1
|
Huang TH, Lai MC, Chen YS, Huang CW. The Roles of Glutamate Receptors and Their Antagonists in Status Epilepticus, Refractory Status Epilepticus, and Super-Refractory Status Epilepticus. Biomedicines 2023; 11:biomedicines11030686. [PMID: 36979664 PMCID: PMC10045490 DOI: 10.3390/biomedicines11030686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Status epilepticus (SE) is a neurological emergency with a high mortality rate. When compared to chronic epilepsy, it is distinguished by the durability of seizures and frequent resistance to benzodiazepine (BZD). The Receptor Trafficking Hypothesis, which suggests that the downregulation of γ-Aminobutyric acid type A (GABAA) receptors, and upregulation of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors play major roles in the establishment of SE is the most widely accepted hypothesis underlying BZD resistance. NMDA and AMPA are ionotropic glutamate receptor families that have important excitatory roles in the central nervous system (CNS). They are both essential in maintaining the normal function of the brain and are involved in a variety of neuropsychiatric diseases, including epilepsy. Based on animal and human studies, antagonists of NMDA and AMPA receptors have a significant impact in ending SE; albeit most of them are not yet approved to be in clinically therapeutic guidelines, due to their psychomimetic adverse effects. Although there is still a dearth of randomized, prospective research, NMDA antagonists such as ketamine, magnesium sulfate, and the AMPA antagonist, perampanel, are regarded to be reasonable optional adjuvant therapies in controlling SE, refractory SE (RSE) or super-refractory SE (SRSE), though there are still a lack of randomized, prospective studies. This review seeks to summarize and update knowledge on the SE development hypothesis, as well as clinical trials using NMDA and AMPA antagonists in animal and human studies of SE investigations.
Collapse
Affiliation(s)
- Tzu-Hsin Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
- Zhengxin Neurology & Rehabilitation Center, Tainan 70459, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Yu-Shiue Chen
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70142, Taiwan
| |
Collapse
|
2
|
Li SH, Abd-Elrahman KS, Ferguson SS. Targeting mGluR2/3 for treatment of neurodegenerative and neuropsychiatric diseases. Pharmacol Ther 2022; 239:108275. [DOI: 10.1016/j.pharmthera.2022.108275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
|
3
|
Restored Fyn Levels in Huntington’s Disease Contributes to Enhanced Synaptic GluN2B-Composed NMDA Receptors and CREB Activity. Cells 2022; 11:cells11193063. [PMID: 36231023 PMCID: PMC9563007 DOI: 10.3390/cells11193063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are important postsynaptic receptors that contribute to normal synaptic function and cell survival; however, when overactivated, as in Huntington’s disease (HD), NMDARs cause excitotoxicity. HD-affected striatal neurons show altered NMDAR currents and augmented ratio of surface to internal GluN2B-containing NMDARs, with augmented accumulation at extrasynaptic sites. Fyn protein is a member of the Src kinase family (SKF) with an important role in NMDARs phosphorylation and synaptic localization and function; recently, we demonstrated that Fyn is reduced in several HD models. Thus, in this study, we aimed to explore the impact of HD-mediated altered Fyn levels at post-synaptic density (PSD), and their role in distorted NMDARs function and localization, and intracellular neuroprotective pathways in YAC128 mouse primary striatal neurons. We show that reduced synaptic Fyn levels and activity in HD mouse striatal neurons is related to decreased phosphorylation of synaptic GluN2B-composed NMDARs; this occurs concomitantly with augmented extrasynaptic NMDARs activity and currents and reduced cAMP response element-binding protein (CREB) activation, along with induction of cell death pathways. Importantly, expression of a constitutive active form of SKF reestablishes NMDARs localization, phosphorylation, and function at PSD in YAC128 mouse neurons. Enhanced SKF levels and activity also promotes CREB activation and reduces caspase-3 activation in YAC128 mouse striatal neurons. This work supports, for the first time, a relevant role for Fyn protein in PSD modulation, controlling NMDARs synaptic function in HD, and favoring neuroprotective pathways and cell survival. In this respect, Fyn Tyr kinase constitutes an important potential HD therapeutic target directly acting at PSD.
Collapse
|
4
|
Martinez-Rojas VA, Juarez-Hernandez LJ, Musio C. Ion channels and neuronal excitability in polyglutamine neurodegenerative diseases. Biomol Concepts 2022; 13:183-199. [DOI: 10.1515/bmc-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Polyglutamine (polyQ) diseases are a family composed of nine neurodegenerative inherited disorders (NDDs) caused by pathological expansions of cytosine-adenine-guanine (CAG) trinucleotide repeats which encode a polyQ tract in the corresponding proteins. CAG polyQ repeat expansions produce neurodegeneration via multiple downstream mechanisms; among those the neuronal activity underlying the ion channels is affected directly by specific channelopathies or indirectly by secondary dysregulation. In both cases, the altered excitability underlies to gain- or loss-of-function pathological effects. Here we summarize the repertoire of ion channels in polyQ NDDs emphasizing the biophysical features of neuronal excitability and their pathogenic role. The aim of this review is to point out the value of a deeper understanding of those functional mechanisms and processes as crucial elements for the designing and targeting of novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir A. Martinez-Rojas
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Leon J. Juarez-Hernandez
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| |
Collapse
|
5
|
Oikonomou KD, Donzis EJ, Bui MTN, Cepeda C, Levine MS. Calcium dysregulation and compensation in cortical pyramidal neurons of the R6/2 mouse model of Huntington's disease. J Neurophysiol 2021; 126:1159-1171. [PMID: 34469694 DOI: 10.1152/jn.00181.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a fatal, hereditary neurodegenerative disorder that predominantly affects striatal medium-sized spiny neurons and cortical pyramidal neurons (CPNs). It has been proposed that perturbations in Ca2+ homeostasis could play a role in CPN alterations. To test this hypothesis, we used the R6/2 mouse model of juvenile HD at different stages of disease progression; presymptomatic, early symptomatic, and late symptomatic. We combined whole-cell patch-clamp recordings of layer 2/3 CPNs with two-photon laser scanning microscopy to image somatic and dendritic Ca2+ transients associated with evoked action potentials (APs). We found that the amplitude of AP-induced Ca2+ transients recorded at the somata of CPNs was significantly reduced in presymptomatic and late symptomatic R6/2 mice compared with wild-type (WT) littermates. However, reduced amplitudes were compensated by increases in decay times, so that Ca2+ transient areas were similar between genotypes. AP-induced Ca2+ transients in CPN proximal dendrites were variable and differences did not reach statistical significance, except for reduced areas in the late symptomatic group. In late symptomatic mice, a specific store-operated Ca2+ channel antagonist, EVP4593, reduced somatic Ca2+ transient amplitude similarly in WT and R6/2 CPNs. In contrast, dantrolene, a ryanodine receptor (RyR) antagonist, and nifedipine, an L-type Ca2+ channel blocker, significantly reduced both somatic Ca2+ transient amplitude and area in R6/2 but not WT CPNs. These findings demonstrate that perturbations of Ca2+ homeostasis and compensation occur in CPNs before and after the onset of overt symptoms, and suggest RyRs and L-type Ca2+ channels as potential targets for therapeutic intervention.NEW & NOTEWORTHY We used two-photon microscopy to examine calcium influx induced by action potentials in cortical pyramidal neurons from a mouse model of Huntington's disease (HD), the R6/2. The amplitude of somatic calcium transients was reduced in R6/2 mice compared with controls. This reduction was compensated by increased decay times, which could lead to reduced calcium buffering capacity. L-type calcium channel and ryanodine receptor blockers reduced calcium transient area in HD neurons, suggesting new therapeutic avenues.
