1
|
O'Hara J, Dakle P, Nguyen MLT, Barugahare A, Bennett TJ, Udupa VAV, Murray N, Schlegel G, Kapouleas C, Li J, Turner SJ, Russ BE. Notch dependent chromatin remodeling enables Gata3 binding and drives lineage specific CD8 + T cell function. Immunol Cell Biol 2025; 103:365-382. [PMID: 40012375 PMCID: PMC11964803 DOI: 10.1111/imcb.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Activation of CD8+ T cells enable them to control virus infections and tumors. This process involves the differentiation of naïve CD8+ T cells into effector and memory states, driven by specific transcription factors (TFs). Previously, we have shown that Granzyme A (Gzma) induction in activated CD8+ T cells depends on Gata3 and the establishment of a permissive chromatin landscape at the Gzma locus. Interestingly, Gzma expression is independent of IL-4 signaling, which typically upregulates Gata3 in CD4+ T cells, suggesting an alternative pathway for Gata3 induction. Here we demonstrate that Notch signals during CD8+ T cell activation promote Gzma expression. Inhibition of Notch signaling or loss of the Notch transactivator Rbp-j leads to reduced Gzma expression, with transcriptionally repressive chromatin at the Gzma locus. The genome targets of Gata3 differ in effector CD8+ T cells activated with IL-4 compared with those activated with Notch signals or isolated after IAV infection. This indicates that the signals received during CD8+ T cell activation can alter the chromatin landscape, affecting Gata3 function. Furthermore, Gata3 deficiency results in reduced IAV-specific CD8+ T cell responses and decreased Gzma expression, although the Gzma locus maintains a permissive chromatin landscape. These findings suggest that Notch signals received by virus-specific CD8+ T cells prepare the chromatin landscape for Gata3 binding to CD8+ lineage-specific gene loci, promoting effective CD8+ T cell immunity.
Collapse
Affiliation(s)
- Jessie O'Hara
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Pushkar Dakle
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Michelle Ly Thai Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Adele Barugahare
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
- Monash Bioinformatics Platform, Monash Biomedical Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Taylah J Bennett
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Vibha AV Udupa
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVICAustralia
| | - Nicholas Murray
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Gemma Schlegel
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Constantine Kapouleas
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Jasmine Li
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Stephen J Turner
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| | - Brendan E Russ
- Department of Microbiology, Monash Biomedical InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
2
|
Bansal VA, Tan JM, Soon HR, Zainolabidin N, Saido T, Ch'ng TH. Aβ-driven nuclear pore complex dysfunction alters activation of necroptosis proteins in a mouse model of Alzheimer's disease. eLife 2025; 13:RP92069. [PMID: 40132021 PMCID: PMC11936419 DOI: 10.7554/elife.92069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The emergence of Aβ pathology is one of the hallmarks of Alzheimer's disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis - a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.
Collapse
Affiliation(s)
| | - Jia Min Tan
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- School of Biological Science, Nanyang Technological UniversitySingaporeSingapore
| | - Hui Rong Soon
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- School of Biological Science, Nanyang Technological UniversitySingaporeSingapore
| | | | - Takaomi Saido
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- School of Biological Science, Nanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
3
|
Ashwini P, Subhash B, Amol M, Kumar D, Atmaram P, Ravindra K. Comprehensive investigation of multiple targets in the development of newer drugs for the Alzheimer's disease. Acta Pharm Sin B 2025; 15:1281-1310. [PMID: 40370532 PMCID: PMC12069117 DOI: 10.1016/j.apsb.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 05/16/2025] Open
Abstract
Alzheimer's disease, a significant contributor to dementia, is rapidly becoming a serious healthcare concern in the 21st century. The alarming number of patients with Alzheimer's disease is steadily increasing, which is contributed by the dearth of treatment options. The current treatment for Alzheimer's disease is heavily dependent on symptomatic treatment that has failed to cure the disease despite huge investments in the development of drugs. The clinical treatment of Alzheimer's disease with limited drugs is generally targeted towards the inhibition of N-methyl-d-aspartate receptor and acetylcholine esterase, which only elevate cognition levels for a limited period. Beyond the aforementioned molecular targets, β-amyloid was much explored with little success and thus created a feel and palpable growing emphasis on discovering new putative and novel targets for AD. This has inspired medicinal chemists to explore new targets, including microglia, triggering receptors expressed on myeloid cells 2 (Trem-2), and notum carboxylesterase, to discover new lead compounds. This review explores the functions, pathophysiological roles, and importance of all AD-related targets that address therapeutic and preventive approaches for the treatment and protection of Alzheimer's disease.
Collapse
Affiliation(s)
- Patil Ashwini
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Bodhankar Subhash
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Muthal Amol
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
- University of California, Davis, CA 95616, USA
| | - Pawar Atmaram
- Department of Pharmaceutics, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Kulkarni Ravindra
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| |
Collapse
|
4
|
Steichele M, Sauermann L, Pan Q, Moneer J, de la Porte A, Heß M, Mercker M, Strube C, Flaswinkel H, Jenewein M, Böttger A. Notch signaling mediates between two pattern-forming processes during head regeneration in Hydra. Life Sci Alliance 2025; 8:e202403054. [PMID: 39532539 PMCID: PMC11565402 DOI: 10.26508/lsa.202403054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Hydra head regeneration consists of hypostome/organizer and tentacle development, and involves Notch and Wnt/β-catenin signaling. Notch inhibition blocks hypostome/organizer regeneration, but not the appearance of the tentacle tissue. β-Catenin inhibition blocks tentacle, but not hypostome/organizer regeneration. Gene expression analyses during head regeneration revealed the Notch-promoting expression of HyWnt3, HyBMP2/4, and the transcriptional repressor genes CnGsc, Sp5, and HyHes, while blocking HyBMP5/8b and the c-fos-related gene HyKayak β-Catenin promotes the expression of the tentacle specification factor HyAlx, but not of HyWnt3 This suggests HyWnt3 and HyBMP4 as parts of a hypostome/organizer gene module, and BMP5/8, HyAlx, and β-catenin as parts of a tentacle gene module. Notch then functions as an inhibitor of tentacle production to allow regeneration of a hypostome/head organizer. HyKayak is a candidate target gene for HvNotch-induced repressor genes. Inhibiting HyKayak attenuated the expression of HyWnt3 Polyps of Craspedacusta do not have tentacles and thus after head removal only regenerate a hypostome structure. Notch signaling was not needed for head regeneration in Craspedacusta, corroborating the idea of its requirement during Hydra head regeneration to harmonize two co-operating pattern-forming processes.
Collapse
Affiliation(s)
- Mona Steichele
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lara Sauermann
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Qin Pan
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jasmin Moneer
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Martin Heß
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Moritz Mercker
- Institute of Applied Mathematics, Heidelberg-University, Heidelberg, Germany
| | - Catharina Strube
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heinrich Flaswinkel
- Center for Molecular Biosystems (BioSysM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marcell Jenewein
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Angelika Böttger
- Biocenter, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
5
|
Wang C, Wang S, Xue Y, Zhong Y, Li H, Hou X, Kang DD, Liu Z, Tian M, Wang L, Cao D, Yu Y, Liu J, Cheng X, Markovic T, Hashemi A, Kopell BH, Charney AW, Nestler EJ, Dong Y. Intravenous administration of blood-brain barrier-crossing conjugates facilitate biomacromolecule transport into central nervous system. Nat Biotechnol 2024:10.1038/s41587-024-02487-7. [PMID: 39587229 DOI: 10.1038/s41587-024-02487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Delivery of biomacromolecules to the central nervous system (CNS) remains challenging because of the restrictive nature of the blood-brain barrier (BBB). We developed a BBB-crossing conjugate (BCC) system that facilitates delivery into the CNS through γ-secretase-mediated transcytosis. Intravenous administration of a BCC10-oligonucleotide conjugate demonstrated effective transportation of the oligonucleotide across the BBB and gene silencing in wild-type mice, human brain tissues and an amyotrophic lateral sclerosis mouse model.
Collapse
Affiliation(s)
- Chang Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siyu Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonger Xue
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yichen Zhong
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana D Kang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- College of Pharmacy, The Ohio State University, Columbus, Columbus, OH, USA
| | - Zhengwei Liu
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Tian
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leiming Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dinglingge Cao
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yang Yu
- College of Pharmacy, The Ohio State University, Columbus, Columbus, OH, USA
| | - Jayce Liu
- College of Pharmacy, The Ohio State University, Columbus, Columbus, OH, USA
| | - Xiaolin Cheng
- College of Pharmacy, The Ohio State University, Columbus, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Tamara Markovic
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Hashemi
- Charles Bronfman Institute for Personalized Medicine, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H Kopell
- Charles Bronfman Institute for Personalized Medicine, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander W Charney
- Charles Bronfman Institute for Personalized Medicine, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yizhou Dong
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Kalmouni M, Oh Y, Alata W, Magzoub M. Designed Cell-Penetrating Peptide Constructs for Inhibition of Pathogenic Protein Self-Assembly. Pharmaceutics 2024; 16:1443. [PMID: 39598566 PMCID: PMC11597747 DOI: 10.3390/pharmaceutics16111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Peptides possess a number of pharmacologically desirable properties, including greater chemical diversity than other biomolecule classes and the ability to selectively bind to specific targets with high potency, as well as biocompatibility, biodegradability, and ease and low cost of production. Consequently, there has been considerable interest in developing peptide-based therapeutics, including amyloid inhibitors. However, a major hindrance to the successful therapeutic application of peptides is their poor delivery to target tissues, cells or subcellular organelles. To overcome these issues, recent efforts have focused on engineering cell-penetrating peptide (CPP) antagonists of amyloidogenesis, which combine the attractive intrinsic properties of peptides with potent therapeutic effects (i.e., inhibition of amyloid formation and the associated cytotoxicity) and highly efficient delivery (to target tissue, cells, and organelles). This review highlights some promising CPP constructs designed to target amyloid aggregation associated with a diverse range of disorders, including Alzheimer's disease, transmissible spongiform encephalopathies (or prion diseases), Parkinson's disease, and cancer.
