1
|
Pudełko-Malik N, Drulis-Fajdasz D, Pruss Ł, Mielko-Niziałek KA, Rakus D, Gizak A, Młynarz P. A single dose of glycogen phosphorylase inhibitor improves cognitive functions of aged mice and affects the concentrations of metabolites in the brain. Sci Rep 2024; 14:24123. [PMID: 39406810 PMCID: PMC11480434 DOI: 10.1038/s41598-024-74861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Inhibition of glycogen phosphorylase (Pyg) - a regulatory enzyme of glycogen phosphorolysis - influences memory formation in rodents. We have previously shown that 2-week intraperitoneal administration of a Pyg inhibitor BAY U6751 stimulated the "rejuvenation" of the hippocampal proteome and dendritic spines morphology and improved cognitive skills of old mice. Given the tedious nature of daily intraperitoneal drug administration, in this study we investigated whether a single dose of BAY U6751 could induce enduring behavioral effects. Obtained results support the efficacy of such treatment in significantly improving the cognitive performance of 20-22-month-old mice. Metabolomic analysis of alterations observed in the hippocampus, cerebellum, and cortex reveal that the inhibition of glycogen phosphorolysis impacts not only glucose metabolism but also various other metabolic processes.
Collapse
Affiliation(s)
- Natalia Pudełko-Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland
| | - Łukasz Pruss
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
- Ardigen, Kraków, 30-394, Poland
| | - Karolina Anna Mielko-Niziałek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland.
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland.
| |
Collapse
|
2
|
McKenna MC, Sonnewald U, Waageptersen HS, White HS. A tribute to Arne Schousboe's contributions to neurochemistry and his innovative and enduring research in GABA, glutamate, and brain energy metabolism. J Neurochem 2024. [PMID: 39183580 DOI: 10.1111/jnc.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
This is a tribute to Arne Schousboe, Professor Emeritus at the University of Copenhagen, an eminent neurochemist and neuroscientist who was a leader in the fields of GABA, glutamate, and brain energy metabolism. Arne was known for his keen intellect, his wide-ranging expertise in neurochemistry and neuropharmacology of GABA and glutamate and brain energy metabolism. Arne was also known for his strong leadership, his warm and engaging personality and his enjoyment of fine wine and great food shared with friends, family, and colleagues. Sadly, Arne passed away on February 27, 2024, after a short illness. He is survived by his wife Inger Schousboe, his two children, and three wonderful grandchildren. His death is a tremendous loss to the neuroscience community. He will be greatly missed by his friends, family, and colleagues. Some of the highlights of Arne's career are described in this tribute.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ursula Sonnewald
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - H Steve White
- Department of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Özcan E, Yu KB, Dinh L, Lum GR, Lau K, Hsu J, Arino M, Paramo J, Lopez-Romero A, Hsiao EY. Dietary fiber content in clinical ketogenic diets modifies the gut microbiome and seizure resistance in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606041. [PMID: 39131354 PMCID: PMC11312565 DOI: 10.1101/2024.07.31.606041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The gut microbiome is emerging as an important modulator of the anti-seizure effects of the classic ketogenic diet. However, many variations of the ketogenic diet are used clinically to treat refractory epilepsy, and how different dietary formulations differentially modify the gut microbiome in ways that impact seizure outcome is poorly understood. We find that clinically prescribed ketogenic infant formulas vary in macronutrient ratio, fat source, and fiber content and also in their ability to promote resistance to 6-Hz psychomotor seizures in mice. By screening specific dietary variables for their effects on a model human infant microbial community, we observe that dietary fiber, rather than fat ratio or source, drives substantial metagenomic shifts. Addition of dietary fiber to a fiber-deficient ketogenic formula restores seizure resistance, and supplementing protective ketogenic formulas with excess dietary fiber further potentiates seizure resistance. By screening 13 fiber sources and types, we identify distinct subsets of metagenomic responses in the model human infant microbial community that correspond with increased seizure resistance in mice. In particular, supplementation with seizure-protective fibers enriches microbial representation of genes related to queuosine biosynthesis and preQ0 biosynthesis and decreases representation of microbial genes related to sucrose degradation, which is also seen in seizure-protected mice that are fed fiber-containing ketogenic infant formulas. Overall, this study reveals that different formulations of clinical ketogenic diets, and dietary fiber content in particular, differentially impact seizure outcome in mice, likely through modification of the gut microbiome. Understanding interactions between dietary components of the ketogenic diet, the gut microbiome, and host susceptibility to seizures could inform novel microbiome-guided approaches to treat refractory epilepsy.
Collapse
Affiliation(s)
- Ezgi Özcan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristie B Yu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Lyna Dinh
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Gregory R Lum
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Katie Lau
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jessie Hsu
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mariana Arino
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jorge Paramo
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Arlene Lopez-Romero
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Elaine Y Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095
- UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Dienel GA, Rothman DL. In vivo calibration of genetically encoded metabolite biosensors must account for metabolite metabolism during calibration and cellular volume. J Neurochem 2024; 168:506-532. [PMID: 36726217 DOI: 10.1111/jnc.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
Isotopic assays of brain glucose utilization rates have been used for more than four decades to establish relationships between energetics, functional activity, and neurotransmitter cycling. Limitations of these methods include the relatively long time (1-60 min) for the determination of labeled metabolite levels and the lack of cellular resolution. Identification and quantification of fuels for neurons and astrocytes that support activation and higher brain functions are a major, unresolved issues. Glycolysis is preferentially up-regulated during activation even though oxygen level and supply are adequate, causing lactate concentrations to quickly rise during alerting, sensory processing, cognitive tasks, and memory consolidation. However, the fate of lactate (rapid release from brain or cell-cell shuttling coupled with local oxidation) is long disputed. Genetically encoded biosensors can determine intracellular metabolite concentrations and report real-time lactate level responses to sensory, behavioral, and biochemical challenges at the cellular level. Kinetics and time courses of cellular lactate concentration changes are informative, but accurate biosensor calibration is required for quantitative comparisons of lactate levels in astrocytes and neurons. An in vivo calibration procedure for the Laconic lactate biosensor involves intracellular lactate depletion by intravenous pyruvate-mediated trans-acceleration of lactate efflux followed by sensor saturation by intravenous infusion of high doses of lactate plus ammonium chloride. In the present paper, the validity of this procedure is questioned because rapid lactate-pyruvate interconversion in blood, preferential neuronal oxidation of both monocarboxylates, on-going glycolytic metabolism, and cellular volumes were not taken into account. Calibration pitfalls for the Laconic lactate biosensor also apply to other metabolite biosensors that are standardized in vivo by infusion of substrates that can be metabolized in peripheral tissues. We discuss how technical shortcomings negate the conclusion that Laconic sensor calibrations support the existence of an in vivo astrocyte-neuron lactate concentration gradient linked to lactate shuttling from astrocytes to neurons to fuel neuronal activity.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Guzzardi MA, La Rosa F, Granziera F, Panetta D, Pardo-Tendero M, Barone M, Turroni S, Faita F, Kusmic C, Brigidi P, Monleon D, Iozzo P. Gut-derived metabolites mediating cognitive development in 5-year-old children: Early-life transplant in mice has lasting effects throughout adulthood. Brain Behav Immun 2023; 114:94-110. [PMID: 37557963 DOI: 10.1016/j.bbi.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gut microbiota has been causally linked to cognitive development. We aimed to identify metabolites mediating its effect on cognitive development, and foods or nutrients related to most promising metabolites. Faeces from 5-year-old children (DORIAN-PISAC cohort, including 90 general population families with infants, 42/48 females/males, born in 2011-2014) were transplanted (FMT) into C57BL/6 germ-free mice. Children and recipient mice were stratified by cognitive phenotype, or based on protective metabolites. Food frequency questionnaires were obtained in children. Cognitive measurements in mice included five Y-maze tests until 23 weeks post-FMT, and (at 23 weeks) PET-CT for brain metabolism and radiodensity, and ultrasound-based carotid vascular indices. Children (faeces, urine) and mice (faeces, plasma) metabolome was measured by 1H NMR spectroscopy, and the faecal microbiota was profiled in mice by 16S rRNA amplicon sequencing. Cognitive scores of children and recipient mice were correlated. FMT-dependent modifications of brain metabolism were observed. Mice receiving FMT from high-cognitive or protective metabolite-enriched children developed superior cognitive-behavioural performance. A panel of metabolites, namely xanthine, hypoxanthine, formate, mannose, tyrosine, phenylalanine, glutamine, was found to mediate the gut-cognitive axis in donor children and recipient mice. Vascular indices partially explained the metabolite-to-phenotype relationships. Children's consumption of legumes, whole-milk yogurt and eggs, and intake of iron, zinc and vitamin D appeared to support protective gut metabolites. Overall, metabolites involved in inflammation, purine metabolism and neurotransmitter synthesis mediate the gut-cognitive axis, and holds promise for screening. The related dietary and nutritional findings offer leads to microbiota-targeted interventions for cognitive protection, with long-lasting effects.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Federica La Rosa
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Federico Granziera
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy; Sant'Anna School of Advanced Studies, 56127 Pisa, Italy.
| | - Daniele Panetta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Mercedes Pardo-Tendero
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy; Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA/CIBERFES for Frailty and Healthy Aging, 46010 Valencia, Spain.
