1
|
Lanznaster D, Bruno C, Bourgeais J, Emond P, Zemmoura I, Lefèvre A, Reynier P, Eymieux S, Blanchard E, Vourc’h P, Andres CR, Bakkouche SE, Herault O, Favard L, Corcia P, Blasco H. Metabolic Profile and Pathological Alterations in the Muscle of Patients with Early-Stage Amyotrophic Lateral Sclerosis. Biomedicines 2022; 10:biomedicines10061307. [PMID: 35740329 PMCID: PMC9220134 DOI: 10.3390/biomedicines10061307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Diverse biomarkers and pathological alterations have been found in muscle of patients with Amyotrophic lateral sclerosis (ALS), but the relation between such alterations and dysfunction in energetic metabolism remains to be investigated. We established the metabolome of muscle and serum of ALS patients and correlated these findings with the clinical status and pathological alterations observed in the muscle. We obtained data from 20 controls and 17 ALS patients (disease duration: 9.4 ± 6.8 months). Multivariate metabolomics analysis identified a distinct serum metabolome for ALS compared to controls (p-CV-ANOVA < 0.035) and revealed an excellent discriminant profile for muscle metabolome (p-CV-ANOVA < 0.0012). Citramalate was discriminant for both muscle and serum. High lauroylcarnitine levels in muscle were associated with low Forced Vital Capacity. Transcriptomics analysis of key antioxidant enzymes showed an upregulation of SOD3 (p = 0.0017) and GLRX2(1) (p = 0.0022) in ALS muscle. Analysis of mitochondrial enzymatic activity in muscle revealed higher complex II/CS (p = 0.04) and lower LDH (p = 0.03) activity in ALS than in controls. Our study showed, for the first time, a global dysfunction in the muscle of early-stage ALS patients. Furthermore, we identified novel metabolites to be employed as biomarkers for diagnosis and prognosis of ALS patients.
Collapse
Affiliation(s)
- Débora Lanznaster
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Correspondence:
| | - Clément Bruno
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000 Tours, France
| | - Jérôme Bourgeais
- CNRS ERL7001, EA 7501 GICC, Université de Tours, 37000 Tours, France; (J.B.); (O.H.)
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Médecine Nucléaire In Vitro, CHU de Tours, 37000 Tours, France
| | - Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Neurochirurgie, CHU de Tours, 37000 Tours, France
| | - Antoine Lefèvre
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
| | - Pascal Reynier
- Service de Biochimie et Biologie Moléculaire, CHU d’Angers, 49000 Angers, France;
- Mitovasc-Mitolab, UMR CNRS6015-INSERM1083, 49000 Angers, France
| | - Sébastien Eymieux
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, 37000 Tours, France; (S.E.); (E.B.)
- INSERM U1259, Université de Tours, 37000 Tours, France
| | - Emmanuelle Blanchard
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, 37000 Tours, France; (S.E.); (E.B.)
- INSERM U1259, Université de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000 Tours, France
| | | | - Olivier Herault
- CNRS ERL7001, EA 7501 GICC, Université de Tours, 37000 Tours, France; (J.B.); (O.H.)
| | - Luc Favard
- Service de Neurologie, CHU de Tours, 37000 Tours, France;
| | - Philippe Corcia
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Neurologie, CHU de Tours, 37000 Tours, France;
| | - Hélène Blasco
- UMR 1253, iBrain, Université de Tours, INSERM, 37000 Tours, France; (C.B.); (P.E.); (I.Z.); (A.L.); (P.V.); (C.R.A.); (P.C.); (H.B.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37000 Tours, France
| |
Collapse
|
2
|
N B, K R C. Tetrandrine and cancer - An overview on the molecular approach. Biomed Pharmacother 2017; 97:624-632. [PMID: 29101806 DOI: 10.1016/j.biopha.2017.10.116] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022] Open
Abstract
Tetrandrine has been known in the treatment of tuberculosis, hyperglycemia, negative ionotropic and chronotropic effects on myocardium, malaria, cancer and fever since years together. It has been known that, tetrandrine could modulate multiple signaling molecules such as kinases of cell cycle and rat sarcoma (RAS) pathway along with proteins of tumor suppressor genes, autophagy related, β-catenins, caspases, and death receptors. Moreover, tetrandrine exhibited reversal of drug resistance by modulating P-glyco protein (P-gp) expression levels in different cancers which is an added advantage of this compound compared to other chemotherapy drugs. Though, bioavailability of tetrandrine is a limiting factor, the anticancer activity was observed in animal models without changing any pharmacokinetic parameters. In the present review, role of tetrandrine as kinase inhibitor, inducer of autophagy and caspase pathways and suppressor of RAS mediated cell proliferation were discussed along with inhibition of angiogenesis. It has also been discussed that how tetrandrine potentiate anticancer effect in different types of cancers by modulating multidrug resistance under in vitro and in vivo trials including the available literature on the clinical trials.
Collapse
Affiliation(s)
- Bhagya N
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - Chandrashekar K R
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India.
| |
Collapse
|
3
|
Nam DC, Hah YS, Nam JB, Kim RJ, Park HB. Cytoprotective Mechanism of Cyanidin and Delphinidin against Oxidative Stress-Induced Tenofibroblast Death. Biomol Ther (Seoul) 2016; 24:426-32. [PMID: 27098861 PMCID: PMC4930287 DOI: 10.4062/biomolther.2015.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
Age-related rotator cuff tendon degeneration is related to tenofibroblast apoptosis. Anthocyanins reduce oxidative stress-induced apoptotic cell death in tenofibroblasts. The current study investigated the presence of cell protective effects in cyanidin and delphinidin, the most common aglycon forms of anthocyanins. We determined whether these anthocyanidins have antiapoptotic and antinecrotic effects in tenofibroblasts exposed to H2O2, and evaluated their biomolecular mechanisms. Both cyanidin and delphinidin inhibited H2O2-induced apoptosis in a dose-dependent manner. However, at concentrations of 100 μg/ml or greater, delphinidin showed cytotoxicity against tenofibroblasts and a decreased antinecrotic effect. Cyanidin and delphinidin both showed inhibitory effects on the H2O2-induced increase in intracellular ROS formation and the activation of ERK1/2 and JNK. In conclusion, both cyanidin and delphinidin have cytoprotective effects on cultured tenofibroblasts exposed to H2O2. These results suggest that cyanidin and delphinidin are both beneficial for the treatment of oxidative stress-mediated tenofibroblast cell death, but their working concentrations are different.