Collapse
Affiliation(s)
| | | | | | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates; (Y.O.)
| |
Collapse
|
7
|
Campos F, Kasper B. Examining nirogacestat for adults with progressing desmoid tumors who require systemic treatment. Expert Opin Pharmacother 2024; 25:2115-2124. [PMID: 39414771 DOI: 10.1080/14656566.2024.2418416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Desmoid tumor (DT) is a rare, locally aggressive, mesenchymal neoplasm that can arise at any site in the body. Medical therapies play a major role for DT's patients requiring treatment. A novel systemic approach has recently emerged with Nirogacestat, a γ-secretase inhibitor targeting the NOTCH signaling pathway. AREAS COVERED Nirogacestat is the first drug in its class to receive approval from the Food and Drug Administration (FDA) and is the first FDA-approved treatment specifically for DTs. We reviewed the data leading to its discovery, including its mechanism of action, pharmacological properties, clinical efficacy, and its positioning within the current treatment armamentarium for DTs. EXPERT OPINION High-quality evidence for systemic therapies in the management of DTs remains an unmet need. Nirogacestat now joins sorafenib as the only drugs with efficacy in DTs demonstrated by randomized phase 3 studies. Currently, there are no comparative trials of the available systemic therapies. Therefore, physicians should consider factors such as drug accessibility, cost, toxicity profile, comorbidities, and patient preferences when selecting treatment. Long-term efficacy and safety data will be essential for evaluating the duration of treatment response and monitoring late-onset side effects of Nirogacestat.
Collapse
Affiliation(s)
- Fernando Campos
- Sarcoma Reference Center, A.C.Camargo Cancer Center (ACCCC), Sao Paulo, Brazil
| | - Bernd Kasper
- Sarcoma Unit, Mannheim Cancer Center (MCC), Mannheim University Medical Center, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
8
|
Sasia C, Borgonetti V, Mancini C, Lori G, Arbiser JL, Taddei ML, Galeotti N. The Neolignan Honokiol and Its Synthetic Derivative Honokiol Hexafluoro Reduce Neuroinflammation and Cellular Senescence in Microglia Cells. Cells 2024; 13:1652. [PMID: 39404415 PMCID: PMC11482602 DOI: 10.3390/cells13191652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Microglia-mediated neuroinflammation has been linked to neurodegenerative disorders. Inflammation and aging contribute to microglial senescence. Microglial senescence promotes the development of neurodegenerative disorders, including Alzheimer's disease (AD). In this study, we investigated the anti-neuroinflammatory and anti-senescence activity of Honokiol (HNK), a polyphenolic neolignane from Magnolia officinalis Rehder & E.H Wilson, in comparison with its synthetic analogue Honokiol Hexafluoro (CH). HNK reduced the pro-inflammatory cell morphology of LPS-stimulated BV2 microglia cells and increased the expression of the anti-inflammatory cytokine IL-10 with an efficacy comparable to CH. HNK and CH were also able to attenuate the alterations in cell morphology associated with cellular senescence in BV2 cells intermittently stimulated with LPS and significantly reduce the activity and expression of the senescence marker ß-galactosidase and the expression of p21 and pERK1/2. The treatments reduced the expression of senescence-associated secretory phenotype (SASP) factors IL-1ß and NF-kB, decreased ROS production, and abolished H2AX over phosphorylation (γ-H2AX) and acetylated H3 overexpression. Senescent microglia cells showed an increased expression of the Notch ligand Jagged1 that was reduced by HNK and CH with a comparable efficacy to the Notch inhibitor DAPT. Overall, our data illustrate a protective activity of HNK and CH on neuroinflammation and cellular senescence in microglia cells involving a Notch-signaling-mediated mechanism and suggesting a potential therapeutic contribution in aging-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Sasia
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Floence, Viale G. Pieraccini 6, 50121 Florence, Italy; (C.S.); (V.B.)
| | - Vittoria Borgonetti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Floence, Viale G. Pieraccini 6, 50121 Florence, Italy; (C.S.); (V.B.)
| | - Caterina Mancini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy (G.L.)
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy (G.L.)
| | - Jack L. Arbiser
- Department of Dermatology, Emory School of Medicine, Winship Cancer Institute, Atlanta, GA 30322, USA;
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy (G.L.)
| | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Floence, Viale G. Pieraccini 6, 50121 Florence, Italy; (C.S.); (V.B.)
| |
Collapse
|
9
|
Hou SS, Ikegawa Y, Kwon Y, Wieckiewicz N, Houser MCQ, Lundin B, Bacskai BJ, Berezovska O, Maesako M. Recording γ-secretase activity in living mouse brains. eLife 2024; 13:RP96848. [PMID: 39360803 PMCID: PMC11449482 DOI: 10.7554/elife.96848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720-670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential 'cell non-autonomous' regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.
Collapse
Affiliation(s)
- Steven S Hou
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Yuya Ikegawa
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Yeseo Kwon
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Natalia Wieckiewicz
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Mei CQ Houser
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Brianna Lundin
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Brian J Bacskai
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| |
Collapse
|
10
|
Zota I, Chanoumidou K, Gravanis A, Charalampopoulos I. Stimulating myelin restoration with BDNF: a promising therapeutic approach for Alzheimer's disease. Front Cell Neurosci 2024; 18:1422130. [PMID: 39285941 PMCID: PMC11402763 DOI: 10.3389/fncel.2024.1422130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder constituting the most common form of dementia (60%-70% of cases). Although AD presents majorly a neurodegenerative pathology, recent clinical evidence highlights myelin impairment as a key factor in disease pathogenesis. The lack of preventive or restorative treatment is emphasizing the need to develop novel therapeutic approaches targeting to the causes of the disease. Recent studies in animals and patients have highlighted the loss of myelination of the neuronal axons as an extremely aggravating factor in AD, in addition to the formation of amyloid plaques and neurofibrillary tangles that are to date the main pathological hallmarks of the disease. Myelin breakdown represents an early stage event in AD. However, it is still unclear whether myelin loss is attributed only to exogenous factors like inflammatory processes of the tissue or to impaired oligodendrogenesis as well. Neurotrophic factors are well established protective molecules under many pathological conditions of the neural tissue, contributing also to proper myelination. Due to their inability to be used as drugs, many research efforts are focused on substituting neurotrophic activity with small molecules. Our research team has recently developed novel micromolecular synthetic neurotrophin mimetics (MNTs), selectively acting on neurotrophin receptors, and thus offering a unique opportunity for innovative therapies against neurodegenerative diseases. These small sized, lipophilic molecules address the underlying biological effect of these diseases (neuroprotective action), but also they exert significant neurogenic actions inducing neuronal replacement of the disease areas. One of the significant neurotrophin molecules in the Central Nervous System is Brain-Derived-Neurotrophin-Factor (BDNF). BDNF is a neurotrophin that not only supports neuroprotection and adult neurogenesis, but also mediates pro-myelinating effects in the CNS. BDNF binds with high-affinity on the TrkB neurotrophin receptor and enhances myelination by increasing the density of oligodendrocyte progenitor cells (OPCs) and playing an important role in CNS myelination. Conclusively, in the present review, we discuss the myelin pathophysiology in Alzheimer's Diseases, as well as the role of neurotrophins, and specifically BDNF, in myelin maintenance and restoration, revealing its valuable therapeutic potential against AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
11
|
Liu Y, Xu C, Gu R, Han R, Li Z, Xu X. Endoplasmic reticulum stress in diseases. MedComm (Beijing) 2024; 5:e701. [PMID: 39188936 PMCID: PMC11345536 DOI: 10.1002/mco2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| | - Chunling Xu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Renjun Gu
- School of Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Gastroenterology and HepatologyJinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziyu Li
- School of Acupuncture and TuinaSchool of Regimen and RehabilitationNanjing University of Chinese MedicineNanjingChina
| | - Xianrong Xu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| |
Collapse
|
12
|
Niu Z, Gui X, Feng S, Reif B. Aggregation Mechanisms and Molecular Structures of Amyloid-β in Alzheimer's Disease. Chemistry 2024; 30:e202400277. [PMID: 38888453 DOI: 10.1002/chem.202400277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Amyloid plaques are a major pathological hallmark involved in Alzheimer's disease and consist of deposits of the amyloid-β peptide (Aβ). The aggregation process of Aβ is highly complex, which leads to polymorphous aggregates with different structures. In addition to aberrant aggregation, Aβ oligomers can undergo liquid-liquid phase separation (LLPS) and form dynamic condensates. It has been hypothesized that these amyloid liquid droplets affect and modulate amyloid fibril formation. In this review, we briefly introduce the relationship between stress granules and amyloid protein aggregation that is associated with neurodegenerative diseases. Then we highlight the regulatory role of LLPS in Aβ aggregation and discuss the potential relationship between Aβ phase transition and aggregation. Furthermore, we summarize the current structures of Aβ oligomers and amyloid fibrils, which have been determined using nuclear magnetic resonance (NMR) and cryo-electron microscopy (cryo-EM). The structural variations of Aβ aggregates provide an explanation for the different levels of toxicity, shed light on the aggregation mechanism and may pave the way towards structure-based drug design for both clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zheng Niu
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Xinrui Gui
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shuang Feng
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Bernd Reif
- Bavarian NMR Center (B NMRZ), Department of Bioscience, TUM School of Natural Sciences, Technische Universität München (TUM), Garching, 85747, Germany
- Institute of Structural Biology (STB), Helmholtz-Zentrum, München (HMGU), Neuherberg, 85764, Germany
| |
Collapse
|
13
|
Hou SS, Ikegawa Y, Kwon Y, Wieckiewicz N, Houser MCQ, Lundin B, Bacskai BJ, Berezovska O, Maesako M. Recording γ-secretase activity in living mouse brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578105. [PMID: 38352497 PMCID: PMC10862803 DOI: 10.1101/2024.01.31.578105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Forster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here we employ the near-infrared (NIR) C99 720-670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential "cell non-autonomous" regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.