Collapse
Affiliation(s)
- Katerina D Oikonomou
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Elissa J Donzis
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Minh T N Bui
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Carlos Cepeda
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Michael S Levine
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| |
Collapse
|
6
|
Mitostasis, Calcium and Free Radicals in Health, Aging and Neurodegeneration. Biomolecules 2021; 11:biom11071012. [PMID: 34356637 PMCID: PMC8301949 DOI: 10.3390/biom11071012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria play key roles in ATP supply, calcium homeostasis, redox balance control and apoptosis, which in neurons are fundamental for neurotransmission and to allow synaptic plasticity. Their functional integrity is maintained by mitostasis, a process that involves mitochondrial transport, anchoring, fusion and fission processes regulated by different signaling pathways but mainly by the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α also favors Ca2+ homeostasis, reduces oxidative stress, modulates inflammatory processes and mobilizes mitochondria to where they are needed. To achieve their functions, mitochondria are tightly connected to the endoplasmic reticulum (ER) through specialized structures of the ER termed mitochondria-associated membranes (MAMs), which facilitate the communication between these two organelles mainly to aim Ca2+ buffering. Alterations in mitochondrial activity enhance reactive oxygen species (ROS) production, disturbing the physiological metabolism and causing cell damage. Furthermore, cytosolic Ca2+ overload results in an increase in mitochondrial Ca2+, resulting in mitochondrial dysfunction and the induction of mitochondrial permeability transition pore (mPTP) opening, leading to mitochondrial swelling and cell death through apoptosis as demonstrated in several neuropathologies. In summary, mitochondrial homeostasis is critical to maintain neuronal function; in fact, their regulation aims to improve neuronal viability and to protect against aging and neurodegenerative diseases.
Collapse
|
7
|
Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci 2021; 22:ijms22010403. [PMID: 33401674 PMCID: PMC7795784 DOI: 10.3390/ijms22010403] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.
Collapse
|
8
|
Czeredys M. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Front Cell Dev Biol 2020; 8:611735. [PMID: 33425919 PMCID: PMC7785827 DOI: 10.3389/fcell.2020.611735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric problems. It is caused by a polyglutamine expansion in the huntingtin protein that leads to striatal degeneration via the transcriptional dysregulation of several genes, including genes that are involved in the calcium (Ca2+) signalosome. Recent research has shown that one of the major Ca2+ signaling pathways, store-operated Ca2+ entry (SOCE), is significantly elevated in HD. SOCE refers to Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The dysregulation of Ca2+ homeostasis is postulated to be a cause of HD progression because the SOCE pathway is indirectly and abnormally activated by mutant huntingtin (HTT) in γ-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs) from the striatum in HD models before the first symptoms of the disease appear. The present review summarizes recent studies that revealed a relationship between HD pathology and elevations of SOCE in different models of HD, including YAC128 mice (a transgenic model of HD), cellular HD models, and induced pluripotent stem cell (iPSC)-based GABAergic medium spiny neurons (MSNs) that are obtained from adult HD patient fibroblasts. SOCE in MSNs was shown to be mediated by currents through at least two different channel groups, Ca2+ release-activated Ca2+ current (ICRAC) and store-operated Ca2+ current (ISOC), which are composed of stromal interaction molecule (STIM) proteins and Orai or transient receptor potential channel (TRPC) channels. Their role under physiological and pathological conditions in HD are discussed. The role of Huntingtin-associated protein 1 isoform A in elevations of SOCE in HD MSNs and potential compounds that may stabilize elevations of SOCE in HD are also summarized. Evidence is presented that shows that the dysregulation of molecular components of SOCE or pathways upstream of SOCE in HD MSN neurons is a hallmark of HD, and these changes could lead to HD pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Glaser T, Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Bonfim Marques L, Ye Q, Ren WJ, Semyanov A, Illes P, Tang Y, Ulrich H. Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington's and Parkinson's Disease. Neurosci Bull 2020; 36:1299-1314. [PMID: 33026587 PMCID: PMC7674528 DOI: 10.1007/s12264-020-00582-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022] Open
Abstract
Huntington's (HD) and Parkinson's diseases (PD) are neurodegenerative disorders caused by the death of GABAergic and dopaminergic neurons in the basal ganglia leading to hyperkinetic and hypokinetic symptoms, respectively. We review here the participation of purinergic receptors through intracellular Ca2+ signaling in these neurodegenerative diseases. The adenosine A2A receptor stimulates striatopallidal GABAergic neurons, resulting in inhibitory actions on GABAergic neurons of the globus pallidus. A2A and dopamine D2 receptors form functional heteromeric complexes inducing allosteric inhibition, and A2A receptor activation results in motor inhibition. Furthermore, the A2A receptor physically and functionally interacts with glutamate receptors, mainly with the mGlu5 receptor subtype. This interaction facilitates glutamate release, resulting in NMDA glutamate receptor activation and an increase of Ca2+ influx. P2X7 receptor activation also promotes glutamate release and neuronal damage. Thus, modulation of purinergic receptor activity, such as A2A and P2X7 receptors, and subsequent aberrant Ca2+ signaling, might present interesting therapeutic potential for HD and PD.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Qing Ye
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
| | - Wen-Jing Ren
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
10
|
Buckingham SD, Mann HJ, Hearnden OK, Sattelle DB. Turning a Drug Target into a Drug Candidate: A New Paradigm for Neurological Drug Discovery? Bioessays 2020; 42:e2000011. [PMID: 32776366 DOI: 10.1002/bies.202000011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/26/2020] [Indexed: 11/11/2022]
Abstract
The conventional paradigm for developing new treatments for disease mainly involves either the discovery of new drug targets, or finding new, improved drugs for old targets. However, an ion channel found only in invertebrates offers the potential of a completely new paradigm in which an established drug target can be re-engineered to serve as a new candidate therapeutic agent. The L-glutamate-gated chloride channels (GluCls) of invertebrates are absent from vertebrate genomes, offering the opportunity to introduce this exogenous, inhibitory, L-glutamate receptor into vertebrate neuronal circuits either as a tool with which to study neural networks, or a candidate therapy. Epileptic seizures can involve L-glutamate-induced hyper-excitation and toxicity. Variant GluCls, with their inhibitory responses to L-glutamate, when engineered into human neurons, might counter the excitotoxic effects of excess L-glutamate. In reviewing recent studies on model organisms, it appears that this approach might offer a new paradigm for the development of candidate therapeutics for epilepsy.