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Francesco Faita
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Claudia Kusmic
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Daniel Monleon
- Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA/CIBERFES for Frailty and Healthy Aging, 46010 Valencia, Spain.
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy.
| |
Collapse
|
6
|
Ying N, Luo H, Li B, Gong K, Shu Q, Liang F, Gao H, Huang T, Zheng H. Exercise Alleviates Behavioral Disorders but Shapes Brain Metabolism of APP/PS1 Mice in a Region- and Exercise-Specific Manner. J Proteome Res 2023. [PMID: 37126732 DOI: 10.1021/acs.jproteome.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exercise plays a beneficial role in the management of Alzheimer's disease (AD), but its effects on brain metabolism are still far from being understood. Here, we examined behavioral changes of APP/PS1 mice after high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) and analyzed metabolomics profiles in the hippocampus, cortex, and hypothalamus by using nuclear magnetic resonance spectroscopy to explore potential metabolic mechanisms. The results demonstrate that both HIIT and MICT alleviated anxiety/depressive-like behaviors as well as learning and memory impairments of AD mice. Metabolomics analysis reveals that energy metabolism, neurotransmitter metabolism, and membrane metabolism were significantly altered in all three brain regions after both types of exercises. Amino acid metabolism was detected to be affected in the cortex and hypothalamus after HIIT and in the hippocampus and hypothalamus after MICT. However, only HIIT significantly altered astrocyte-neuron metabolism in the hippocampus and hypothalamus of AD mice. Therefore, our study suggests that exercise can shape brain metabolism of AD mice in a region- and exercise-specific manner, indicating that the precise modification of brain metabolism by a specific type of exercise might be a novel perspective for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Na Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baixia Li
- School of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Kaiyan Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Shu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fei Liang
- College of Physical Education, Gannan Normal University, Ganzhou 341000, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tao Huang
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
7
|
Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Mares-Barbosa TB, Patrón-Soberano A, Howe AG, Portales-Pérez DP, Miquelajáuregui Graf A, Estrada-Sánchez AM. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci 2023; 16:1037641. [PMID: 36744061 PMCID: PMC9893894 DOI: 10.3389/fncel.2022.1037641] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Research on glutamatergic neurotransmission has focused mainly on the function of presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only to ensure successful neurotransmission. However, recent evidence indicates that astrocytes contribute actively and even regulate neuronal transmission at different levels. This review establishes a framework by comparing glutamatergic components between neurons and astrocytes to examine how astrocytes modulate or otherwise influence neuronal transmission. We have included the most recent findings about the role of astrocytes in neurotransmission, allowing us to understand the complex network of neuron-astrocyte interactions. However, despite the knowledge of synaptic modulation by astrocytes, their contribution to specific physiological and pathological conditions remains to be elucidated. A full understanding of the astrocyte's role in neuronal processing could open fruitful new frontiers in the development of therapeutic applications.
Collapse
Affiliation(s)
- Ares Orlando Cuellar-Santoyo
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Victor Manuel Ruiz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Teresa Belem Mares-Barbosa
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Araceli Patrón-Soberano
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrew G. Howe
- Intelligent Systems Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Diana Patricia Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| |
Collapse
|
8
|
The Association of the Oral Microbiota with the Effects of Acid Stress Induced by an Increase of Brain Lactate in Schizophrenia Patients. Biomedicines 2023; 11:biomedicines11020240. [PMID: 36830777 PMCID: PMC9953675 DOI: 10.3390/biomedicines11020240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The altered cerebral energy metabolism central to schizophrenia can be linked to lactate accumulation. Lactic acid is produced by gastrointestinal bacteria, among others, and readily crosses the blood-brain barrier, leading to the brain acidity. This study aimed to examine the association of the oral microbiota with the effects of acid stress induced by an increase of brain lactate in schizophrenia patients. The study included patients with a diagnosis of acute polyphasic psychotic disorder meeting criteria for schizophrenia at 3-month follow-up. Results: Individuals with a significantly higher total score on the Positive and Negative Syndrome Scale had statistically significantly lower lactate concentrations compared to those with a lower total score and higher brain lactate. We observed a positive correlation between Actinomyces and lactate levels in the anterior cingulate cap and a negative correlation between bacteria associated with lactate metabolism and some clinical assessment scales. Conclusions: Shifts in the oral microbiota in favour of lactate-utilising bacterial genera may represent a compensatory mechanism in response to increased lactate production in the brain. Assessment of neuronal function mediated by ALA-LAC-dependent NMDA regulatory mechanisms may, thus, support new therapies for schizophrenia, for which acidosis has become a differentiating feature of individuals with schizophrenia endophenotypes.
Collapse
|
9
|
Impact of Inhibition of Glutamine and Alanine Transport on Cerebellar Glial and Neuronal Metabolism. Biomolecules 2022; 12:biom12091189. [PMID: 36139028 PMCID: PMC9496060 DOI: 10.3390/biom12091189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The cerebellum, or “little brain”, is often overlooked in studies of brain metabolism in favour of the cortex. Despite this, anomalies in cerebellar amino acid homeostasis in a range of disorders have been reported. Amino acid homeostasis is central to metabolism, providing recycling of carbon backbones and ammonia between cell types. Here, we examined the role of cerebellar amino acid transporters in the cycling of glutamine and alanine in guinea pig cerebellar slices by inhibiting amino acid transporters and examining the resultant metabolism of [1-13C]d-glucose and [1,2-13C]acetate by NMR spectroscopy and LCMS. While the lack of specific inhibitors of each transporter makes interpretation difficult, by viewing results from experiments with multiple inhibitors we can draw inferences about the major cell types and transporters involved. In cerebellum, glutamine and alanine transfer is dominated by system A, blockade of which has maximum effect on metabolism, with contributions from System N. Inhibition of neural system A isoform SNAT1 by MeAIB resulted in greatly decreased metabolite pools and reduced net fluxes but showed little effect on fluxes from [1,2-13C]acetate unlike inhibition of SNAT3 and other glutamine transporters by histidine where net fluxes from [1,2-13C]acetate are reduced by ~50%. We interpret the data as further evidence of not one but several glutamate/glutamine exchange pools. The impact of amino acid transport inhibition demonstrates that the cerebellum has tightly coupled cells and that glutamate/glutamine, as well as alanine cycling, play a major role in that part of the brain.