Collapse
Affiliation(s)
- Dae Cheol Nam
- Department of Orthopaedic Surgery, School of Medicine and Hospital, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Young Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Jung Been Nam
- Department of Environmental Material Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ra Jeong Kim
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hyung Bin Park
- School of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
4
|
Risk of secondary lymphedema in breast cancer survivors is related to serum phospholipid fatty acid desaturation. Support Care Cancer 2016; 24:3767-74. [PMID: 27041742 DOI: 10.1007/s00520-016-3197-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/28/2016] [Indexed: 01/07/2023]
Abstract
PURPOSE Secondary lymphedema is a common irreversible side effect of breast cancer surgery. We investigated if risk of secondary lymphedema in breast cancer survivors was related to changes in serum phospholipid fatty acid composition. METHODS Study subjects were voluntarily recruited into the following three groups: breast cancer survivors who had sentinel lymph node biopsy without lymphedema (SLNB), those who had auxillary lymph node dissection without lymphedema (ALND), and those who had ALND with lymphedema (ALND + LE). Body mass index (BMI), serum lipid profiles, bioimpedance data with single-frequency bioimpedance analysis (SFBIA), and serum phospholipid compositions were analyzed and compared among the groups. RESULTS BMI, serum total cholesterol (total-C), and low-density lipoprotein cholesterol (LDL-C) and SFBIA ratios increased only in the ALND + LE. High polyunsaturated fatty acids (PUFAs) and high C20:4 to C18:2 n-6 PUFAs (arachidonic acid [AA]/linoleic acid [LA]) was detected in the ALND and ALND + LE groups compared to SLNB. The ALND + LE group showed increased activity indices for delta 6 desaturase (D6D) and D5D and increased ratio of AA to eicosapentaenoic acid (AA/EPA) compared to the ALND and SLNB groups. Correlation and regression analysis indicated that D6D, D5D, and AA/EPA were associated with SFBIA ratios. CONCLUSION We demonstrated that breast cancer survivors with lymphedema had elevated total PUFAs, fatty acid desaturase activity indices, and AA/EPA in serum phospholipids. Our findings suggested that desaturation extent of fatty acid composition might be related to the risk of secondary lymphedema in breast cancer survivors.
Collapse
|
5
|
Wang T, Takikawa Y. Carnosic acid protects normal mouse hepatocytes against H2 O2 -induced cytotoxicity via sirtuin 1-mediated signaling. Hepatol Res 2016. [PMID: 26223904 DOI: 10.1111/hepr.12563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Carnosic acid (CA) is well known for its antioxidant properties. The aim of this study was to examine the effects of CA on cytotoxicity under oxidative stress. METHODS Primary hepatocytes and AML12 cells were treated with: (i) 0.1 μM, 1 μM and 10 μM CA; (ii) 3 mM H2 O2 with or without 1 μM CA; or (iii) 3 mM H2 O2 with 1 μM CA and 0.04 μM sirtuin 1 (SIRT1) inhibitor EX527 or 10 μM mitogen-activated protein kinase (MAPK) inhibitor U0126. Cell viability, intracellular reactive oxygen species (ROS) and lactate dehydrogenase (LDH) leakage were determined. In addition, total protein levels of cleaved caspase 3, SIRT1, phosphorylated Nrf2, 5'-adenosine monophosphate-activated protein kinase (AMPK) and MAPKs were evaluated by western blot analysis and suspension array system. RESULTS First, although 10 μM CA produced cytotoxicity, CA at concentrations at or below 1 μM did not inhibit cell viability. Second, H2 O2 increased total cellular ROS and LDH leakage and decreased cell viability, whereas co-treatment with H2 O2 and 1 μM CA significantly inhibited these effects of H2 O2 . Third, CA at 1 μM increased protein levels of SIRT1. Pretreatment with EX527 or transfection of siRNA-targeting SIRT1 weakened the protective effects of CA against H2 O2 -induced cell death. Fourth, H2 O2 induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in primary hepatocytes. U0126 inhibited oxidative damage induced by H2 O2 . Co-treatment with CA inhibited ERK1/2 activation induced by H2 O2 . CONCLUSION Our data indicate that CA protects against oxidative stress-induced cytotoxicity via SIRT1 by regulating subsequent downstream factors such as ERK1/2.
Collapse
Affiliation(s)
- Ting Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Yasuhiro Takikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Iwate, Japan
| |
Collapse
|
6
|
de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF. Quercetin and the mitochondria: A mechanistic view. Biotechnol Adv 2015; 34:532-549. [PMID: 26740171 DOI: 10.1016/j.biotechadv.2015.12.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 12/24/2022]
Abstract
Quercetin is an important flavonoid that is ubiquitously present in the diet in a variety of fruits and vegetables. It has been traditionally viewed as a potent antioxidant and anti-inflammatory molecule. However, recent studies have suggested that quercetin may exert its beneficial effects independent of its free radical-scavenging properties. Attention has been placed on the effect of quercetin on an array of mitochondrial processes. Quercetin is now recognized as a phytochemical that can modulate pathways associated with mitochondrial biogenesis, mitochondrial membrane potential, oxidative respiration and ATP anabolism, intra-mitochondrial redox status, and subsequently, mitochondria-induced apoptosis. The present review evaluates recent evidence on the ability of quercetin to interact with the abovementioned pathways, and critically analyses how, such interactions can exert protection against mitochondrial damage in response to toxicity induced by several exogenously and endogenously-produced cellular stressors, and oxidative stress in particular.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiabá, MT, Brazil.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Touqeer Ahmed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Essential role of docosahexaenoic acid towards development of a smarter brain. Neurochem Int 2015; 89:51-62. [DOI: 10.1016/j.neuint.2015.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 01/25/2023]
|
8
|
Sung CM, Hah YS, Kim JS, Nam JB, Kim RJ, Lee SJ, Park HB. Cytotoxic effects of ropivacaine, bupivacaine, and lidocaine on rotator cuff tenofibroblasts. Am J Sports Med 2014; 42:2888-96. [PMID: 25296645 DOI: 10.1177/0363546514550991] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Concern has recently arisen over the safety of local anesthetics used on human tissues. HYPOTHESIS Aminoamide local anesthetics have cytotoxic effects on human rotator cuff tenofibroblasts. STUDY DESIGN Controlled laboratory study. METHODS Cultured human rotator cuff tenofibroblasts were divided into control, phosphate buffered saline (PBS), and local anesthetic study groups; the PBS study group was further subdivided by pH level (pH 7.4, 6.0, and 4.4). The 6 local anesthetic subgroups (0.2% and 0.75% ropivacaine, 0.25% and 0.5% bupivacaine, and 1% and 2% lidocaine) were also studied at 10% dilutions of their original concentrations. Exposure times were 5, 10, 20, 40, or 60 minutes for the higher concentrations and 2, 6, 12, 24, 48, or 72 hours for the lower concentrations. Cell viability was evaluated through live, apoptotic, and necrotic cell rates using the annexin V-propidium iodide double-staining method. Intracellular reactive oxygen species (ROS) and the activity of mitogen-activated protein kinases (MAPKs) and caspase-3/7 were investigated. RESULTS The control and PBS groups showed no significant differences in cell viability (P > .999). In the local anesthetic study groups, cell viability decreased significantly with increases in anesthetic concentrations (P < .001) and exposure times (P < .001), with the exception of the lidocaine subgroups, where this effect was masked by the very high cytotoxicity of even low concentrations. Among the studied local anesthetic subgroups, 0.2% ropivacaine was the least toxic. The levels of intracellular ROS of each local anesthetic subgroup also increased significantly (P < .05). The studied local anesthetics showed increases in the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 as well as in levels of caspase-3/7 activity (P < .001). CONCLUSION The cytotoxicity of the anesthetics studied to tenofibroblasts is dependent on exposure time and concentration. Of the evaluated anesthetics, ropivacaine is the least toxic in the clinically used concentration. The studied anesthetics induce tenofibroblast cell death, mediated by the increased production of ROS, by the increased activation of ERK1/2, JNK, and p38 and by the activation of caspase-3/7. CLINICAL RELEVANCE This study identified the cytotoxic mechanisms of aminoamide local anesthetics acting on rotator cuff tenofibroblasts. The greatest margin of safety was found in lower anesthetic concentrations in general and more specifically in the use of ropivacaine.
