1
|
Moffett SX, Klein EA, Brannigan G, Martin JV. L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors. PLoS One 2019; 14:e0223272. [PMID: 31584962 PMCID: PMC6777777 DOI: 10.1371/journal.pone.0223272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3’,5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH < 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.
Collapse
Affiliation(s)
- Steven X. Moffett
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
| | - Eric A. Klein
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- Department of Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- Department of Physics, Rutgers University—Camden, Camden, New Jersey, United States of America
| | - Joseph V. Martin
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- Department of Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
2
|
Abstract
The norepinephrine transporter is selectively expressed in noradrenergic nerve terminals, where it can exert spatial and temporal control over the action of norepinephrine. The norepinephrine transporter mediates the termination of neurotransmission via the reuptake of norepinephrine released into the extracellular milieu. In the present brief review, we report our recent studies about the effects of various pharmacological agents such as fasudil, nicotine, pentazocine, ketamine and genistein on norepinephrine transporter function.
Collapse
|
3
|
Alpha2-adrenoceptor-independent inhibition of acetylcholine receptor channel and sodium channel by dexmedetomidine in rat superior cervical ganglion neurons. Neuroscience 2015; 289:9-18. [DOI: 10.1016/j.neuroscience.2014.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 01/03/2023]
|
4
|
Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. J Steroid Biochem Mol Biol 2015; 145:293-314. [PMID: 24846830 DOI: 10.1016/j.jsbmb.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/01/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
This review is focused on the physiological and pathophysiological relevance of steroids influencing the activities of the central and peripheral nervous systems with regard to their concentrations in body fluids and tissues in various stages of human life like the fetal development or pregnancy. The data summarized in this review shows that DHEA and its unconjugated and sulfated metabolites are physiologically and pathophysiologically relevant in modulating numerous ion channels and participate in vital functions of the human organism. DHEA and its unconjugated and sulfated metabolites including 5α/β-reduced androstane steroids participate in various physiological and pathophysiological processes like the management of GnRH cyclic release, regulation of glandular and neurotransmitter secretions, maintenance of glucose homeostasis on one hand and insulin insensitivity on the other hand, control of skeletal muscle and smooth muscle activities including vasoregulation, promotion of tolerance to ischemia and other neuroprotective effects. In respect of prevalence of steroid sulfates over unconjugated steroids in the periphery and the opposite situation in the CNS, the sulfated androgens and androgen metabolites reach relevance in peripheral organs. The unconjugated androgens and estrogens are relevant in periphery and so much the more in the CNS due to higher concentrations of most unconjugated steroids in the CNS tissues than in circulation and peripheral organs. This article is part of a Special Issue entitled "Essential role of DHEA".
Collapse
Affiliation(s)
- M Hill
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - M Dušková
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - L Stárka
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| |
Collapse
|
5
|
Zhang C, Wang Z, Dong J, Pan R, Qiu H, Zhang J, Zhang P, Zheng J, Yu W. Bilirubin modulates acetylcholine receptors in rat superior cervical ganglionic neurons in a bidirectional manner. Sci Rep 2014; 4:7475. [PMID: 25503810 PMCID: PMC4265787 DOI: 10.1038/srep07475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Autonomic dysfunction as a partial contributing factor to cardiovascular instability in jaundiced patients is often associated with increased serum bilirubin levels. Whether increased serum bilirubin levels could directly inhibit sympathetic ganglion transmission by blocking neuronal nicotinic acetylcholine receptors (nAChRs) remains to be elucidated. Conventional patch-clamp recordings were used to study the effect of bilirubin on nAChRs currents from enzymatically dissociated rat superior cervical ganglia (SCG) neurons. The results showed that low concnetrations (0.5 and 2 μM) of bilirubin enhanced the peak ACh-evoked currents, while high concentrations (3 to 5.5 µM) of bilirubin suppressed the currents with an IC50 of 4 ± 0.5 μM. In addition, bilirubin decreased the extent of desensitization of nAChRs in a concentration-dependent manner. This inhibitory effect of bilirubin on nAChRs channel currents was non-competitive and voltage independent. Bilirubin partly improved the inhibitory effect of forskolin on ACh-induced currents without affecting the action of H-89. These data suggest that the dual effects of enhancement and suppression of bilirubin on nAChR function may be ascribed to the action mechanism of positive allosteric modulation and direct blockade. Thus, suppression of sympathetic ganglionic transmission through postganglionic nAChRs inhibition may partially contribute to the adverse cardiovascular effects in jaundiced patients.