Collapse
|
10
|
Castellanos DB, Martín-Jiménez CA, Pinzón A, Barreto GE, Padilla-González GF, Aristizábal A, Zuluaga M, González Santos J. Metabolomic Analysis of Human Astrocytes in Lipotoxic Condition: Potential Biomarker Identification by Machine Learning Modeling. Biomolecules 2022; 12:biom12070986. [PMID: 35883542 PMCID: PMC9313230 DOI: 10.3390/biom12070986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The association between neurodegenerative diseases (NDs) and obesity has been well studied in recent years. Obesity is a syndrome of multifactorial etiology characterized by an excessive accumulation and release of fatty acids (FA) in adipose and non-adipose tissue. An excess of FA generates a metabolic condition known as lipotoxicity, which triggers pathological cellular and molecular responses, causing dysregulation of homeostasis and a decrease in cell viability. This condition is a hallmark of NDs, and astrocytes are particularly sensitive to it, given their crucial role in energy production and oxidative stress management in the brain. However, analyzing cellular mechanisms associated with these conditions represents a challenge. In this regard, metabolomics is an approach that allows biochemical analysis from the comprehensive perspective of cell physiology. This technique allows cellular metabolic profiles to be determined in different biological contexts, such as those of NDs and specific metabolic insults, including lipotoxicity. Since data provided by metabolomics can be complex and difficult to interpret, alternative data analysis techniques such as machine learning (ML) have grown exponentially in areas related to omics data. Here, we developed an ML model yielding a 93% area under the receiving operating characteristic (ROC) curve, with sensibility and specificity values of 80% and 93%, respectively. This study aimed to analyze the metabolomic profiles of human astrocytes under lipotoxic conditions to provide powerful insights, such as potential biomarkers for scenarios of lipotoxicity induced by palmitic acid (PA). In this work, we propose that dysregulation in seleno-amino acid metabolism, urea cycle, and glutamate metabolism pathways are major triggers in astrocyte lipotoxic scenarios, while increased metabolites such as alanine, adenosine, and glutamate are suggested as potential biomarkers, which, to our knowledge, have not been identified in human astrocytes and are proposed as candidates for further research and validation.
Collapse
Affiliation(s)
- Daniel Báez Castellanos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110311, Colombia; (D.B.C.); (A.A.)
| | - Cynthia A. Martín-Jiménez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329-4208, USA;
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | | | - Andrés Aristizábal
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110311, Colombia; (D.B.C.); (A.A.)
| | - Martha Zuluaga
- Escuela de Ciencias Básicas Tecnologías e Ingenierías, Universidad Nacional Abierta y a Distancia, Dosquebradas 661001, Colombia;
| | - Janneth González Santos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110311, Colombia; (D.B.C.); (A.A.)
- Correspondence: ; Tel.: +57-60-1-3208320
| |
Collapse
|
11
|
Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples. Metabolites 2022; 12:metabo12030272. [PMID: 35323715 PMCID: PMC8949038 DOI: 10.3390/metabo12030272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 01/27/2023] Open
Abstract
Metabolomic analysis of different body fluids bears high importance in medical sciences. Our aim was to develop and validate a fast UHPLC-UV method for the analysis of 33 amino acids and biogenic amines from complex biological samples. AccQ-Tag derivatization was conducted on target molecules and the derivatized targets were analyzed by UHPLC-UV. The detection of the analytes was carried out with UV analysis and by Selected Reaction Monitoring (SRM)-based targeted mass spectrometry. The method was validated according to the FDA guidelines. Serum and non-stimulated tear samples were collected from five healthy individuals and the samples were analyzed by the method. The method was successfully validated with appropriate accuracy and precision for all 33 biomolecules. A total of 29 analytes were detected in serum samples and 26 of them were quantified. In the tears, 30 amino acids and biogenic amines were identified and 20 of them were quantified. The developed and validated UHPLC-UV method enables the fast and precise analysis of amino acids and biogenic amines from complex biological samples.
Collapse
|
12
|
Ma J, Pinho MC, Harrison CE, Chen J, Sun C, Hackett EP, Liticker J, Ratnakar J, Reed GD, Chen AP, Sherry AD, Malloy CR, Wright SM, Madden CJ, Park JM. Dynamic 13 C MR spectroscopy as an alternative to imaging for assessing cerebral metabolism using hyperpolarized pyruvate in humans. Magn Reson Med 2022; 87:1136-1149. [PMID: 34687086 PMCID: PMC8776582 DOI: 10.1002/mrm.29049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE This study is to investigate time-resolved 13 C MR spectroscopy (MRS) as an alternative to imaging for assessing pyruvate metabolism using hyperpolarized (HP) [1-13 C]pyruvate in the human brain. METHODS Time-resolved 13 C spectra were acquired from four axial brain slices of healthy human participants (n = 4) after a bolus injection of HP [1-13 C]pyruvate. 13 C MRS with low flip-angle excitations and a multichannel 13 C/1 H dual-frequency radiofrequency (RF) coil were exploited for reliable and unperturbed assessment of HP pyruvate metabolism. Slice-wise areas under the curve (AUCs) of 13 C-metabolites were measured and kinetic analysis was performed to estimate the production rates of lactate and HCO3- . Linear regression analysis between brain volumes and HP signals was performed. Region-focused pyruvate metabolism was estimated using coil-wise 13 C reconstruction. Reproducibility of HP pyruvate exams was presented by performing two consecutive injections with a 45-minutes interval. RESULTS [1-13 C]Lactate relative to the total 13 C signal (tC) was 0.21-0.24 in all slices. [13 C] HCO3- /tC was 0.065-0.091. Apparent conversion rate constants from pyruvate to lactate and HCO3- were calculated as 0.014-0.018 s-1 and 0.0043-0.0056 s-1 , respectively. Pyruvate/tC and lactate/tC were in moderate linear relationships with fractional gray matter volume within each slice. White matter presented poor linear regression fit with HP signals, and moderate correlations of the fractional cerebrospinal fluid volume with pyruvate/tC and lactate/tC were measured. Measured HP signals were comparable between two consecutive exams with HP [1-13 C]pyruvate. CONCLUSIONS Dynamic MRS in combination with multichannel RF coils is an affordable and reliable alternative to imaging methods in investigating cerebral metabolism using HP [1-13 C]pyruvate.
Collapse
Affiliation(s)
- Junjie Ma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marco C. Pinho
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Crystal E. Harrison
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chenhao Sun
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Edward P. Hackett
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeff Liticker
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Ratnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Biochemistry and Chemical Biology, University of Texas Dallas, Richardson, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven M. Wright
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Christopher J. Madden
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Electrical and Computer Engineering, University of Texas Dallas, Richardson, TX, USA,Correspondence to: Jae Mo Park, Ph.D., 5323 Harry Hines Blvd. Dallas, Texas 75390-8568, , Tel: +1-214-645-7206, Fax: +1-214-645-2744
| |
Collapse
|
13
|
Mallet D, Dufourd T, Decourt M, Carcenac C, Bossù P, Verlin L, Fernagut PO, Benoit-Marand M, Spalletta G, Barbier EL, Carnicella S, Sgambato V, Fauvelle F, Boulet S. A metabolic biomarker predicts Parkinson's disease at the early stages in patients and animal models. J Clin Invest 2022; 132:e146400. [PMID: 34914634 PMCID: PMC8843749 DOI: 10.1172/jci146400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
BackgroundCare management of Parkinson's disease (PD) patients currently remains symptomatic, mainly because diagnosis relying on the expression of the cardinal motor symptoms is made too late. Earlier detection of PD therefore represents a key step for developing therapies able to delay or slow down its progression.MethodsWe investigated metabolic markers in 3 different animal models of PD, mimicking different phases of the disease assessed by behavioral and histological evaluation, and in 3 cohorts of de novo PD patients and matched controls (n = 129). Serum and brain tissue samples were analyzed by nuclear magnetic resonance spectroscopy and data submitted to advanced multivariate statistics.ResultsOur translational strategy reveals common metabolic dysregulations in serum of the different animal models and PD patients. Some of them were mirrored in the tissue samples, possibly reflecting pathophysiological mechanisms associated with PD development. Interestingly, some metabolic dysregulations appeared before motor symptom emergence and could represent early biomarkers of PD. Finally, we built a composite biomarker with a combination of 6 metabolites. This biomarker discriminated animals mimicking PD from controls, even from the first, nonmotor signs and, very interestingly, also discriminated PD patients from healthy subjects.ConclusionFrom our translational study, which included 3 animal models and 3 de novo PD patient cohorts, we propose a promising biomarker exhibiting a high accuracy for de novo PD diagnosis that may possibly predict early PD development, before motor symptoms appear.FundingFrench National Research Agency (ANR), DOPALCOMP, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Association France Parkinson.