Collapse
Affiliation(s)
- Chang-Meen Sung
- Department of Orthopaedic Surgery, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Jin-Su Kim
- Surgery of Foot & Ankle, Eulji Medical Center, Eulji College of Medicine, Eulji University, Seoul, Korea
| | - Jeoung-Bin Nam
- Musculoskeletal Research Center, Gyeongsang National University Hospital, Jinju, Korea
| | - Ra Jeong Kim
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Korea
| | - Sang-Jin Lee
- Department of Orthopaedic Surgery, Barun Hospital, Jinju, Korea
| | - Hyung Bin Park
- Department of Orthopaedic Surgery, School of Medicine, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
9
|
Akhiani AA, Werlenius O, Aurelius J, Movitz C, Martner A, Hellstrand K, Thorén FB. Role of the ERK pathway for oxidant-induced parthanatos in human lymphocytes. PLoS One 2014; 9:e89646. [PMID: 24586933 PMCID: PMC3931820 DOI: 10.1371/journal.pone.0089646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 01/26/2014] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species (ROS) are formed by myeloid cells as a defense strategy against microorganisms. ROS however also trigger poly(ADP-ribose) polymerase 1- (PARP-1) dependent cell death (parthanatos) in adjacent lymphocytes, which has been forwarded as a mechanism of immune escape in several forms of cancer. The present study assessed the role of mitogen-activated protein kinases (MAPKs), in particular the extracellular signal-regulated kinase (ERK), in ROS-induced signal transduction leading to lymphocyte parthanatos. We report that inhibitors of ERK1/2 phosphorylation upheld natural killer (NK) cell-mediated cytotoxicity under conditions of oxidative stress and rescued NK cells and CD8+ T lymphocytes from cell death induced by ROS-producing monocytes. ERK1/2 phosphorylation inhibition also protected lymphocytes from cell death induced by exogenous hydrogen peroxide (H2O2) and from ROS generated by xanthine oxidase or glucose oxidase. Phosphorylation of ERK1/2 was observed in lymphocytes shortly after exposure to ROS. ROS-generating myeloid cells and exogenous H2O2 triggered PARP 1-dependent accumulation of poly ADP-ribose (PAR), which was prevented by ERK pathway inhibitors. ERK1/2 phosphorylation was induced by ROS independently of PARP-1. Our findings are suggestive of a role for ERK1/2 in ROS-induced lymphocyte parthanatos, and that the ERK axis may provide a therapeutic target for the protection of lymphocytes against oxidative stress.
Collapse
Affiliation(s)
- Ali A. Akhiani
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olle Werlenius
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Aurelius
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotta Movitz
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Fredrik B. Thorén
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Pukass K, Richter-Landsberg C. Oxidative stress promotes uptake, accumulation, and oligomerization of extracellular α-synuclein in oligodendrocytes. J Mol Neurosci 2013; 52:339-52. [PMID: 24217795 DOI: 10.1007/s12031-013-0154-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 12/23/2022]
Abstract
The accumulation and aggregation of α-synuclein (α-Syn) in glial cytoplasmic inclusions originating in oligodendrocytes is a characteristic hallmark of multiple system atrophy, a progressive adult onset neurodegenerative disorder. The origin of α-Syn deposition in oligodendrocytes in multiple system atrophy is still unclear, but the uptake of α-Syn from the environment after neuronal secretion has been discussed. The present study was undertaken to investigate the consequences of α-Syn uptake from the environment in cultured oligodendroglial cells and its localization and potential to form intracellular aggregates in the absence or presence of the microtubule-associated protein tau, which has been demonstrated to act synergistically with α-Syn. Primary rat brain oligodendrocytes and clonal oligodendroglial OLN-93 cells were incubated with human recombinant soluble and pre-aggregated α-Syn. The data show that oligodendrocytes are capable to take up and internalize soluble and pre-aggregated α-Syn from their growth medium. In a time-dependent manner, α-Syn oligomerizes and small intracellular aggregates are formed. These do not exert cytotoxic responses or mitochondrial impairment. Oxidative stress exerted by hydrogen peroxide further promotes α-Syn oligomer formation and leads to an enlargement of the aggregates. This process is not affected or modified by the presence of tau in OLN-93 cells. Furthermore, membrane lipid modification by docosahexaenoic acid promotes α-Syn uptake and oligomerization, indicating that changing the membrane lipid composition and structure contributes to the protein aggregation process and pathological events. Hence, although α-Syn taken up by oligodendrocytes from the environment is not toxic per se, under conditions of oxidative stress, which might occur during chronic disease progression and aging, aggregates are enlarged and eventually may contribute to cytotoxicity and cellular death.
Collapse
Affiliation(s)
- Katharina Pukass
- Department of Biology, Molecular Neurobiology, University of Oldenburg, 26111, Oldenburg, Germany
| | | |
Collapse
|
11
|
Luteolin induces apoptotic cell death through AIF nuclear translocation mediated by activation of ERK and p38 in human breast cancer cell lines. Cell Biol Int 2012; 36:339-44. [DOI: 10.1042/cbi20110394] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Muscella A, Calabriso N, Vetrugno C, Fanizzi FP, De Pascali SA, Marsigliante S. The signalling axis mediating neuronal apoptosis in response to [Pt(O,O′-acac)(γ-acac)(DMS)]. Biochem Pharmacol 2011; 81:1271-85. [DOI: 10.1016/j.bcp.2011.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 12/28/2022]
|
13
|
Park HB, Hah YS, Yang JW, Nam JB, Cho SH, Jeong ST. Antiapoptotic effects of anthocyanins on rotator cuff tenofibroblasts. J Orthop Res 2010; 28:1162-9. [PMID: 20217837 DOI: 10.1002/jor.21097] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Accepted: 12/03/2009] [Indexed: 02/04/2023]
Abstract
Degeneration of the rotator cuff tendon, which involves apoptosis of the tenofibroblasts, is one of the most common shoulder problems that can lead eventually to a full-thickness rotator cuff tendon tear. The current authors evaluated both the ability of anthocyanins, which are powerful antioxidants, to reduce apoptosis in oxidation-stressed rotator cuff tenofibroblasts, and the molecular mechanism for this antiapoptotic action. Anthocyanins demonstrated a dose-dependent ability to inhibit H(2)O(2)-induced apoptosis in cultured tenofibroblasts, as assessed by MTT assay and FACS analysis. H(2)O(2) increased the phosphorylation of extracellular regulated kinase1/2 (ERK1/2) and of c-Jun N-terminal kinase (JNK) and the production of reactive oxygen species (ROS). In contrast, treatment with anthocyanins decreased this activation of ERK1/2 and JNK, as confirmed by Western blot analysis, and reduced the production of ROS, as verified by fluorescent microscopic and FACS analyses. These findings suggest that anthocyanins, by suppressing JNK, ERK1/2, and intracellular ROS production, have a concentration-dependent antiapoptotic effect on rotator cuff tenofibroblasts exposed to an oxidative stressor, and may have therapeutic potential.