Collapse
Affiliation(s)
- Steven D Buckingham
- School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London, E1 4NS, UK.,UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Harry-Jack Mann
- UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Olivia K Hearnden
- UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| | - David B Sattelle
- UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| |
Collapse
|
11
|
Miranda AS, Cardozo PL, Silva FR, de Souza JM, Olmo IG, Cruz JS, Gomez MV, Ribeiro FM, Vieira LB. Alterations of Calcium Channels in a Mouse Model of Huntington's Disease and Neuroprotection by Blockage of Ca V1 Channels. ASN Neuro 2020; 11:1759091419856811. [PMID: 31216184 PMCID: PMC6585245 DOI: 10.1177/1759091419856811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative autosomal dominant disorder, characterized by symptoms of involuntary movement of the body, loss of cognitive function, psychiatric disorder, leading inevitably to death. It has been previously described that higher levels of brain expression of Cav1 channels are involved in major neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Our results demonstrate that a bacterial artificial chromosome (BAC)-mediated transgenic mouse model (BACHD mice) at the age of 3 and 12 months exhibits significantly increased Cav1.2 protein levels in the cortex, as compared with wild-type littermates. Importantly, electrophysiological analyses confirm a significant increase in L-type Ca2+ currents and total Ca2+ current density in cortical neurons from BACHD mice. By using an in vitro assay to measure neuronal cell death, we were able to observe neuronal protection against glutamate toxicity after treatment with Cav1 blockers, in wild-type and, more importantly, in BACHD neurons. According to our data, Cav1 blockers may offer an interesting strategy for the treatment of HD. Altogether, our results show that mutant huntingtin (mHtt) expression may cause a dysregulation of Cav1.2 channels and we hypothesize that this contributes to neurodegeneration during HD.
Collapse
Affiliation(s)
- Artur S Miranda
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Leal Cardozo
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flavia R Silva
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jessica M de Souza
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella G Olmo
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jader S Cruz
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabiola M Ribeiro
- 1 Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciene B Vieira
- 3 Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 2019; 454:116-139. [PMID: 31887357 DOI: 10.1016/j.neuroscience.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.
Collapse
|
13
|
The Interplay between Ca 2+ Signaling Pathways and Neurodegeneration. Int J Mol Sci 2019; 20:ijms20236004. [PMID: 31795242 PMCID: PMC6928941 DOI: 10.3390/ijms20236004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) homeostasis is essential for cell maintenance since this ion participates in many physiological processes. For example, the spatial and temporal organization of Ca2+ signaling in the central nervous system is fundamental for neurotransmission, where local changes in cytosolic Ca2+ concentration are needed to transmit information from neuron to neuron, between neurons and glia, and even regulating local blood flow according to the required activity. However, under pathological conditions, Ca2+ homeostasis is altered, with increased cytoplasmic Ca2+ concentrations leading to the activation of proteases, lipases, and nucleases. This review aimed to highlight the role of Ca2+ signaling in neurodegenerative disease-related apoptosis, where the regulation of intracellular Ca2+ homeostasis depends on coordinated interactions between the endoplasmic reticulum, mitochondria, and lysosomes, as well as specific transport mechanisms. In neurodegenerative diseases, alterations-increased oxidative stress, energy metabolism alterations, and protein aggregation have been identified. The aggregation of α-synuclein, β-amyloid peptide (Aβ), and huntingtin all adversely affect Ca2+ homeostasis. Due to the mounting evidence for the relevance of Ca2+ signaling in neuroprotection, we would focus on the expression and function of Ca2+ signaling-related proteins, in terms of the effects on autophagy regulation and the onset and progression of neurodegenerative diseases.
Collapse
|
14
|
Glaser T, Arnaud Sampaio VF, Lameu C, Ulrich H. Calcium signalling: A common target in neurological disorders and neurogenesis. Semin Cell Dev Biol 2019; 95:25-33. [DOI: 10.1016/j.semcdb.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
|
15
|
Ambroziak W, Fourie C, Montgomery JM. SAP97-mediated rescue of NMDA receptor surface distribution in a neuronal model of Huntington's disease. Hippocampus 2019; 28:707-723. [PMID: 30067285 DOI: 10.1002/hipo.22995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/22/2018] [Accepted: 05/29/2018] [Indexed: 01/10/2023]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by an expansion of the CAG repeat tract in the HTT gene, leading to motor, cognitive, and psychiatric symptoms. At the cellular level, NMDA-type glutamate receptors are upregulated at glutamatergic extrasynaptic sites in HD, triggering cell death signaling pathways and driving HD neurodegeneration. Extrasynaptic and synaptic glutamate receptor trafficking and surface distribution are regulated by the α and β N-terminal isoforms of SAP97, a postsynaptic density protein localized at glutamatergic synapses. Here we examined the surface distribution of NMDARs and AMPARs in a cellular model of HD, and whether the manipulation of individual SAP97 isoforms can regulate receptor distribution in diseased neurons. Using dSTORM super-resolution imaging, we reveal that mutant HTT drives the elevation of extrasynaptic NMDAR clusters located 100-500 nm from the postsynaptic density. This was accompanied by a decline in synaptic NMDAR-mediated currents while surface NMDAR-mediated currents remained unchanged. These effects were induced within 3 days of mutant HTT expression in rat hippocampal neurons in vitro, and were specific for NMDARs and not observed with AMPARs. Intriguingly, upregulation of either α- or βSAP97 expression increased synaptic and/or perisynaptic NMDAR localization and prevented the shift of NMDARs to extrasynaptic sites in mutant HTT neurons. This was accompanied by the rescue of normal synaptic NMDAR-mediated currents. Taken together, our high-resolution data reveals plasticity in surface NMDAR localization driven by mutant HTT and identifies the similar but independent roles of SAP97 N-terminal isoforms in maintaining normal synaptic function in pathological states.
