1
|
Shehata AH, Anter AF, Mohamed Naguib Abdel Hafez S, Rn Ibrahim A, Kamel ES, Ahmed ASF. Pioglitazone ameliorates sepsis-associated encephalopathy through SIRT1 signaling pathway. Int Immunopharmacol 2024; 139:112757. [PMID: 39067401 DOI: 10.1016/j.intimp.2024.112757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Sepsis is a severe immune response to an infection. It is associated with multiple organ dysfunction syndrome (MODs) along with systemic and neuronal inflammatory response. This study focused on the acute neurologic dysfunction associated with sepsis by exploring the role of PPARγ/SIRT1 pathway against sepsis. We studied the role of this axis in ameliorating sepsis-associated encephalopathy (SAE) and its linked neurobehavioral disorders by using pioglitazone (PIO). This PPARγ agonist showed neuroprotective actions in neuroinflammatory disorders. Sepsis was induced in mice by LPS (10 mg/kg). Survival rate and MODs were assessed. Furthermore, behavioral deficits, cerebral oxidative, inflammatory, and apoptotic markers, and the cerebral expression level of SIRT1 were determined. In this study, we observed that PIO attenuated sepsis-induced cerebral injury. PIO significantly enhanced survival rate, attenuated MODs, and systemic inflammatory response in septic mice. PIO also promoted cerebral SIRT1 expression and reduced cerebral activation of microglia, oxidative stress, HMGB, iNOS, NLRP3 and caspase-3 along with an obvious improvement in behavioral deficits and cerebral pathological damage induced by LPS. Most of the neuroprotective effects of PIO were abolished by EX-527, a SIRT1 inhibitor. These results highlight that the neuroprotective effect of PIO in SAE is mainly SIRT1-dependent.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Ahmed Rn Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| |
Collapse
|
2
|
Kovács Z, Rauch E, D’Agostino DP, Ari C. Putative Role of Adenosine A1 Receptors in Exogenous Ketone Supplements-Evoked Anti-Epileptic Effect. Int J Mol Sci 2024; 25:9869. [PMID: 39337356 PMCID: PMC11432942 DOI: 10.3390/ijms25189869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Approximately 30% of patients with epilepsy are drug-refractory. There is an urgent need to elucidate the exact pathophysiology of different types of epilepsies and the mechanisms of action of both antiseizure medication and metabolic therapies to treat patients more effectively and safely. For example, it has been demonstrated that exogenous ketone supplement (EKS)-generated therapeutic ketosis, as a metabolic therapy, may decrease epileptic activity in both animal models and humans, but its exact mechanism of action is unknown. However, it was demonstrated that therapeutic ketosis, among others, can increase adenosine level, which may enhance activity of A1 adenosine receptors (A1Rs) in the brain. It has also been demonstrated previously that adenosine has anti-epileptic effect through A1Rs in different models of epilepsies. Thus, it is possible that (i) therapeutic ketosis generated by the administration of EKSs may exert its anti-epileptic effect through, among other mechanisms, increased adenosine level and A1R activity and that (ii) the enhanced activity of A1Rs may be a necessary anti-epileptic mechanism evoked by EKS administration-generated ketosis. Moreover, EKSs can evoke and maintain ketosis without severe side effects. These results also suggest that the therapeutic application of EKS-generated ketosis may be a promising opportunity to treat different types of epilepsies. In this literature review, we specifically focus on the putative role of A1Rs in the anti-epileptic effect of EKS-induced ketosis.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
| | - Enikő Rauch
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
- Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Dominic P. D’Agostino
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Csilla Ari
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
3
|
Cakmak-Arslan G, Kaya Y, Mamuk S, Akarsu ES, Severcan F. The investigation of the molecular changes during lipopolysaccharide-induced systemic inflammation on rat hippocampus by using FTIR spectroscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300541. [PMID: 38531619 DOI: 10.1002/jbio.202300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The aim of this study is to reveal the molecular changes accompanying the neuronal hyper-excitability during lipopolysaccharide (LPS)-induced systemic inflammation on rat hippocampus using Fourier transform infrared (FTIR) spectroscopy. For this aim, the body temperature of Wistar albino rats administered LPS or saline was recorded by radiotelemetry. The animals were decapitated when their body temperature began to decrease by 0.5°C after LPS treatment and the hippocampi of them were examined by FTIR spectroscopy. The results indicated that systemic inflammation caused lipid peroxidation, an increase in the amounts of lipids, proteins and nucleic acids, a decrease in membrane order, an increase in membrane dynamics and changes in the secondary structure of proteins. Principal component analysis successfully separated control and LPS-treated groups. In conclusion, significant structural, compositional and functional alterations occur in the hippocampus during systemic inflammation and these changes may have specific characteristics which can lead to neuronal hyper-excitability.
Collapse
Affiliation(s)
- Gulgun Cakmak-Arslan
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Yildiray Kaya
- Department of Biology, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey
| | - Soner Mamuk
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Eyup Sabri Akarsu
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
4
|
Aziz N, Ruzza C, Falcicchia C, Guarino A, Soukupova M, Asth L, Aleotti V, Bettegazzi B, Simonato M, Zucchini S. Lack of Direct Effects of Neurotrophic Factors in an In Vitro Model of Neuroinflammation. Int J Mol Sci 2024; 25:4160. [PMID: 38673746 PMCID: PMC11049901 DOI: 10.3390/ijms25084160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation is associated with several neurological disorders including temporal lobe epilepsy. Seizures themselves can induce neuroinflammation. In an in vivo model of epilepsy, the supplementation of brain-derived neurotropic factor (BDNF) and fibroblast growth factor-2 (FGF-2) using a Herpes-based vector reduced epileptogenesis-associated neuroinflammation. The aim of this study was to test whether the attenuation of the neuroinflammation obtained in vivo with BDNF and FGF-2 was direct or secondary to other effects, for example, the reduction in the severity and frequency of spontaneous recurrent seizures. An in vitro model of neuroinflammation induced by lipopolysaccharide (LPS, 100 ng/mL) in a mouse primary mixed glial culture was used. The releases of cytokines and NO were analyzed via ELISA and Griess assay, respectively. The effects of LPS and neurotrophic factors on cell viability were determined by performing an MTT assay. BDNF and FGF-2 were tested alone and co-administered. LPS induced a significant increase in pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and NO. BDNF, FGF-2, and their co-administration did not counteract these LPS effects. Our study suggests that the anti-inflammatory effect of BDNF and FGF-2 in vivo in the epilepsy model was indirect and likely due to a reduction in seizure frequency and severity.