Collapse
|
14
|
Zott B, Nästle L, Grienberger C, Unger F, Knauer MM, Wolf C, Keskin-Dargin A, Feuerbach A, Busche MA, Skerra A, Konnerth A. β-amyloid monomer scavenging by an anticalin protein prevents neuronal hyperactivity in mouse models of Alzheimer's Disease. Nat Commun 2024; 15:5819. [PMID: 38987287 PMCID: PMC11237084 DOI: 10.1038/s41467-024-50153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Hyperactivity mediated by synaptotoxic β-amyloid (Aβ) oligomers is one of the earliest forms of neuronal dysfunction in Alzheimer's disease. In the search for a preventive treatment strategy, we tested the effect of scavenging Aβ peptides before Aβ plaque formation. Using in vivo two-photon calcium imaging and SF-iGluSnFR-based glutamate imaging in hippocampal slices, we demonstrate that an Aβ binding anticalin protein (Aβ-anticalin) can suppress early neuronal hyperactivity and synaptic glutamate accumulation in the APP23xPS45 mouse model of β-amyloidosis. Our results suggest that the sole targeting of Aβ monomers is sufficient for the hyperactivity-suppressing effect of the Aβ-anticalin at early disease stages. Biochemical and neurophysiological analyses indicate that the Aβ-anticalin-dependent depletion of naturally secreted Aβ monomers interrupts their aggregation to neurotoxic oligomers and, thereby, reverses early neuronal and synaptic dysfunctions. Thus, our results suggest that Aβ monomer scavenging plays a key role in the repair of neuronal function at early stages of AD.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany.
- TUM Institute for Advanced Study, Garching, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Lea Nästle
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany
| | - Christine Grienberger
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Biology and Volen National Center of Complex Systems, Brandeis University, Waltham, MA, USA
| | - Felix Unger
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study, Garching, Germany
| | - Manuel M Knauer
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Christian Wolf
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, MRI hospital of the Technical University of Munich, Munich, Germany
| | | | - Anna Feuerbach
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany
| | - Marc Aurel Busche
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Arne Skerra
- Chair of Biological Chemistry, Technical University of Munich, Freising, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
15
|
Schnell J, Miao Z, Achieng M, Fausto CC, Wang V, Kuyper FD, Thornton ME, Grubbs B, Kim J, Lindström NO. Stepwise developmental mimicry generates proximal-biased kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601028. [PMID: 39005387 PMCID: PMC11244853 DOI: 10.1101/2024.06.28.601028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The kidney maintains body fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for renal reabsorption of a range of sugars, ions, and amino acids, are highly susceptible to damage, leading to pathologies necessitating dialysis and kidney transplants. While human pluripotent stem cell-derived kidney organoids are used for modeling renal development, disease, and injury, the formation of proximal nephron cells in these 3D structures is incomplete. Here, we describe how to drive the development of proximal tubule precursors in kidney organoids by following a blueprint of in vivo human nephrogenesis. Transient manipulation of the PI3K signaling pathway activates Notch signaling in the early nephron and drives nephrons toward a proximal precursor state. These "proximal-biased" (PB) organoid nephrons proceed to generate proximal nephron precursor cells. Single-cell transcriptional analyses across the organoid nephron differentiation, comparing control and PB types, confirm the requirement of transient Notch signaling for proximal development. Indicative of functional maturity, PB organoids demonstrate dextran and albumin uptake, akin to in vivo proximal tubules. Moreover, PB organoids are highly sensitive to nephrotoxic agents, display an injury response, and drive expression of HAVCR1 / KIM1 , an early proximal-specific marker of kidney injury. Injured PB organoids show evidence of collapsed tubules, DNA damage, and upregulate the injury-response marker SOX9 . The PB organoid model therefore has functional relevance and potential for modeling mechanisms underpinning nephron injury. These advances improve the use of iPSC-derived kidney organoids as tools to understand developmental nephrology, model disease, test novel therapeutics, and for understanding human renal physiology.
Collapse
|
16
|
Duan LJ, Jiang Y, Fong GH. Endothelial HIF2α suppresses retinal angiogenesis in neonatal mice by upregulating NOTCH signaling. Development 2024; 151:dev202802. [PMID: 38770916 PMCID: PMC11190433 DOI: 10.1242/dev.202802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.
Collapse
Affiliation(s)
- Li-Juan Duan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yida Jiang
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
17
|
Wang Z, Su Y, Zhao M, Ma Z, Li J, Hou Z, Li H. NOTCH1 as a Negative Regulator of Avian Adipocyte Differentiation: Implications for Fat Deposition. Animals (Basel) 2024; 14:585. [PMID: 38396553 PMCID: PMC10886207 DOI: 10.3390/ani14040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The NOTCH signaling pathway plays a pivotal role in diverse developmental processes, including cell proliferation and differentiation. In this study, we investigated whether this signaling molecules also contribute to avian adipogenesis. Using previous mRNA-seq datasets, we examined the expression of 11 signaling members during avian adipocyte differentiation. We found most members are down-regulated throughout differentiation (p < 0.05). As a representative, NOTCH1 was decreased in cultured chicken abdominal adipocytes during adipogenesis at mRNA and protein levels (p < 0.05). Moreover, using an overexpression plasmid for NOTCH1's intracellular domain (NICD1), as well as siRNA and DAPT to activate or deplete NOTCH1 in cells, we investigated the role of NOTCH1 in avian adipogenesis. Our findings illuminate that NOTCH1 activates the expression of HES1 and SOCS3 while it decreases NR2F2 and NUMB (p < 0.05), as well as inhibits oleic acid-induced adipocyte differentiation (p < 0.01). We further demonstrate that HES1, a downstream transcription factor activated by NOTCH1, also significantly inhibits adipogenesis by suppressing PPARγ and C/EBPα (p < 0.01). Collectively, these findings establish NOTCH1 as a negative regulator of avian adipocyte differentiation, unveiling NOTCH signaling as a potential target for regulating avian fat deposition.
Collapse
Affiliation(s)
- Zheng Wang
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (Z.W.); (Y.S.); (M.Z.); (Z.M.)
| | - Yue Su
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (Z.W.); (Y.S.); (M.Z.); (Z.M.)
| | - Mingyu Zhao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (Z.W.); (Y.S.); (M.Z.); (Z.M.)
| | - Zhenhua Ma
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (Z.W.); (Y.S.); (M.Z.); (Z.M.)
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MARA Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (Z.W.); (Y.S.); (M.Z.); (Z.M.)
| |
Collapse
|
18
|
Aßfalg M, Güner G, Müller SA, Breimann S, Langosch D, Muhle-Goll C, Frishman D, Steiner H, Lichtenthaler SF. Cleavage efficiency of the intramembrane protease γ-secretase is reduced by the palmitoylation of a substrate's transmembrane domain. FASEB J 2024; 38:e23442. [PMID: 38275103 DOI: 10.1096/fj.202302152r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
The intramembrane protease γ-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While γ-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how γ-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by γ-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where γ-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by γ-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by γ-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by γ-secretase.
Collapse
Affiliation(s)
- Marlene Aßfalg
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Breimann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
19
|
Tang J, Yousaf M, Wu YP, Li QQ, Xu YQ, Liu DM. Mechanisms and structure-activity relationships of polysaccharides in the intervention of Alzheimer's disease: A review. Int J Biol Macromol 2024; 254:127553. [PMID: 37865357 DOI: 10.1016/j.ijbiomac.2023.127553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease. Despite several decades of research, the development of effective treatments and responses for Alzheimer's disease remains elusive. The utilization of polysaccharides for Alzheimer's disease became more popular due to their beneficial characteristics, notably their multi-target activity and low toxicity. This review mainly focuses on the researches of recent 5 years in the regulation of AD by naturally derived polysaccharides, systematically lists the possible intervention pathways of polysaccharides from different mechanisms, and explores the structure-activity relationship between polysaccharide structural activities, so as to provide references for the intervention and treatment of AD by polysaccharides.