Collapse
Affiliation(s)
- Chengmi Zhang
- 1] Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China [2] Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhenmeng Wang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Jing Dong
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ruirui Pan
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Haibo Qiu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Jinmin Zhang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Peng Zhang
- Department of Clinical Diagnosis, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Baier C, Franco D, Gallegos C, Mongiat L, Dionisio L, Bouzat C, Caviedes P, Barrantes F. Corticosterone affects the differentiation of a neuronal cerebral cortex-derived cell line through modulation of the nicotinic acetylcholine receptor. Neuroscience 2014; 274:369-82. [DOI: 10.1016/j.neuroscience.2014.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2013] [Revised: 04/29/2014] [Accepted: 05/24/2014] [Indexed: 11/27/2022]
|
7
|
Competitive Inhibition of the Nondepolarizing Muscle Relaxant Rocuronium on Nicotinic Acetylcholine Receptor Channels in the Rat Superior Cervical Ganglia. J Cardiovasc Pharmacol 2014; 63:428-33. [DOI: 10.1097/fjc.0000000000000063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
8
|
Toyohira Y, Ueno S, Tsutsui M, Itoh H, Sakai N, Saito N, Takahashi K, Yanagihara N. Stimulatory effects of the soy phytoestrogen genistein on noradrenaline transporter and serotonin transporter activity. Mol Nutr Food Res 2010; 54:516-24. [PMID: 20087855 DOI: 10.1002/mnfr.200900167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
We examined the effects of genistein, one of the major soy phytoestrogens, on the activity of noradrenaline transporter (NAT) and serotonin transporter. Treatment with genistein (10 nM-10 microM) for 20 min stimulated [(3)H]noradrenaline (NA) uptake by SK-N-SH cells. Genistein also stimulated [(3)H]NA uptake and [(3)H]serotonin uptake by NAT and serotonin transporter transiently transfected COS-7 cells, respectively. Kinetics analysis of the effect of genistein on NAT activity in NAT-transfected COS-7 cells revealed that genistein significantly increased the maximal velocity of NA transport with little or no change in the affinity. Scatchard analysis of [(3)H]nisoxetine binding to NAT-transfected COS-7 cells showed that genistein increased the maximal binding without altering the dissociation constant. Although genistein is also known to be an inhibitor of tyrosine kinases, daidzein, another soy phytoestrogen and an inactive genistein analogue against tyrosine kinases, had little effect on [(3)H]NA uptake by SK-N-SH cells. The stimulatory effects on NAT activity were observed by treatment of tyrphostin 25, an inhibitor of epidermal growth factor receptor tyrosine kinase, whereas orthovanadate, a protein tyrosine phosphatase inhibitor, suppressed [(3)H]NA uptake by NAT-transfected COS-7 cells. These findings suggest that genistein up-regulates the activity of neuronal monoamine transporters probably through processes involving protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Yumiko Toyohira
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Yahatanishiku, Kitakyushu, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen Y, Cui Y, Lin JW, Xiang QL, Liu WF, Wang TH. Modulatory role of estradiol in nicotinic antinociception in adult female rats. Life Sci 2009; 85:91-6. [DOI: 10.1016/j.lfs.2009.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
|
10
|
Martinez-Ferrer M, Iturregui JM, Uwamariya C, Starkman J, Sharif-Afshar AR, Suzuki K, Visedsindh W, Matusik RJ, Dmochowski RR, Bhowmick NA. Role of nicotinic and estrogen signaling during experimental acute and chronic bladder inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 172:59-67. [PMID: 18079438 DOI: 10.2353/ajpath.2008.070529] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
Inflammation is a physiological process that characterizes many bladder diseases. We hypothesized that nicotinic and estrogen signaling could down-regulate bladder inflammation. Cyclophosphamide was used to induce acute and chronic bladder inflammation. Changes in bladder inflammation were measured histologically and by inflammatory gene expression. Antagonizing nicotinic signaling with mecamylamine further aggravated acute and chronic inflammatory changes resulting from cyclophosphamide treatment. Estrogen and nicotinic signaling independently attenuated acute bladder inflammation by decreasing neutrophil recruitment and down-regulating elevated lipocalin-2 and cathepsin D expression. However, the combined signaling by the estrogen and nicotinic pathways, as measured by macrophage infiltration and up-regulation of interleukin-6 expression in the bladder, synergistically reduced chronic bladder inflammation. The elevated expression of p65 nuclear localization in bladders treated with cyclophosphamide or cyclophosphamide with mecamylamine suggested nuclear factor-kappa B activation in the chronic inflammatory process. The complementary treatment of 17 beta-estradiol and the nicotinic agonist anabasine resulted in the translocation of p65 to the cytoplasm, again greater than either alone. Activation of nuclear factor-kappaB can result in macrophage activation and/or elevation in epithelial proliferation. These data suggest that 17 beta-estradiol and anabasine reduce chronic bladder inflammation through reduction of nuclear translocation of p65 to suppress cytokine expression.