Collapse
Affiliation(s)
- Nimra Aziz
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | | | - Annunziata Guarino
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
| | - Valentina Aleotti
- Operating Unit Neurological Clinic, University Hospital of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy;
| | - Barbara Bettegazzi
- School of Medicine, University Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy;
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Shu LZ, Ding YD, Xue QM, Cai W, Deng H. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol 2023; 16:17562848231176427. [PMID: 37274298 PMCID: PMC10233627 DOI: 10.1177/17562848231176427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Bacterial translocation is a pathological process involving migration of pathogenic bacteria across the intestinal barrier to enter the systemic circulation and gain access to distant organs. This phenomenon has been linked to a diverse range of diseases including inflammatory bowel disease, pancreatitis, and cancer. The intestinal barrier is an innate structure that maintains intestinal homeostasis. Pathogenic infections and dysbiosis can disrupt the integrity of the intestinal barrier, increasing its permeability, and thereby facilitating pathogen translocation. As translocation represents an essential step in pathogenesis, a clear understanding of how barrier integrity is disrupted and how this disruption facilitates bacterial translocation could identify new routes to effective prophylaxis and therapy. In this comprehensive review, we provide an in-depth analysis of bacterial translocation and intestinal barrier function. We discuss currently understood mechanisms of bacterial-enterocyte interactions, with a focus on tight junctions and endocytosis. We also discuss the emerging concept of bidirectional communication between the intestinal microbiota and other body systems. The intestinal tract has established 'axes' with various organs. Among our regulatory systems, the nervous, immune, and endocrine systems have been shown to play pivotal roles in barrier regulation. A mechanistic understanding of intestinal barrier regulation is crucial for the development of personalized management strategies for patients with bacterial translocation-related disorders. Advancing our knowledge of barrier regulation will pave the way for future research in this field and novel clinical intervention strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Wei Cai
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
- Department of Pathology, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated
Hospital of Nanchang University, No. 133 South Guangchang Road, Nanchang
330003, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang
University, Nanchang, China
| |
Collapse
|
6
|
Brunner B, Ari C, D’Agostino DP, Kovács Z. Adenosine Receptors Modulate the Exogenous Ketogenic Supplement-Evoked Alleviating Effect on Lipopolysaccharide-Generated Increase in Absence Epileptic Activity in WAG/Rij Rats. Nutrients 2021; 13:nu13114082. [PMID: 34836344 PMCID: PMC8623289 DOI: 10.3390/nu13114082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023] Open
Abstract
It has been previously demonstrated that KEKS food containing exogenous ketogenic supplement ketone salt (KS) and ketone ester (KE) decreased the lipopolysaccharide (LPS)-generated increase in SWD (spike-wave discharge) number in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, likely through ketosis. KEKS-supplemented food-generated ketosis may increase adenosine levels, and may thus modulate both neuroinflammatory processes and epileptic activity through adenosine receptors (such as A1Rs and A2ARs). To determine whether these adenosine receptors are able to modify the KEKS food-generated alleviating effect on LPS-evoked increases in SWD number, an antagonist of A1R DPCPX (1,3-dipropyl-8-cyclopentylxanthine; 0.2 mg/kg) with LPS (50 µg/kg) and an antagonist of A2AR SCH58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine; 0.5 mg/kg) with LPS were co-injected intraperitoneally (i.p.) on the ninth day of KEKS food administration, and their influence not only on the SWD number, but also on blood glucose, R-beta-hydroxybutyrate (R-βHB) levels, and body weight were measured. We showed that inhibition of A1Rs abolished the alleviating effect of KEKS food on LPS-generated increases in the SWD number, whereas blocking A2ARs did not significantly modify the KEKS food-generated beneficial effect. Our results suggest that the neuromodulatory benefits of KEKS-supplemented food on absence epileptic activity are mediated primarily through A1R, not A2AR.
Collapse
Affiliation(s)
- Brigitta Brunner
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary;
- Savaria University Centre, Department of Biology, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| | - Csilla Ari
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL 33620, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| | - Dominic P. D’Agostino
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Zsolt Kovács
- Savaria University Centre, Department of Biology, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| |
Collapse
|
7
|
Tyrtyshnaia A, Bondar A, Konovalova S, Sultanov R, Manzhulo I. N-Docosahexanoylethanolamine Reduces Microglial Activation and Improves Hippocampal Plasticity in a Murine Model of Neuroinflammation. Int J Mol Sci 2020; 21:ijms21249703. [PMID: 33352646 PMCID: PMC7767308 DOI: 10.3390/ijms21249703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic neuroinflammation is a common pathogenetic link in the development of various neurological and neurodegenerative diseases. Thus, a detailed study of neuroinflammation and the development of drugs that reduce or eliminate the negative effect of neuroinflammation on cognitive processes are among the top priorities of modern neurobiology. N-docosahexanoylethanolamine (DHEA, synaptamide) is an endogenous metabolite and structural analog of anandamide, an essential endocannabinoid produced from arachidonic acid. Our study aims to elucidate the pharmacological activity of synaptamide in lipopolysaccharide (LPS)-induced neuroinflammation. Memory deficits in animals were determined using behavioral tests. To study the effects of LPS (750 µg/kg/day, 7 days) and synaptamide (10 mg/kg/day, 7 days) on synaptic plasticity, long-term potentiation was examined in the CA1 area of acute hippocampal slices. The Golgi-Cox method allowed us to assess neuronal morphology. The production of inflammatory factors and receptors was assessed using ELISA and immunohistochemistry. During the study, functional, structural, and plastic changes within the hippocampus were identified. We found a beneficial effect of synaptamide on hippocampal synaptic plasticity and morphological characteristics of neurons. Synaptamide treatment recovered hippocampal neurogenesis, suppressed microglial activation, and significantly improved hippocampus-dependent memory. The basis of the phenomena described above is probably the powerful anti-inflammatory activity of synaptamide, as shown in our study and several previous works.
Collapse
|
8
|
Metformin Ameliorates Lipopolysaccharide-Induced Depressive-Like Behaviors and Abnormal Glutamatergic Transmission. BIOLOGY 2020; 9:biology9110359. [PMID: 33114529 PMCID: PMC7692296 DOI: 10.3390/biology9110359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Metformin is a promising drug for diabetes and has been reported to have antidepressant effects in depression patients or patients with comorbid depression and other diseases. However, it is largely unclear how metformin ameliorates depressive-like behaviors. To this end, we injected mice with a bacterial endotoxin (lipopolysaccharide) to induce depressive-like behaviors such as increased immobility in the forced swimming test and tail suspension test. In this depression mouse model, metformin administration ameliorated depressive-like behaviors. Glutamate is a major excitatory signal for the communications between neurons in the brain. Dysfunction of glutamatergic neurotransmission is implicated in the pathogenesis of depression. Glutamatergic transmission was elevated in our depression mouse model. Metformin administration also recovered the glutamatergic transmission deficit in the model. Taken together, our results suggest metformin had antidepressant effects and can correct abnormal glutamatergic transmission in the lipopolysaccharide-induced depression mouse model. These findings provide new insights into the underlying mechanism by which metformin acts against depression. Abstract Metformin, a first-line drug for type 2 diabetes mellitus (T2DM), has been found to reduce depressive symptoms in patients with comorbid depression and other diseases. However, it is largely unclear how metformin ameliorates depressive-like behaviors. Here, we used lipopolysaccharide (LPS) to induce depressive-like behaviors in mice and found that LPS-treated mice exhibited increased immobility in the forced swimming test (FST) and tail suspension test (TST), as well as increased glutamatergic transmission. Furthermore, metformin administration in the LPS-treated mice ameliorated depressive-like behaviors and elevated glutamatergic transmission. Our results suggest that metformin has antidepressant effects and can correct abnormal glutamatergic transmission, providing an insight into the underlying mechanism by which metformin acts against depression.