Collapse
Affiliation(s)
- Jun Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Muhammad Yousaf
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ya-Ping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Qin-Qin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Yi-Qian Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
20
|
Khan T, Waseem R, Shahid M, Ansari J, Ahanger IA, Hassan I, Islam A. Recent advancement in therapeutic strategies for Alzheimer's disease: Insights from clinical trials. Ageing Res Rev 2023; 92:102113. [PMID: 37918760 DOI: 10.1016/j.arr.2023.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by the presence of plaques of amyloid beta and Tau proteins. There is currently no permanent cure for AD; the only medications approved by the FDA for mild to moderate AD are cholinesterase inhibitors, NMDA receptor antagonists, and immunotherapies against core pathophysiology, that provide temporary relief only. Researchers worldwide have made significant attempts to find new targets and develop innovative therapeutic molecules to treat AD. The FDA-approved drugs are palliative and couldn't restore the damaged neuron cells of AD. Stem cells have self-differentiation properties, making them prospective therapeutics to treat AD. The promising results in pre-clinical studies of stem cell therapy for AD seek attention worldwide. Various stem cells, mainly mesenchymal stem cells, are currently in different phases of clinical trials and need more advancements to take this therapy to the translational level. Here, we review research from the past decade that has identified several hypotheses related to AD pathology. Moreover, this article also focuses on the recent advancement in therapeutic strategies for AD treatment including immunotherapy and stem cell therapy detailing the clinical trials that are currently undergoing development.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Clinical Biochemistry, University of Kashmir,190006, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
21
|
Wu Y, Du S, Bimler LH, Mauk KE, Lortal L, Kichik N, Griffiths JS, Osicka R, Song L, Polsky K, Kasper L, Sebo P, Weatherhead J, Knight JM, Kheradmand F, Zheng H, Richardson JP, Hube B, Naglik JR, Corry DB. Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis. Cell Rep 2023; 42:113240. [PMID: 37819761 PMCID: PMC10753853 DOI: 10.1016/j.celrep.2023.113240] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The fungal pathogen Candida albicans is linked to chronic brain diseases such as Alzheimer's disease (AD), but the molecular basis of brain anti-Candida immunity remains unknown. We show that C. albicans enters the mouse brain from the blood and induces two neuroimmune sensing mechanisms involving secreted aspartic proteinases (Saps) and candidalysin. Saps disrupt tight junction proteins of the blood-brain barrier (BBB) to permit fungal brain invasion. Saps also hydrolyze amyloid precursor protein (APP) into amyloid β (Aβ)-like peptides that bind to Toll-like receptor 4 (TLR4) and promote fungal killing in vitro while candidalysin engages the integrin CD11b (Mac-1) on microglia. Recognition of Aβ-like peptides and candidalysin promotes fungal clearance from the brain, and disruption of candidalysin recognition through CD11b markedly prolongs C. albicans cerebral mycosis. Thus, C. albicans is cleared from the brain through innate immune mechanisms involving Saps, Aβ, candidalysin, and CD11b.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuqi Du
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lynn H Bimler
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kelsey E Mauk
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Nessim Kichik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - James S Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Katherine Polsky
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), 07737 Jena, Germany
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jill Weatherhead
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - J Morgan Knight
- Departments of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Departments of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX 77030, USA
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), 07737 Jena, Germany; Institute of Microbiology, Friedrich Schiller University, 07737 Jena, Germany.
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK.
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Departments of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Essayan-Perez S, Südhof TC. Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer's disease. Neuron 2023; 111:3176-3194.e7. [PMID: 37543038 PMCID: PMC10592349 DOI: 10.1016/j.neuron.2023.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Presenilin mutations that alter γ-secretase activity cause familial Alzheimer's disease (AD), whereas ApoE4, an apolipoprotein for cholesterol transport, predisposes to sporadic AD. Both sporadic and familial AD feature synaptic dysfunction. Whether γ-secretase is involved in cholesterol metabolism and whether such involvement impacts synaptic function remains unknown. Here, we show that in human neurons, chronic pharmacological or genetic suppression of γ-secretase increases synapse numbers but decreases synaptic transmission by lowering the presynaptic release probability without altering dendritic or axonal arborizations. In search of a mechanism underlying these synaptic impairments, we discovered that chronic γ-secretase suppression robustly decreases cholesterol levels in neurons but not in glia, which in turn stimulates neuron-specific cholesterol-synthesis gene expression. Suppression of cholesterol levels by HMG-CoA reductase inhibitors (statins) impaired synaptic function similar to γ-secretase inhibition. Thus, γ-secretase enables synaptic function by maintaining cholesterol levels, whereas the chronic suppression of γ-secretase impairs synapses by lowering cholesterol levels.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Jin Y, Mikhailova E, Lei M, Cowley SA, Sun T, Yang X, Zhang Y, Liu K, Catarino da Silva D, Campos Soares L, Bandiera S, Szele FG, Molnár Z, Zhou L, Bayley H. Integration of 3D-printed cerebral cortical tissue into an ex vivo lesioned brain slice. Nat Commun 2023; 14:5986. [PMID: 37794031 PMCID: PMC10551017 DOI: 10.1038/s41467-023-41356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Engineering human tissue with diverse cell types and architectures remains challenging. The cerebral cortex, which has a layered cellular architecture composed of layer-specific neurons organised into vertical columns, delivers higher cognition through intricately wired neural circuits. However, current tissue engineering approaches cannot produce such structures. Here, we use a droplet printing technique to fabricate tissues comprising simplified cerebral cortical columns. Human induced pluripotent stem cells are differentiated into upper- and deep-layer neural progenitors, which are then printed to form cerebral cortical tissues with a two-layer organization. The tissues show layer-specific biomarker expression and develop a structurally integrated network of processes. Implantation of the printed cortical tissues into ex vivo mouse brain explants results in substantial structural implant-host integration across the tissue boundaries as demonstrated by the projection of processes and the migration of neurons, and leads to the appearance of correlated Ca2+ oscillations across the interface. The presented approach might be used for the evaluation of drugs and nutrients that promote tissue integration. Importantly, our methodology offers a technical reservoir for future personalized implantation treatments that use 3D tissues derived from a patient's own induced pluripotent stem cells.
Collapse
Affiliation(s)
- Yongcheng Jin
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Tianyi Sun
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Xingyun Yang
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Yujia Zhang
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Kaili Liu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | | | - Luana Campos Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Sara Bandiera
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Linna Zhou
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
24
|
Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J, Tumanov S, Örd T, Hadden M, Mokry M, Mol BM, Pasterkamp G, Padula MP, Geczy CL, Ramaswamy Y, Sluimer JC, Kaikkonen MU, Stocker R, Baker AH, Fisher EA, Patel S, Misra A. Colchicine promotes atherosclerotic plaque stability independently of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560632. [PMID: 37873248 PMCID: PMC10592948 DOI: 10.1101/2023.10.03.560632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.
Collapse
|
25
|
Karunungan K, Garza RH, Grodzki AC, Holt M, Lein PJ, Chandrasekaran V. Gamma secretase activity modulates BMP-7-induced dendritic growth in primary rat sympathetic neurons. Auton Neurosci 2023; 247:103085. [PMID: 37031474 PMCID: PMC10330319 DOI: 10.1016/j.autneu.2023.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Autonomic dysfunction has been observed in Alzheimer's disease (AD); however, the effects of genes involved in AD on the peripheral nervous system are not well understood. Previous studies have shown that presenilin-1 (PSEN1), the catalytic subunit of the gamma secretase (γ-secretase) complex, mutations in which are associated with familial AD function, regulates dendritic growth in hippocampal neurons. In this study, we examined whether the γ-secretase pathway also influences dendritic growth in primary sympathetic neurons. Using immunoblotting and immunocytochemistry, molecules of the γ-secretase complex, PSEN1, PSEN2, PEN2, nicastrin and APH1a, were detected in sympathetic neurons dissociated from embryonic (E20/21) rat sympathetic ganglia. Addition of bone morphogenetic protein-7 (BMP-7), which induces dendrites in these neurons, did not alter expression or localization of γ-secretase complex proteins. BMP-7-induced dendritic growth was inhibited by siRNA knockdown of PSEN1 and by three γ-secretase inhibitors, γ-secretase inhibitor IX (DAPT), LY-411575 and BMS-299897. These effects were specific to dendrites and concentration-dependent and did not alter early downstream pathways of BMP signaling. In summary, our results indicate that γ-secretase activity enhances BMP-7 induced dendritic growth in sympathetic neurons. These findings provide insight into the normal cellular role of the γ-secretase complex in sympathetic neurons.
Collapse
Affiliation(s)
- Krystal Karunungan
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America
| | - Rachel H Garza
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States of America
| | - Megan Holt
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States of America
| | - Vidya Chandrasekaran
- Department of Biology, Saint Mary's College of California, 1928 Saint Mary's Road, Moraga, CA 94556, United States of America.
| |
Collapse
|
26
|
Carús-Cadavieco M, Berenguer López I, Montoro Canelo A, Serrano-Lope MA, González-de la Fuente S, Aguado B, Fernández-Rodrigo A, Saido TC, Frank García A, Venero C, Esteban JA, Guix F, Dotti CG. Cognitive decline in diabetic mice predisposed to Alzheimer's disease is greater than in wild type. Life Sci Alliance 2023; 6:e202201789. [PMID: 37059474 PMCID: PMC10105330 DOI: 10.26508/lsa.202201789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023] Open
Abstract
In this work, we tested the hypothesis that the development of dementia in individuals with type 2 diabetes (T2DM) requires a genetic background of predisposition to neurodegenerative disease. As a proof of concept, we induced T2DM in middle-aged hAPP NL/F mice, a preclinical model of Alzheimer's disease. We show that T2DM produces more severe behavioral, electrophysiological, and structural alterations in these mice compared with wild-type mice. Mechanistically, the deficits are not paralleled by higher levels of toxic forms of Aβ or by neuroinflammation but by a reduction in γ-secretase activity, lower levels of synaptic proteins, and by increased phosphorylation of tau. RNA-seq analysis of the cerebral cortex of hAPP NL/F and wild-type mice suggests that the former could be more susceptible to T2DM because of defects in trans-membrane transport. The results of this work, on the one hand, confirm the importance of the genetic background in the severity of the cognitive disorders in individuals with T2DM and, on the other hand, suggest, among the involved mechanisms, the inhibition of γ-secretase activity.