Collapse
Affiliation(s)
- Hyung Bin Park
- Department of Orthopaedic Surgery, School of Medicine, Gyeongsang National University, 90 Chilamdong, Jinju, Gyeongnam 660-251, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
14
|
Riedel M, Goldbaum O, Wille M, Richter-Landsberg C. Membrane Lipid Modification by Docosahexaenoic Acid (DHA) Promotes the Formation of α-Synuclein Inclusion Bodies Immunopositive for SUMO-1 in Oligodendroglial Cells After Oxidative Stress. J Mol Neurosci 2010; 43:290-302. [DOI: 10.1007/s12031-010-9439-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/10/2010] [Indexed: 11/29/2022]
|
15
|
Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 2010; 15:183-95. [PMID: 19882352 DOI: 10.1007/s10495-009-0421-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thymoquinone (TQ), a component of black seed essential oil, is known to induce apoptotic cell death and oxidative stress, however, the direct involvement of oxidants in TQ-induced cell death has not been established yet. Here, we show that TQ inhibited the proliferation of a panel of human colon cancer cells (Caco-2, HCT-116, LoVo, DLD-1 and HT-29), without exhibiting cytotoxicity to normal human intestinal FHs74Int cells. Further investigation in DLD-1 revealed that apoptotic cell death is the mechanism for TQ-induced growth inhibition as confirmed by flow cytometry, M30 cytodeath and caspase-3/7 activation. Apoptosis was induced via the generation of reactive oxygen species (ROS) as evidenced by the abrogation of TQ apoptotic effect in cells preincubated with the strong antioxidant N-acetyl cysteine (NAC). TQ increased the phosphorylation states of the mitogen-activated protein kinases (MAPK) JNK and ERK, but not of p38. Their activation was completely abolished in the presence of NAC. Using PD98059 and SP600125, specific ERK and JNK inhibitors, the two kinases were found to possess pro-survival activities in TQ-induced cell death. These data present evidence linking the pro-oxidant effects of TQ with its apoptotic effects in colon cancer and prove a protective role of MAPK.
Collapse
|
16
|
Brand A, Bauer NG, Hallott A, Goldbaum O, Ghebremeskel K, Reifen R, Richter-Landsberg C. Membrane lipid modification by polyunsaturated fatty acids sensitizes oligodendroglial OLN-93 cells against oxidative stress and promotes up-regulation of heme oxygenase-1 (HSP32). J Neurochem 2010; 113:465-76. [DOI: 10.1111/j.1471-4159.2010.06611.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Abstract
Production of superoxide anion O2*- by the membrane-bound enzyme NADPH oxidase of phagocytes is a long-known phenomenon; it is generally assumed that O2*-helps phagocytes kill bacterial intruders. The details and the chemistry of the killing process have, however, remained a mystery. Isoforms of NADPH oxidase exist in membranes of nearly every cell, suggesting that reactive oxygen species (ROS) participate in intra- and intercellular signaling processes. What the nature of the signal is exactly, how it is transmitted, and what structural characteristics a receptor of a "radical message" must have, have not been addressed convincingly. This review discusses how the action of messengers is in agreement with radical-specific behavior. In search for the smallest common denominator of cellular free radical activity we hypothesize that O2*- and its conjugate acid, HO2*, may have evolved under primordial conditions as regulators of membrane mechanics and that isoprostanes, widely used markers of "oxidative stress", may be an adventitious correlate of this biologic activity of O2*-/HO2*. An overall picture is presented that suggests that O2*-/HO2* radicals, by modifying cell membranes, help other agents gain access to the hydrophobic region of phospholipid bilayers and hence contribute to lipid-dependent signaling cascades. With this, O2*-/HO2* are proposed as indispensable adjuvants for the generation of cellular signals, for membrane transport, channel gating and hence, in a global sense, for cell viability and growth. We also suggest that many of the allegedly O2*- dependent bacterial pathologies and carcinogenic derailments are due to membrane-modifying activity rather than other chemical reactions of O2*-/HO2*. A consequence of this picture is the potential evolution of the "radical theory of ageing" to a "lipid theory of aging".
Collapse
Affiliation(s)
- Manfred Saran
- Institut für Strahlenbiologie, GSF-Forschungszentrum für Umwelt und Gesundheit, 85764, Neuherberg, Germany.
| |
Collapse
|
18
|
Silibinin inhibits glioma cell proliferation via Ca2+/ROS/MAPK-dependent mechanism in vitro and glioma tumor growth in vivo. Neurochem Res 2009; 34:1479-90. [PMID: 19263218 DOI: 10.1007/s11064-009-9935-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
Anticancer activity of silibinin, a flavonoid, has been demonstrated in various cancer cell types. However, the underlying mechanism and in vivo efficacy in glioma were not elucidated. The present study was undertaken to determine the effect of silibinin on glioma cell proliferation in vitro and to examine whether silibinin inhibits tumor growth in vivo. Silibinin resulted in inhibition of proliferation in a dose- and time-dependent manner, which was largely attributed to cell death. Silibinin induced a transient increase in intracellular Ca2+ followed by an increase in reactive oxygen species (ROS) generation. The silibinin-induced cell death was prevented by EGTA, calpain inhibitor and antioxidants (N-acetylcysteine and Trolox). Western blot analysis showed that silibinin also induced ROS-dependent activation of extracellular signal-regulated kinase, p38 kinase, and c-Jun N-terminal kinase. Inhibitors of these kinases prevented the silibinin-induced cell death. Silibinin caused caspase activation and the silibinin-induced cell death was prevented by caspase inhibitors. Glioma cell migration was also decreased by silibinin treatment. Oral administration of silibinin in animals with subcutaneous U87MG glioma cells reduced tumor volume. Subsequent tumor tissue analysis showed a decrease in Ki-67 positive cells, an increase in TUNEL-positive cells, and caspase activation. These results indicate that silibinin induces a caspase-dependent cell death via Ca2+/ROS/MAPK-mediated pathway in vitro and inhibits glioma growth in vivo. These data suggest that silibinin may serve as a potential therapeutic agent for malignant human gliomas.
Collapse
|
19
|
Lee HP, Zhu X, Zhu X, Skidmore SC, Perry G, Sayre LM, Smith MA, Lee HG. The essential role of ERK in 4-oxo-2-nonenal-mediated cytotoxicity in SH-SY5Y human neuroblastoma cells. J Neurochem 2009; 108:1434-41. [PMID: 19183271 DOI: 10.1111/j.1471-4159.2009.05883.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid peroxidation byproducts, such as 4-hydroxynonenal (HNE) and 4-oxo-2-nonenal (ONE), induce cell death in a wide variety of cell types, partly by modulating intracellular signaling pathways. However, the specific mechanisms involved, particularly for ONE, are unclear while c-Jun N-terminal kinase (JNK) has been shown to be essential in HNE-mediated cytotoxicity. In this study, we examined the role of mitogen-activated protein kinases signaling pathways in ONE-induced cytotoxicity in SH-SY5Y human neuroblastoma cells and found that ONE strongly induces the phosphorylation of extracellular signal-regulated kinase (ERK) and JNK, but not p38 MAPK. Interestingly, a transient exposure of the cells to ONE resulted in cell death, which contrasts with HNE-mediated toxicity. Importantly, blocking the ERK pathway, but not the JNK pathway, protected cells against ONE-induced cytotoxicity indicating a striking difference between the ONE- and HNE-mediated cytotoxicity mechanisms. Furthermore, inhibition of ERK reduced ONE-induced phosphorylation of p53, a key modulator of the cellular stress response, and the proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), a hallmark of apoptosis. Overall, these data strongly suggest that ERK plays an essential role in ONE-mediated cytotoxicity and that ERK is an upstream component of p53-mediated apoptosis.