Collapse
Affiliation(s)
- Wojciech Ambroziak
- Department of Physiology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Chantelle Fourie
- Department of Physiology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Smith‐Dijak AI, Sepers MD, Raymond LA. Alterations in synaptic function and plasticity in Huntington disease. J Neurochem 2019; 150:346-365. [DOI: 10.1111/jnc.14723] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/28/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Amy I. Smith‐Dijak
- Graduate Program in Neuroscience the University of British Columbia Vancouver British Columbia Canada
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Marja D. Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Lynn A. Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
17
|
Baumeister S, Schepmann D, Wünsch B. Synthesis and receptor binding of thiophene bioisosteres of potent GluN2B ligands with a benzo[7]annulene-scaffold. MEDCHEMCOMM 2019; 10:315-325. [PMID: 30881618 DOI: 10.1039/c8md00545a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/04/2019] [Indexed: 11/21/2022]
Abstract
The involvement of NMDA receptors containing the GluN2B subunit in neurodegenerative disorders including Alzheimer's and Parkinson's disease renders this NMDA receptor subtype an interesting pharmacological target. The aim of this study was the bioisosteric replacement of benzene, methoxybenzene and aniline moieties of known potent GluN2B selective NMDA receptor antagonists by a thiophene ring. In a nine-step synthesis starting from commercially available propionic acid 9 the thiophene derivative 7a was obtained as a bioisostere of the potent GluN2B ligands cis-3 and trans-3. [7]Annuleno[b]thiophene 8a without a benzylic OH moiety was prepared in a six-step synthesis starting from carboxylic acid 18. 8a represents a bioisostere of potent GluN2B ligands 4 and 5. [7]Annulenothiophene 8a without a benzylic OH moiety reveals approx. 8-fold higher GluN2B affinity (K i = 26 nM) than the analogous thiophene derivative 7a with a benzylic OH moiety (K i = 204 nM). Both thiophene bioisosteres show a slight preference for GluN2B receptors over both σ receptors. The data indicate that the bioisosteric replacement of benzene or substituted benzene rings by a thiophene ring is well tolerated by the NMDA receptor. Furthermore, the benzylic OH moiety seems not to be essential for high GluN2B affinity.
Collapse
Affiliation(s)
- Sören Baumeister
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany . ; ; Tel: +49 251 83 33311
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany . ; ; Tel: +49 251 83 33311
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Corrensstraße 48 , D-48149 Münster , Germany . ; ; Tel: +49 251 83 33311.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM) , Westfälische Wilhelms-Universität Münster , Germany
| |
Collapse
|
18
|
Wegierski T, Kuznicki J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 2018; 74:102-111. [DOI: 10.1016/j.ceca.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
|
19
|
Blum D, Chern Y, Domenici MR, Buée L, Lin CY, Rea W, Ferré S, Popoli P. The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. J Caffeine Adenosine Res 2018; 8:43-58. [PMID: 30023989 PMCID: PMC6049521 DOI: 10.1089/caff.2018.0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a mutation in the IT15 gene that encodes for the huntingtin protein. Mutated hungtingtin, although widely expressed in the brain, predominantly affects striato-pallidal neurons, particularly enriched with adenosine A2A receptors (A2AR), suggesting a possible involvement of adenosine and A2AR is the pathogenesis of HD. In fact, polymorphic variation in the ADORA2A gene influences the age at onset in HD, and A2AR dynamics is altered by mutated huntingtin. Basal levels of adenosine and adenosine receptors are involved in many processes critical for neuronal function and homeostasis, including modulation of synaptic activity and excitotoxicity, the control of neurotrophin levels and functions, and the regulation of protein degradation mechanisms. In the present review, we critically analyze the current literature involving the effect of altered adenosine tone and adenosine receptors in HD and discuss why therapeutics that modulate the adenosine system may represent a novel approach for the treatment of HD.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Maria Rosaria Domenici
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Chien-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
20
|
Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018; 70:87-94. [PMID: 28728834 PMCID: PMC5748019 DOI: 10.1016/j.ceca.2017.06.008] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that regulates various activities in eukaryotic cells. Especially important role calcium plays in excitable cells. Neurons require extremely precise spatial-temporal control of calcium-dependent processes because they regulate such vital functions as synaptic plasticity. Recent evidence indicates that neuronal calcium signaling is abnormal in many of neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD). These diseases represent a major medical, social, financial and scientific problem, but despite enormous research efforts, they are still incurable and only symptomatic relief drugs are available. Thus, new approaches and targets are needed. This review highlight neuronal calcium-signaling abnormalities in these diseases, with particular emphasis on the role of neuronal store-operated Ca2+ entry (SOCE) pathway and its potential relevance as a therapeutic target for treatment of neurodegeneration.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation.
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation; Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
21
|
Huang M, Verbeek DS. Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? Neurosci Lett 2018; 688:49-57. [PMID: 29421540 DOI: 10.1016/j.neulet.2018.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
The genetically heterozygous spinocerebellar ataxias are all characterized by cerebellar atrophy and pervasive Purkinje Cell degeneration. Up to date, more than 35 functionally diverse spinocerebellar ataxia genes have been identified. The main question that remains yet unsolved is why do some many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? To address this question it is important to identify intrinsic pathways important for Purkinje Cell function and survival. In this review, we discuss the current consensus on shared mechanisms underlying the pervasive Purkinje Cell loss in spinocerebellar ataxia. Additionally, using recently published cell type specific expression data, we identified several Purkinje Cell-specific genes and discuss how the corresponding pathways might underlie the vulnerability of Purkinje Cells in response to the diverse genetic insults causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Miaozhen Huang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
22
|
Bortolatto CF, Reis AS, Pinz MP, Voss GT, Oliveira RL, Vogt AG, Roman S, Jesse CR, Luchese C, Wilhelm EA. Selective A 2A receptor antagonist SCH 58261 modulates striatal oxidative stress and alleviates toxicity induced by 3-Nitropropionic acid in male Wistar rats. Metab Brain Dis 2017; 32:1919-1927. [PMID: 28795281 DOI: 10.1007/s11011-017-0086-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to investigate the effects of SCH58261, a selective adenosine A2A receptor antagonist, on striatal toxicity induced by 3-nitropropionic acid (3-NP) in rats. The experimental protocol consisted of 10 administrations (once a day) of SCH58261 (0.01 or 0.05 mg/kg/day, intraperitoneal, i.p.). From 7th to 10th day, 3-NP (20 mg/kg/day, i.p.) was injected 1 h after SCH58261 administration. Twenty-four hours after the last 3-NP injection, the body weight gain, locomotor activity (open-field test), motor coordination (rotarod test), striatal succinate dehydrogenase (SDH) activity and parameters linked to striatal oxidative status were evaluated in rats. The marked body weight loss resulting from 3-NP injections in rats was partially protected by SCH 58261 at both doses. SCH 58261 at the highest dose was effective against impairments on motor coordination and locomotor activity induced by 3-NP. SCH 58261 was unable to restore the inhibition of SDH activity caused by 3-NP. In addition, the increase in striatal reactive species (RS) levels, depletion of reduced glutathione (GSH) content and stimulation of glutathione reductase (GR) activity provoked by 3-NP injections were alleviated by both doses of SCH 58261. The highest dose of SCH 58261 was also effective in attenuating the increase of protein carbonyl levels as well as the inhibition of glutathione peroxidase (GPx) activity in rats exposed to 3-NP. Our results revealed that reduction of oxidative stress in rat striatum by adenosine A2A receptor antagonism contributes for alleviating 3-NP-induced toxicity.