Collapse
Affiliation(s)
- Marta Carús-Cadavieco
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Inés Berenguer López
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Alba Montoro Canelo
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
- Escuela Técnica Superior (E.T.S) de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Miguel A Serrano-Lope
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | | | - Begoña Aguado
- Genomics and NGS Facility, Centro de Biología Molecular Severo Ochoa(CBM) CSIC-UAM, Madrid, Spain
| | - Alba Fernández-Rodrigo
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Ana Frank García
- Department of Neurology, Division Neurodegenerative Disease, University Hospital La Paz, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - José A Esteban
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Francesc Guix
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
- Department of Bioengineering, Institut Químic de Sarrià (IQS) - Universitat Ramón Llull (URL), Barcelona, Spain
| | - Carlos G Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| |
Collapse
|
27
|
Ali A, Masood A, Khan AA, Zhu FY, Cheema MAR, Samad A, Wadood A, Khan A, Yu Q, Heng W, Li D, Wei DQ. Comparative binding analysis of WGX50 and Alpha-M with APP family proteins APLP1 and APLP2 using structural-dynamics and free energy calculation approaches. Phys Chem Chem Phys 2023; 25:14887-14897. [PMID: 37199163 DOI: 10.1039/d2cp06083c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A.D. is a common disease among other neurodegenerative disorders primarily developing due to amyloid-β (Aβ) neurotoxicity derived from the amyloid-β protein precursor (AβPP). The amyloid precursor-like proteins 1 and 2 (APP1 and APLP2) biochemically behave similarly in many aspects to AβPP. We, therefore, proposed to test WGX-50 and Alpha-M for their interaction mechanism with APLP1 and APLP2 because both these drug candidate compounds previously showed inhibition of Aβ aggregation. We employed a comparative atomic investigation on Alpha-M and WGX-50 in complex with novel targets, i.e., APLP1 and APLP2, using biophysical and molecular simulation methods. The docking score was -6.83 kcal mol-1 for Alpha-M-APLP1, -8.41 kcal mol-1 for WGX-50-APLP1, -7.02 kcal mol-1 for Alpha-M-APLP2 and -8.25 kcal mol-1 for the WGX-50-APLP2 complex. Our results also elaborate that in the case of their interaction with both APLP1 and APLP2, the WGX-50 complex exhibits better stability than the APLP1/2-Alpha-M complexes during simulation. Furthermore, WGX50 in both APLP1 and APLP2 stabilized the internal flexibility upon binding in contrast to the Alpha-M complexes. The data showed that the BFE for Alpha-M-APLP1 was calculated to be -27.38 ± 0.93 kcal mol-1, for WGX-50-APLP1 -39.65 ± 0.95 kcal mol-1, for Alpha-M-APLP2 -24.80 ± 0.63 kcal mol-1 while for WGX-50-APLP2 the BFE was -57.16 ± 1.03 kcal mol-1 respectively. These results highlight that APLP2-WGX50 has greater binding energies in all four systems. PCA and FEL analysis further revealed variations in the dynamic behavior of these complexes. Overall, our findings demonstrate that WGX50 potentially acts as a more potent inhibitor for APLP1 and APLP2 than Alpha-M and thus shows the diverse pharmacological potential of WGX50. Due to its stable binding interaction, WGX50 might be a suitable candidate drug compound for targeting these precursors under pathological conditions.
Collapse
Affiliation(s)
- Arif Ali
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Adan Masood
- University Medical and Dental College, Faisalabad, Punjab, Pakistan.
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.
| | - Feng-Yun Zhu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, 463000, Henan, China.
| | | | - Abdus Samad
- Department of Biochemistry, Abdul Wali khan University Mardan, 23200 Khyber Pakhtunkhwa, Pakistan.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali khan University Mardan, 23200 Khyber Pakhtunkhwa, Pakistan.
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai, P. R. China.
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Qiu Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wang Heng
- International School of Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, China.
| | - Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China.
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai, P. R. China.
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, P. R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, P. R. China
| |
Collapse
|
28
|
Agarwal P, Glowacka A, Mahmoud L, Bazzar W, Larsson LG, Alzrigat M. MYCN Amplification Is Associated with Reduced Expression of Genes Encoding γ-Secretase Complex and NOTCH Signaling Components in Neuroblastoma. Int J Mol Sci 2023; 24:8141. [PMID: 37175848 PMCID: PMC10179553 DOI: 10.3390/ijms24098141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Amplification of the MYCN oncogene is found in ~20% of neuroblastoma (NB) cases and correlates with high-risk disease and poor prognosis. Despite the plethora of studies describing the role of MYCN in NB, the exact molecular mechanisms underlying MYCN's contribution to high-risk disease are not completely understood. Herein, we implemented an integrative approach combining publicly available RNA-Seq and MYCN ChIP-Seq datasets derived from human NB cell lines to define biological processes directly regulated by MYCN in NB. Our approach revealed that MYCN-amplified NB cell lines, when compared to non-MYCN-amplified cell lines, are characterized by reduced expression of genes involved in NOTCH receptor processing, axoneme assembly, and membrane protein proteolysis. More specifically, we found genes encoding members of the γ-secretase complex, which is known for its ability to liberate several intracellular signaling molecules from membrane-bound proteins such as NOTCH receptors, to be down-regulated in MYCN-amplified NB cell lines. Analysis of MYCN ChIP-Seq data revealed an enrichment of MYCN binding at the transcription start sites of genes encoding γ-secretase complex subunits. Notably, using publicly available gene expression data from NB primary tumors, we revealed that the expression of γ-secretase subunits encoding genes and other components of the NOTCH signaling pathway was also reduced in MYCN-amplified tumors and correlated with worse overall survival in NB patients. Genetic or pharmacological depletion of MYCN in NB cell lines induced the expression of γ-secretase genes and NOTCH-target genes. Chemical inhibition of γ-secretase activity dampened the expression of NOTCH-target genes upon MYCN depletion in NB cells. In conclusion, this study defines a set of MYCN-regulated pathways that are specific to MYCN-amplified NB tumors, and it suggests a novel role for MYCN in the suppression of genes of the γ-secretase complex, with an impact on the NOTCH-target gene expression in MYCN-amplified NB.
Collapse
Affiliation(s)
- Prasoon Agarwal
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 22362 Lund, Sweden
| | - Aleksandra Glowacka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
| | - Loay Mahmoud
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Wesam Bazzar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Solna, Sweden
- Department of Pharmaceutical Biosciences, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
29
|
Bhatti GK, Mishra J, Sehrawat A, Sharma E, Kanozia R, Navik U, Reddy PH, Bhatti JS. Lifestyle modifications and nutrition in Alzheimer's disease. DIET AND NUTRITION IN NEUROLOGICAL DISORDERS 2023:13-39. [DOI: https:/doi.org/10.1016/b978-0-323-89834-8.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
30
|
Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods Mol Biol 2022; 2557:453-493. [PMID: 36512231 PMCID: PMC10178357 DOI: 10.1007/978-1-0716-2639-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we provide a detailed guide for the application of commonly used small molecules to study Golgi structure and function in vitro. Furthermore, we have curated a concise, validated list of endomembrane markers typically used in downstream assays to examine the consequent effect on the Golgi via microscopy and western blot after drug treatment. This chapter will be useful for researchers beginning their foray into the field of intracellular trafficking and Golgi biology.
Collapse
|
31
|
Giolito MV, La Rosa T, Farhat D, Bodoirat S, Guardia GDA, Domon‐Dell C, Galante PAF, Freund J, Plateroti M. Regulation of the THRA gene, encoding the thyroid hormone nuclear receptor TRα1, in intestinal lesions. Mol Oncol 2022; 16:3975-3993. [PMID: 36217307 PMCID: PMC9718118 DOI: 10.1002/1878-0261.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
The THRA gene, encoding the thyroid hormone nuclear receptor TRα1, is expressed in an increasing gradient at the bottom of intestinal crypts, overlapping with high Wnt and Notch activities. Importantly, THRA is upregulated in colorectal cancers, particularly in the high-Wnt molecular subtype. The basis of this specific and/or altered expression pattern has remained unknown. To define the mechanisms controlling THRA transcription and TRα1 expression, we used multiple in vitro and ex vivo approaches. Promoter analysis demonstrated that transcription factors important for crypt homeostasis and altered in colorectal cancers, such as transcription factor 7-like 2 (TCF7L2; Wnt pathway), recombining binding protein suppressor of hairless (RBPJ; Notch pathway), and homeobox protein CDX2 (epithelial cell identity), modulate THRA activity. Specifically, although TCF7L2 and CDX2 stimulated THRA, RBPJ induced its repression. In-depth analysis of the Wnt-dependent increase showed direct regulation of the THRA promoter in cells and of TRα1 expression in murine enteroids. Given our previous results on the control of the Wnt pathway by TRα1, our new results unveil a complex regulatory loop and synergy between these endocrine and epithelial-cell-intrinsic signals. Our work describes, for the first time, the regulation of the THRA gene in specific cell and tumor contexts.
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Inserm, IRFAC/UMR‐S1113, FMTS, Université de StrasbourgFrance,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de LyonFrance
| | - Théo La Rosa
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de LyonFrance,Present address:
Stem‐Cell and Brain Research Institute, U1208 INSERM, USC1361 INRABronFrance
| | - Diana Farhat
- Inserm, IRFAC/UMR‐S1113, FMTS, Université de StrasbourgFrance,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de LyonFrance
| | | | | | | | | | | | - Michelina Plateroti
- Inserm, IRFAC/UMR‐S1113, FMTS, Université de StrasbourgFrance,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de LyonFrance
| |
Collapse
|
32
|
Cao X, Chen Y, Sang X, Xu S, Xie Z, Zhu Z, Wang P, Bi J, Xu L. Impact prediction of translocation of the mitochondrial outer membrane 70 as biomarker in Alzheimer's disease. Front Aging Neurosci 2022; 14:1013943. [PMID: 36408108 PMCID: PMC9667059 DOI: 10.3389/fnagi.2022.1013943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 07/30/2023] Open
Abstract
Mitochondrial dysfunction plays a key role in the pathogenesis of Alzheimer's disease (AD). The translocase of the outer membrane (TOM) complex controls the input of mitochondrial precursor proteins to maintain mitochondrial function under pathophysiological conditions. However, its role in AD development remains unclear. TOM70 is an important translocase present in the TOM complex. In the current study, we found that TOM70 levels were reduced in the peripheral blood and hippocampus of the APP/PS1 mice. In addition, we examined the whole-blood mRNA levels of TOM70 in patients with AD, dementia with Lewy bodies (DLB), and post-stroke dementia (PSD). Our study revealed that the mRNA level of TOM70 was decreased in the blood samples of patients with AD, which was also correlated with the progression of clinical stages. Therefore, we proposed that the expression of TOM70 could be a promising biomarker for AD diagnosis and monitoring of disease progression.