Collapse
|
9
|
Kumar M, Arora P, Sandhir R. Hydrogen Sulfide Reverses LPS-Induced Behavioral Deficits by Suppressing Microglial Activation and Promoting M2 Polarization. J Neuroimmune Pharmacol 2020; 16:483-499. [DOI: 10.1007/s11481-020-09920-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
|
10
|
Kovács Z, D'Agostino DP, Diamond DM, Ari C. Exogenous Ketone Supplementation Decreased the Lipopolysaccharide-Induced Increase in Absence Epileptic Activity in Wistar Albino Glaxo Rijswijk Rats. Front Mol Neurosci 2019; 12:45. [PMID: 30930744 PMCID: PMC6427924 DOI: 10.3389/fnmol.2019.00045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/05/2019] [Indexed: 12/02/2022] Open
Abstract
It has been demonstrated previously that exogenous ketone supplements such as ketone ester (KE) decreased absence epileptic activity in a well-studied animal model of human absence epilepsy, Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. It is known that lipopolysaccharide (LPS)-generated changes in inflammatory processes increase absence epileptic activity, while previous studies show that ketone supplement-evoked ketosis can modulate inflammatory processes. Thus, we investigated in the present study whether administration of exogenous ketone supplements, which were mixed with standard rodent chow (containing 10% KE + 10% ketone salt/KS, % by weight, KEKS) for 10 days, can modulate the LPS-evoked changes in absence epileptic activity in WAG/Rij rats. At first, KEKS food alone was administered and changes in spike-wave discharge (SWD) number, SWD time, discharge frequency within SWDs, blood glucose, and beta-hydroxybutyrate (βHB) levels, as well as body weight and sleep-waking stages were measured. In a separate experiment, intraperitoneal (i.p.) injection of LPS (50 μg/kg) alone and a cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibitor indomethacin (10 mg/kg) alone, as well as combined IP injection of indomethacin with LPS (indomethacin + LPS) were applied in WAG/Rij rats to elucidate their influences on SWD number. In order to determine whether KEKS food can modify the LPS-evoked changes in SWD number, KEKS food in combination with IP LPS (50 μg/kg) (KEKS + LPS), as well as KEKS food with IP indomethacin (10 mg/kg) and LPS (50 μg/kg) (KEKS + indomethacin + LPS) were also administered. We demonstrated that KEKS food significantly increased blood βHB levels and decreased not only the spontaneously generated absence epileptic activity (SWD number), but also the LPS-evoked increase in SWD number in WAG/Rij rats. Our results suggest that administration of exogenous ketone supplements (ketogenic foods) may be a promising therapeutic tool in the treatment of epilepsy.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David M Diamond
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Comparative Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Comparative Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
11
|
Mastronardi CA, Yu WH, McCann SM. Comparisons of the Effects of Anesthesia and Stress on Release of Tumor Necrosis Factor-α, Leptin, and Nitric Oxide in Adult Male Rats. Exp Biol Med (Maywood) 2016; 226:296-300. [PMID: 11368420 DOI: 10.1177/153537020122600405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS) stimulates massive release of tumor necrosis factor-alpha (TNF-α) together with nitric oxide (NO) and a lessor release of leptin. We hypothesized that other types of stress such as that of surgery might also release these cytokines and NO. Adult male rats were anesthetized with ketamine/acepromazine/xylazine anesthesia (90 + 2 + 6 mg/ml, respectively) and an external jugular catheter was inserted for removal of blood samples (0.6 ml) at various times postoperatively. Plasma TNF-α was almost undetectable in decapitated rats and was near zero immediately following the placement of the jugular catheter (time zero [to]). As the rats awakened from anesthesia, there was a rise in TNF-α at 30 min that peaked at 2 hr with a 400-fold increase and then precipitously declined 40-fold to a level still greater than zero at 3 hr. At 6 hr on the following morning, TNF-α values were near zero, but following connection of tubing and withdrawal of the initial blood sample, there was a 100-fold increase 1 hr later, followed by a decline over the next 3 hr. In contrast, plasma [NO3/NO2] from decapitated rats was 117 μM. Values at t0 were decreased and plummeted 4-fold within 30 min, then rose slightly in the ensuing 3 hr. At 6 hr on the next day [NO3/NO2] values were lower than at t0 and declined gradually during the next 4 hr. Leptin gradually declined from pre-operative concentrations, reaching a minimum at 3 hr and its concentration was unaffected by the bleeding stress of the second day. We conclude that release of TNF-α, [NO3/NO2], and leptin are neurally controlled since plasma levels of all three declined as a result of anesthesia. TNF-α secretion was remarkably stress responsive, whereas NO release appeared to be suppressed by the combined operative and bleeding stress, and leptin was stress unresponsive.
Collapse
Affiliation(s)
- C A Mastronardi
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808-4124, USA
| | | | | |
Collapse
|
12
|
Kołosowska K, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. The role of IL-1β and glutamate in the effects of lipopolysaccharide on the hippocampal electrical kindling of seizures. J Neuroimmunol 2016; 298:146-52. [PMID: 27609288 DOI: 10.1016/j.jneuroim.2016.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
In our study, we used rapid electrical hippocampal kindling and in vivo microdialysis methods to assess the involvement of inflammatory mediators: lipopolysaccharide (LPS) and proinflammatory interleukin-1β (IL-1β) in mechanisms of epileptogenesis. We observed, that both, LPS and IL-1β, administered into stimulated hippocampus, accelerated kindling process. LPS also increased the expression of IL-1β in stimulated hippocampus in kindled rats. In vivo acute LPS perfusion, via a microdialysis cannula implanted into the naïve rat's hippocampus, produced an increase in extracellular glutamate release. We suppose, that particularly IL-1β action and increased glutamate concentration may significantly contribute to LPS effects on kindling development.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Piotr Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| |
Collapse
|
13
|
Lakatos RK, Dobolyi Á, Todorov MI, Kékesi KA, Juhász G, Aleksza M, Kovács Z. Guanosine may increase absence epileptic activity by means of A2A adenosine receptors in Wistar Albino Glaxo Rijswijk rats. Brain Res Bull 2016; 124:172-81. [PMID: 27154620 DOI: 10.1016/j.brainresbull.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system.
Collapse
Affiliation(s)
- Renáta Krisztina Lakatos
- Institute of Biology, University of Pécs, Pécs, Ifjúság útja 6., 7624, Hungary; Department of Zoology, University of West Hungary Savaria Campus, Szombathely, Károlyi Gáspár tér 4., 9700, Hungary.
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Pázmány Péter sétány 1C, 1117, Hungary; Laboratory of Neuromorphology and Human Brain Tissue Bank, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Tűzoltó u. 58., 1094, Hungary.
| | - Mihail Ivilinov Todorov
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Pázmány Péter sétány 1C, 1117, Hungary; Laboratory of Proteomics, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1C, 1117, Hungary.
| | - Katalin A Kékesi
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1C, 1117, Hungary; Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1C, 1117, Hungary.
| | - Gábor Juhász
- Laboratory of Proteomics, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1C, 1117, Hungary; MTA-TTK NAP MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, Magyar tudósok körútja 2., 1117, Hungary.
| | - Magdolna Aleksza
- Department of Botany, University of West Hungary Savaria Campus, Szombathely, Károlyi Gáspár tér 4., 9700, Hungary.
| | - Zsolt Kovács
- Department of Zoology, University of West Hungary Savaria Campus, Szombathely, Károlyi Gáspár tér 4., 9700, Hungary.
| |
Collapse
|
14
|
Sharma A, Patro N, Patro IK. Lipopolysaccharide-Induced Apoptosis of Astrocytes: Therapeutic Intervention by Minocycline. Cell Mol Neurobiol 2016; 36:577-92. [PMID: 26188416 PMCID: PMC11482454 DOI: 10.1007/s10571-015-0238-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/06/2015] [Indexed: 12/23/2022]
Abstract
Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline.