Collapse
Affiliation(s)
- David Mallet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Thibault Dufourd
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Mélina Decourt
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Carole Carcenac
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Paola Bossù
- Dipartimento di Neurologia Clinica e Comportamentale, Laboratorio di Neuropsicobiologia Sperimentale, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Laure Verlin
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marianne Benoit-Marand
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Emmanuel L. Barbier
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sebastien Carnicella
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Véronique Sgambato
- Université de Lyon, CNRS UMR5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France
| | - Florence Fauvelle
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sabrina Boulet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
14
|
Hall GR, Boehm-Sturm P, Dirnagl U, Finke C, Foddis M, Harms C, Koch SP, Kuchling J, Madan CR, Mueller S, Sassi C, Sotiropoulos SN, Trueman RC, Wallis MD, Yildirim F, Farr TD. Long-Term Connectome Analysis Reveals Reshaping of Visual, Spatial Networks in a Model With Vascular Dementia Features. Stroke 2022; 53:1735-1745. [PMID: 35105183 PMCID: PMC9022688 DOI: 10.1161/strokeaha.121.036997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Connectome analysis of neuroimaging data is a rapidly expanding field that offers the potential to diagnose, characterize, and predict neurological disease. Animal models provide insight into biological mechanisms that underpin disease, but connectivity approaches are currently lagging in the rodent.
Collapse
Affiliation(s)
- Gerard R Hall
- School of Life Sciences, University of Nottingham, United Kingdom (G.R.H., R.C.T., M.D.W., T.D.F.)
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.).,German Center for Neurodegenerative Diseases, Berlin Site, Germany (U.D.)
| | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Germany. (C.F., J.K.).,Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany (C.F.)
| | - Marco Foddis
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Christoph Harms
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Stefan Paul Koch
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Joseph Kuchling
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin (J.K.).,Department of Neurology, Charité-Universitätsmedizin Berlin, Germany. (C.F., J.K.)
| | | | - Susanne Mueller
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Celeste Sassi
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom (S.N.S.).,Centre for Functional MRI of the Brain, University of Oxford, United Kingdom (S.N.S.)
| | - Rebecca C Trueman
- School of Life Sciences, University of Nottingham, United Kingdom (G.R.H., R.C.T., M.D.W., T.D.F.)
| | - Marcus D Wallis
- School of Life Sciences, University of Nottingham, United Kingdom (G.R.H., R.C.T., M.D.W., T.D.F.)
| | - Ferah Yildirim
- corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.).,NeuroCure Cluster of Excellence and Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Germany. (F.Y.)
| | - Tracy D Farr
- School of Life Sciences, University of Nottingham, United Kingdom (G.R.H., R.C.T., M.D.W., T.D.F.).,Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., T.D.F.).,corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany. NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Germany. (P.B.-S., U.D., M.F., C.H., S.P.K., S.M., C.S., F.Y., T.D.F.)
| |
Collapse
|
15
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
16
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
17
|
Song J, Yang X, Zhang M, Wang C, Chen L. Glutamate Metabolism in Mitochondria is Closely Related to Alzheimer's Disease. J Alzheimers Dis 2021; 84:557-578. [PMID: 34602474 DOI: 10.3233/jad-210595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain, and its excitatory neurotoxicity is closely related to the occurrence and development of Alzheimer's disease. However, increasing evidence shows that in the process of Alzheimer's disease, glutamate is not only limited to its excitotoxicity as a neurotransmitter but also related to the disorder of its metabolic balance. The balance of glutamate metabolism in the brain is an important determinant of central nervous system health, and the maintenance of this balance is closely related to glutamate uptake, glutamate circulation, intracellular mitochondrial transport, and mitochondrial metabolism. In this paper, we intend to elaborate the key role of mitochondrial glutamate metabolism in the pathogenesis of Alzheimer's disease and review glutamate metabolism in mitochondria as a potential target in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiayi Song
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China.,Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuehan Yang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Ming Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Chunyan Wang
- Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Li Chen
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
18
|
Abstract
Magnetic resonance spectroscopy (MRS), being able to identify and measure some brain components (metabolites) in pathologic lesions and in normal-appearing tissue, offers a valuable additional diagnostic tool to assess several pediatric neurological diseases. In this review we will illustrate the basic principles and clinical applications of brain proton (H1; hydrogen) MRS (H1MRS), by now the only MRS method widely available in clinical practice. Performing H1MRS in the brain is inherently less complicated than in other tissues (e.g., liver, muscle), in which spectra are heavily affected by magnetic field inhomogeneities, respiration artifacts, and dominating signals from the surrounding adipose tissues. H1MRS in pediatric neuroradiology has some advantages over acquisitions in adults (lack of motion due to children sedation and lack of brain iron deposition allow optimal results), but it requires a deep knowledge of pediatric pathologies and familiarity with the developmental changes in spectral patterns, particularly occurring in the first two years of life. Examples from our database, obtained mainly from a 1.5 Tesla clinical scanner in a time span of 15 years, will demonstrate the efficacy of H1MRS in the diagnosis of a wide range of selected pediatric pathologies, like brain tumors, infections, neonatal hypoxic-ischemic encephalopathy, metabolic and white matter disorders.
Collapse
Affiliation(s)
- Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Lorenzo Pinelli
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
19
|
Reevaluation of Astrocyte-Neuron Energy Metabolism with Astrocyte Volume Fraction Correction: Impact on Cellular Glucose Oxidation Rates, Glutamate-Glutamine Cycle Energetics, Glycogen Levels and Utilization Rates vs. Exercising Muscle, and Na +/K + Pumping Rates. Neurochem Res 2020; 45:2607-2630. [PMID: 32948935 DOI: 10.1007/s11064-020-03125-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Accurate quantification of cellular contributions to rates of substrate utilization in resting, activated, and diseased brain is essential for interpretation of data from studies using [18F]fluorodeoxyglucose-positron-emission tomography (FDG-PET) and [13C]glucose/magnetic resonance spectroscopy (MRS). A generally-accepted dogma is that neurons have the highest energy demands of all brain cells, and calculated neuronal rates of glucose oxidation in awake, resting brain accounts for 70-80%, with astrocytes 20-30%. However, these proportions do not take cell type volume fractions into account. To evaluate the conclusion that neuron-astrocyte glucose oxidation rates are similar when adjusted for astrocytic volume fraction (Hertz, Magn Reson Imaging 2011; 29, 1319), the present study analyzed data from 31 studies. On average, astrocytes occupy 6.1, 9.6, and 15% of tissue volume in hippocampus, cerebral cortex, and cerebellum, respectively, and regional astrocytic metabolic rates are adjusted for volume fraction by multiplying by 17.6, 11.4, and 6.8, respectively. After adjustment, astrocytic glucose oxidation rates in resting awake rat brain are 4-10 fold higher than neuronal oxidation rates. Volume-fraction adjustment also increases brain glycogen concentrations and utilization rates to be similar to or exceed exercising muscle. Ion flux calculations to evaluate sodium/potassium homeostasis during neurotransmission are not correct if astrocyte-neuron volume fractions are assumed to be equal. High rates of glucose and glycogen utilization after adjustment for volume fraction indicate that astrocytic energy demands are much greater than recognized, with most of the ATP being used for functions other than glutamate processing in the glutamate-glutamine cycle, challenging the notion that astrocytes 'feed hungry neurons'.