Collapse
|
33
|
Hirschfeld LR, Risacher SL, Nho K, Saykin AJ. Myelin repair in Alzheimer's disease: a review of biological pathways and potential therapeutics. Transl Neurodegener 2022; 11:47. [PMID: 36284351 PMCID: PMC9598036 DOI: 10.1186/s40035-022-00321-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022] Open
Abstract
This literature review investigates the significant overlap between myelin-repair signaling pathways and pathways known to contribute to hallmark pathologies of Alzheimer's disease (AD). We discuss previously investigated therapeutic targets of amyloid, tau, and ApoE, as well as other potential therapeutic targets that have been empirically shown to contribute to both remyelination and progression of AD. Current evidence shows that there are multiple AD-relevant pathways which overlap significantly with remyelination and myelin repair through the encouragement of oligodendrocyte proliferation, maturation, and myelin production. There is a present need for a single, cohesive model of myelin homeostasis in AD. While determining a causative pathway is beyond the scope of this review, it may be possible to investigate the pathological overlap of myelin repair and AD through therapeutic approaches.
Collapse
Affiliation(s)
- Lauren Rose Hirschfeld
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Shannon L Risacher
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Andrew J Saykin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
34
|
Filippone MG, Freddi S, Zecchini S, Restelli S, Colaluca IN, Bertalot G, Pece S, Tosoni D, Di Fiore PP. Aberrant phosphorylation inactivates Numb in breast cancer causing expansion of the stem cell pool. J Cell Biol 2022; 221:213525. [PMID: 36200956 PMCID: PMC9545709 DOI: 10.1083/jcb.202112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/19/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
Asymmetric cell division is a key tumor suppressor mechanism that prevents the uncontrolled expansion of the stem cell (SC) compartment by generating daughter cells with alternative fates: one retains SC identity and enters quiescence and the other becomes a rapidly proliferating and differentiating progenitor. A critical player in this process is Numb, which partitions asymmetrically at SC mitosis and inflicts different proliferative and differentiative fates in the two daughters. Here, we show that asymmetric Numb partitioning per se is insufficient for the proper control of mammary SC dynamics, with differential phosphorylation and functional inactivation of Numb in the two progeny also required. The asymmetric phosphorylation/inactivation of Numb in the progenitor is mediated by the atypical PKCζ isoform. This mechanism is subverted in breast cancer via aberrant activation of PKCs that phosphorylate Numb in both progenies, leading to symmetric division and expansion of the cancer SC compartment, associated with aggressive disease. Thus, Numb phosphorylation represents a target for breast cancer therapy.
Collapse
Affiliation(s)
- Maria Grazia Filippone
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Stefano Freddi
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Zecchini
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Silvia Restelli
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Ivan Nicola Colaluca
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Giovanni Bertalot
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Salvatore Pece
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Daniela Tosoni
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO-IRCCS, Istituto Europeo di Oncologia-Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy,Dipartimento di Oncologia e Emato-Oncologia, Università degli Studi di Milano, Milan, Italy,Correspondence to Pier Paolo Di Fiore:
| |
Collapse
|
35
|
Güner G, Aßfalg M, Zhao K, Dreyer T, Lahiri S, Lo Y, Slivinschi BI, Imhof A, Jocher G, Strohm L, Behrends C, Langosch D, Bronger H, Nimsky C, Bartsch JW, Riddell SR, Steiner H, Lichtenthaler SF. Proteolytically generated soluble Tweak Receptor Fn14 is a blood biomarker for γ-secretase activity. EMBO Mol Med 2022; 14:e16084. [PMID: 36069059 PMCID: PMC9549706 DOI: 10.15252/emmm.202216084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022] Open
Abstract
Fn14 is a cell surface receptor with key functions in tissue homeostasis and injury but is also linked to chronic diseases. Despite its physiological and medical importance, the regulation of Fn14 signaling and turnover is only partly understood. Here, we demonstrate that Fn14 is cleaved within its transmembrane domain by the protease γ‐secretase, resulting in secretion of the soluble Fn14 ectodomain (sFn14). Inhibition of γ‐secretase in tumor cells reduced sFn14 secretion, increased full‐length Fn14 at the cell surface, and enhanced TWEAK ligand‐stimulated Fn14 signaling through the NFκB pathway, which led to enhanced release of the cytokine tumor necrosis factor. γ‐Secretase‐dependent sFn14 release was also detected ex vivo in primary tumor cells from glioblastoma patients, in mouse and human plasma and was strongly reduced in blood from human cancer patients dosed with a γ‐secretase inhibitor prior to chimeric antigen receptor (CAR)‐T‐cell treatment. Taken together, our study demonstrates a novel function for γ‐secretase in attenuating TWEAK/Fn14 signaling and suggests the use of sFn14 as an easily measurable pharmacodynamic biomarker to monitor γ‐secretase activity in vivo.
Collapse
Affiliation(s)
- Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Aßfalg
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Tobias Dreyer
- Department of Gynecology and Obstetrics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Shibojyoti Lahiri
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center, LMU, Martinsried, Germany
| | - Yun Lo
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bianca Ionela Slivinschi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Axel Imhof
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center, LMU, Martinsried, Germany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Laura Strohm
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, LMU, Munich, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, LMU, Munich, Germany
| | | | - Holger Bronger
- Department of Gynecology and Obstetrics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), LMU, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
36
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
37
|
Falk HJ, Tomita T, Mönke G, McDole K, Aulehla A. Imaging the onset of oscillatory signaling dynamics during mouse embryo gastrulation. Development 2022; 149:275659. [PMID: 35686648 PMCID: PMC9340547 DOI: 10.1242/dev.200083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/25/2022] [Indexed: 01/24/2023]
Abstract
A fundamental requirement for embryonic development is the coordination of signaling activities in space and time. A notable example in vertebrate embryos is found during somitogenesis, where gene expression oscillations linked to the segmentation clock are synchronized across cells in the presomitic mesoderm (PSM) and result in tissue-level wave patterns. To examine their onset during mouse embryo development, we studied the dynamics of the segmentation clock gene Lfng during gastrulation. To this end, we established an imaging setup using selective plane illumination microscopy (SPIM) that enables culture and simultaneous imaging of up to four embryos (‘SPIM- for-4’). Using SPIM-for-4, combined with genetically encoded signaling reporters, we detected the onset of Lfng oscillations within newly formed mesoderm at presomite stages. Functionally, we found that initial synchrony and the first ∼6-8 oscillation cycles occurred even when Notch signaling was impaired, revealing similarities to previous findings made in zebrafish embryos. Finally, we show that a spatial period gradient is present at the onset of oscillatory activity, providing a potential mechanism accounting for our observation that wave patterns build up gradually over the first oscillation cycles. Summary: A versatile light-sheet imaging setup enabling simultaneous live imaging of multiple mouse embryos for 48 h, an approach that offers insight into the onset of oscillatory signaling dynamics and the segmentation clock.
Collapse
Affiliation(s)
- Henning J Falk
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Takehito Tomita
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gregor Mönke
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Katie McDole
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
38
|
Sun J, Peterson EA, Jiao C, Chen X, Zhao Y, Wang J. Zebrafish heart regeneration after coronary dysfunction-induced cardiac damage. Dev Biol 2022; 487:57-66. [PMID: 35490764 PMCID: PMC11017783 DOI: 10.1016/j.ydbio.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022]
Abstract
Over the past 20 years, various zebrafish injury models demonstrated efficient heart regeneration after cardiac tissue loss. However, no established coronary vessel injury methods exist in the zebrafish model, despite coronary endothelial dysfunction occurring in most patients with acute coronary syndrome. This is due to difficulties performing surgery on small coronary vessels and a lack of genetic tools to precisely manipulate coronary cells in zebrafish. We determined that the Notch ligand gene deltaC regulatory sequences drive gene expression in zebrafish coronary endothelial cells, enabling us to overcome these obstacles. We created a deltaC fluorescent reporter line and visualized robust coronary growth during heart development and regeneration. Importantly, this reporter facilitated the visualization of coronary growth without an endocardial background. Moreover, we visualized robust coronary growth on the surface of juvenile hearts and regrowth in the wounded area of adult hearts ex vivo. With this approach, we observed growth inhibition by reported vascular growth antagonists of the VEGF, EGF and Notch signaling pathways. Furthermore, we established a coronary genetic ablation system and observed that severe coronary endothelial cell loss resulted in fish death, whereas fish survived mild coronary cell loss. Coronary cell depletion triggered regenerative responses, which resulted in the restoration of damaged cardiac tissues within several weeks. Overall, our work demonstrated the efficacy of using deltaC regulatory elements for high-resolution visualization of the coronary endothelium; screening small molecules for coronary growth effects; and revealed complete recovery in adult zebrafish after coronary-induced heart damage.