Collapse
Affiliation(s)
- Arpita Sharma
- School of Studies in Neuroscience, Jiwaji University, Gwalior, 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, 474011, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, 474011, India.
| |
Collapse
|
15
|
Modulatory effects of inosine, guanosine and uridine on lipopolysaccharide-evoked increase in spike-wave discharge activity in Wistar Albino Glaxo/Rijswijk rats. Brain Res Bull 2015; 118:46-57. [DOI: 10.1016/j.brainresbull.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
|
16
|
Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2014; 96:70-82. [PMID: 25445483 DOI: 10.1016/j.neuropharm.2014.10.027] [Citation(s) in RCA: 443] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023]
Abstract
Increasing evidence underlines that prototypical inflammatory cytokines (IL-1β, TNF-α and IL-6) either synthesized in the central (CNS) or peripheral nervous system (PNS) by resident cells, or imported by immune blood cells, are involved in several pathophysiological functions, including an unexpected impact on synaptic transmission and neuronal excitability. This review describes these unconventional neuromodulatory properties of cytokines, that are distinct from their classical action as effector molecules of the immune system. In addition to the role of cytokines in brain physiology, we report evidence that dysregulation of their biosynthesis and cellular release, or alterations in receptor-mediated intracellular pathways in target cells, leads to neuronal cell dysfunction and modifications in neuronal network excitability. As a consequence, targeting of these cytokines, and related signalling molecules, is considered a novel option for the development of therapies in various CNS or PNS disorders associated with an inflammatory component. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Annamaria Vezzani
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milano, Italy.
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
17
|
Kovács Z, Dobolyi Á, Juhász G, Kékesi KA. Lipopolysaccharide induced increase in seizure activity in two animal models of absence epilepsy WAG/Rij and GAERS rats and Long Evans rats. Brain Res Bull 2014; 104:7-18. [DOI: 10.1016/j.brainresbull.2014.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 02/04/2023]
|
18
|
Gao F, Liu Z, Ren W, Jiang W. Acute lipopolysaccharide exposure facilitates epileptiform activity via enhanced excitatory synaptic transmission and neuronal excitability in vitro. Neuropsychiatr Dis Treat 2014; 10:1489-95. [PMID: 25170268 PMCID: PMC4144925 DOI: 10.2147/ndt.s65695] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Growing evidence indicates brain inflammation has been involved in the genesis of seizures. However, the direct effect of acute inflammation on neuronal circuits is not well known. Lipopolysaccharide (LPS) has been used extensively to stimulate brain inflammatory responses both in vivo and in vitro. Here, we observed the contribution of inflammation induced by 10 μg/mL LPS to the excitability of neuronal circuits in acute hippocampal slices. When slices were incubated with LPS for 30 minutes, significant increased concentration of tumor necrosis factor α and interleukin 1β were detected by enzyme-linked immunosorbent assay. In electrophysiological recordings, we found that frequency of epileptiform discharges and spikes per burst increased 30 minutes after LPS application. LPS enhanced evoked excitatory postsynaptic currents but did not modify evoked inhibitory postsynaptic currents. In addition, exposure to LPS enhanced the excitability of CA1 pyramidal neurons, as demonstrated by a decrease in rheobase and an increase in action potential frequency elicited by depolarizing current injection. Our observations suggest that acute inflammation induced by LPS facilitates epileptiform activity in vitro and that enhancement of excitatory synaptic transmission and neuronal excitability may contribute to this facilitation. These results may provide new clues for treating seizures associated with brain inflammatory disease.
Collapse
Affiliation(s)
- Fei Gao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China ; Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, People's Republic of China
| | - Zhiqiang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Wei Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
19
|
Morris G, Berk M, Galecki P, Maes M. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs). Mol Neurobiol 2013; 49:741-56. [PMID: 24068616 DOI: 10.1007/s12035-013-8553-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022]
Abstract
The World Health Organization classifies myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) as a nervous system disease. Together with other diseases under the G93 heading, ME/cfs shares a triad of abnormalities involving elevated oxidative and nitrosative stress (O&NS), activation of immuno-inflammatory pathways, and mitochondrial dysfunctions with depleted levels of adenosine triphosphate (ATP) synthesis. There is also abundant evidence that many patients with ME/cfs (up to around 60 %) may suffer from autoimmune responses. A wide range of reported abnormalities in ME/cfs are highly pertinent to the generation of autoimmunity. Here we review the potential sources of autoimmunity which are observed in people with ME/cfs. The increased levels of pro-inflammatory cytokines, e.g., interleukin-1 and tumor necrosis factor-α, and increased levels of nuclear factor-κB predispose to an autoimmune environment. Many cytokine abnormalities conspire to produce a predominance of effector B cells and autoreactive T cells. The common observation of reduced natural killer cell function in ME/cfs is a source of disrupted homeostasis and prolonged effector T cell survival. B cells may be pathogenic by playing a role in autoimmunity independent of their ability to produce antibodies. The chronic or recurrent viral infections seen in many patients with ME/cfs can induce autoimmunity by mechanisms involving molecular mimicry and bystander activation. Increased bacterial translocation, as observed in ME/cfs, is known to induce chronic inflammation and autoimmunity. Low ATP production and mitochondrial dysfunction is a source of autoimmunity by inhibiting apoptosis and stimulating necrotic cell death. Self-epitopes may be damaged by exposure to prolonged O&NS, altering their immunogenic profile and become a target for the host's immune system. Nitric oxide may induce many faces of autoimmunity stemming from elevated mitochondrial membrane hyperpolarization and blockade of the methionine cycle with subsequent hypomethylation of DNA. Here we also outline options for treatment involving rituximab and endotherapia.
Collapse
|
20
|
Xiong N, Brewer MT, Anderson KL, Carlson SA. Non-typhoidal Salmonella encephalopathy involving lipopolysaccharide in cattle. Vet Microbiol 2012; 162:285-7. [PMID: 22939987 DOI: 10.1016/j.vetmic.2012.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/25/2022]
Abstract
This study assessed the involvement of lipopolysaccharide (LPS) in the non-typhoidal Salmonella encephalopathy (NTSE) caused by a unique isolate of Salmonella enterica serovar Saint-paul (SstpNPG). NTSE was prevented by genetic (deletion of murE) or pharmacologic (polymyxin) disruption of LPS on SstpNPG although the disruption of LPS did not deter brain penetration of the strain. This is the first study to demonstrate that LPS is involved in the manifestations of NTSE.
Collapse
Affiliation(s)
- N Xiong
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
21
|
Kovács Z, Czurkó A, Kékesi KA, Juhász G. Intracerebroventricularly administered lipopolysaccharide enhances spike–wave discharges in freely moving WAG/Rij rats. Brain Res Bull 2011; 85:410-6. [DOI: 10.1016/j.brainresbull.2011.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/19/2011] [Accepted: 05/08/2011] [Indexed: 12/15/2022]
|
22
|
Pérez-Nievas BG, Madrigal JL, García-Bueno B, Zoppi S, Leza JC. Corticosterone basal levels and vulnerability to LPS-induced neuroinflammation in the rat brain. Brain Res 2010; 1315:159-68. [DOI: 10.1016/j.brainres.2009.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 12/31/2022]
|
23
|
Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 2009; 132:2478-86. [PMID: 19567702 PMCID: PMC2732268 DOI: 10.1093/brain/awp177] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/21/2009] [Accepted: 05/24/2009] [Indexed: 11/12/2022] Open
Abstract
Brain glial cells, five times more prevalent than neurons, have recently received attention for their potential involvement in epileptic seizures. Microglia and astrocytes, associated with inflammatory innate immune responses, are responsible for surveillance of brain damage that frequently results in seizures. Thus, an intriguing suggestion has been put forward that seizures may be facilitated and perhaps triggered by brain immune responses. Indeed, recent evidence strongly implicates innate immune responses in lowering seizure threshold in experimental models of epilepsy, yet, there is no proof that they can play an independent role in initiating seizures in vivo. Here, we show that cortical innate immune responses alone produce profound increases of brain excitability resulting in focal seizures. We found that cortical application of lipopolysaccharide, binding to toll-like receptor 4 (TLR4), triples evoked field potential amplitudes and produces focal epileptiform discharges. These effects are prevented by pre-application of interleukin-1 receptor antagonist. Our results demonstrate how the innate immune response may participate in acute seizures, increasing neuronal excitability through interleukin-1 release in response to TLR4 detection of the danger signals associated with infections of the central nervous system and with brain injury. These results suggest an important role of innate immunity in epileptogenesis and focus on glial inhibition, through pharmacological blockade of TLR4 and the pro-inflammatory mediators released by activated glia, in the study and treatment of seizure disorders in humans.