Collapse
Affiliation(s)
- Magaly Martinez-Ferrer
- Department of Urologic Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University, A-1302 Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chakraborti A, Gulati K, Ray A. Estrogen Actions on Brain and Behavior: Recent Insights and Future Challenges. Rev Neurosci 2007; 18:395-416. [DOI: 10.1515/revneuro.2007.18.5.395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
12
|
Joseph V, Doan VD, Morency CE, Lajeunesse Y, Bairam A. Expression of sex-steroid receptors and steroidogenic enzymes in the carotid body of adult and newborn male rats. Brain Res 2006; 1073-1074:71-82. [PMID: 16443195 DOI: 10.1016/j.brainres.2005.12.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2005] [Revised: 12/12/2005] [Accepted: 12/15/2005] [Indexed: 02/04/2023]
Abstract
This study describes the localization and pattern of expression of estradiol and progesterone receptors as well as key enzymes for steroid synthesis (i.e. P450 side-chain-cleavage--P450scc, and P450 aromatase--P450Aro) in the carotid body (CB) and superior cervical ganglion (SCG) of adult, newborn and late fetal male rats, using immunohistochemistry, Western blot and real-time RT-PCR. Our results show a constitutive expression of the beta estradiol receptor (Erbeta) and the 80 kDa and 60 kDa progesterone receptors (PR-A and PR-C) isoforms in the CB, while in the SCG Eralpha, Erbeta, PR-A and PR-C are expressed. While P450Aro staining was negative, P450scc staining was strong both in the SCG and CB. In late fetal and newborn rats, Eralpha was not detected in the CB or SCG, but a slight staining appeared for P450 aromatase in the CB, and to a lesser extent in SCG. P450scc was strongly expressed in CB and SCG of late fetal and newborn rats. We conclude that the carotid body shows a constitutive expression of Erbeta and PR and may be able to synthesize steroids, including estradiol during late fetal life.
Collapse
MESH Headings
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Aromatase/metabolism
- Blotting, Western/methods
- Carotid Body/growth & development
- Carotid Body/metabolism
- Cholesterol Side-Chain Cleavage Enzyme/metabolism
- Cytochrome P-450 Enzyme System/metabolism
- Gene Expression Regulation, Developmental/physiology
- Immunohistochemistry/methods
- Male
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Estradiol/genetics
- Receptors, Estradiol/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St-François d'Assise, 10 rue de l'Espinay, Quebec (QC), Canada G1L 3L5.
| | | | | | | | | |
Collapse
|
13
|
Chen L, Sokabe M. Presynaptic modulation of synaptic transmission by pregnenolone sulfate as studied by optical recordings. J Neurophysiol 2005; 94:4131-44. [PMID: 15972828 DOI: 10.1152/jn.00755.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
The effects of pregnenolone sulfate (PREGS), a putative neurosteroid, on the transmission of perforant path-granule cell synapses were investigated with an optical recording technique in rat hippocampal slices stained with voltage-sensitive dyes. Application of PREGS to the bath solution resulted in an acute augmentation of EPSP in a dose-dependent manner. The PREGS effect was dependent on the extracellular Ca(2+) concentration ([Ca(2+)](o)), but independent of NMDA receptor activation. PREGS caused a decrease in paired-pulse facilitation, which implies that PREGS positively modulates presynaptic neurotransmitter releases. Firmer support for this mechanism was that PREGS augmented the synaptically induced glial depolarization (SIGD) that reflects the activity of electrogenic glutamate transporters in glial cells during the uptake of released glutamate. The selective alpha7nAChR antagonist alpha-BGT or MLA prevented the SIGD increase by PREGS. Furthermore DMXB, a selective alpha7nAChR agonist, mimicked the PREGS effect on SIGD and antagonized the effect of PREGS. The presynaptic effect of PREGS was partially attenuated by the L-type Ca(2+) channel (VGCC) blocker nifedipine. Based on these findings, we proposed a novel mechanism underlying the facilitated synaptic transmission by PREGS: this neurosteroid sensitizes presynaptic alpha7nAChR that is followed by an activation of L-type VGCC to increase the presynaptic glutamate release.
Collapse
Affiliation(s)
- Ling Chen
- International Cooperative Research Project/Solution Oriented Research for Science and Technology Cell Mechanosensing, Japan Science and Technology Agency, Nagoya
| | | |
Collapse
|
14
|
Woo KC, Park YS, Jun DJ, Lim JO, Baek WY, Suh BS, Kim KT. Phytoestrogen Cimicifugoside-Mediated Inhibition of Catecholamine Secretion by Blocking Nicotinic Acetylcholine Receptor in Bovine Adrenal Chromaffin Cells. J Pharmacol Exp Ther 2004; 309:641-9. [PMID: 14757852 DOI: 10.1124/jpet.103.062331] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of the phytoestrogen cimicifugoside, one of the pharmacologically active ingredients of the medicinal plant Cimicifuga racemosa (black cohosh) that has been used to treat many kinds of neuronal and menopausal symptoms, such as arthritis, menopausal depression, and nerve pain. Cimicifugoside inhibited calcium increase induced by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), a nicotinic acetylcholine receptor (nAChR) agonist in bovine adrenal chromaffin cells with a half-maximal inhibitory concentration (IC(50)) of 18 +/- 2 microM. In contrast, cimicifugoside did not affect the calcium increases evoked by high K(+), veratridine, and bradykinin. The DMPP-induced sodium increase was also inhibited by cimicifugoside with an IC(50) of 2 +/- 0.3 microM, suggesting that the activity of nAChRs is inhibited by cimicifugoside. Cimicifugoside did not affect the KCl-induced secretion but markedly inhibited the DMPP-induced catecholamine secretion that was monitored by carbon-fiber amperometry in real time and high-performance liquid chromatography through electrochemical detection. The results suggest that cimicifugoside selectively inhibits nAChR-mediated response in bovine chromaffin cells.