Collapse
Affiliation(s)
- Hyun-Pil Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ulrich-Merzenich G, Zeitler H, Vetter H, Kraft K. Synergy research: vitamins and secondary plant components in the maintenance of the redox-homeostasis and in cell signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:2-16. [PMID: 19118991 DOI: 10.1016/j.phymed.2008.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 11/20/2008] [Indexed: 05/27/2023]
Abstract
The maintenance of the redox-homeostasis is an essential task of antioxidants. Reactive oxygen species (ROS) formed during oxidative stress can potentially damage the normal cellular functions and support pathological processes like atherosclerosis in vessels or malignant growth in other tissues, but also the aging process. However, recent findings link ROS also to cell survival and/or proliferation, which revolutionises the age-old dogmatic view of ROS being exclusively involved in cell damage and death. Low concentrations of hydrogenperoxide e.g. are involved in cell signaling and can activate mitogen-activated kinases (MAPK) to initiate cell growth. Nutritional antioxidants like vitamin C or E can promote endothelial cell growth, but can also inhibit growth of muscle cells, and influence MAPK. Thus, keeping the redox-homeostasis in a steady state especially in the context of tissue regeneration appears to be more important than previously known and seems to be a controlled synergistic action of antioxidants and ROS. The present review summarizes the properties and functions of ROS and nutritional antioxidants like the vitamins C and E, and polyphenols in redox-homeostasis. Their relevance in the treatment of various diseases is discussed in the context of a multitarget therapy with nutraceuticals and phytotherapeutic drugs.
Collapse
|
21
|
Peterson B, Stovall K, Monian P, Franklin JL, Cummings BS. Alterations in phospholipid and fatty acid lipid profiles in primary neocortical cells during oxidant-induced cell injury. Chem Biol Interact 2008; 174:163-76. [PMID: 18602625 DOI: 10.1016/j.cbi.2008.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/19/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
Specific phospholipids and fatty acids altered during oxidant-induced neuronal cell injury were determined using electrospray ionization mass spectrometry (ESI-MS) and ion trapping. The oxidants hydrogen peroxide (H(2)O(2), 0-1000 microM) and tert-butylhydroperoxide (TBHP, 0-400 microM) induced time- and concentration-dependent increases in reactive oxygen species in primary cultures of mouse neocortical cells as determined by 2',7'-dichlorofluorescein diacetate staining and thiobarbituric acid formation. ESI-MS analysis of 26 m/z values, representing 42 different phospholipids, demonstrated that H(2)O(2) and TBHP increased the abundance of phospholipids containing polyunsaturated fatty acids, but had minimal affect on those containing mono- or di-unsaturated fatty acids. These increases correlated to time-dependent increase in 16:1-20:4, 16:0-20:4, 18:1-20:4 and 18:0-20:4 phosphatidylcholine. Oxidant exposure also increased mystric (14:0), palmitic (16:0), and stearic (18:0) acid twofold, oleic acid (18:1) two- to threefold, and arachidonic acid (20:4) fourfold, compared to controls. Increases in arachidonic acid levels occurred prior to increases in the phospholipids, but after increases in ROS, and correlated to increases in oxidized arachidonic acid species, specifically [20:4-OOH]-H(2)O-, 20:4-OH-, and Tri-OH-20:4-arachidonic acid. Treatment of cells with methyl arachidonyl flourophosphonate an inhibitor of Group IV and VI PLA(2), decreased oxidant-induced arachidonic acid release, while bromoenol lactone, an inhibitor of Group VI PLA(2), did not. Collectively, these data identify phospholipids and fatty acids altered during oxidant treatment of neurons and suggest differential roles for Group IV and VI PLA(2) in oxidant-induced neural cell injury.
Collapse
Affiliation(s)
- Brianna Peterson
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA 30602-2352, United States
| | | | | | | | | |
Collapse
|
22
|
Brand A, Schonfeld E, Isharel I, Yavin E. Docosahexaenoic acid-dependent iron accumulation in oligodendroglia cells protects from hydrogen peroxide-induced damage. J Neurochem 2008; 105:1325-35. [PMID: 18208540 DOI: 10.1111/j.1471-4159.2008.05234.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Iron, a transition metal and essential nutrient, is a typical pro-oxidant forming free radicals, lipid peroxides and causing cell damage when added at high (> or = 50 microM) concentrations to oligodendroglia-like OLN-93 cells that have been enriched for 3 days with 10 microM docosahexaenoic acid (DHA, 22 : 6 n-3). At low (5 microM) iron concentrations lipid peroxides were still formed, but cells turned resistant to 250 microM H2O2, a secondary genotoxic stress. This has been attributed most likely to a time-dependent (16 h preconditioning) increase of cellular antioxidant enzyme activities i.e., glutathione peroxidase (38%) and glutathione reductase (26%). DHA but not arachidonic acid (20 : 4 n-6) supplements induced 3-fold increase in gene expression of divalent metal transporter-1, a transporter protein presumably responsible for the increase in intracellular iron. Elevated iron levels triggered a transient scrambling of membrane lipid asymmetry as evident by an accelerated ethanolamine phosphoglyceride translocation to the outer cell surface. Ethanolamine phosphoglyceride reorientation is proposed to activate certain signaling cascades leading to changes in nuclear transcription, a reaction that could represent a mechanism of preconditioning. These findings may have important implications for understanding the interactive role of iron and DHA in nutritional deficiencies, losses of polyunsaturated fatty acids in the aging brain or excessive iron accumulation in degenerative disorders.
Collapse
Affiliation(s)
- Annette Brand
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
23
|
Nam TW, Yoo CI, Kim HT, Kwon CH, Park JY, Kim YK. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. J Bone Miner Metab 2008; 26:551-60. [PMID: 18979154 DOI: 10.1007/s00774-008-0864-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 02/18/2008] [Indexed: 12/11/2022]
Abstract
The present study was undertaken to evaluate effects of quercetin, a major dietary flavonoid occurring in foods of plant origin, on cell viability and migration of osteoblastic cells. Quercetin inhibited cell viability, which was largely attributed to apoptosis, in a dose-and time-dependent manner in osteoblastic cells. Similar cytotoxicity of quercetin was observed in adipose tissue-derived stromal cells. Quercetin exerted a protective effect against H(2)O(2)-induced cell death, whereas it increased TNF-alpha-induced cell death. Western blot analysis showed that quercetin induced activation of ERK and p38, but not JNK. Quercetin-induced cell death was prevented by the ERK inhibitor PD98059, but not by inhibitors of p38 and JNK. Quercetin increased Bax expression and caused depolarization of mitochondrial membrane potential, which were inhibited by PD98059. Quercetin induced caspase-3 activation, and the quercetininduced cell death was prevented by caspase inhibitors. Quercetin inhibited cell migration, and its effect was prevented by inhibitors of ERK and p38. Taken together, these findings suggest that quercetin induces apoptosis through a mitochondria-dependent mechanism involving ERK activation and inhibits migration through activation of ERK and p38 pathways. Quercetin may exert both protective and deleterious effects in bone repair.