Collapse
Affiliation(s)
- Krista M. Rodgers
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Mark R. Hutchinson
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
- 2 Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Alexis Northcutt
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Steven F. Maier
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Linda R. Watkins
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Daniel S. Barth
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| |
Collapse
|
24
|
Basselin M, Villacreses NE, Lee HJ, Bell JM, Rapoport SI. Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammation. J Neurochem 2007; 102:761-72. [PMID: 17488274 DOI: 10.1111/j.1471-4159.2007.04593.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuroinflammation, caused by a 6-day intracerebroventricular infusion of lipopolysaccharide (LPS) in rats, is associated with the up-regulation of brain arachidonic acid (AA) metabolism markers. Because chronic LiCl down-regulates markers of brain AA metabolism, we hypothesized that it would attenuate increments of these markers in LPS-infused rats. Incorporation coefficients k* of AA from plasma into brain, and other brain AA metabolic markers, were measured in rats that had been fed a LiCl or control diet for 6 weeks, and subjected in the last 6 days on the diet to intracerebroventricular infusion of artificial CSF or of LPS. In rats on the control diet, LPS compared with CSF infusion increased k* significantly in 28 regions, whereas the LiCl diet prevented k* increments in 18 of these regions. LiCl in CSF infused rats increased k* in 14 regions, largely belonging to auditory and visual systems. Brain cytoplasmic phospholipase A(2) activity, and prostaglandin E(2) and thromboxane B(2) concentrations, were increased significantly by LPS infusion in rats fed the control but not the LiCl diet. Chronic LiCl administration attenuates LPS-induced up-regulation of a number of brain AA metabolism markers. To the extent that this up-regulation has neuropathological consequences, lithium might be considered for treating human brain diseases accompanied by neuroinflammation.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda 20892-0947, Maryland, USA.
| | | | | | | | | |
Collapse
|
25
|
Akarsu ES, Ozdayi S, Algan E, Ulupinar F. The neuronal excitability time-dependently changes after lipopolysaccharide administration in mice: Possible role of cyclooxygenase-2 induction. Epilepsy Res 2006; 71:181-7. [PMID: 16870400 DOI: 10.1016/j.eplepsyres.2006.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 01/21/2023]
Abstract
The parameters of pentylenetetrazol (PTZ)-induced seizures have been evaluated at various time intervals after lipopolysaccharide (LPS; Escherichia coli O111:B4, 100 microg/kg, i.p.) administration in mice. A proconvulsant effect occurred 4h after LPS injection with decreased seizure latency and enhanced seizure intensity. In contrast, the incidence of seizures was reduced 18 h after LPS injection. There were no significant alterations on seizure parameters 2, 8, 12, and 24h after LPS treatment. SC-58236, a selective cyclooxygenase (COX)-2 inhibitor (20 or 40 mg/kg, s.c.) treatment alone had no effect on PTZ-induced seizures, but reversed the antiseizure activity observed 18 h after LPS injection. However, SC-58236 treatment partially restored the proconvulsant changes that were observed 4h after LPS administration. On the other hand, COX-1-selective inhibitor valeryl salicylate (20 or 40 mg/kg, s.c.) itself facilitated PTZ-induced seizures. Thus, it was not possible to evaluate the effects of valeryl salicylate on the excitability changes after LPS injection. These results indicate that the parameters of PTZ-induced seizures change time-dependently after LPS treatment, in which proconvulsant and anticonvulsant states could be seen in a sequence. It seems that COX-2 isoenzyme may be involved in the neuronal excitability changes due to LPS.
Collapse
Affiliation(s)
- Eyup S Akarsu
- Ankara University, School of Medicine, Department of Pharmacology and Clinical Pharmacology, Ankara, Turkey.
| | | | | | | |
Collapse
|
26
|
Munhoz CD, Lepsch LB, Kawamoto EM, Malta MB, Lima LDS, Werneck Avellar MC, Sapolsky RM, Scavone C. Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci 2006; 26:3813-20. [PMID: 16597735 PMCID: PMC6674142 DOI: 10.1523/jneurosci.4398-05.2006] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the anti-inflammatory actions of glucocorticoids (GCs) are well established in the periphery, these stress hormones can increase inflammation under some circumstances in the brain. The transcription factor nuclear factor-kappaB (NF-kappaB), which is inhibited by GCs, regulates numerous genes central to inflammation. In this study, the effects of stress, GCs, and NMDA receptors on lipopolysaccharide (LPS)-induced activation of NF-kappaB in the brain were investigated. One day after chronic unpredictable stress (CUS), nonstressed and CUS rats were treated with saline or LPS and killed 2 h later. CUS potentiated the increase in LPS-induced activation of NF-kappaB in frontal cortex and hippocampus but not in the hypothalamus. This stress effect was blocked by pretreatment of rats with RU-486, an antagonist of the GC receptor. MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], an NMDA receptor antagonist, also reduced the effect of LPS in all three brain regions. However, the combined antagonism of both GC and NMDA receptors produced no further reduction in NF-kappaB activation when compared with the effect of each treatment alone. Our results indicate that stress, via GC secretion, can increase LPS-induced NF-kappaB activation in the frontal cortex and hippocampus, agreeing with a growing literature demonstrating proinflammatory effects of GCs.
Collapse
|
27
|
Bitzer-Quintero OK, Ortiz GG, Ruiz-Rizo L, Torres-Mendoza BM, Vázquez-Valls E, Rodríguez-Pérez M. Effects of melatonin on plasma levels of TNF-α, IL-1 and IL-6 in mice after lipopolysaccharide administration. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010400028948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Johnston IN, Westbrook RF. Inhibition of morphine analgesia by LPS: role of opioid and NMDA receptors and spinal glia. Behav Brain Res 2005; 156:75-83. [PMID: 15474652 DOI: 10.1016/j.bbr.2004.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 05/08/2004] [Accepted: 05/10/2004] [Indexed: 11/25/2022]
Abstract
Intraperitoneal (i.p.) injection of toxins, such as the bacterial endotoxin lipopolysaccharide (LPS), is associated with a well-characterized increase in sensitivity to painful stimuli (hyperalgesia) [Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 1995;63:289-302. [53]] and a longer-lasting reduction in opioid analgesia (anti-analgesia) when pain sensitivity returns to basal levels [Johnston IN, Westbrook RF. Acute and conditioned sickness reduces morphine analgesia. Behav Brain Res 2003;142:89-97]. Here we show that this inhibition of morphine analgesia 24 h after a single i.p. injection of LPS involves mechanisms that contribute to illness-induced hyperalgesia and the development of analgesic tolerance to morphine. Specifically, morphine analgesia was restored if LPS was preceded by systemic administration of a non-competitive NMDA receptor antagonist (MK-801), spinal infusion of a glial metabolic inhibitor (fluorocitrate), or intracerebroventricular microinjection of an opioid receptor antagonist (naloxone). Morphine analgesia was also restored if MK-801 was administered after LPS. These results demonstrate that LPS recruits similar, if not the same mechanisms that reduce morphine tolerance following opiate administration: namely, stimulation of opioid and NMDA receptors and recruitment of spinal glia.