Collapse
Affiliation(s)
- Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Cheng Jiao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yun Zhao
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
39
|
Chen SY, Zacharias M. An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations. Biophys J 2022; 121:2330-2344. [PMID: 35598043 PMCID: PMC9279352 DOI: 10.1016/j.bpj.2022.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022] Open
Abstract
Amyloid precursor protein (APP) is cleaved and processed sequentially by γ-secretase yielding amyloid β (Aβ) peptides of different lengths. Longer Aβ peptides are associated with the formation of neurotoxic plaques related to Alzheimer's disease. Based on the APP substrate-bound structure of γ-secretase, we investigated the enzyme-substrate interaction using molecular dynamics simulations and generated model structures that represent the sequentially cleaved intermediates during the processing reaction. The simulations indicated an internal docking site providing strong enzyme-substrate packing interaction. In the enzyme-substrate complex, it is located close to the region where the helical conformation of the substrate is interrupted and continues toward the active site in an extended conformation. The internal docking site consists of two non-polar pockets that are preferentially filled by large hydrophobic or aromatic substrate side chains to stabilize binding. Placement of smaller residues such as glycine can trigger a shift in the cleavage pattern during the simulations or results in destabilization of substrate binding. The reduced packing by smaller residues also influences the hydration of the active site and the formation of a catalytically active state. The simulations on processed substrate intermediates and a substrate G33I mutation offer an explanation of the experimentally observed relative increase of short Aβ fragment production for this mutation. In addition, studies on a substrate K28A mutation indicate that the internal docking site opposes the tendency of substrate dissociation due to a hydrophobic mismatch at the membrane boundary caused by K28 during processing and substrate movement toward the enzyme active site. The proposed internal docking site could also be useful for the specific design of new γ-secretase modulators.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
40
|
Bruton FA, Kaveh A, Ross-Stewart KM, Matrone G, Oremek MEM, Solomonidis EG, Tucker CS, Mullins JJ, Lucas CD, Brittan M, Taylor JM, Rossi AG, Denvir MA. Macrophages trigger cardiomyocyte proliferation by increasing epicardial vegfaa expression during larval zebrafish heart regeneration. Dev Cell 2022; 57:1512-1528.e5. [PMID: 35688158 PMCID: PMC9616726 DOI: 10.1016/j.devcel.2022.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022]
Abstract
Cardiac injury leads to the loss of cardiomyocytes, which are rapidly replaced by the proliferation of the surviving cells in zebrafish, but not in mammals. In both the regenerative zebrafish and non-regenerative mammals, cardiac injury induces a sustained macrophage response. Macrophages are required for cardiomyocyte proliferation during zebrafish cardiac regeneration, but the mechanisms whereby macrophages facilitate this crucial process are fundamentally unknown. Using heartbeat-synchronized live imaging, RNA sequencing, and macrophage-null genotypes in the larval zebrafish cardiac injury model, we characterize macrophage function and reveal that these cells activate the epicardium, inducing cardiomyocyte proliferation. Mechanistically, macrophages are specifically recruited to the epicardial-myocardial niche, triggering the expansion of the epicardium, which upregulates vegfaa expression to induce cardiomyocyte proliferation. Our data suggest that epicardial Vegfaa augments a developmental cardiac growth pathway via increased endocardial notch signaling. The identification of this macrophage-dependent mechanism of cardiac regeneration highlights immunomodulation as a potential strategy for enhancing mammalian cardiac repair. Heart regeneration in larval zebrafish is characterized in detail Macrophage ablation blocks cardiomyocyte proliferation after cardiac injury Macrophages synapse with epicardial cells and promote their proliferation Epicardial Vegfaa drives cardiomyocyte proliferation during cardiac regeneration
Collapse
Affiliation(s)
- Finnius A Bruton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Aryan Kaveh
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine M Ross-Stewart
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gianfranco Matrone
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Magdalena E M Oremek
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emmanouil G Solomonidis
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carl S Tucker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Christopher D Lucas
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
41
|
In Vivo Dynamic Movement of Polymerized Amyloid β in the Perivascular Space of the Cerebral Cortex in Mice. Int J Mol Sci 2022; 23:ijms23126422. [PMID: 35742862 PMCID: PMC9223597 DOI: 10.3390/ijms23126422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Disposition of amyloid β (Aβ) into the perivascular space of the cerebral cortex has been recently suggested as a major source of its clearance, and its disturbance may be involved in the pathogenesis of cerebral amyloid angiopathy and Alzheimer’s disease. Here, we explored the in vivo dynamics of Aβ in the perivascular space of anesthetized mice. Live images were obtained with two-photon microscopy through a closed cranial window. Either fluorescent-dye-labeled Aβ oligomers prepared freshly or Aβ fibrils after 6 days of incubation at 37 °C were placed over the cerebral cortex. Accumulation of Aβ was observed in the localized perivascular space of the penetrating arteries and veins. Transportation of the accumulated Aβ along the vessels was slow and associated with changes in shape. Aβ oligomers were transported smoothly and separately, whereas Aβ fibrils formed a mass and moved slowly. Parenchymal accumulation of Aβ oligomers, as well as Aβ fibrils along capillaries, increased gradually. In conclusion, we confirmed Aβ transportation between the cortical surface and the deeper parenchyma through the perivascular space that may be affected by the peptide polymerization. Facilitation of Aβ excretion through the system can be a key target in treating Alzheimer’s disease.
Collapse
|
42
|
Feilen LP, Chen SY, Fukumori A, Feederle R, Zacharias M, Steiner H. Active site geometry stabilization of a presenilin homolog by the lipid bilayer promotes intramembrane proteolysis. eLife 2022; 11:76090. [PMID: 35579427 PMCID: PMC9282858 DOI: 10.7554/elife.76090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cleavage of membrane proteins in the lipid bilayer by intramembrane proteases is crucial for health and disease. Although different lipid environments can potently modulate their activity, how this is linked to their structural dynamics is unclear. Here, we show that the carboxy-peptidase-like activity of the archaeal intramembrane protease PSH, a homolog of the Alzheimer’s disease-associated presenilin/γ-secretase is impaired in micelles and promoted in a lipid bilayer. Comparative molecular dynamics simulations revealed that important elements for substrate binding such as transmembrane domain 6a of PSH are more labile in micelles and stabilized in the lipid bilayer. Moreover, consistent with an enhanced interaction of PSH with a transition-state analog inhibitor, the bilayer promoted the formation of the enzyme’s catalytic active site geometry. Our data indicate that the lipid environment of an intramembrane protease plays a critical role in structural stabilization and active site arrangement of the enzyme-substrate complex thereby promoting intramembrane proteolysis. Cutting proteins into pieces is a crucial process in the cell, allowing several important processes to take place, including cell differentiation (which allows cells to develop into specific types), cell death, protein quality control, or even where in the cell a protein will end up. However, the specialized proteins that carry out this task, known as proteases, can also be involved in the development of disease. For example, in the brain, a protease called γ-secretase cuts up the amyloid-β protein precursor, producing toxic forms of amyloid-β peptides that are widely believed to cause Alzheimer’s disease. Proteases like γ-secretase carry out their role in the membrane, the layer of fats (also known as lipids) that forms the outer boundary of the cell. The environment in this area of the cell can influence the activity of proteases, but it is poorly understood how this happens. One way to address this question would be to compare the activity of γ-secretase in the lipid environment of the membrane to its activity when it is entirely surrounded by different molecules, such as detergent molecules. Unfortunately, γ-secretase is not active when it is removed from its lipid environment by a detergent, making it difficult to perform this comparison. To overcome this issue, Feilen et al. chose to study PSH, a protease similar to γ-secretase that produces the same amyloid-β peptides but remains active in detergent. When Feilen et al. mixed PSH with lipid molecules like those found in the membrane and amyloid-β precursor protein, PSH produced amyloid-β peptides including those that are thought to cause Alzheimer’s. However, when a detergent was substituted for the lipid molecules this led to longer amyloid-β peptides than usual, indicating that PSH was not able to cut proteins as effectively. The change in environment appeared to reduce PSH’s ability to progressively trim small segments from the peptides. Computer modelling of the protease’s structure in lipids versus detergent supported the experimental findings: the model predicted that the areas of PSH important for recognizing and cutting other proteins would be more stable in the membrane compared to the detergent. These results indicate that the cell membrane plays a vital role in the stability of the active regions of proteases that are cleaving in this environment. In the future, this could help to better understand how changes to the lipid molecules in the membrane may contribute to the activity of γ-secretase and its role in Alzheimer’s disease.
Collapse
Affiliation(s)
- Lukas P Feilen
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Shu-Yu Chen
- Physics Department T38, Technical University of Munich, Garching, Germany
| | - Akio Fukumori
- Department of Pharmacotherapeutics II, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Regina Feederle
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, Garching, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
43
|
Identification of Potential RBPJ-Specific Inhibitors for Blocking Notch Signaling in Breast Cancer Using a Drug Repurposing Strategy. Pharmaceuticals (Basel) 2022; 15:ph15050556. [PMID: 35631382 PMCID: PMC9146688 DOI: 10.3390/ph15050556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Notch signaling is a key parameter in regulating cell fate during tissue homeostasis, and an aberrant Notch pathway can result in mammary gland carcinoma and has been associated with poor breast cancer diagnosis. Although inhibiting Notch signaling would be advantageous in the treatment of breast cancer, the currently available Notch inhibitors have a variety of side effects and their clinical trials have been discontinued. Thus, in search of a more effective and safer Notch inhibitor, inhibiting recombinant signal binding protein for immunoglobin kappaJ region (RBPJ) specifically makes sense, as RBPJ forms a transcriptional complex that activates Notch signaling. From our established database of more than 10,527 compounds, a drug repurposing strategy-combined docking study and molecular dynamic simulation were used to identify novel RBPJ-specific inhibitors. The compounds with the best performance were examined using an in vitro cellular assay and an in vivo anticancer investigation. Finally, an FDA-approved antibiotic, fidaxomicin, was identified as a potential RBPJ inhibitor, and its ability to block RBPJ-dependent transcription and thereby inhibit breast cancer growth was experimentally verified. Our study demonstrated that fidaxomicin suppressed Notch signaling and may be repurposed for the treatment of breast cancer.