Collapse
|
20
|
Hollnagel JO, Cesetti T, Schneider J, Vazetdinova A, Valiullina-Rakhmatullina F, Lewen A, Rozov A, Kann O. Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure. iScience 2020; 23:101316. [PMID: 32653807 PMCID: PMC7350153 DOI: 10.1016/j.isci.2020.101316] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 01/29/2023] Open
Abstract
Lactate shuttled from blood, astrocytes, and/or oligodendrocytes may serve as the major glucose alternative in brain energy metabolism. However, its effectiveness in fueling neuronal information processing underlying complex cortex functions like perception and memory is unclear. We show that sole lactate disturbs electrical gamma and theta-gamma oscillations in hippocampal networks by either attenuation or neural bursts. Bursting is suppressed by elevating the glucose fraction in substrate supply. By contrast, lactate does not affect electrical sharp wave-ripple activity featuring lower energy use. Lactate increases the oxygen consumption during the network states, reflecting enhanced oxidative ATP synthesis in mitochondria. Finally, lactate attenuates synaptic transmission in excitatory pyramidal cells and fast-spiking, inhibitory interneurons by reduced neurotransmitter release from presynaptic terminals, whereas action potential generation in the axon is regular. In conclusion, sole lactate is less effective and potentially harmful during gamma-band rhythms by omitting obligatory ATP delivery through fast glycolysis at the synapse. Lactate fuels network oscillations featuring low energy expenditure Lactate can disturb the neuronal excitation-inhibition balance Lactate attenuates neurotransmission at glutamatergic and GABAergic synapses Lactate increases oxygen consumption, whereas neural activity can even decrease
Collapse
Affiliation(s)
- Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Tiziana Cesetti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Alina Vazetdinova
- OpenLab of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
| | | | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andrei Rozov
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; OpenLab of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Schousboe A. Astrocytic Metabolism Focusing on Glutamate Homeostasis: A Short Review Dedicated to Vittorio Gallo. Neurochem Res 2019; 45:522-525. [PMID: 31617053 DOI: 10.1007/s11064-019-02888-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023]
Abstract
A large number of studies have during the last several decades shown that astrocytes play a significant role in brain energy metabolism accounting for a considerable part of the oxygen uptake and the corresponding oxidative metabolism of glucose and lactate. Interestingly, it has become clear that in addition to these two major energy substrates, glutamate may be considered as an important alternative energy substrate and this is tightly coupled to its role as an excitatory neurotransmitter. Hence, this short review will link these events and provide an account of the role that Vittorio Gallo came to play as he coauthored a publication which demonstrated the usefulness of cultured cerebellar granule cells for studies of glutamate neurotransmission. Just by chance this study was published the same year that my own group published a similar study of glutamate uptake and release in a corresponding preparation of cultured neurons and astrocytes from cerebellum and cerebral cortex. Thus, it is a pleasure to dedicate this account of the role of astrocytes in glutamate neurotransmission to Vittorio Gallo whom I have had the pleasure of knowing for more than three decades.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
22
|
Dienel GA. The “protected” glucose transport through the astrocytic endoplasmic reticulum is too slow to serve as a quantitatively‐important highway for nutrient delivery. J Neurosci Res 2019; 97:854-862. [DOI: 10.1002/jnr.24432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Gerald A. Dienel
- Department of Neurology University of Arkansas for Medical Sciences Little Rock Arkansas
- Department of Cell Biology and Physiology University of New Mexico Albuquerque New Mexico
| |
Collapse
|
23
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
24
|
Dienel GA. Does shuttling of glycogen-derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? J Neurosci Res 2019; 97:863-882. [PMID: 30667077 DOI: 10.1002/jnr.24387] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Glycogen levels in resting brain and its utilization rates during brain activation are high, but the functions fulfilled by glycogenolysis in living brain are poorly understood. Studies in cultured astrocytes have identified glycogen as the preferred fuel to provide ATP for Na+ ,K+ -ATPase for the uptake of extracellular K+ and for Ca2+ -ATPase to pump Ca2+ into the endoplasmic reticulum. Studies in astrocyte-neuron co-cultures led to the suggestion that glycogen-derived lactate is shuttled to neurons as oxidative fuel to support glutamatergic neurotransmission. Furthermore, both knockout of brain glycogen synthase and inhibition of glycogenolysis prior to a memory-evoking event impair memory consolidation, and shuttling of glycogen-derived lactate as neuronal fuel was postulated to be required for memory. However, lactate shuttling has not been measured in any of these studies, and procedures to inhibit glycogenolysis and neuronal lactate uptake are not specific. Testable alternative mechanisms to explain the observed findings are proposed: (i) disruption of K+ and Ca2+ homeostasis, (ii) release of gliotransmitters, (iii) imposition of an energy crisis on astrocytes and neurons by inhibition of mitochondrial pyruvate transport by compounds used to block neuronal monocarboxylic acid transporters, and (iv) inhibition of astrocytic filopodial movements that secondarily interfere with glutamate and K+ uptake from the synaptic cleft. Evidence that most pyruvate/lactate derived from glycogen is not oxidized and does not accumulate suggests predominant glycolytic metabolism of glycogen to support astrocytic energy demands. Sparing of blood-borne glucose for use by neurons is a reasonable explanation for the requirement for glycogenolysis in neurotransmission and memory processing.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
25
|
Amino Acid Biosignature in Plasma among Ischemic Stroke Subtypes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8480468. [PMID: 30800679 PMCID: PMC6360633 DOI: 10.1155/2019/8480468] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022]
Abstract
Ischemic stroke is a neurovascular disorder caused by reduced or blockage of blood flow to the brain, which may permanently affect motor and cognitive abilities. The diagnostic of stroke is performed using imaging technologies, clinical evaluation, and neuropsychological protocols, but no blood test is available yet. In this work, we analyzed amino acid concentrations in blood plasma from poststroke patients in order to identify differences that could characterize the stroke etiology. Plasma concentrations of sixteen amino acids from patients with chronic ischemic stroke (n = 73) and the control group (n = 16) were determined using gas chromatography coupled to mass spectrometry (GC-MS). The concentration data was processed by Partial Least Squares-Discriminant Analysis (PLS-DA) to classify patients with stroke and control. The amino acid analysis generated a first model able to discriminate ischemic stroke patients from control group. Proline was the most important amino acid for classification of the stroke samples in PLS-DA, followed by lysine, phenylalanine, leucine, and glycine, and while higher levels of methionine and alanine were mostly related to the control samples. The second model was able to discriminate the stroke subtypes like atherothrombotic etiology from cardioembolic and lacunar etiologies, with lysine, leucine, and cysteine plasmatic concentrations being the most important metabolites. Our results suggest an amino acid biosignature for patients with chronic stroke in plasma samples, which can be helpful in diagnosis, prognosis, and therapeutics of these patients.
Collapse
|
26
|
Glycogenolysis in Cerebral Cortex During Sensory Stimulation, Acute Hypoglycemia, and Exercise: Impact on Astrocytic Energetics, Aerobic Glycolysis, and Astrocyte-Neuron Interactions. ADVANCES IN NEUROBIOLOGY 2019; 23:209-267. [DOI: 10.1007/978-3-030-27480-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
DiNuzzo M, Walls AB, Öz G, Seaquist ER, Waagepetersen HS, Bak LK, Nedergaard M, Schousboe A. State-Dependent Changes in Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:269-309. [PMID: 31667812 DOI: 10.1007/978-3-030-27480-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fundamental understanding of glycogen structure, concentration, polydispersity and turnover is critical to qualify the role of glycogen in the brain. These molecular and metabolic features are under the control of neuronal activity through the interdependent action of neuromodulatory tone, ionic homeostasis and availability of metabolic substrates, all variables that concur to define the state of the system. In this chapter, we briefly describe how glycogen responds to selected behavioral, nutritional, environmental, hormonal, developmental and pathological conditions. We argue that interpreting glycogen metabolism through the lens of brain state is an effective approach to establish the relevance of energetics in connecting molecular and cellular neurophysiology to behavior.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:221-264. [PMID: 30635082 DOI: 10.1016/bs.apcsb.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular redox status is an established player in many different cellular functions. The buildup of oxidants within the cell is tightly regulated to maintain a balance between the positive and negative outcomes of cellular oxidants. Proteins are highly sensitive to oxidation, since modification can cause widespread unfolding and the formation of toxic aggregates. In response, cells have developed highly regulated systems that contribute to the maintenance of both the global redox status and protein homeostasis at large. Changes to these systems have been found to correlate with aging and age-related disorders, such as neurodegenerative pathologies. This raises intriguing questions as to the source of the imbalance in the redox and protein homeostasis systems, their interconnectivity, and their role in disease progression. Here we focus on the crosstalk between the redox and protein homeostasis systems in neurodegenerative diseases, specifically in Alzheimer's, Parkinson's, and ALS. We elaborate on some of the main players of the stress response systems, including the master regulators of oxidative stress and the heat shock response, Nrf2 and Hsf1, which are essential features of protein folding, and mediators of protein turnover. We illustrate the elegant mechanisms used by these components to provide an immediate response, including protein plasticity controlled by redox-sensing cysteines and the recruitment of naive proteins to the redox homeostasis array that act as chaperons in an ATP-independent manner.