Collapse
Affiliation(s)
- Kyung-Chul Woo
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Arias HR, Kem WR, Trudell JR, Blanton MP. Unique general anesthetic binding sites within distinct conformational states of the nicotinic acetylcholine receptor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:1-50. [PMID: 12785284 DOI: 10.1016/s0074-7742(03)54002-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
General anesthesia is a complex behavioral state provoked by the pharmacological action of a broad range of structurally different hydrophobic molecules called general anesthetics (GAs) on receptor members of the genetically linked ligand-gated ion channel (LGIC) superfamily. This superfamily includes nicotinic acetylcholine (AChRs), type A and C gamma-aminobutyric acid (GABAAR and GABACR), glycine (GlyR), and type 3 5-hydroxytryptamine (5-HT3R) receptors. This review focuses on recent advances in the localization of GA binding sites on conformationally and compositionally distinct AChRs. The experimental evidence outlined in this review suggests that: 1. Several neuronal-type AChRs might be targets for the pharmacological action of distinct GAs. 2. The molecular components of a specific GA binding site on a certain receptor subtype are different from the structural determinants of the locus for the same GA on a different receptor subtype. 3. There are unique binding sites for distinct GAs in the same receptor protein. 4. A GA can activate, potentiate, or inhibit an ion channel, indicating the existence of more than one binding site for the same GA. 5. The affinity of a specific GA depends on the conformational state of the receptor. 6. GAs inhibition channels by at least two mechanisms, an open-channel-blocking and/or an allosteric mechanism. 7. Certain GAs may inhibit AChR function by competing for the agonist binding sites or by augmenting the desensitization rate.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | | | | | | |
Collapse
|
16
|
Toyohira Y, Utsunomiya K, Ueno S, Minami K, Uezono Y, Yoshimura R, Tsutsui M, Izumi F, Yanagihara N. Inhibition of the norepinephrine transporter function in cultured bovine adrenal medullary cells by bisphenol A. Biochem Pharmacol 2003; 65:2049-54. [PMID: 12787885 DOI: 10.1016/s0006-2952(03)00159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
We report here the effects of an environmental estrogen, bisphenol A, on norepinephrine (NE) transporter function in cultured bovine adrenal medullary cells. The effects of bisphenol A were compared to those of 17beta-estradiol. Bisphenol A significantly inhibited [3H]NE uptake by the cells in a concentration-dependent manner (1-100 microM). Kinetic analysis revealed that bisphenol A, as well as 17beta-estradiol, noncompetitively inhibited [3H]NE uptake. Bisphenol A and 17beta-estradiol inhibited the specific binding of [3H]desipramine to plasma membranes isolated from bovine adrenal medulla. As shown by Scatchard analysis of [3H]desipramine binding, bisphenol A increased the dissociation constant (K(d)) and decreased the maximal binding (B(max)), indicating a mixed type of inhibition. 17beta-Estradiol increased the K(d) without altering the B(max), thereby indicating competitive inhibition. The present findings suggest that bisphenol A inhibits the function of the NE transporter by acting on a site different from that of 17beta-estradiol in the adrenal medulla and probably in the brain noradrenergic neurons.
Collapse
Affiliation(s)
- Yumiko Toyohira
- Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kudo K, Tachikawa E, Kashimoto T. Inhibition by pregnenolone sulfate of nicotinic acetylcholine response in adrenal chromaffin cells. Eur J Pharmacol 2002; 456:19-27. [PMID: 12450565 DOI: 10.1016/s0014-2999(02)02623-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
To evaluate whether pregnenolone sulfate, an abundant neurosteroid in the brain, modulates nicotinic receptor-mediated responses, the effect of pregnenolone sulfate on acetylcholine-induced catecholamine secretion was investigated in cultured bovine adrenal chromaffin cells. Pregnenolone sulfate inhibited acetylcholine-induced catecholamine secretion (IC(50): 27 microM). In addition, pregnenolone sulfate inhibited acetylcholine-induced Na(+) (IC(50): 12 microM) and Ca(2+) (IC(50): 20 microM) influxes. However, pregnenolone sulfate did not inhibit either catecholamine secretion or Ca(2+) influx stimulated by high K(+). Binding of [3H]nicotine to nicotinic receptors was not altered by pregnenolone sulfate. The inhibitory effect on the acetylcholine-induced secretion was insurmountable by increasing acetylcholine concentrations, but was enhanced by decreasing external Na(+) concentrations. These results suggest strongly that pregnenolone sulfate noncompetitively inhibits nicotinic receptor-operated ion channels, thereby suppressing Na(+) influx through the channels and, consequently, attenuates both Ca(2+) influx and catecholamine secretion. Our results further indicate that pregnenolone sulfate may modulate nicotinic receptor-mediated responses in the brain.