Collapse
Affiliation(s)
- Ian N Johnston
- School of Psychology, Griffith Taylor Building, A19, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
29
|
Lee JK, Won JS, Singh AK, Singh I. Adenosine kinase inhibitor attenuates the expression of inducible nitric oxide synthase in glial cells. Neuropharmacology 2005; 48:151-60. [PMID: 15617735 DOI: 10.1016/j.neuropharm.2004.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 08/11/2004] [Accepted: 09/16/2004] [Indexed: 11/21/2022]
Abstract
The present study demonstrates the anti-inflammatory effect of adenosine kinase inhibitor (ADKI) in glial cells. Treatment of glial cells with IC51, an ADKI, stimulated the extracellular adenosine release and reduced the LPS/IFNgamma-mediated production of NO, and induction of iNOS and TNF-alpha gene expression. The recovery of IC51-mediated inhibition of iNOS expression by adenosine transport inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI), and the inhibition of LPS/IFNgamma-induced iNOS gene expression by exogenous adenosine indicate a role for adenosine release in IC51-mediated iNOS expression. The rescue of IC51-mediated inhibition of iNOS expression by adenosine receptor antagonist for A2A, 8-(3-chlorostyryl)caffeine (CSC) and alloxazine for A2B, further supports a role for interaction of adenosine and its receptors in anti-inflammatory activity. The IC51-mediated induction of cAMP levels, downstream target of A2A and A2B, and inhibition of LPS/IFNgamma-induced expression of iNOS by forskolin, a cAMP activator, document a role for cAMP mediated pathway in anti-inflammatory activity of IC51. Taken together, these studies document that IC51-mediated inhibition of iNOS expression is through activation of adenosine receptors, which activates A2A and A2B resulting in increased cAMP levels following LPS/IFNgamma stimulation. Moreover, the lack of effect of IC51 or adenosine on NFkappaB DNA binding activity and its transactivity indicates that the inhibition of iNOS expression mediated by IC51 may be through an NFkappaB independent pathway.
Collapse
Affiliation(s)
- Jin-Koo Lee
- Department of Pediatrics, Medical University of South Carolina, 96 Jonathan Lucas Street, 316 Clinical Science Building, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
30
|
Huszenicza G, Jánosi S, Gáspárdy A, Kulcsár M. Endocrine aspects in pathogenesis of mastitis in postpartum dairy cows. Anim Reprod Sci 2004; 82-83:389-400. [PMID: 15271468 DOI: 10.1016/j.anireprosci.2004.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In well-managed dairy herds some environmental pathogens including Gram-negative (GN) strains (E. coli and others) have been recognized recently as the predominant causative microbes of mastitis in the peri-parturient period. In early weeks of lactation hyperketonaemia may predispose the high-producing cows for GN mastitis. In GN mastitis cytokines, eicosanoids and oxygen radicals are released, which are responsible for the local and systemic symptoms. Experimental administration of endotoxin induces a complex endocrine cascade. Similar changes in plasma levels of cortisol, insulin, insulin-like growth factor-I and thyroid hormones are seen also in severe cases of GN mastitis. However, leptin is not responsible for the anorexia associated with severe mastitis in ruminants. Mastitis can postpone the resumption of ovarian cyclic activity in dairy cows when its outbreak occurs between days 15 and 28 after calving (at the expected time of first ovulation). In cyclic cows severe cases of GN mastitis can induce premature luteolysis or prolong the follicular phase.
Collapse
Affiliation(s)
- G Huszenicza
- Faculty of Veterinary Science, Szent István University, P.O. Box 2, H-1400 Budapest, Hungary.
| | | | | | | |
Collapse
|
31
|
Sayyah M, Najafabadi IT, Beheshti S, Majzoob S. Lipopolysaccharide retards development of amygdala kindling but does not affect fully-kindled seizures in rats. Epilepsy Res 2004; 57:175-80. [PMID: 15013059 DOI: 10.1016/j.eplepsyres.2003.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 11/10/2003] [Accepted: 11/26/2003] [Indexed: 10/26/2022]
Abstract
Seizures are common sequel to brain insults in cases such as stroke, trauma and infection where there is a certain neuroinflammation. Intracerebroventricular (i.c.v.) administration of lipopolysaccharide (LPS) induces an inflammatory state in brain that is used as a model of neuroinflammation. We studied the effect of LPS (0.25 and 2.5 microg/rat, i.c.v.) on development of electrical kindling of the amygdala and on fully-kindled seizures. LPS, at the doses used, had no effect on fully-kindled seizures and afterdischarge (AD) duration at 0.5, 2 or 4h after administration. However, daily injection of LPS (2.5 microg/rat) retarded acquisition of kindled behavioral seizures. This antiepileptogenic effect could be due to the release of inflammatory mediators from microglia and the related morphological and functional changes in synaptic neurotransmission.
Collapse
Affiliation(s)
- Mohammad Sayyah
- Department of Physiology and Pharmacology, Institute Pasteur of Iran, Pasteur Avenue, Tehran 13164, Iran.
| | | | | | | |
Collapse
|
32
|
Glezer I, Munhoz CD, Kawamoto EM, Marcourakis T, Avellar MCW, Scavone C. MK-801 and 7-Ni attenuate the activation of brain NF-κB induced by LPS. Neuropharmacology 2003; 45:1120-9. [PMID: 14614955 DOI: 10.1016/s0028-3908(03)00279-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The activation of nuclear factor-kappaB (NF-kappaB) leads to an increase in the expression of genes involved in important events in the central nervous system (CNS), such as development, plasticity and inflammation. It has been shown that inflammatory stimulus in the brain increases excitatory glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptor. These receptors have an important role in glutamate neurotoxicity and are in general coupled with the generation of nitric oxide (NO) through the activation of neuronal nitric oxide synthase (NOS). We have investigated the involvement of NMDA-NO pathway in LPS induction of NF-kappaB in CNS. Our results demonstrate that systemic LPS activates NF-kappaB in several regions of the CNS, which was partially reduced by the NMDA receptor antagonist dizolcipine (MK-801) and by the selective brain NOS inhibitor 7-Nitroindazol (7-Ni). 7-Ni effects were not synergic to MK-801 effects, suggesting that these compounds act through the same pathway. Dexamethasone caused a stronger reduction in LPS induction of NF-kappaB in CNS, demonstrating that MK-801 and 7-Ni act on a pathway that is responsible only by a fraction of the overall NF-kappaB activation. These results suggest that a considerable part of NF-kappaB activation by LPS is linked to the NMDA/NO pathway in CNS.