Collapse
Affiliation(s)
- Cristiani F Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| | - Angélica S Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Mikaela P Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Guilherme T Voss
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Renata L Oliveira
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Ane G Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Silvane Roman
- Universidade Regional Integrada, Campus Erechim, Erechim, RS, CEP 99700-000, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
23
|
Winland CD, Welsh N, Sepulveda-Rodriguez A, Vicini S, Maguire-Zeiss KA. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. Eur J Neurosci 2017; 46:2519-2533. [PMID: 28921719 PMCID: PMC5673553 DOI: 10.1111/ejn.13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022]
Abstract
Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca2+ ]i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca2+ ]i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca2+ ]i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca2+ ]i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Cations, Divalent/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Female
- Inflammation/metabolism
- Inflammation/pathology
- Lipopolysaccharides
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Tissue Culture Techniques
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
Collapse
Affiliation(s)
- Carissa D. Winland
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Nora Welsh
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| | - Alberto Sepulveda-Rodriguez
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Kathleen A. Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| |
Collapse
|
24
|
Park KH, Franciosi S, Parrant K, Lu G, Leavitt BR. p35 hemizygosity activates Akt but does not improve motor function in the YAC128 mouse model of Huntington’s disease. Neuroscience 2017; 352:79-87. [DOI: 10.1016/j.neuroscience.2017.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/25/2023]
|
25
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
26
|
NMDAR hypofunction and somatostatin-expressing GABAergic interneurons and receptors: A newly identified correlation and its effects in schizophrenia. SCHIZOPHRENIA RESEARCH-COGNITION 2017; 8:1-6. [PMID: 28740825 PMCID: PMC5514309 DOI: 10.1016/j.scog.2017.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/20/2022]
Abstract
This review investigates the association between N-methyl-d-Aspartate receptor (NMDAR) hypofunction and somatostatin-expressing GABAergic interneurons (SST +) and how it contributes to the cognitive deficits observed in schizophrenia (SZ). This is based on evidence that NMDAR antagonists caused symptoms resembling SZ in healthy individuals. NMDAR hypofunction in GABAergic interneurons results in the modulation of the cortical network oscillation, particularly in the gamma range (30–80 Hz). These gamma-band oscillation (GBO) abnormalities were found to lead to the cognitive deficits observed in the disorder. Postmortem mRNA studies have shown that SST decreased more significantly than any other biomarker in schizophrenic subjects. The functional role of Somatostatin (SST) in the aetiology of SZ can be studied through its receptors. Genetic knockout studies in animal models in Huntington's disease (HD) have shown that a specific SST receptor, SSTR2, is increased along with the increased NMDAR activity, with opposing patterns observed in SZ. A direct correlation between SSTR and NMDAR is hence inferred in this review with the hope of finding a potential new therapeutic target for the treatment of SZ and related neurological conditions.
Collapse
|
27
|
Wright DJ, Renoir T, Gray LJ, Hannan AJ. Huntington’s Disease: Pathogenic Mechanisms and Therapeutic Targets. ADVANCES IN NEUROBIOLOGY 2017; 15:93-128. [DOI: 10.1007/978-3-319-57193-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 2017; 115:179-191. [DOI: 10.1016/j.phrs.2016.11.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
|
29
|
Raymond LA. Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 2016; 483:1051-1062. [PMID: 27423394 DOI: 10.1016/j.bbrc.2016.07.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022]
Abstract
Synaptic dysfunction and altered calcium homeostasis in the brain is common to many neurodegenerative disorders. Among these, Huntington disease (HD), which is inherited in an autosomal dominant fashion, can serve as a model for investigating these mechanisms. HD generally manifests in middle age as a disorder of movement, mood and cognition. An expanded polymorphic CAG repeat in the HTT gene results in progressive neurodegeneration that impacts striatal spiny projection neurons (SPNs) earliest and most severely. Striatal SPNs receive massive glutamatergic input from cortex and thalamus, and these excitatory synapses are a focus for early changes that can trigger aberrant downstream signaling to disrupt synaptic plasticity and lead to later degeneration. Mitochondrial dysfunction and altered intracellular calcium-induced calcium release and sequestration mechanisms add to the impairments in circuit function that may underlie prodromal cognitive and subtle motor deficits. These mechanisms and implications for developing disease-modifying therapy will be reviewed here.
Collapse
Affiliation(s)
- Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 4834-2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3.
| |
Collapse
|
30
|
Levodopa-Induced Dyskinesia Is Related to Indirect Pathway Medium Spiny Neuron Excitotoxicity: A Hypothesis Based on an Unexpected Finding. PARKINSONS DISEASE 2016; 2016:6461907. [PMID: 27144051 PMCID: PMC4837280 DOI: 10.1155/2016/6461907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
A serendipitous pharmacogenetic finding links the vulnerability to developing levodopa-induced dyskinesia to the age of onset of Huntington's disease. Huntington's disease is caused by a polyglutamate expansion of the protein huntingtin. Aberrant huntingtin is less capable of binding to a member of membrane-associated guanylate kinase family (MAGUKs): postsynaptic density- (PSD-) 95. This leaves more PSD-95 available to stabilize NR2B subunit carrying NMDA receptors in the synaptic membrane. This results in increased excitotoxicity for which particularly striatal medium spiny neurons from the indirect extrapyramidal pathway are sensitive. In Parkinson's disease the sensitivity for excitotoxicity is related to increased oxidative stress due to genetically determined abnormal metabolism of dopamine or related products. This probably also increases the sensitivity of medium spiny neurons for exogenous levodopa. Particularly the combination of increased oxidative stress due to aberrant dopamine metabolism, increased vulnerability to NMDA induced excitotoxicity, and the particular sensitivity of indirect pathway medium spiny neurons for this excitotoxicity may explain the observed increased prevalence of levodopa-induced dyskinesia.
Collapse
|
31
|
The Phoneutria nigriventer spider toxin, PnTx4-5-5, promotes neuronal survival by blocking NMDA receptors. Toxicon 2016; 112:16-21. [PMID: 26802625 DOI: 10.1016/j.toxicon.2016.01.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 12/13/2022]
Abstract
Spider toxins are recognized as useful sources of bioactive substances, showing a wide range of pharmacological effects on neurotransmission. Several spider toxins have been identified biochemically and some of them are specific glutamate receptors antagonists. Previous data indicate that PnTx4-5-5, a toxin isolated from the spider Phoneutria nigriventer, inhibits the N-methyl-d-aspartate receptor (NMDAR), with little or no effect on AMPA, kainate or GABA receptors. In agreement with these results, our findings in this study show that PnTx4-5-5 reduces the amplitude of NMDAR-mediated EPSCs in hippocampal slices. It is well established that glutamate-mediated excitotoxic neuronal cell death occurs mainly via NMDAR activation. Thus, we decided to investigate whether PnTx4-5-5 would protect against various cell death insults. For that, we used primary-cultured corticostriatal neurons from wild type (WT) mice, as well as from a mouse model of Huntington's disease, BACHD. Our results showed that PnTx4-5-5 promotes neuroprotection of WT and BACHD neurons under the insult of high levels of glutamate. Moreover, the toxin is also able to protect WT neurons against amyloid β (Aβ) peptide toxicity. These results indicate that the toxin PnTx4-5-5 is a potential neuroprotective drug.