Collapse
Affiliation(s)
- Kenzo Kudo
- Department of Pharmacology, School of Medicine, Iwate Medical University, Morioka, Japan.
| | | | | |
Collapse
|
18
|
Uchida S, Noda E, Kakazu Y, Mizoguchi Y, Akaike N, Nabekura J. Allopregnanolone enhancement of GABAergic transmission in rat medial preoptic area neurons. Am J Physiol Endocrinol Metab 2002; 283:E1257-65. [PMID: 12424107 DOI: 10.1152/ajpendo.00049.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Gamma-aminobutyric acid (GABA)-mediated transmission in the medial preoptic area (MPOA) of the hypothalamus plays an important role in functions such as sex steroid hormone dynamics and control of body temperature. The action of allopregnanolone, the primary metabolite of progesterone, on GABAergic transmission was investigated by employing patch clamp whole cell recording on acutely dissociated rat MPOA neurons with the functional connection of presynaptic terminals. Allopregnanolone enhanced spontaneous GABA release on the MPOA neurons and induced prolonged decay of miniature GABAergic-inhibitory postsynaptic currents (mIPSCs). The facilitation of GABA release from the presynaptic terminals by allopregnanolone disappeared in Ca2+-free extracellular solution. The presynaptic action of this neurosteroid was also blocked by bumetanide, a blocker of cation-Cl- cotransporters, and by removal of extracellular Na+. The results suggest that allopregnanolone enhances GABAergic transmission at the MPOA neurons by pre- and postsynaptic mechanisms. The enhancement of GABA release by allopregnanolone might require a high Cl- concentration in the presynaptic terminal maintained by Na+-dependent, bumetanide-sensitive mechanisms (e.g., Na+-K+-Cl- cotransporter) and might be mediated by Ca2+ influx into presynaptic terminal.
Collapse
Affiliation(s)
- Soko Uchida
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812 - 8582, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Garbus I, Roccamo AM, Barrantes FJ. Identification of threonine 422 in transmembrane domain alpha M4 of the nicotinic acetylcholine receptor as a possible site of interaction with hydrocortisone. Neuropharmacology 2002; 43:65-73. [PMID: 12213260 DOI: 10.1016/s0028-3908(02)00068-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
Abstract
The modulatory effects exerted by the glucocorticoid hydrocortisone (HC) on the nicotinic acetylcholine receptor (AChR) were studied in mutants of the alpha subunit M4 transmembrane region. Based on the photoaffinity labeling of alpha M4 412 with the steroid promegestone this position was mutated to different residues to explore the properties of side-chain volume, hydrophobicity, and charge on AChR-steroid interactions. All mutants showed channel kinetics indistinguishable from those of the wild-type AChR, both in the absence and presence of HC (200 and 400 microM), in single-channel recordings at different acetylcholine (ACh) concentrations. An alanine-substituted quadruple mutant of four putative lipid-exposed residues in alpha M4 (L411, M415, C418 and T422) exhibited less inhibition by HC than that observed in wild-type AChR. When we dissected the quadruple mutant into four individual alanine-substituted receptors, we found that the T422 mutant AChR behaved like the quadruple mutant, whereas the other three were indistinguishable from the wild-type. We conclude that T422, a residue close to the extracellular-facing membrane hemilayer in alpha M4, has direct bearing on the changes in HC sensitivity and propose its involvement in the steroid-AChR interaction site.