Collapse
Affiliation(s)
- Tae Wook Nam
- Department of Orthopedic Surgery, Pusan National University, Pusan, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Ulrich-Merzenich G, Zeitler H, Panek D, Bokemeyer D, Vetter H. Vitamin C promotes human endothelial cell growth via the ERK-signaling pathway. Eur J Nutr 2007; 46:87-94. [PMID: 17225921 DOI: 10.1007/s00394-006-0636-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Accepted: 11/22/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidemiological, secondary prevention and small interventional trials suggest a preventive role of vitamin C for cardiovascular diseases (CAD), especially through improving endothelial dysfunction. Large primary prevention trials failed to confirm this. Mechanistic studies may contribute to resolve this discrepancy. AIM OF THE STUDY We examined whether vitamin C activates mitogen-activated protein kinases (MAPK) in human umbilical cord venous endothelial cells (HUVECs) and whether reactive oxygen species (ROS) play a role in this process. METHODS Subconfluent quiescent HUVECs were incubated with vitamin C alone or in combination with catalase (CAT) and/or hydrogenperoxide (H2O2). Intracellular MAPK were determined by Western blot, proliferation by cell count and DNA-synthesis by [3H]-thymidine-uptake. RESULTS HUVECs were incubated with vitamin C (60 microM) for 5-60 min or for 20 min (30-90 microM). A dose-dependent phosphorylation of extracellular signal-regulated-kinases (ERKs)-1 and -2 with a maximum of phosphorylation at 15-20 min was observed and inhibitable by MEK1/2-inhibitor U0126 (5-10 microM). Vitamin C (60 microM) stimulated phosphorylation of ERK5, but not of p38 and c-Jun, demonstrating a different MAPK-activation pattern compared to H2O2. Vitamin C (60 microM) induced proliferation and a dose-dependent [3H]-thymidine-uptake (30-120 microM) within 20 h. CAT (0.3 U/ml) did neither suppress the vitamin C induced [3H]-thymidine-uptake nor ERK1/2-phosphorylation. CAT (0.3 U/ml), but not vitamin C (60 microM) abrogated the inhibitory effects of H2O2 (100 microM) on [3H]-thymidine-uptake. CONCLUSION Physiological vitamin C-concentrations promote proliferation of subconfluent ECs by activating an ERK1/2 controlled pathway. Targeting MAPK by vitamin C may improve, besides antioxidant mechanisms, endothelial dysfunction by promoting a fast regeneration of the endothelium after tissue injury, particularly required during secondary prevention and early development.
Collapse
Affiliation(s)
- Gudrun Ulrich-Merzenich
- Medical Policlinic of the Rheinische, Friedrich-Wilhelms-University of Bonn, Wilhelmstr. 35-37 53111 Bonn, Germany.
| | | | | | | | | |
Collapse
|
25
|
Wang CC, Chen F, Kim E, Harrison LE. Thermal sensitization through ROS modulation: a strategy to improve the efficacy of hyperthermic intraperitoneal chemotherapy. Surgery 2007; 142:384-92. [PMID: 17723891 DOI: 10.1016/j.surg.2007.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 03/14/2007] [Accepted: 03/21/2007] [Indexed: 11/15/2022]
Abstract
BACKGROUND The purpose of this study was to investigate whether modulation of cellular reactive oxygen species (ROS) provides a synergistic effect with hyperthermia to induce tumor cell death in a colon cancer cell line. MATERIALS AND METHODS HT-29 colon cancer cells were exposed to heat (43 degrees C) in the presence of the ROS-generating drug, 2-2'-azobis-(2-amidinopropane) dihydrochloride (AAPH) for 1 h. Viable cell mass and apoptosis was measured by MTT and annexin V staining, respectively. Oxidative stress was evaluated by DCFH fluorescence. Protein levels were determined by Western blot analysis. RESULTS A synergistic effect on cell viability with AAPH was noted under hyperthermic conditions as compared with hyperthermia alone (P < .05). The number of nonviable cells after hyperthermia and AAPH exposure was also significantly increased compared with AAPH at 37 degrees C (42% vs 20%, P < .05). ROS levels were increased modestly with AAPH at 37 degrees C, whereas they increased significantly in a dose-dependent manner with AAPH at 43 degrees C. Transient increases of phosphorylated-p38 and ERK and decreases in phosphorylated-AKT were observed in the cells exposed to AAPH at 43 degrees C. Pretreatment of inhibitors of p38 yielded additional decreases in cell mass when used in combination with AAPH and hyperthermia (P < .05). Increased expression of HSP 27 observed at 43 degrees C was abrogated with AAPH exposure. CONCLUSIONS Oxidative stress increased the cytotoxic effects of hyperthermia in colon cancer cells. Thermal sensitization through modulation of cellular ROS may represent a novel approach to increase the efficacy of hyperthermia as an anticancer modality.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Division of Surgical Oncology, UMDNJ--New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
26
|
Schonfeld E, Yasharel I, Yavin E, Brand A. Docosahexaenoic Acid Enhances Iron Uptake by Modulating Iron Transporters and Accelerates Apoptotic Death in PC12 Cells. Neurochem Res 2007; 32:1673-84. [PMID: 17551831 DOI: 10.1007/s11064-007-9378-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 05/08/2007] [Indexed: 01/18/2023]
Abstract
The effect of docosahexaenoic acid (DHA; 22:6 n-3) on Fe(2+)-mediated and/or H(2)O(2)-mediated oxidative stress (OS) was investigated in a PC12 pheochromocytoma cell line in the presence or absence of 50 ng/ml nerve growth factor (NGF). DHA-supplemented cells showed enhanced Fe(2+)-induced cell damage as evident by increased lipid peroxides formation (10-fold) and reduced neutral red (NR) dye uptake in a NGF-independent fashion. DHA caused a nearly 10-fold increase in free iron uptake in NGF-treated cells and doubled iron uptake in nondifferentiated cells. DHA-enrichment induced an elevation in the transferrin receptor protein in the nondifferentiated cells whereas NGF-treatment led to a substantial increase in the ubiquitous divalent metal ion transporter 1 (DMT-1) as detected by mRNA levels using qRT-PCR. The mechanism of action of DHA to accelerate cell death may be associated with the externalization of amino-phosphoglycerides (PG) species of which, increased ethanolamine plasmalogen levels, may be essential for cell rescue as noted in NGF-treated PC12 cells.