Collapse
Affiliation(s)
- Isaias Glezer
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science-ICB-1, Avenida Professor Lineu Prestes, 1524, University of São Paulo, Sao Paulo 05508-900, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Morimoto K, Murasugi T, Oda T. Acute neuroinflammation exacerbates excitotoxicity in rat hippocampus in vivo. Exp Neurol 2002; 177:95-104. [PMID: 12429214 DOI: 10.1006/exnr.2002.7991] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Accumulating evidence suggests that inflammation may play an important part in neurodegenerative diseases such as Alzheimer's disease. Inflammation itself, however, is insufficient to produce acute neurodegeneration in vivo. In this report, we determined whether inflammation increases excitotoxicity in hippocampal neurons. A proinflammagen, bacterial endotoxin lipopolysaccharide, was coinjected with ibotenate, an N-methyl-D-aspartate receptor agonist, into rat hippocampus. One week after coinjection, significant neuronal degeneration and severe tissue collapse were observed in the hippocampus. Astroglial and microglial infiltration were also detected. The neurodegeneration was suppressed by dizocilpine maleate, an N-methyl-D-aspartate receptor antagonist. We then examined whether microglial activation takes part in synergistic neuronal loss. One day after the lipopolysaccharide injection into the rat hippocampus, substantial microglial activation and induction of inducible nitric oxide synthase were observed, while neither neuronal nor astrocytic changes were detected. On the other hand, ibotenate injection at the same place 1 day after lipopolysaccharide injection in the hippocampus produced significant neuronal degeneration and gross microglial activation. These results suggest that inflammation by lipopolysaccharide might play an important role in ibotenate/lipopolysaccharide neurotoxicity.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- Neuroscience and Immunology Research Laboratories, Sankyo Co., Ltd. 2-58, Hiromachi 1-chome, Shinagawa-ku, Tokyo, 140-8710, Japan.
| | | | | |
Collapse
|
34
|
Mastronardi CA, Yu WH, Srivastava VK, Dees WL, McCann SM. Lipopolysaccharide-induced leptin release is neurally controlled. Proc Natl Acad Sci U S A 2001; 98:14720-5. [PMID: 11724949 PMCID: PMC64748 DOI: 10.1073/pnas.251543598] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2001] [Indexed: 11/18/2022] Open
Abstract
Our hypothesis is that leptin release is controlled neurohormonally. Conscious, male rats bearing indwelling, external, jugular catheters were injected with the test drug or 0.9% NaCl (saline), and blood samples were drawn thereafter to measure plasma leptin. Anesthesia decreased plasma leptin concentrations within 10 min to a minimum at 120 min, followed by a rebound at 360 min. Administration (i.v.) of lipopolysaccharide (LPS) increased plasma leptin to almost twice baseline by 120 min, and it remained on a plateau for 360 min, accompanied by increased adipocyte leptin mRNA. Anesthesia largely blunted the LPS-induced leptin release at 120 min. Isoproterenol (beta-adrenergic agonist) failed to alter plasma leptin but reduced LPS-induced leptin release significantly. Propranolol (beta-receptor antagonist) produced a significant increase in plasma leptin but had no effect on the response to LPS. Phentolamine (alpha-adrenergic receptor blocker) not only increased plasma leptin (P < 0.001), but also augmented the LPS-induced increase (P < 0.001). alpha-Bromoergocryptine (dopaminergic-2 receptor agonist) decreased plasma leptin (P < 0.01) and blunted the LPS-induced rise in plasma leptin release (P < 0.001). We conclude that leptin is at least in part controlled neurally because anesthesia decreased plasma leptin and blocked its response to LPS. The findings that phentolamine and propranolol increased plasma leptin concentrations suggest that leptin release is inhibited by the sympathetic nervous system mediated principally by alpha-adrenergic receptors because phentolamine, but not propranolol, augmented the response to LPS. Because alpha-bromoergocryptine decreased basal and LPS-induced leptin release, dopaminergic neurons may inhibit basal and LPS-induced leptin release by suppression of release of prolactin from the adenohypophysis.
Collapse
Affiliation(s)
- C A Mastronardi
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Adenosine is a modulator that has a pervasive and generally inhibitory effect on neuronal activity. Tonic activation of adenosine receptors by adenosine that is normally present in the extracellular space in brain tissue leads to inhibitory effects that appear to be mediated by both adenosine A1 and A2A receptors. Relief from this tonic inhibition by receptor antagonists such as caffeine accounts for the excitatory actions of these agents. Characterization of the effects of adenosine receptor agonists and antagonists has led to numerous hypotheses concerning the role of this nucleoside. Previous work has established a role for adenosine in a diverse array of neural phenomena, which include regulation of sleep and the level of arousal, neuroprotection, regulation of seizure susceptibility, locomotor effects, analgesia, mediation of the effects of ethanol, and chronic drug use.
Collapse
Affiliation(s)
- T V Dunwiddie
- Department of Pharmacology and Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
36
|
Hardy KW, White TD. Some commercial preparations of Escherichia coli bacterial endotoxin lipopolysaccaride (LPS) are contaminated with biologically active substances. J Neurochem 2001; 78:1183-4. [PMID: 11556327 DOI: 10.1046/j.1471-4159.2001.00486.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- K W Hardy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
37
|
Jo JH, Park EJ, Lee JK, Jung MW, Lee CJ. Lipopolysaccharide inhibits induction of long-term potentiation and depression in the rat hippocampal CA1 area. Eur J Pharmacol 2001; 422:69-76. [PMID: 11430915 DOI: 10.1016/s0014-2999(01)01075-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the effects of lipopolysaccharide, a bacterial endotoxin, on synaptic plasticity in the rat hippocampal CA1 area in vitro. Lipopolysaccharide suppressed the induction of long-term potentiation elicited by tetanic stimulation and long-term depression, elicited by low-frequency stimulation of Schaffer collateral-commissural fibres at 10 and 50 microg/ml, respectively. Lipid A (1 microg/ml), the biologically active component of lipopolysaccharide, mimicked the effects of 10 microg/ml lipopolysaccharide on long-term potentiation and depression. Nifedipine, an L-type voltage-sensitive Ca(2+) channel antagonist, did not influence the induction of long-term potentiation and depression, whereas a high concentration of extracellular calcium enabled long-term potentiation induction in the presence of 10 microg/ml lipopolysaccharide. The NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV, 50 microM), nifedipine (10 microM) or lipopolysaccharide (10 or 50 microg/ml) partially reduced the magnitude of tetraethylammonium-induced long-term potentiation. Nifedipine combined with lipopolysaccharide completely blocked tetraethylammonium-induced long-term potentiation. Whole-cell voltage clamp recordings showed that lipopolysaccharide suppressed NMDA receptor-mediated excitatory postsynaptic currents (EPSCs). Our results indicate that lipopolysaccharide acutely modifies synaptic plasticity by blocking Ca(2+) entry through NMDA receptors, suggesting a possible mechanism for the amnesic action of bacterial infection.
Collapse
Affiliation(s)
- J H Jo
- Department of Biology, Inha University, Inchon 402-751, South Korea
| | | | | | | | | |
Collapse
|
38
|
Commins S, O'Neill LA, O'Mara SM. The effects of the bacterial endotoxin lipopolysaccharide on synaptic transmission and plasticity in the CA1-subiculum pathway in vivo. Neuroscience 2001; 102:273-80. [PMID: 11166113 DOI: 10.1016/s0306-4522(00)00498-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Lipopolysaccharide is derived from the cell wall of gram-negative bacteria and is a potent endotoxin which causes the release of cytokines in the CNS. We examined the effect of lipopolysaccharide on synaptic transmission and synaptic plasticity in the hippocampal area CA1-subicular pathway in vivo. We found that lipopolysaccharide did not affect baseline synaptic transmission in this pathway; it did, however, reduce the magnitude of paired-pulse facilitation, a form of short-term plasticity thought to be primarily presynaptic in origin. We then examined the interaction between lipopolysaccharide and two common models for the biological basis of memory: high-frequency stimulation induced long-term potentiation and low-frequency stimulation induced long-term depression of synaptic transmission. We found that lipopolysaccharide blocked long-term potentiation following high-frequency stimulation and also induced potentiation of synaptic transmission after low-frequency stimulation. Lipolysaccharide blocked paired-pulse facilitation selectively at short rather than longer interstimulus intervals. Thus, lipopolysaccharide has different effects on synaptic transmission in this pathway depending on the frequency and length of stimulation. These results provide new insights into the action of lipopolysaccharide on various forms of plasticity in the hippocampus, an area known to play a vital role in learning and memory.