Collapse
Affiliation(s)
- Ingrid Garbus
- UNESCO Chair of Biophysics & Molecular Neurobiology and lnstituto de lnvestigaciones Bioquímicas, Universidad National del Sur-CONICET, CC 857, F8000FWB, Bahía Blanca, Argentina
| | | | | |
Collapse
|
20
|
Takashima K, Kawasaki S, Kimura S, Fujita R, Sasaki K. Blockade of ionotropic receptor responses by progesterone in the ganglion cells of Aplysia. Neurosci Res 2002; 43:119-25. [PMID: 12067747 DOI: 10.1016/s0168-0102(02)00024-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Abstract
To compare nongenomic effects of progesterone on various receptor responses of neurons, Aplysia ganglion cells were pretreated with 30 microM progesterone for 5 min and various receptor responses were tested using a conventional voltage-clamp method. Progesterone reduced nicotinic receptor-activated Na(+)-currents, nicotinic receptor-activated Cl(-)-currents, gamma-aminobutyric acid receptor-activated Cl(-)-currents, and dopamine receptor-activated Na(+)-currents. These depressant effects are similar at two different agonist concentrations. On the other hand, progesterone affected neither muscarinic receptor-activated K(+)-currents nor dopamine receptor-activated K(+)-currents. The former four types of receptors are known to be ionotropic while the latter two types of receptors are known to be metabotropic. Therefore, progesterone selectively inhibited all the types of ionotropic receptor responses, presumably in a noncompetitive manner.
Collapse
Affiliation(s)
- Koichiro Takashima
- Department of Physiology, School of Medicine, Iwate Medical University, Morioka, Japan.
| | | | | | | | | |
Collapse
|
21
|
Machado JD, Alonso C, Morales A, Gómez JF, Borges R. Nongenomic regulation of the kinetics of exocytosis by estrogens. J Pharmacol Exp Ther 2002; 301:631-7. [PMID: 11961067 DOI: 10.1124/jpet.301.2.631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The role of nongenomic action of estrogens on elicited catecholamine secretion and exocytosis kinetics was studied in perfused rat adrenals and in cultured bovine chromaffin cells. 17beta-Estradiol as well as the estrogen receptor modulators raloxifene and LY117018, but not 17alpha-estradiol, inhibited at the micromolar range the catecholamine output elicited by acetylcholine or high potassium. However, these agents failed to modify the secretion elicited by high Ca(2+) in glands treated with the ionophore A-23187 (calcimycin), suggesting that estrogens did not directly act on the secretory machinery. At the single cell level, estrogens modified the kinetics of exocytosis at nanomolar range. All of the drugs tested except 17alpha-estradiol produced a profound slowing down of the exocytosis as measured by amperometry. LY117018 also reduced the granule content of catecholamines. 17beta-Estradiol reduced the intracellular free Ca(2+) but only at micromolar concentrations, whereas nanomolar concentrations increased the cAMP levels. These effects were reproduced with the nonpermeable drug 17beta-estradiol-horseradish peroxidase and antagonized with nanomolar concentrations of the antiestrogen ICI 182,780 (fulvestrant). Our data suggest the presence of membrane sites that regulate both the exocytotic phenomenon and the total catecholamine release with high and low affinity, respectively.
Collapse
Affiliation(s)
- José D Machado
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
22
|
Nakazawa K, Ohno Y. Modulation by estrogens and xenoestrogens of recombinant human neuronal nicotinic receptors. Eur J Pharmacol 2001; 430:175-83. [PMID: 11711029 DOI: 10.1016/s0014-2999(01)01389-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
Abstract
The effects of estrogens and xenoestrogens on human neuronal nicotinic acetylcholine receptor/channels were examined by expressing recombinant channels in Xenopus oocytes. When functional channels were expressed with alpha3 and beta4 subunits, estrogens (17beta-estradiol, 17alpha-estradiol, 17alpha-ethynylestradiol and diethylstilbestrol) and xenoestrogens (bisphenol A, p-nonylphenol and p-octylphenol) inhibited an ionic current activated by acetylcholine at concentrations up to 100 microM. When the subunit combination was changed to alpha4beta2, diethystilbestrol and the xenoestrogens inhibited the acetylcholine-activated current, but 17beta-estradiol or 17alpha-estradiol did not. For 17alpha-ethynylestradiol, the current through the alpha4beta2 receptor/channel was inhibited at 1 microM, but it was markedly enhanced at 10 and 100 microM. Tamoxifen (10 microM), an antiestrogen, itself inhibited the acetylcholine-activated current but did not antagonize the current modulations induced by the estrogens and the xenoestrogens. These and additional results suggest that human neuronal nicotinic acetylcholine receptors are the targets of non-genomic actions of estrogens and xenoestrogens.
Collapse
Affiliation(s)
- K Nakazawa
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, 158-8501, Tokyo, Japan.
