³H]prazosin. The density of α(1A)-ARs was significantly decreased with AMI (67%), DMI (59%) and FLX (92%) treatment. α(1B)-AR density was decreased only with FLX (47%) and DMI (47%) treatment. Correspondingly the basal IP3 and NE (10 μM) stimulated IP3 levels were significantly decreased in AMI (47%), DMI (22%) and FLX (48%) treated rat cortex. The results suggest that chronic antidepressant (AD) treatment down-regulates the cortical and cerebellar total α₁-ARs in rat brain. However, α(1A) subtype is predominantly down-regulated by AMI and DMI, where as FLX affects cerebellar α(1A)-ARs. The region-specific and subtype specific down-regulation of α₁-ARs density, which occurs after prolonged AD treatment, may underline the therapeutic mechanism of action.
Collapse
|
48
|
García-Sevilla JA, Alvaro-Bartolomé M, Díez-Alarcia R, Ramos-Miguel A, Puigdemont D, Pérez V, Alvarez E, Meana JJ. Reduced platelet G protein-coupled receptor kinase 2 in major depressive disorder: antidepressant treatment-induced upregulation of GRK2 protein discriminates between responder and non-responder patients. Eur Neuropsychopharmacol 2010; 20:721-30. [PMID: 20493668 DOI: 10.1016/j.euroneuro.2010.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/31/2010] [Accepted: 04/20/2010] [Indexed: 11/16/2022]
Abstract
The homologous regulation of neurotransmitter receptors by G protein-coupled receptor kinases (GRKs) is important in the pathogenesis and treatment of major depressive disorder (MDD). Previous studies have reported that the basal status of GRK2 is different in brains (upregulation) and platelets (downregulation) of subjects with MDD. The principal aim of this study was to re-examine the status of platelet membrane GRK2 protein in patients with MDD, along with GRK3 (a close kinase homolog) and GRK5 (a kinase with different properties), before and after treatment with serotonin-selective reuptake inhibitor (SSRI) or serotonin noradrenaline reuptake inhibitor (SNRI) antidepressants. The main findings indicated that platelet GRK2 and p-Ser670 GRK2 were reduced (36-41%) in unmedicated MDD subjects, and that GRK2 content correlated inversely with the severity of depression (r=-0.51). Effective antidepressant treatments normalized platelet GRK2, and, notably, GRK2 upregulation discriminated between responder and non-responder patients. Other findings revealed a modest reduction of platelet GRK3 (23%) and no alteration of platelet GRK5 content. In untreated subjects with MDD, lymphocyte GRK2 and GRK5 mRNAs were unaltered but antidepressant treatment-induced upregulation of GRK2 mRNA expression. The reduced content of platelet GRK2 protein is a relevant target in MDD. Although this peripheral GRK2 defect does not mirror the canonical regulation of brain GRK2 in depressed suicides, it could well represent a disease state marker as well as a surrogate of response to effective antidepressant treatment.
Collapse
Affiliation(s)
- Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
González-Maeso J, Meana JJ. Heterotrimeric g proteins: insights into the neurobiology of mood disorders. Curr Neuropharmacol 2010; 4:127-38. [PMID: 18615130 DOI: 10.2174/157015906776359586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 11/28/2005] [Accepted: 01/05/2006] [Indexed: 11/22/2022] Open
Abstract
Mood disorders such as major depression and bipolar disorder are common, severe, chronic and often life-threatening illnesses. Suicide is estimated to be the cause of death in up to approximately 10-15% of individuals with mood disorders. Alterations in the signal transduction through G protein-coupled receptor (GPCR) pathways have been reported in the etiopathology of mood disorders and the suicidal behavior. In this regard, the implication of certain GPCR subtypes such as alpha(2A)-adrenoceptor has been repeatedly described using different approaches. However, several discrepancies have been recently reported in density and functional status of the heterotrimeric G proteins both in major depression and bipolar disorder. A compilation of the most relevant research topics about the implication of heterotrimeric G proteins in the etiology of mood disorders (i.e., animal models of mood disorders, studies in peripheral tissue of depressive patients, and studies in postmortem human brain of suicide victims with mood disorders) will provide a broad perspective of this potential therapeutic target field. Proposed causes of the discrepancies reported at the level of G proteins in postmortem human brain of suicide victims will be discussed.
Collapse
|
50
|
Alpha2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment. J Neurosci 2010; 30:1096-109. [PMID: 20089918 DOI: 10.1523/jneurosci.2309-09.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine, supporting a role for alpha(2)-heteroceptors on progenitor cells, rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore, coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for faster acting antidepressants.
Collapse
|