Collapse
|
32
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
33
|
Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:498401. [PMID: 26301042 PMCID: PMC4537740 DOI: 10.1155/2015/498401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson's and Huntington's disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.
Collapse
|
34
|
Abstract
Huntington disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by progressive motor, behavioral, and cognitive decline, culminating in death. It is caused by an expanded CAG repeat in the huntingtin gene. Even years before symptoms become overt, mutation carriers show subtle but progressive striatal and cerebral white matter atrophy by volumetric MRI. Although there is currently no direct treatment of HD, management options are available for several symptoms. A better understanding of HD pathogenesis, and more sophisticated clinical trials using newer biomarkers, may lead to meaningful treatments. This article reviews the current knowledge of HD pathogenesis and treatment.
Collapse
Affiliation(s)
- Praveen Dayalu
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Roger L Albin
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; Neuroscience Research, Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, USA
| |
Collapse
|
35
|
Veres G, Molnár M, Zádori D, Szentirmai M, Szalárdy L, Török R, Fazekas E, Ilisz I, Vécsei L, Klivényi P. Central nervous system-specific alterations in the tryptophan metabolism in the 3-nitropropionic acid model of Huntington's disease. Pharmacol Biochem Behav 2015; 132:115-124. [DOI: 10.1016/j.pbb.2015.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 11/25/2022]
|
36
|
Mattis VB, Tom C, Akimov S, Saeedian J, Østergaard ME, Southwell AL, Doty CN, Ornelas L, Sahabian A, Lenaeus L, Mandefro B, Sareen D, Arjomand J, Hayden MR, Ross CA, Svendsen CN. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum Mol Genet 2015; 24:3257-71. [PMID: 25740845 DOI: 10.1093/hmg/ddv080] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/02/2015] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics.
Collapse
Affiliation(s)
- Virginia B Mattis
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Colton Tom
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Sergey Akimov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jasmine Saeedian
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | | | - Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada and
| | - Crystal N Doty
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada and
| | - Loren Ornelas
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Anais Sahabian
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Lindsay Lenaeus
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Berhan Mandefro
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | - Dhruv Sareen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada and
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, 8400 AHSP, Los Angeles, CA 90048, USA
| |
Collapse
|
37
|
Ribeiro FM, Hamilton A, Doria JG, Guimaraes IM, Cregan SP, Ferguson SS. Metabotropic glutamate receptor 5 as a potential therapeutic target in Huntington's disease. Expert Opin Ther Targets 2014; 18:1293-304. [PMID: 25118797 DOI: 10.1517/14728222.2014.948419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein, which underlies the loss of striatal and cortical neurons. Glutamate has been implicated in a number of neurodegenerative diseases, and several studies suggest that the metabotropic glutamate receptor 5 (mGluR5) may represent a target for the treatment of HD. AREAS COVERED The main goal of this review is to discuss the current data in the literature regarding the role of mGluR5 in HD and evaluate the potential of mGluR5 as a therapeutic target for the treatment of HD. mGluR5 is highly expressed in the brain regions affected in HD and is involved in movement control. Moreover, mGluR5 interacts with htt and mutated htt profoundly affects mGluR5 signaling. However, mGluR5 stimulation can activate both neuroprotective and neurotoxic signaling pathways, depending on the context of activation. EXPERT OPINION Although the data published so far strongly indicate that mGluR5 plays a major role in HD-associated neurodegeneration, htt aggregation and motor symptoms, it is not clear whether mGluR5 stimulation can diminish or intensify neuronal cell loss and HD progression. Thus, future experiments will be necessary to further investigate the outcome of drugs acting on mGluR5 for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabiola M Ribeiro
- Universidade Federal de Minas Gerais, Departamento de Bioquimica e Imunologia, ICB , Belo Horizonte 31270-901 , Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Gonzalez J, Jurado-Coronel JC, Ávila MF, Sabogal A, Capani F, Barreto GE. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci 2014; 125:315-27. [PMID: 25051426 DOI: 10.3109/00207454.2014.940941] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-methyl-D-aspartate ionotropic glutamate receptor (NMDARs) is a ligand-gated ion channel that plays a critical role in excitatory neurotransmission, brain development, synaptic plasticity associated with memory formation, central sensitization during persistent pain, excitotoxicity and neurodegenerative diseases in the central nervous system (CNS). Within iGluRs, NMDA receptors have been the most actively investigated for their role in neurological diseases, especially neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. It has been demonstrated that excessive activation of NMDA receptors (NMDARs) plays a key role in mediating some aspects of synaptic dysfunction in several CNS disorders, so extensive research has been directed on the discovery of compounds that are able to reduce NMDARs activity. This review discusses the role of NMDARs on neurological pathologies and the possible therapeutic use of agents that target this receptor. Additionally, we delve into the role of NMDARs in Alzheimer's and Parkinson's diseases and the receptor antagonists that have been tested on in vivo models of these pathologies. Finally, we put into consideration the importance of antioxidants to counteract oxidative capacity of the signaling cascade in which NMDARs are involved.
Collapse
Affiliation(s)
- Janneth Gonzalez
- 1Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | | | | | | | | |
Collapse
|
39
|
Ribeiro FM, Doria JG, Ferguson SSG. mGluR5: a potential target for the treatment of Huntington's disease. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Fabiola M Ribeiro
- Departamento de Bioquimica & Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana G Doria
- Departamento de Bioquimica & Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephen SG Ferguson
- J Allyn Taylor Centre for Cell Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
40
|
Dau A, Gladding CM, Sepers MD, Raymond LA. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol Dis 2014; 62:533-42. [DOI: 10.1016/j.nbd.2013.11.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 12/16/2022] Open
|
41
|
Waszkielewicz AM, Gunia A, Szkaradek N, Słoczyńska K, Krupińska S, Marona H. Ion channels as drug targets in central nervous system disorders. Curr Med Chem 2013; 20:1241-85. [PMID: 23409712 PMCID: PMC3706965 DOI: 10.2174/0929867311320100005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/27/2022]
Abstract
Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na(+) channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 - for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca(2+)s channels are not any more divided to T, L, N, P/Q, and R, but they are described as Ca(v)1.1-Ca(v)3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs.
Collapse
Affiliation(s)
- A M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
42
|
Naylor DE, Liu H, Niquet J, Wasterlain CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 2013; 54:225-38. [PMID: 23313318 DOI: 10.1016/j.nbd.2012.12.015] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE.