Collapse
|
29
|
Zhou Q, Zheng H, Chen J, Li C, Du Y, Xia H, Gao H. Metabolic fate of glucose in the brain of APP/PS1 transgenic mice at 10 months of age: a 13C NMR metabolomic study. Metab Brain Dis 2018; 33:1661-1668. [PMID: 29946959 DOI: 10.1007/s11011-018-0274-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) has been associated with the disturbance of brain glucose metabolism. The present study investigates brain glucose metabolism using 13C NMR metabolomics in combination with intravenous [1-13C]-glucose infusion in APP/PS1 transgenic mouse model of amyloid pathology at 10 months of age. We found that brain glucose was significantly accumulated in APP/PS1 mice relative to wild-type (WT) mice. Reductions in 13C fluxes into the specific carbon sites of tricarboxylic acid (TCA) intermediate (succinate) as well as neurotransmitters (glutamate, glutamine, γ-aminobutyric acid and aspartate) from [1-13C]-glucose were also detected in the brain of APP/PS1 mice. In addition, our results reveal that the 13C-enrichments of the C3 of alanine were significantly lower and the C3 of lactate have a tendency to be lower in the brain of APP/PS1 mice than WT mice. Taken together, the development of amyloid pathology could cause a reduction in glucose utilization and further result in decreases in energy and neurotransmitter metabolism as well as the lactate-alanine shuttle in the brain.
Collapse
Affiliation(s)
- Qi Zhou
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jiuxia Chen
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yao Du
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huanhuan Xia
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
30
|
Skowrońska K, Obara-Michlewska M, Czarnecka A, Dąbrowska K, Zielińska M, Albrecht J. Persistent Overexposure to N-Methyl-D-Aspartate (NMDA) Calcium-Dependently Downregulates Glutamine Synthetase, Aquaporin 4, and Kir4.1 Channel in Mouse Cortical Astrocytes. Neurotox Res 2018; 35:271-280. [PMID: 30220059 PMCID: PMC6313349 DOI: 10.1007/s12640-018-9958-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 11/25/2022]
Abstract
Astrocytes express N-methyl-d-aspartate (NMDA) receptor (NMDAR) but its functions in these cells are not well defined. This study shows that the sustained exposure (8–72 h) of mouse astrocytes to NMDA decreases the expression of the functional astroglia-specific proteins, glutamine synthetase (GS), and the water channel protein aquaporin-4 (AQP4) and also reduces GS activity. Similar to rat astrocytes (Obara-Michlewska et al. Neurochem Int 88:20–25, 2015), the exposure of mouse astrocytes to NMDA also decreased the expression of the inward rectifying potassium channel Kir4.1. NMDA failed to elicit the effects in those cells incubated in the absence of Ca2+ and in those in which the GluN1 subunit of the NMDAR was silenced with GluN1 siRNA. The downregulation of GS, AQP4, and Kir4.1 observed in vitro may reflect NMDAR-mediated alterations of astrocytic functions noted in central nervous system pathologies associated with increased glutamate (Glu) release and excitotoxic tissue damage.
Collapse
Affiliation(s)
- Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Anna Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Katarzyna Dąbrowska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
31
|
ASCT1 (Slc1a4) transporter is a physiologic regulator of brain d-serine and neurodevelopment. Proc Natl Acad Sci U S A 2018; 115:9628-9633. [PMID: 30185558 DOI: 10.1073/pnas.1722677115] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
d-serine is a physiologic coagonist of NMDA receptors, but little is known about the regulation of its synthesis and synaptic turnover. The amino acid exchangers ASCT1 (Slc1a4) and ASCT2 (Slc1a5) are candidates for regulating d-serine levels. Using ASCT1 and ASCT2 KO mice, we report that ASCT1, rather than ASCT2, is a physiologic regulator of d-serine metabolism. ASCT1 is a major d-serine uptake system in astrocytes and can also export l-serine via heteroexchange, supplying neurons with the substrate for d-serine synthesis. ASCT1-KO mice display lower levels of brain d-serine along with higher levels of l-alanine, l-threonine, and glycine. Deletion of ASCT1 was associated with neurodevelopmental alterations including lower hippocampal and striatal volumes and changes in the expression of neurodevelopmental-relevant genes. Furthermore, ASCT1-KO mice exhibited deficits in motor function, spatial learning, and affective behavior, along with changes in the relative contributions of d-serine vs. glycine in mediating NMDA receptor activity. In vivo microdialysis demonstrated lower levels of extracellular d-serine in ASCT1-KO mice, confirming altered d-serine metabolism. These alterations are reminiscent of some of the neurodevelopmental phenotypes exhibited by patients with ASCT1 mutations. ASCT1-KO mice provide a useful model for potential therapeutic interventions aimed at correcting the metabolic impairments in patients with ASCT1 mutations.
Collapse
|
32
|
Tsai SF, Chen YW, Kuo YM. High-fat diet reduces the hippocampal content level of lactate which is correlated with the expression of glial glutamate transporters. Neurosci Lett 2017; 662:142-146. [PMID: 29051084 DOI: 10.1016/j.neulet.2017.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
Metabolic disorders hamper the brain metabolism and functions. The astrocytic glucose-derived lactate is known to fill the increased energy needs of neurons during synaptic transmission. However, whether systemic metabolism dysregulation affects the astrocytic lactate metabolism in the brain remain unexamined. To address this question, we adopt a 12-week high-fat diet to induce metabolic disorders in adult mice, and the effects of high-fat diet on the lactate metabolism in the hippocampus were examined. Results showed that a 12-week high-fat diet induced obesity and insulin resistance in mice. High-fat diet also decreased the lactate content levels and the expression of glial glutamate transporters, GLAST and GLT-1, in the hippocampus. Strong correlations between the lactate levels and the levels of GLAST and GLT-1 were evidenced. In conclusion, high-fat feeding induces metabolic disorders and disrupts lactate metabolism in the hippocampus. GLAST and GLT-1 may contribute to the HFD-induced abnormalities of the hippocampal lactate metabolism.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Wen Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
33
|
Santos CL, Roppa PHA, Truccolo P, Fontella FU, Souza DO, Bobermin LD, Quincozes-Santos A. Age-Dependent Neurochemical Remodeling of Hypothalamic Astrocytes. Mol Neurobiol 2017; 55:5565-5579. [PMID: 28980158 DOI: 10.1007/s12035-017-0786-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023]
Abstract
The hypothalamus is a crucial integrative center in the central nervous system, responsible for the regulation of homeostatic activities, including systemic energy balance. Increasing evidence has highlighted a critical role of astrocytes in orchestrating hypothalamic functions; they participate in the modulation of synaptic transmission, metabolic and trophic support to neurons, immune defense, and nutrient sensing. In this context, disturbance of systemic energy homeostasis, which is a common feature of obesity and the aging process, involves inflammatory responses. This may be related to dysfunction of hypothalamic astrocytes. In this regard, the aim of this study was to evaluate the neurochemical properties of hypothalamic astrocyte cultures from newborn, adult, and aged Wistar rats. Age-dependent changes in the regulation of glutamatergic homeostasis, glutathione biosynthesis, amino acid profile, glucose metabolism, trophic support, and inflammatory response were observed. Additionally, signaling pathways including nuclear factor erythroid-derived 2-like 2/heme oxygenase-1 p38 mitogen-activated protein kinase, nuclear factor kappa B, phosphatidylinositide 3-kinase/Akt, and leptin receptor expression may represent putative mechanisms associated with the cellular alterations. In summary, our findings indicate that as age increases, hypothalamic astrocytes remodel and exhibit changes in their neurochemical properties. This process may play a role in the onset and/or progression of metabolic disorders.