| | | |
Collapse
|
23
|
Shi LJ, He HY, Liu LA, Wang CA. Rapid nongenomic effect of corticosterone on neuronal nicotinic acetylcholine receptor in PC12 cells. Arch Biochem Biophys 2001; 394:145-50. [PMID: 11594726 DOI: 10.1006/abbi.2001.2519] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
The effects of corticosterone, a natural glucocorticoid of rat, on the acetylcholine (ACh)-induced current (I(ACh)) were studied in pheochromocytoma (PC12) cells by using whole-cell clamp technique. The I(ACh) proved to be generated through neuronal nicotinic receptor. ACh (30 microM) induced an inward current at a holding potential of -80 mV. When cells were preincubated with corticosterone (0.1-100 microM) for 4 min, an inhibitory effect of corticosterone on the peak of I(ACh) was found. This effect was reversible, concentration-dependent, and voltage-independent. Intracellular application of corticosterone through the patch electrode did not affect the I(ACh). Extracellular application of 10 microM corticosterone neither shifted the dose-response curve of the peak I(ACh) to the right (dissociation constant (K(d)) = 16.5 microM) nor affected its coefficient (1.8) but inhibited the curve amplitudes by approximately 49% in the cells pretreated with corticosterone for 4 min. Bovine serum albumin-conjugated corticosterone (0.1-10 microM) had the inhibition similar to corticosterone. The inhibitor of transcription, actinomycin D (10 microM), and the protein synthesis inhibitor, cycloheximide (50 microM), had no effect on the inhibition induced by corticosterone on I(ACh). These results suggest that corticosterone has rapid inhibitory effect on I(ACh) in PC12 cells, which is mediated by a nongenomic mechanism. It indicates that corticosterone binds to the specific site on the outer cell membrane, probably on the neuronal nicotinic receptor-coupled channel, and inhibits the I(ACh) in a noncompetitive manner, thus controlling the immediate catecholamine release from the sympathetic cells.
Collapse
Affiliation(s)
- L J Shi
- Department of Physiology, Beijing Medical College of PLA, Beijing, 100071, China.
| | | | | | | |
Collapse
|
24
|
Ueno T, Ueno S, Kakazu Y, Akaike N, Nabekura J. Bidirectional modulation of P2X receptor-mediated response by divalent cations in rat dorsal motor nucleus of the vagus neurons. J Neurochem 2001; 78:1009-18. [PMID: 11553675 DOI: 10.1046/j.1471-4159.2001.00473.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
The modulatory effects of Zn(2+) and other divalent cations on the ATP-induced responses of preganglionic neurons acutely dissociated from the rat dorsal motor nucleus of the vagus (DMV) were examined using a nystatin-perforated patch technique under voltage-clamp. DMV neurons were identified by back-filling of DiI placed on the vagal bundle at the neck. Zn(2+) exerts a concentration-dependent effect on P2X receptor-mediated current (I(ATP)): a potentiation by low concentrations of Zn(2+) (< or = 50 microM) and an inhibition by high concentrations (> 50 microM). Inhibition of the ATP response was associated with a prolongation of the rising phase of I(ATP). Cu(2+) mimicked Zn(2+) regarding the biphasic modulation of I(ATP). On the other hand, Ni(2+) potentiated, but failed to inhibit, the ATP response even at a concentration of 3 mM. Quantitative RT-PCR revealed the similarity of P2X(2) mRNA expression between the DMV and superior cervical ganglion (SCG) but not in the dorsal root ganglion (DRG) and hypoglossal nucleus (XII). The results from the electrophysiological and molecular approaches suggest that functional P2X receptors expressed in DMV neurons are characterized mainly by the P2X(2) and P2X(2/6) subtype. DMV neurons possess similar P2X receptor characteristics to SCG neurons.
Collapse
Affiliation(s)
- T Ueno
- Department of Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
25
|
Sofuoglu M, Babb DA, Hatsukami DK. Progesterone treatment during the early follicular phase of the menstrual cycle: effects on smoking behavior in women. Pharmacol Biochem Behav 2001; 69:299-304. [PMID: 11420098 DOI: 10.1016/s0091-3057(01)00527-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The goals of this study were (1) to examine the feasibility of administering progesterone to women during the early follicular phase when the endogenous estradiol and progesterone levels are low, and (2) to investigate the effects of oral progesterone treatment on smoking behavior in female smokers. Twelve subjects had two experimental sessions, within 3-9 days after the beginning of their menses. In each experimental session, subjects received a single 200-mg dose of progesterone or placebo, orally. Two and a half hours after the medication treatment, subjects were assessed for subjective response to two puffs of a cigarette and then started the self-administration period in which they had the option to exchange their token for two puffs of cigarette, 15 min apart. Subjects had low levels of estradiol and progesterone before the first and second sessions. Plasma progesterone levels peaked in 2 h following progesterone treatment. Progesterone treatment attenuated the craving for and subjective effects from smoking. Under progesterone treatment, there was a trend for decreased smoking behavior. These preliminary results suggest that the early follicular phase of the menstrual cycle may be a useful interval to investigate the effects of exogenous progesterone in female smokers. The effects of progesterone on nicotine dependence need to be studied further.