Collapse
Affiliation(s)
- David E Naylor
- Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, USA; Department of Neurology, Veterans Administration Greater Los Angeles Healthcare System, USA.
| | | | | | | |
Collapse
|
43
|
Inhibition of N-methyl-D-aspartate-activated current by bis(7)-tacrine in HEK-293 cells expressing NR1/NR2A or NR1/NR2B receptors. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2012; 32:793-797. [PMID: 23271275 DOI: 10.1007/s11596-012-1036-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Indexed: 10/27/2022]
Abstract
In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor subunits and their inhibition by bis(7)-tacrine (B7T). Rat NR1, NR2A and NR2B cDNAs were transfected into human embryonic kidney 293 cells (HEK-293). The inhibition of NMDA-activated currents by B7T was detected in HEK-293 cell expressing NR1/NR2A or NR1/NR2B receptors by using whole-cell patch-clamp techniques. The results showed that in HEK-293 cells expressing NR1/NR2A receptor, 1 μmol/L B7T inhibited 30 μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 46% and 40%, respectively (P>0.05; n=5), suggesting that the inhibition of B7T on NR1/NR2A receptor doesn't depend on NMDA concentration, which is consistent with a non-competitive mechanism of inhibition. But for the NR1/NR2B receptor, 1 μmol/L B7T inhibited 30 μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 61% and 13%, respectively (P<0.05; n=6), showing that B7T appears to be competitive with NMDA. In addition, simultaneous application of 1 μmol/L B7T and 1000 μmol/L NMDA produced a moderate inhibition of peak NMDA-activated current, followed by a gradual decline of the current to a steady state. However, the gradual onset of inhibition produced by B7T applied simultaneously with NMDA was eliminated when B7T was given 5 s before NMDA. These results suggested that B7T inhibition of NMDA current mediated by NR1/NR2B receptor was slow onset, and it did not depend on the presence of the agonist. With holding potentials ranging from -50 to +50 mV, the B7T inhibition rate of NMDA currents didn't change significantly, and neither did the reversal potential. We are led to conclude that the NR1/NR2B recombinant receptor can serve as a very useful model for studying the molecular mechanism of NMDA receptor inhibition by B7T.
Collapse
|
44
|
Zádori D, Klivényi P, Szalárdy L, Fülöp F, Toldi J, Vécsei L. Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders. J Neurol Sci 2012; 322:187-91. [PMID: 22749004 DOI: 10.1016/j.jns.2012.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/08/2012] [Indexed: 12/25/2022]
Abstract
A mitochondrial dysfunction causes an abatement in ATP production, the induction of oxidative damage and the propagation of cell death pathways. It is additionally closely related to both glutamate excitotoxicity and neuroinflammation. All of these interconnected aspects of a cellular dysfunction are involved in the pathogenesis of numerous neurological disorders, including those with an acute (e.g. ischemic stroke) or a chronic (e.g. Huntington's disease) onset. Both acute and chronic neurodegenerative disorders have been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism in the pathogenesis of the disease. As regards neuroactive compounds featuring in the pathway, quinolinic acid is a specific agonist of N-methyl-d-aspartate receptors, and a potent neurotoxin with additional and marked free radical-producing and lipid peroxidation-inducing properties. The toxic effects of 3-hydroxy-L-kynurenine are mediated by free radicals. Besides the possibility of increasing brain kynurenic acid concentrations, L-kynurenine may have vasoactive properties, too. Kynurenic acid has proven to be neuroprotective in several experimental settings, but in consequence of its pharmacokinetic properties it is not applicable as systemic administration in human cases. The aim of this short review is to emphasize the common features of cerebral ischemia and Huntington's disease and to highlight therapeutic strategies targeting the kynurenine pathway.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
45
|
Milnerwood AJ, Kaufman AM, Sepers MD, Gladding CM, Zhang L, Wang L, Fan J, Coquinco A, Qiao JY, Lee H, Wang YT, Cynader M, Raymond LA. Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice. Neurobiol Dis 2012; 48:40-51. [PMID: 22668780 DOI: 10.1016/j.nbd.2012.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/06/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022] Open
Abstract
We recently reported evidence for disturbed synaptic versus extrasynaptic NMDAR transmission in the early pathogenesis of Huntington's disease (HD), a late-onset neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin. Studies in glutamatergic cells indicate that synaptic NMDAR transmission increases phosphorylated cyclic-AMP response element binding protein (pCREB) levels and drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation reduces pCREB and promotes cell death. By generating striatal and cortical neuronal co-cultures to investigate the glutamatergic innervation of striatal neurons, we demonstrate that dichotomous synaptic and extrasynaptic NMDAR signaling also occurs in GABAergic striatal medium-sized spiny neurons (MSNs), which are acutely vulnerable in HD. Further, we show that wild-type (WT) and HD transgenic YAC128 MSNs co-cultured with cortical cells have similar levels of glutamatergic synapses, synaptic NMDAR currents and synaptic GluN2B and GluN2A subunit-containing NMDARs. However, NMDAR whole-cell, and especially extrasynaptic, current is elevated in YAC128 MSNs. Moreover, GluN2B subunit-containing NMDAR surface expression is markedly increased, irrespective of whether or not the co-cultured cortical cells express mutant huntingtin. The data suggest that MSN cell-autonomous increases in extrasynaptic NMDARs are driven by the HD mutation. Consistent with these results, we find that extrasynaptic NMDAR-induced pCREB reductions and apoptosis are also augmented in YAC128 MSNs. Moreover, both NMDAR-mediated apoptosis and CREB-off signaling are blocked by co-application of either memantine or the GluN2B subunit-selective antagonist ifenprodil in YAC128 MSNs. GluN2A-subunit-selective concentrations of the antagonist NVP-AAM077 did not reduce cell death in either genotype. Cortico-striatal co-cultures provide an in vitro model system in which to better investigate striatal neuronal dysfunction in disease than mono-cultured striatal cells. Results from the use of this system, which partially recapitulates the cortico-striatal circuit and is amenable to acute genetic and pharmacological manipulations, suggest that pathophysiological NMDAR signaling is an intrinsic frailty in HD MSNs that can be successfully targeted by pharmacological interventions.