Collapse
Affiliation(s)
- Camila Leite Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Paola Haack Amaral Roppa
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Pedro Truccolo
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Fernanda Urruth Fontella
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| | - André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
34
|
Aldana BI, Zhang Y, Lihme MF, Bak LK, Nielsen JE, Holst B, Hyttel P, Freude KK, Waagepetersen HS. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons. Neurochem Int 2017; 106:48-61. [DOI: 10.1016/j.neuint.2017.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/19/2017] [Accepted: 02/20/2017] [Indexed: 02/01/2023]
|
35
|
Bak LK, Schousboe A. Misconceptions regarding basic thermodynamics and enzyme kinetics have led to erroneous conclusions regarding the metabolic importance of lactate dehydrogenase isoenzyme expression. J Neurosci Res 2017; 95:2098-2102. [DOI: 10.1002/jnr.23994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Lasse K. Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
36
|
Flippo KH, Strack S. Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 2017; 130:671-681. [PMID: 28154157 DOI: 10.1242/jcs.171017] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria fulfill numerous cellular functions including ATP production, Ca2+ buffering, neurotransmitter synthesis and degradation, ROS production and sequestration, apoptosis and intermediate metabolism. Mitochondrial dynamics, a collective term for the processes of mitochondrial fission, fusion and transport, governs mitochondrial function and localization within the cell. Correct balance of mitochondrial dynamics is especially important in neurons as mutations in fission and fusion enzymes cause peripheral neuropathies and impaired development of the nervous system in humans. Regulation of mitochondrial dynamics is partly accomplished through post-translational modification of mitochondrial fission and fusion enzymes, in turn influencing mitochondrial bioenergetics and transport. The importance of post-translational regulation is highlighted by numerous neurodegenerative disorders associated with post-translational modification of the mitochondrial fission enzyme Drp1. Not surprisingly, mitochondrial dynamics also play an important physiological role in the development of the nervous system and synaptic plasticity. Here, we highlight recent findings underlying the mechanisms and regulation of mitochondrial dynamics in relation to neurological disease, as well as the development and plasticity of the nervous system.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Pharmacology, University of Iowa, Iowa City, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, USA
| |
Collapse
|
37
|
Zheng H, Zheng Y, Wang D, Cai A, Lin Q, Zhao L, Chen M, Deng M, Ye X, Gao H. Analysis of neuron-astrocyte metabolic cooperation in the brain of db/db mice with cognitive decline using 13C NMR spectroscopy. J Cereb Blood Flow Metab 2017; 37:332-343. [PMID: 26762505 PMCID: PMC5363750 DOI: 10.1177/0271678x15626154] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/24/2023]
Abstract
Type 2 diabetes has been linked to cognitive impairment, but its potential metabolic mechanism is still unclear. The present study aimed to explore neuron-astrocyte metabolic cooperation in the brain of diabetic (db/db, BKS.Cg-m+/+ Leprdb/J) mice with cognitive decline using 13C NMR technique in combination with intravenous [2-13C]-acetate and [3-13C]-lactate infusions. We found that the 13C-enrichment from [2-13C]-acetate into tricarboxylic acid cycle intermediate, succinate, was significantly decreased in db/db mice with cognitive decline compared with wild-type (WT, C57BLKS/J) mice, while an opposite result was obtained after [3-13C]-lactate infusion. Relative to WT mice, db/db mice with cognitive decline had significantly lower 13C labeling percentages in neurotransmitters including glutamine, glutamate, and γ-aminobutyric acid after [2-13C]-acetate infusion. However, [3-13C]-lactate resulted in increased 13C-enrichments in neurotransmitters in db/db mice with cognitive decline. This may indicate that the disturbance of neurotransmitter metabolism occurred during the development of cognitive decline. In addition, a reduction in 13C-labeling of lactate and an increase in gluconeogenesis were found from both labeled infusions in db/db mice with cognitive decline. Therefore, our results suggest that the development of cognitive decline in type 2 diabetes may be implicated to an unbalanced metabolism in neuron-astrocyte cooperation and an enhancement of gluconeogenesis.
Collapse
Affiliation(s)
- Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongquan Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aimin Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiuting Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Minjiang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mingjie Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinjian Ye
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4125731. [PMID: 27413747 PMCID: PMC4930799 DOI: 10.1155/2016/4125731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Objective. High glucose- (HG-) induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM) or control (25 mM) groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine) may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.
Collapse
|
39
|
Tsai SF, Chen PC, Calkins MJ, Wu SY, Kuo YM. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle. Front Aging Neurosci 2016; 8:57. [PMID: 27047373 PMCID: PMC4801859 DOI: 10.3389/fnagi.2016.00057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/08/2016] [Indexed: 01/19/2023] Open
Abstract
Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
40
|
Abstract
Transient multienzyme and/or multiprotein complexes (metabolons) direct substrates toward specific pathways and can significantly influence the metabolism of glutamate and glutamine in the brain. Glutamate is the primary excitatory neurotransmitter in brain. This neurotransmitter has essential roles in normal brain function including learning and memory. Metabolism of glutamate involves the coordinated activity of astrocytes and neurons and high affinity transporter proteins that are selectively distributed on these cells. This chapter describes known and possible metabolons that affect the metabolism of glutamate and related compounds in the brain, as well as some factors that can modulate the association and dissociation of such complexes, including protein modifications by acylation reactions (e.g., acetylation, palmitoylation, succinylation, SUMOylation, etc.) of specific residues. Development of strategies to modulate transient multienzyme and/or enzyme-protein interactions may represent a novel and promising therapeutic approach for treatment of diseases involving dysregulation of glutamate metabolism.
Collapse
|
41
|
Gebril HM, Avula B, Wang YH, Khan IA, Jekabsons MB. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway. Neurochem Int 2015; 93:26-39. [PMID: 26723542 DOI: 10.1016/j.neuint.2015.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/25/2022]
Abstract
Glycolysis, mitochondrial substrate oxidation, and the pentose phosphate pathway (PPP) are critical for neuronal bioenergetics and oxidation-reduction homeostasis, but quantitating their fluxes remains challenging, especially when processes such as hexose phosphate (i.e., glucose/fructose-6-phosphate) recycling in the PPP are considered. A hexose phosphate recycling model was developed which exploited the rates of glucose consumption, lactate production, and mitochondrial respiration to infer fluxes through the major glucose consuming pathways of adherent cerebellar granule neurons by replicating [(13)C]lactate labeling from metabolism of [1,2-(13)C2]glucose. Flux calculations were predicated on a steady-state system with reactions having known stoichiometries and carbon atom transitions. Non-oxidative PPP activity and consequent hexose phosphate recycling, as well as pyruvate production by cytoplasmic malic enzyme, were optimized by the model and found to account for 28 ± 2% and 7.7 ± 0.2% of hexose phosphate and pyruvate labeling, respectively. From the resulting fluxes, 52 ± 6% of glucose was metabolized by glycolysis, compared to 19 ± 2% by the combined oxidative/non-oxidative pentose cycle that allows for hexose phosphate recycling, and 29 ± 8% by the combined oxidative PPP/de novo nucleotide synthesis reactions. By extension, 62 ± 6% of glucose was converted to pyruvate, the metabolism of which resulted in 16 ± 1% of glucose oxidized by mitochondria and 46 ± 6% exported as lactate. The results indicate a surprisingly high proportion of glucose utilized by the pentose cycle and the reactions synthesizing nucleotides, and exported as lactate. While the in vitro conditions to which the neurons were exposed (high glucose, no lactate or other exogenous substrates) limit extrapolating these results to the in vivo state, the approach provides a means of assessing a number of metabolic fluxes within the context of hexose phosphate recycling in the PPP from a minimal set of measurements.
Collapse
Affiliation(s)
- Hoda M Gebril
- Department of Biology, Shoemaker Hall, University of Mississippi, University, MS 38677, USA.