Collapse
Affiliation(s)
- S Commins
- Department of Psychology, University of Dublin, Trinity College, 2, Dublin, Ireland
| | | | | |
Collapse
|
39
|
Mastronardi CA, Yu WH, McCann S. Lipopolysaccharide-induced tumor necrosis factor-alpha release is controlled by the central nervous system. Neuroimmunomodulation 2001; 9:148-56. [PMID: 11752888 DOI: 10.1159/000049019] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Lipopolysaccharide (LPS) injection in mammals orchestrates the release of many proinflammatory and anti-inflammatory cytokines. Intravenous administration of 0.2 mg/kg of LPS into unanesthetized rats with indwelling jugular catheters provoked a rapid, 50-fold increase in plasma tumor necrosis factor (TNF)-alpha within 30 min, which declined by 60% by 120 min. To test our hypothesis that such a rapid increase of TNF-alpha would be either neurally or hormonally controlled, the effect on TNF-alpha release of anesthesia (ketamine/acepromazine/xylazine) and catecholaminergic agonists and antagonists, either alone or in the presence of LPS, was determined. METHODS Rats bearing indwelling external jugular catheters were injected with the test drug or saline after removal of 0.6 ml of blood (-10 min). At time zero, LPS or saline was administered. Thereafter, blood samples were drawn at 15, 30, 120, 240 and 360 min. TNF-alpha was measured by immunoassay. RESULTS Among all the drugs tested, only propranolol increased plasma TNF-alpha. Anesthesia significantly blunted the LPS-induced TNF-alpha peak by 50%. Isoproterenol, a beta-adrenergic agonist, also blocked LPS-induced TNF-alpha release by 70% at 30 min and 90% at 120 min. On the contrary, propranolol, a beta-receptor blocker, induced a highly significant 3-fold increase in plasma TNF-alpha concentrations at 30 min and augmented the response to LPS 2-fold after endotoxin injection. Phentolamine, an alpha-receptor blocker, decreased the LPS-induced TNF-alpha release by 57% at 30 min. Similarly, alpha-bromoergocryptine, a dopamine D2 receptor agonist, decreased the LPS-induced TNF-alpha peak by 70% at 30 min and 50% at 120 min. CONCLUSIONS We conclude that TNF-alpha is at least in part neurally controlled since the anesthetic blocked its response to LPS. The fact that isoproterenol decreased the LPS-induced TNF-alpha release, whereas propranolol augmented basal and LPS-induced release suggests that the sympathetic nervous system inhibits basal and LPS-stimulated TNF-alpha release via beta-adrenergic receptors. Since phentolamine blocked LPS-induced release, this release may be induced, in part at least, by LPS-stimulated adrenergic drive acting on alpha-adrenergic receptors. The suppressive action of bromoergocryptine, a dopamine D2 receptor agonist, on LPS-induced TNF-alpha release may be mediated in part by suppression of prolactin release, which triggers TNF-alpha release.
Collapse
Affiliation(s)
- C A Mastronardi
- Pennington Biomedical Research Center, Lousiana State University, Baton Rouge, LA 70808-4124, USA
| | | | | |
Collapse
|
40
|
Loscher CE, Donnelly S, Mills KH, Lynch MA. Interleukin-1beta-dependent changes in the hippocampus following parenteral immunization with a whole cell pertussis vaccine. J Neuroimmunol 2000; 111:68-76. [PMID: 11063823 DOI: 10.1016/s0165-5728(00)00366-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurological side effects are a major cause of concern following immunization with a number of vaccines, especially the whole cell pertussis vaccine (Pw). In this study we report that IL-1beta concentrations were significantly increased in the hippocampus following subcutaneous (s.c.) injection of Pw, and that this was accompanied by increased activity of the stress-activated kinase, c-Jun-N-terminal kinase (JNK) and a decrease in glutamate release. These effects were mimicked by s.c injection of active pertussis toxin (PT) or lipopolysaccharide (LPS). Incubation of hippocampal synaptosomes in the presence of Pw, PT or LPS also resulted in increased JNK activation and decreased glutamate release, effects which were mimicked by IL-1beta and blocked by the IL-1 receptor antagonist (IL-ra). Our observations are consistent with the hypothesis that IL-1beta induced by active bacterial toxins present in vaccine preparations, mediate the neurochemical and perhaps the neurological effects of Pw.
Collapse
Affiliation(s)
- C E Loscher
- Infection and Immunity Group, Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
41
|
Wang YS, White TD. The HIV glycoproteins gp41 and gp120 cause rapid excitation in rat cortical slices. Neurosci Lett 2000; 291:13-6. [PMID: 10962142 DOI: 10.1016/s0304-3940(00)01385-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inflammation and associated excitotoxicity may play important roles in various neurodegenerative diseases including AIDS dementia. Here we show that exposure of rat parietal cortical slices to the HIV glycoproteins gp120 and gp41 triggered very rapid releases of the neurotransmitters glutamate and [(3)H]noradrenaline (NA), and of the neuromodulator adenosine. Gp41 was more effective than gp120 at releasing glutamate and [(3)H]NA, while both glycoproteins were equi-effective at releasing adenosine. The responses to gp120 and gp41 declined rapidly to basal levels following their removal. It seems possible that rapid, inappropriate excitation may occur in the immediate vicinity of HIV infections in the brain, possibly producing some of the transient neurological and psychiatric symptoms associated with AIDS dementia.
Collapse
Affiliation(s)
- Y S Wang
- Department of Pharmacology, Dalhousie University, Halifax, B3H 4H7, Nova Scotia, Canada
| | | |
Collapse
|
42
|
Lu X, Bing G, Hagg T. Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats. Neuroscience 2000; 97:285-91. [PMID: 10799760 DOI: 10.1016/s0306-4522(00)00033-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Resident microglia are involved in immune responses of the central nervous system and may contribute to neuronal degeneration and death. Here, we tested in adult rats whether injection of bacterial lipopolysaccharide (which causes inflammation and microglial activation) just above the substantia nigra, results in the death of dopaminergic substantia nigra pars compacta neurons. Two weeks after lipopolysaccharide injection, microglial activation was evident throughout the nigra and the number of retrogradely-labeled substantia nigra neurons was reduced to 66% of normal. This suggests that inflammation and/or microglial activation can lead to neuronal cell death in a well-defined adult animal model. The opioid receptor antagonist naloxone reportedly reduces release of cytotoxic substances from microglia and protects cortical neurons in vitro. Here, a continuous two-week infusion of naloxone at a micromolar concentration close to the substantia nigra, prevented most of the neuronal death caused by lipopolysaccharide, i.e. 85% of the neurons survived. In addition, with systemic (subcutaneous) infusion of 0. 1mg/d naloxone, 94% of the neurons survived. Naloxone infusions did not obviously affect the morphological signs of microglial activation, suggesting that naloxone reduces the release of microglial-derived cytotoxic substances. Alternatively, microglia might not cause the neuronal loss, or naloxone might act by blocking opioid receptors on (dopaminergic or GABAergic) neurons.Thus, local inflammation induces and the opioid antagonist naloxone prevents the death of dopaminergic substantia nigra neurons in adult rats. This may be relevant to the understanding of the pathology and treatment of Parkinson's disease, where these neurons degenerate.
Collapse
Affiliation(s)
- X Lu
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Canada
| | | | | |
Collapse
|