Collapse
Affiliation(s)
- Eldi Schonfeld
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|
27
|
Shinozaki Y, Koizumi S, Ohno Y, Nagao T, Inoue K. Extracellular ATP counteracts the ERK1/2-mediated death-promoting signaling cascades in astrocytes. Glia 2006; 54:606-18. [PMID: 16944453 DOI: 10.1002/glia.20408] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oxidative stress is the main cause of neuronal death in pathological conditions. Hydrogen peroxide (H(2)O(2)), one of the reactive oxygen species, activates many intracellular signaling cascades including src family and mitogen-activated protein kinases (MAPKs), some of which are critically involved in the induction of cellular damage. We previously showed that H(2)O(2)-induced cell death in astrocytes and adenosine 5(')-triphosphate (ATP), acting on P2Y(1) receptors, had a protective effect. Here, we examined the H(2)O(2)-induced changes in intracellular signaling cascades that promote cell death in astrocytes, showing the molecular mechanisms by which the activation of P2Y(1) receptors counteracts such signals. Although H(2)O(2) activated three MAPKs including ERK1/2, p38, and JNK, only the activation of ERK1/2 participated in the H(2)O(2)-evoked cell death. H(2)O(2) induced a sustained activation of ERK1/2 mainly in the nucleus region, which was well in accordance with the H(2)O(2)-induced cell death. H(2)O(2) also activated the src tyrosine kinase family, which was an upstream signal for ERK1/2. Activation of P2Y(1) receptors by 2methylthio-ADP (2MeSADP) inhibited the H(2)O(2)-evoked activation of src tyrosine kinase, resulting in the inhibition of the phosphorylated-ERK1/2 accumulation in the nucleus. 2MeSADP enhanced the gene expression and activity of protein tyrosine phosphatase (PTP), which was responsible for the inhibition of src tyrosine kinase. Thioredoxin reductase, another cytoprotective gene we previously showed to be upregulated by 2MeSADP, also controlled the activity of PTP. Taken together, ATP, acting on P2Y(1) receptors, upregulates the PTP expression and its activity, which counteracts the H(2)O(2)-promoted death signaling cascades including ERK1/2 and its upstream signal src tyrosine kinase in astrocytes.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Division of Pharmacology, National Institute of Health Sciences, Setagaya, Tokyo 158-8501, Japan
| | | | | | | | | |
Collapse
|
28
|
Peterson B, Knotts T, Cummings BS. Involvement of Ca2+-independent phospholipase A2 isoforms in oxidant-induced neural cell death. Neurotoxicology 2006; 28:150-60. [PMID: 17046062 DOI: 10.1016/j.neuro.2006.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/08/2006] [Accepted: 09/08/2006] [Indexed: 11/15/2022]
Abstract
This study determined the roles of Ca2+-independent PLA2 (iPLA2) in phospholipid chemistry and oxidant-induced cell death in human astrocytes. A172 cells expressed both cytosolic Group VIA (iPLA2beta) and microsomal Group VIB (iPLA2gamma) PLA2 as determined by activity assays and immunoblot analysis. Inhibition of total iPLA2 activity using racemic bromoenol lactone (BEL, 2.5 microM) decreased the expression of 14:0-16:0 phosphatidylcholine (PtdCho) 15% and increased 18:0-18:1-PtdCho expression 15%. Treatment of cells with the iPLA2gamma specific inhibitor R-BEL decreased 14:0-16:0-PtdCho 35%, 16:0-16:0-PtdCho 15% and induced a 35% increase in 18:0-18:1-PtdCho. In contrast, treatment of cells with the iPLA2beta inhibitor S-BEL did not alter any phospholipid studied. To determine the roles of iPLA2 in oxidant-induced cell death, A172 cells were exposed to hydrogen peroxide (H2O2) or tert-butylhydroperoxide (TBHP); both induced time- and concentration-dependent increases in cell death as assessed by annexin V and propidium iodide staining. Treatment of cells with racemic-BEL alone did not induce cell death. However, pretreatment with BEL prior to H2O2 (500 microM) or TBHP (200 microM) significantly increased necrosis as determined by increases in propidium iodide staining. Treatment with BEL prior to exposure to oxidants accelerated the loss of ATP levels, but not the formation of reactive oxygen species. These data support the hypothesis that iPLA2 mediates oxidant-induced neural cell death and demonstrates differential roles of iPLA2 isoforms in physiological and pathological events.
Collapse
Affiliation(s)
- Brianna Peterson
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA 30602-2352, United States
| | | | | |
Collapse
|
29
|
Yavin E. Versatile roles of docosahexaenoic acid in the prenatal brain: from pro- and anti-oxidant features to regulation of gene expression. Prostaglandins Leukot Essent Fatty Acids 2006; 75:203-11. [PMID: 16839753 DOI: 10.1016/j.plefa.2006.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Docosahexaenoic acid (DHA) is the most ubiquitous polyunsaturated fatty acid (FA) in brain tissue. It is selectively esterified to amino phospholipids (PL) and therefore it is highly prevalent at the cytofacial site of the plasma membrane where it may specifically participate in intracellular events. A highly selective DHA accumulation prior to birth is the result of maternal supply via the placenta through a bio-magnification process. Supplements of DHA via the intra-amniotic route to the fetal rat increase brain DHA levels and also confer neuroprotection to fetuses subjected to global ischemic stress. The protective effect has been attributed to an enhanced free radical scavenging capacity of DHA. Dietary deprivation of linolenic acid (LNA) during the perinatal life on the other hand, resulted in losses of DHA from cerebral PLs [M. Schiefermeier, E. Yavin, n-3 deficient and DHA-enriched diets during critical periods of the developing prenatal rat brain, J. Lipid Res. 43 (2002) 124-131]. LNA deprivation also caused changes in a number of gene markers the identification of which was attained by a labor-intensive suppression subtractive hybridization protocol using mRNA from 2-week-old postnatal brains [E. Yakubov, P. Dinerman, F. Kuperstein, S. Saban, E. Yavin, Improved representation of gene markers on microarray by PCR-select subtracted cDNA targets, Mol. Brain Res. 137 (2005) 110-118]. Most notable was a remarkable elevation of dopamine (DA) receptor (D1 and D2) genes as evaluated by quantitative RT-PCR, SDS-PAGE gel electrophoresis and immunochemical staining [F. Kuperstein, E. Yakubov, P. Dinerman, S. Gil, R. Eylam, N. Salem Jr., E. Yavin, Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 FA dietary deficiency, J. Neurochem. 95 (2005) 1550-1562]. Over-expression of DA receptors has been attributed to a compensatory mechanism resulting from impairment in DA neurotransmitter production, storage and processing. In conclusion, DHA is a versatile molecule with a wide range of actions spanning from participation in cellular oxidative processes and intracellular signaling to modulatory roles in gene expression and growth regulation.