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Ikhlas A Khan
- Department of Biomedical Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mika B Jekabsons
- Department of Biology, Shoemaker Hall, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
42
|
Contreras L. Role of AGC1/aralar in the metabolic synergies between neuron and glia. Neurochem Int 2015; 88:38-46. [DOI: 10.1016/j.neuint.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
43
|
Neonatal taurine and alanine modulate anxiety-like behavior and decelerate cortical spreading depression in rats previously suckled under different litter sizes. Amino Acids 2015; 47:2437-45. [DOI: 10.1007/s00726-015-2036-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/17/2015] [Indexed: 11/26/2022]
|
44
|
Nagai T, Takata N, Shinohara Y, Hirase H. Adaptive changes of extracellular amino acid concentrations in mouse dorsal striatum by 4-AP-induced cortical seizures. Neuroscience 2015; 295:229-36. [PMID: 25818552 DOI: 10.1016/j.neuroscience.2015.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/04/2023]
Abstract
The striatum is a major target of cerebral cortical output. The cortico-striatal projection has been well described, however, the neurochemical changes that occur in the striatum after prolonged cortical hyperactivation remain to be investigated. In this study, extracellular levels of glutamate, GABA, and alanine levels were measured in the dorsal striatum using microdialysis in anesthetized mice at resting condition and during 4-aminopyridine (4-AP)-induced cortical seizures. After topical application of 4-AP on the primary motor cortex that induced cortical seizures, the extracellular level of striatal GABA increased by 40% in 60 min. By contrast, the extracellular level of striatal glutamate decreased by 20%. Moreover, the surface amounts of striatal glutamate/aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1), the major astrocytic high-affinity glutamate transporters, tended to increase by cortical seizures in 60 min, suggesting a recruitment of the glutamate transporters from internal stores. 4-AP also resulted in a steady increase of alanine levels which are thought to reflect glutamate and pyruvate metabolism in neurons and astrocytes. These observations possibly delineate adaptive changes of striatal metabolism by severe cortical seizures.
Collapse
Affiliation(s)
- T Nagai
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - N Takata
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Y Shinohara
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - H Hirase
- RIKEN Brain Science Institute, Wako, Saitama, Japan; Saitama University Brain Science Institute, Saitama, Saitama, Japan.
| |
Collapse
|
45
|
Bogdanova OV, Abdullah O, Kanekar S, Bogdanov VB, Prescot AP, Renshaw PF. Neurochemical alterations in frontal cortex of the rat after one week of hypobaric hypoxia. Behav Brain Res 2014; 263:203-9. [PMID: 24486259 PMCID: PMC4699295 DOI: 10.1016/j.bbr.2014.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022]
Abstract
Residing at high altitude may lead to reduced blood oxygen saturation in the brain and altered metabolism in frontal cortical brain areas, probably due to chronic hypobaric hypoxia. These changes may underlie the increased rates of depression and suicidal behavior that have been associated with life at higher altitudes. To test the hypothesis that hypobaric hypoxia is responsible for development of mood disorders due to alterations in neurochemistry, we assessed depression-like behavior in parallel to levels of brain metabolites in rats housed at simulated altitude. 32 female Sprague Dawley rats were housed either in a hypobaric hypoxia chamber at 10,000 ft of simulated altitude for 1 week or at local conditions (4500 ft of elevation in Salt Lake City, Utah). Depression-like behavior was assessed using the forced swim test (FST) and levels of neurometabolites were estimated by in vivo proton magnetic resonance spectroscopy in the frontal cortex, the striatum and the hippocampus at baseline and after a week of exposure to hypobaric hypoxia. After hypoxia exposure the animals demonstrated increased immobility behavior and shortened latency to immobility in the FST. Elevated ratios of myo-inositol, glutamate, and the sum of myo-inositol and glycine to total creatine were observed in the frontal cortex of hypoxia treated rats. A decrease in the ratio of alanine to total creatine was also noted. This study shows that hypoxia induced alterations in frontal lobe brain metabolites, aggravated depression-like behavior and might be a factor in increased rates of psychiatric disorders observed in populations living at high altitudes.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA.
| | - Osama Abdullah
- Department of Bioengineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City 84112, UT USA
| | - Shami Kanekar
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Psychiatry Department, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA
| | - Volodymyr B Bogdanov
- INRA, Nutrition et Neurobiologie Intégrée and University Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 146 rue Léo-Saignat, Bordeaux Cedex 33076, France
| | - Andrew P Prescot
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Department of Radiology, University of Utah, 30 North 1900 East, Salt Lake City 84132, UT USA
| | - Perry F Renshaw
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; Psychiatry Department, University of Utah, 383 Colorow Drive, Salt Lake City 84108, UT USA; VISN19 MIRECC Salt Lake City UAMC, 500 Foothill Drive, Salt Lake City 84148, UT USA
| |
Collapse
|
46
|
Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC. Glutamate metabolism in the brain focusing on astrocytes. ADVANCES IN NEUROBIOLOGY 2014; 11:13-30. [PMID: 25236722 DOI: 10.1007/978-3-319-08894-5_2] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplerotic enzyme pyruvate carboxylase and glutamine synthetase. Glutamate is formed directly from glutamine by deamidation via phosphate activated glutaminase a reaction that also yields ammonia. Glutamate plays key roles linking carbohydrate and amino acid metabolism via the tricarboxylic acid (TCA) cycle, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools in both glutamatergic and GABAergic neurons. Since the glutamate-glutamine cycle is an open cycle that actively interfaces with other pathways, the de novo synthesis of glutamine in astrocytes helps to maintain the operation of this cycle. The fine-tuned biochemical specialization of astrocytes allows these cells to respond to subtle changes in neurotransmission by dynamically adjusting their anaplerotic and glycolytic activities, and adjusting the amount of glutamate oxidized for energy relative to direct formation of glutamine, to meet the demands for maintaining neurotransmission. This chapter summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain.
Collapse
Affiliation(s)
- Arne Schousboe
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
47
|
Rae C, Balcar VJ. A Chip Off the Old Block: The Brain Slice as a Model for Metabolic Studies of Brain Compartmentation and Neuropharmacology. BRAIN ENERGY METABOLISM 2014. [DOI: 10.1007/978-1-4939-1059-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Rodrigues TB, Valette J, Bouzier-Sore AK. (13)C NMR spectroscopy applications to brain energy metabolism. FRONTIERS IN NEUROENERGETICS 2013; 5:9. [PMID: 24367329 PMCID: PMC3856424 DOI: 10.3389/fnene.2013.00009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/15/2013] [Indexed: 12/31/2022]
Abstract
(13)C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of (13)C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the (13)C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of (13)C NMR data. Finally, new perspectives and applications offered by (13)C hyperpolarization are described.
Collapse
Affiliation(s)
- Tiago B. Rodrigues
- Cancer Research UK Cambridge Institute and Department of Biochemistry, University of CambridgeCambridge, UK
| | - Julien Valette
- Commissariat à l’Energie Atomique, Institut d’Imagerie Biomédicale, Molecular Imaging Research CenterFontenay-Aux-Roses, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen - Centre National de la Recherche ScientifiqueBordeaux, France
| |
Collapse
|
49
|
Cooper AJL. Quantitative analysis of neurotransmitter pathways under steady state conditions - a perspective. Front Endocrinol (Lausanne) 2013; 4:179. [PMID: 24302920 PMCID: PMC3831341 DOI: 10.3389/fendo.2013.00179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022] Open
Abstract
In a contribution to this Research Topic Erkki Somersalo and Daniela Calvetti carried out a mathematical analysis of neurotransmitter pathways in brain, modeling compartmental nitrogen flux among several major participants - ammonia, glutamine, glutamate, GABA, and selected amino acids. This analysis is important because cerebral nitrogen metabolism is perturbed in many diseases, including liver disease and inborn errors of the urea cycle. These diseases result in an elevation of blood ammonia, which is neurotoxic. Here, a brief description is provided of the discovery of cerebral metabolic compartmentation of nitrogen metabolism - a key feature of cerebral glutamate-glutamine and GABA-glutamine cycles. The work of Somersalo and Calvetti is discussed as a model for future studies of normal and pathological cerebral ammonia metabolism.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
- *Correspondence: Arthur J. L. Cooper, Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10520, USA e-mail:
| |
Collapse
|
50
|
Massucci FA, DiNuzzo M, Giove F, Maraviglia B, Castillo IP, Marinari E, De Martino A. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective. BMC SYSTEMS BIOLOGY 2013; 7:103. [PMID: 24112710 PMCID: PMC4021976 DOI: 10.1186/1752-0509-7-103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/30/2013] [Indexed: 12/03/2022]
Abstract
Background The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. Results We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. Conclusions These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange.
Collapse
Affiliation(s)
- Francesco A Massucci
- Dipartimento di Fisica, Sapienza Università di Roma, P,le Aldo Moro 2, 00185 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|