Collapse
|
44
|
Yang JY, Shen DY, Wang J, Dai JF, Qin XY, Hu Y, Lan R. DAPT Attenuates Cadmium-Induced Toxicity in Mice by Inhibiting Inflammation and the Notch/HES-1 Signaling Axis. Front Pharmacol 2022; 13:902796. [PMID: 35571137 PMCID: PMC9100577 DOI: 10.3389/fphar.2022.902796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
The small molecule DAPT inhibits the Notch signaling pathway by blocking γ-secretase mediated Notch cleavage. Given the critical role of the Notch signaling axis in inflammation, we asked whether DAPT could block Notch-mediated inflammation and thus exert neuronal protection. We established a mouse model of chronic exposure to cadmium (Cd)-induced toxicity and treated it with DAPT. DAPT was effective in ameliorating Cd-induced multi-organ damage and cognitive impairment in mice, as DAPT restored abnormal performance in the Y-maze, forced swimming and Morris water maze (MWM) tests. DAPT also reversed Cd-induced neuronal loss and glial cell activation to normal as observed by immunofluorescence and immunohistochemistry of brain tissue sections. In addition, Cd-intoxicated mice showed significantly increased levels of the Notch/HES-1 signaling axis and NF-κB, as well as decreased levels of the inflammatory inhibitors C/EBPβ and COP1. However, DAPT down regulated the elevated Notch/HES-1 signaling axis to normal, eliminating inflammation and thus protecting the nervous system. Thus, DAPT effectively eliminated the neurotoxicity of Cd, and blocking γ-secretase as well as Notch signaling axis may be a potential target for the development of neuronal protective drugs.
Collapse
Affiliation(s)
- Jia-Ying Yang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Dan-Yang Shen
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jun Wang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jing-Feng Dai
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Hu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- *Correspondence: Yang Hu, ; Rongfeng Lan, , orcid.org/0000-0003-2124-7232
| | - Rongfeng Lan
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Yang Hu, ; Rongfeng Lan, , orcid.org/0000-0003-2124-7232
| |
Collapse
|
45
|
Kase Y, Sato T, Okano Y, Okano H. The GADD45G/p38 MAPK/CDC25B signaling pathway enhances neurite outgrowth by promoting microtubule polymerization. iScience 2022; 25:104089. [PMID: 35497000 PMCID: PMC9042895 DOI: 10.1016/j.isci.2022.104089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
GADD45G, one of the genes containing the human-specific conserved deletion enhancer-sequence (hCONDEL), has contributed to the evolution of the human cerebrum, but its function in human neurons has not been established. Here, we show that the GADD45G/p38 MAPK/CDC25B signaling pathway promotes neurite outgrowth in human neurons by facilitating microtubule polymerization. This pathway ultimately promotes dephosphorylation of phosphorylated CRMP2 which in turn promotes microtubule assembly. We also found that GADD45G was highly expressed in developing human cerebral specimens. In addition, RK-682, which is the inhibitor of a phosphatase of p38 MAPK and was found in Streptomyces sp., was shown to promote microtubule polymerization and neurite outgrowth by enhancing p38 MAPK/CDC25B signaling. These in vitro and in vivo results indicate that GADD45G/p38 MAPK/CDC25B enhances neurite outgrowth in human neurons.
Collapse
Affiliation(s)
- Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuji Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| |
Collapse
|
46
|
The transmembrane domain of the amyloid precursor protein is required for anti-amyloidogenic processing by α-secretase ADAM10. J Biol Chem 2022; 298:101911. [PMID: 35398353 PMCID: PMC9127328 DOI: 10.1016/j.jbc.2022.101911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Neurotoxic amyloid β-peptides (Aβ) are thought to be a causative agent of Alzheimer's disease in humans. The production of Aβ from amyloid precursor protein (APP) could be diminished by enhancing α-processing; however, the physical interactions between APP and α-secretases are not well understood. In this study, we employed super-resolution light microscopy to examine in cell-free plasma membranes the abundance and association of APP and α-secretases ADAM10 and ADAM17. We found that both secretase molecules localize similarly closely to APP (within ≤ 50 nm). However, when cross-linking APP with antibodies directed against the GFP-tag of APP, in confocal microscopy we observed that only ADAM10 co-aggregated with APP. Furthermore, we mapped the involved protein domain by using APP variants with an exchanged transmembrane segment or lacking cytoplasmic/extracellular domains. We identified that APP's transmembrane domain is required for association with α-secretases and, as analysed by Western Blot, for α-processing. We propose that the APP transmembrane domain interacts either directly or indirectly with ADAM10, but not with ADAM17, explaining the dominant role of ADAM10 in α-processing of APP. Further understanding of this interaction may facilitate the development of a therapeutic strategy based on promoting APP cleavage by α-secretases.
Collapse
|
47
|
Hur JY. γ-Secretase in Alzheimer's disease. Exp Mol Med 2022; 54:433-446. [PMID: 35396575 PMCID: PMC9076685 DOI: 10.1038/s12276-022-00754-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is caused by synaptic and neuronal loss in the brain. One of the characteristic hallmarks of AD is senile plaques containing amyloid β-peptide (Aβ). Aβ is produced from amyloid precursor protein (APP) by sequential proteolytic cleavages by β-secretase and γ-secretase, and the polymerization of Aβ into amyloid plaques is thought to be a key pathogenic event in AD. Since γ-secretase mediates the final cleavage that liberates Aβ, γ-secretase has been widely studied as a potential drug target for the treatment of AD. γ-Secretase is a transmembrane protein complex containing presenilin, nicastrin, Aph-1, and Pen-2, which are sufficient for γ-secretase activity. γ-Secretase cleaves >140 substrates, including APP and Notch. Previously, γ-secretase inhibitors (GSIs) were shown to cause side effects in clinical trials due to the inhibition of Notch signaling. Therefore, more specific regulation or modulation of γ-secretase is needed. In recent years, γ-secretase modulators (GSMs) have been developed. To modulate γ-secretase and to understand its complex biology, finding the binding sites of GSIs and GSMs on γ-secretase as well as identifying transiently binding γ-secretase modulatory proteins have been of great interest. In this review, decades of findings on γ-secretase in AD are discussed.
Collapse
Affiliation(s)
- Ji-Yeun Hur
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
48
|
Modulation of amyloid precursor protein cleavage by γ-secretase activating protein through phase separation. Proc Natl Acad Sci U S A 2022; 119:e2122292119. [PMID: 35298330 PMCID: PMC8944281 DOI: 10.1073/pnas.2122292119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significanceγ-secretase activating protein (GSAP) has emerged as a key regulator of γ-secretase. In cells, GSAP exists primarily in the form of a 16-kDa fragment known as GSAP-16K. In this study, we report the finding that GSAP-16K undergoes phase separation in vitro and in cells. Importantly, the outcome of GSAP-16K phase separation directly regulates the protease activity of human γ-secretase. Through direct interaction with the substrate amyloid precursor protein-C-terminal 99-residue fragment, GSAP-16K in dilute phase favors the production of β-amyloid peptide 42 (Aβ42) but not Aβ40. These observations not only explain how GSAP activates γ-secretase but also identify their interaction as a target of potential therapeutic intervention.
Collapse
|
49
|
Koch K, Bartmann K, Hartmann J, Kapr J, Klose J, Kuchovská E, Pahl M, Schlüppmann K, Zühr E, Fritsche E. Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. FRONTIERS IN TOXICOLOGY 2022; 4:816370. [PMID: 35295221 PMCID: PMC8915868 DOI: 10.3389/ftox.2022.816370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
There is a call for a paradigm shift in developmental neurotoxicity (DNT) evaluation, which demands the implementation of faster, more cost-efficient, and human-relevant test systems than current in vivo guideline studies. Under the umbrella of the Organisation for Economic Co-operation and Development (OECD), a guidance document is currently being prepared that instructs on the regulatory use of a DNT in vitro battery (DNT IVB) for fit-for-purpose applications. One crucial issue for OECD application of methods is validation, which for new approach methods (NAMs) requires novel approaches. Here, mechanistic information previously identified in vivo, as well as reported neurodevelopmental adversities in response to disturbances on the cellular and tissue level, are of central importance. In this study, we scientifically validate the Neurosphere Assay, which is based on human primary neural progenitor cells (hNPCs) and an integral part of the DNT IVB. It assesses neurodevelopmental key events (KEs) like NPC proliferation (NPC1ab), radial glia cell migration (NPC2a), neuronal differentiation (NPC3), neurite outgrowth (NPC4), oligodendrocyte differentiation (NPC5), and thyroid hormone-dependent oligodendrocyte maturation (NPC6). In addition, we extend our work from the hNPCs to human induced pluripotent stem cell-derived NPCs (hiNPCs) for the NPC proliferation (iNPC1ab) and radial glia assays (iNPC2a). The validation process we report for the endpoints studied with the Neurosphere Assays is based on 1) describing the relevance of the respective endpoints for brain development, 2) the confirmation of the cell type-specific morphologies observed in vitro, 3) expressions of cell type-specific markers consistent with those morphologies, 4) appropriate anticipated responses to physiological pertinent signaling stimuli and 5) alterations in specific in vitro endpoints upon challenges with confirmed DNT compounds. With these strong mechanistic underpinnings, we posit that the Neurosphere Assay as an integral part of the DNT in vitro screening battery is well poised for DNT evaluation for regulatory purposes.
Collapse
Affiliation(s)
- Katharina Koch
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kristina Bartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Hartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Jördis Klose
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Eliška Kuchovská
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Melanie Pahl
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kevin Schlüppmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
50
|
Kang X, Zhang ZP, Song CG, Liu L, Zhao Y, Du JL, Lai YB, Cao XL, Ye WM, Zhang YF, Zheng MH, Zeng YH, Sun XL, Wu SX, Gao F. γ-secretase inhibitor disturbs the morphological development of differentiating neurons through affecting Notch/miR-342-5p. Neurosci Lett 2022; 778:136603. [DOI: 10.1016/j.neulet.2022.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
|