Collapse
Affiliation(s)
- Austen J Milnerwood
- Department of Psychiatry, University of British Columbia, Vancouver, B.C., Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sorolla MA, Rodríguez-Colman MJ, Vall-llaura N, Tamarit J, Ros J, Cabiscol E. Protein oxidation in Huntington disease. Biofactors 2012; 38:173-85. [PMID: 22473822 DOI: 10.1002/biof.1013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/08/2012] [Indexed: 12/20/2022]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the huntingtin gene, affecting initially the striatum and progressively the cortex. Oxidative stress, and consequent protein oxidation, has been described as important to disease progression. This review focuses on recent advances in the field, with a particular emphasis on the identified target proteins and the role that their oxidation has or might have in the pathophysiology of HD. Oxidation and the resulting inactivation and/or degradation of important proteins can explain the impairment of several metabolic pathways in HD. Oxidation of enzymes involved in ATP synthesis can account for the energy deficiency observed. Impairment of protein folding and degradation can be due to oxidation of several heat shock proteins and Valosin-containing protein. Oxidation of two enzymes involved in the vitamin B6 metabolism could result in decreased availability of pyridoxal phosphate, which is a necessary cofactor in transaminations, the kynurenine pathway and the synthesis of glutathione, GABA, dopamine and serotonin, all of which have a key role in HD pathology. In addition, protein oxidation often contributes to oxidative stress, aggravating the molecular damage inside the cell.
Collapse
Affiliation(s)
- M Alba Sorolla
- Department of Basic Medical Sciences, IRBLleida, Universitat de Lleida, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Gladding CM, Sepers MD, Xu J, Zhang LYJ, Milnerwood AJ, Lombroso PJ, Raymond LA. Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model. Hum Mol Genet 2012; 21:3739-52. [PMID: 22523092 DOI: 10.1093/hmg/dds154] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Huntington's disease (HD), the mutant huntingtin (mhtt) protein is associated with striatal dysfunction and degeneration. Excitotoxicity and early synaptic defects are attributed, in part, to altered NMDA receptor (NMDAR) trafficking and function. Deleterious extrasynaptic NMDAR localization and signalling are increased early in yeast artificial chromosome mice expressing full-length mhtt with 128 polyglutamine repeats (YAC128 mice). NMDAR trafficking at the plasma membrane is regulated by dephosphorylation of the NMDAR subunit GluN2B tyrosine 1472 (Y1472) residue by STriatal-Enriched protein tyrosine Phosphatase (STEP). NMDAR function is also regulated by calpain cleavage of the GluN2B C-terminus. Activation of both STEP and calpain is calcium-dependent, and disruption of calcium homeostasis occurs early in the HD striatum. Here, we show increased calpain cleavage of GluN2B at both synaptic and extrasynaptic sites, and elevated extrasynaptic total GluN2B expression in the YAC128 striatum. Calpain inhibition significantly reduced extrasynaptic GluN2B expression in the YAC128 but not wild-type striatum. Furthermore, calpain inhibition reduced whole-cell NMDAR current and the surface/internal GluN2B ratio in co-cultured striatal neurons, without affecting synaptic GluN2B localization. Synaptic STEP activity was also significantly higher in the YAC128 striatum, correlating with decreased GluN2B Y1472 phosphorylation. A substrate-trapping STEP protein (TAT-STEP C-S) significantly increased VGLUT1-GluN2B colocalization, as well as increasing synaptic GluN2B expression and Y1472 phosphorylation. Moreover, combined calpain inhibition and STEP inactivation reduced extrasynaptic, while increasing synaptic GluN2B expression in the YAC128 striatum. These results indicate that increased STEP and calpain activation contribute to altered NMDAR localization in an HD mouse model, suggesting new therapeutic targets for HD.
Collapse
Affiliation(s)
- Clare M Gladding
- Department of Psychiatry, Division of Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
48
|
P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease. Neurobiol Dis 2012; 45:999-1009. [DOI: 10.1016/j.nbd.2011.12.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/04/2011] [Indexed: 11/17/2022] Open
|
49
|
Karlstad J, Sun Y, Singh BB. Ca(2+) signaling: an outlook on the characterization of Ca(2+) channels and their importance in cellular functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:143-57. [PMID: 22453941 PMCID: PMC3316125 DOI: 10.1007/978-94-007-2888-2_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium (Ca(2+)) is essential in regulating a plethora of cellular functions that includes cell proliferation and differentiation, axonal guidance and cell migration, neuro/enzyme secretion and exocytosis, development/maintenance of neural circuits, cell death and many more. Since Ca(2+) regulates so many fundamental processes, it could be anticipated that numerous Ca(2+) channels and transporters will assist in regulating Ca(2+) entry across the plasma membrane. Towards this several Ca(2+) channels such as voltage-gated channels, store-operated Ca(2+) entry (SOCE) channels, NMDA, AMPA and other ligand gated channels have been identified. In recent years research focus has been targeted towards identification of the precise function of these essential channels. Furthermore, characterization of these individual Ca(2+) channels has also gained much attention, since specific Ca(2+) channels have been shown to influence a particular cellular response. Moreover, perturbations in these Ca(2+) channels have also been implicated in a spectrum of pathological conditions. Hence, understanding the precise involvement of these Ca(2+) channels in disease conditions would presumably unveil avenues for plausible therapeutic interventions. We thus review the role of Ca(2+) signaling in select -disease conditions and also provide experimental evidence as how they can be characterized in a given cell.
Collapse
Affiliation(s)
- Jordan Karlstad
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Yuyang Sun
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Brij B. Singh
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
50
|
Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011; 198:252-73. [PMID: 21907762 PMCID: PMC3221774 DOI: 10.1016/j.neuroscience.2011.08.052] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/31/2011] [Accepted: 08/22/2011] [Indexed: 01/27/2023]
Abstract
Huntington's disease (HD) is a progressive, fatal neurological condition caused by an expansion of CAG (glutamine) repeats in the coding region of the Huntington gene. To date, there is no cure but great strides have been made to understand pathophysiological mechanisms. In particular, genetic animal models of HD have been instrumental in elucidating the progression of behavioral and physiological alterations, which had not been possible using classic neurotoxin models. Our groups have pioneered the use of transgenic HD mice to examine the excitotoxicity hypothesis of striatal neuronal dysfunction and degeneration, as well as alterations in excitation and inhibition in striatum and cerebral cortex. In this review, we focus on synaptic and receptor alterations of striatal medium-sized spiny (MSNs) and cortical pyramidal neurons in genetic HD mouse models. We demonstrate a complex series of alterations that are region-specific and time-dependent. In particular, many changes are bidirectional depending on the degree of disease progression, that is, early vs. late, and also on the region examined. Early synaptic dysfunction is manifested by dysregulated glutamate release in striatum followed by progressive disconnection between cortex and striatum. The differential effects of altered glutamate release on MSNs originating the direct and indirect pathways is also elucidated, with the unexpected finding that cells of the direct striatal pathway are involved early in the course of the disease. In addition, we review evidence for early N-methyl-D-aspartate receptor (NMDAR) dysfunction leading to enhanced sensitivity of extrasynaptic receptors and a critical role of GluN2B subunits. Some of the alterations in late HD could be compensatory mechanisms designed to cope with early synaptic and receptor dysfunctions. The main findings indicate that HD treatments need to be designed according to the stage of disease progression and should consider regional differences.
Collapse
Affiliation(s)
- Lynn A. Raymond
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Véronique M. André
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Clare M. Gladding
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Austen J. Milnerwood
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Michael S. Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|