Collapse
Affiliation(s)
- M Sofuoglu
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.
| | | | | |
Collapse
|
26
|
Abstract
We investigated the effects of 17beta-estradiol, an estrogen, on [(3)H]norepinephrine ([(3)H]NE) secretion in PC12 cells. Pretreatment with 17beta-estradiol reduced 70 mM K(+)-induced [(3)H]NE secretion in a concentration-dependent manner with a half-maximal inhibitory concentration (IC(50)) of 2 +/- 1 microM. The 70 mM K(+)-induced cytosolic free Ca(2+) concentration ([Ca(2+)](i)) rise was also reduced when the cells were treated with 17beta-estradiol (IC(50) = 15 +/- 2 microM). Studies with voltage-sensitive calcium channel (VSCC) antagonists such as nifedipine and omega-conotoxin GVIA revealed that both L- and N-type VSCCs were affected by 17beta-estradiol treatment. The 17beta-estradiol effect was not changed by pretreatment of the cells with actinomycin D and cycloheximide for 5 h. In addition, treatment with pertussis or cholera toxin did not affect the inhibitory effect of 17beta-estradiol. 17beta-Estradiol also inhibited the ATP-induced [(3)H]NE secretion and [Ca(2+)](i) rise. In PC12 cells, the ATP-induced [Ca(2+)](i) rise is known to occur through P2X(2) receptors, the P2Y(2)-mediated phospholipase C (PLC) pathway, and VSCCs. 17beta-Estradiol pretreatment during complete inhibition of the PLC pathway and VSCCs inhibited the ATP-induced [Ca(2+)](i) rise. Our results suggest that 17beta-estradiol inhibits catecholamine secretion by inhibiting L- and N-type Ca(2+) channels and P2X(2) receptors in a nongenomic manner.
Collapse
Affiliation(s)
- Y J Kim
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | |
Collapse
|
27
|
Abstract
A number of epidemiological studies suggest that estrogen therapy is linked to a reduced risk of developing Alzheimer's disease (AD). The present study was conducted to evaluate the effect of 17beta-estradiol on beta-amyloid (Abeta)-induced toxicity and was performed in rat pheochromocytoma PC 12 cells by measuring the mitochondrial activity. 17Beta-estradiol (10(-5), 10(-6) and 10(-8) M) attenuated Abeta(25-35)-induced toxicity in PC 12 cells. The neuroprotective effect of 17beta-estradiol (10(-5) M) was prevented in the presence of the nicotinic antagonists methyllycaconitine (MLA) and mecamylamine, suggesting an interaction probably via the alpha7 nicotinic receptor subtype. Chronic treatment with 17beta-estradiol (10(-10)-10(-5) M) alone did not change the number of [3H]epibatidine binding sites in human neuroblastoma SH-SY5Y cells and rat PC 12 cells, but significantly prevented the enhanced [3H]epibatidine binding in nicotine-treated PC 12 cells. This study demonstrates that 17beta-estradiol exerts neuroprotective effects which might involve interaction with the alpha7 nicotinic receptor subtype.
Collapse
Affiliation(s)
- A L Svensson
- NEUROTEC, Karolinska Institutet, Department of Clinical Neuroscience, Occupational Therapy and Elderly Care Research, Huddinge University Hospital, Sweden
| | | |
Collapse
|
28
|
Zinder O, Dar DE. Neuroactive steroids: their mechanism of action and their function in the stress response. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:181-8. [PMID: 10606819 DOI: 10.1046/j.1365-201x.1999.00579.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Steroids are usually identified as genomic regulators, yet recently a body of evidence has accumulated demonstrating specific plasma membrane effects, as well as coordinative effects, of some steroids on both membrane and intracellular receptors. The resulting rapid (<1 min) modulation of cellular activity has strongly suggested a non-genomic, and possibly modulatory, role for certain steroid compounds, and dramatic effects on membranes of excitable as well as other tissues have been demonstrated. Steroid synthesis and metabolism have been shown to exist in the CNS, and the effects have been seen in both the central and peripheral nervous systems. The major groups of neuroactive steroids, and their metabolites, have been progesterone, deoxycorticosterone, and some androgens, notably dihydroxyepiandrosterone (DHEA). These compounds show increased concentrations both in blood and in the brain following stress and they have also been associated with anxiolytic effects and antiepileptic activity. In the periphery, some of these compounds show remarkable inhibitory effects on the secretion of catecholamines and other neurotransmitters. The mechanism for the majority of the effects of these steroids is via their effect on receptor-mediated binding to ligand-gated ion channels. Activation of the GABAA receptor complex, resulting in the opening of its central chloride channel, is the major target of the neuroactive steroids, resulting in re-polarization of the plasma membrane and inhibition of further neuronal firing. The anxiolytic, anti-convulsant and sedative-hypnotic actions of these neuroactive steroids have resulted in their being used as therapeutic agents for the treatment of anxiety, epilepsy, insomnia, and possibly for the alteration of pain thresholds.
Collapse
Affiliation(s)
- O Zinder
- Department of Clinical Biochemistry, Rambam Medical Center, and the Technion, Israel Institute of Technology, Faculty of Medicine, Haifa, Israel
| | | |
Collapse
|