Collapse
Affiliation(s)
- Ephraim Yavin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
van Meeteren ME, Baron W, Beermann C, Dijkstra CD, van Tol EAF. Polyunsaturated fatty acid supplementation stimulates differentiation of oligodendroglia cells. Dev Neurosci 2006; 28:196-208. [PMID: 16679766 DOI: 10.1159/000091917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 07/08/2005] [Indexed: 11/19/2022] Open
Abstract
Dietary polyunsaturated fatty acids (PUFAs) have been postulated as alternative supportive treatment for multiple sclerosis, since they may promote myelin repair. We set out to study the effect of supplementation with n-3 and n-6 PUFAs on OLN-93 oligodendroglia and rat primary oligodendrocyte differentiation in vitro. It appeared that OLN-93 cells actively incorporate and metabolise the supplemented PUFAs in their cell membrane. The effect of PUFAs on OLN-93 differentiation was further assessed by morphological and Western blot evaluation of markers of oligodendroglia differentiation: 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), zonula occludens-1 (ZO-1) and myelin-associated glycoprotein (MAG). Supplementation of the OLN-93 cells with n-3 and n-6 PUFAs increased the degree of differentiation determined by morphological analysis. Moreover, CNP protein expression was significantly increased by gamma-linolenic acid (GLA, 18:3n-6) supplementation. In accordance with the OLN-93 results, studies with rat primary oligodendrocytes, a more advanced model of cell differentiation, showed GLA supplementation to promote oligodendrocyte differentiation. Following GLA supplementation, increased numbers of proteolipid protein (PLP)-positive oligodendrocytes and increased myelin sheet formation was observed during differentiation of primary oligodendrocytes. Moreover, increased CNP, and enhanced PLP and myelin basic protein expression were found after GLA administration. These studies provide support for the dietary supplementation of specific PUFAs to support oligodendrocyte differentiation and function.
Collapse
Affiliation(s)
- M E van Meeteren
- Biomedical Research Department, Numico Research B.V., Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
van Meeteren ME, Teunissen CE, Dijkstra CD, van Tol EAF. Antioxidants and polyunsaturated fatty acids in multiple sclerosis. Eur J Clin Nutr 2006; 59:1347-61. [PMID: 16118655 DOI: 10.1038/sj.ejcn.1602255] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Oligodendrocyte damage and subsequent axonal demyelination is a hallmark of this disease. Different pathomechanisms, for example, immune-mediated inflammation, oxidative stress and excitotoxicity, are involved in the immunopathology of MS. The risk of developing MS is associated with increased dietary intake of saturated fatty acids. Polyunsaturated fatty acid (PUFA) and antioxidant deficiencies along with decreased cellular antioxidant defence mechanisms have been observed in MS patients. Furthermore, antioxidant and PUFA treatment in experimental allergic encephalomyelitis, an animal model of MS, decreased the clinical signs of disease. Low-molecular-weight antioxidants may support cellular antioxidant defences in various ways, including radical scavenging, interfering with gene transcription, protein expression, enzyme activity and by metal chelation. PUFAs may not only exert immunosuppressive actions through their incorporation in immune cells but also may affect cell function within the CNS. Both dietary antioxidants and PUFAs have the potential to diminish disease symptoms by targeting specific pathomechanisms and supporting recovery in MS.
Collapse
Affiliation(s)
- M E van Meeteren
- Department of Biomedical Research, Numico Research BV, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
32
|
Lee JS, Kim SY, Kwon CH, Kim YK. EGFR-dependent ERK activation triggers hydrogen peroxide-induced apoptosis in OK renal epithelial cells. Arch Toxicol 2005; 80:337-46. [PMID: 16341693 DOI: 10.1007/s00204-005-0052-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 11/14/2005] [Indexed: 01/21/2023]
Abstract
Oxidative stress induces activation of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase families. However, it is unclear in renal epithelial cells whether the ERK activation is involved in cell survival or cell death in H2O2-treated cells. The present study was undertaken to determine the role of the ERK activation in H2O2-induced apoptosis of renal epithelial cells using opossum kidney (OK) cells, an established proximal tubular epithelial cell line. H2O2 resulted in a time- and dose-dependent apoptosis of OK cells. H2O2 treatment caused marked sustained activation of ERK. The ERK activation was prevented by PD98059 and U0126, inhibitors of ERK1/2 upstream kinase MEK1/2. Apoptosis caused by H2O2 was prevented by U0126. Transient transfection with constitutive active MEK1 increased the H2O2-induced apoptosis, whereas transfection with dominant-negative mutants of MEK1 decreased the apoptosis. H2O2 produced hyperpolarization of mitochondrial membrane potential and activation of caspases-3. H2O2-induced ERK activation was inhibited by the Src family selective inhibitor PP2 and the epidermal growth factor receptor inhibitor AG1478. The presence of AG1478, but not PP2, prevented H2O2-induced cell death. Taken together, our findings suggest that the ERK activation mediated by epidermal growth factor receptor plays an active role in inducing H2O2-induced apoptosis of OK cells and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.
Collapse
Affiliation(s)
- Ju Suk Lee
- Department of Pediatrics, College of Medicine, Pusan National University, 602-739 Pusan, South Korea
| | | | | | | |
Collapse
|
33
|
Zhang L, Peterson BL, Cummings BS. The effect of inhibition of Ca2+-independent phospholipase A2 on chemotherapeutic-induced death and phospholipid profiles in renal cells. Biochem Pharmacol 2005; 70:1697-706. [PMID: 16226224 DOI: 10.1016/j.bcp.2005.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/14/2005] [Accepted: 09/14/2005] [Indexed: 11/22/2022]
Abstract
We demonstrate that cells derived from primary cultures of rabbit proximal tubules (RPTC), human embryonic kidney (HEK293) and human kidney carcinomas (Caki-1) express microsomal Ca(2+)-independent phospholipase A(2) (iPLA(2)gamma) and cytosolic Ca(2+)-independent phospholipase A(2) (iPLA(2)beta). Inhibition of iPLA(2) activity in these cells using the iPLA(2) inhibitor bromoenol lactone (BEL) (0-5.0microM) for 24h did not induce cell death as determined by annexin V and propidium iodide (PI) staining. However, BEL treatment prior to cisplatin (50muM) or vincristine (2microM) exposure reduced apoptosis 30-50% in all cells tested (RPTC, HEK293 and Caki-1 cells). To identify the phospholipids altered during cell death electrospray ionization-mass spectrometry and lipidomic analysis of HEK293 and Caki-1 cells was performed. Cisplatin treatment reduced 14:0-16:0 and 16:0-16:0 phosphatidylcholine (PtdCho) 50% and 35%, respectively, in both cell lines, 16:0-18:2 PtdCho in Caki-1 cells and increased 16:1-22:6 plasmenylcholine (PlsCho). BEL treatment prior to cisplatin exposure further decreased 14:0-16:0 PtdCho, 16:0-16:1 PlsCho and 16:0-18:1 PlsCho in HEK293 cells, and inhibited cisplatin-induced increases in 16:1-22:6 PlsCho in Caki-1 cells. Treatment of cells with BEL prior to cisplatin exposure also increased the levels of several arachidonic containing phospholipids including 16:0-20:4, 18:1-20:4, and 18:0-20:4 PtdCho, compared to cisplatin only treated cells. These data demonstrate that inhibition of iPLA(2) protects against chemotherapeutic-induced cell death in multiple human renal cell models, identifies specific phospholipids whose levels are altered during cell death, and demonstrates that alterations in these phospholipids correlate to the protection against cell death in the presence of iPLA(2) inhibitors.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
34
|
Brand A, Yavin E. Translocation of Ethanolamine Phosphoglyceride is Required for Initiation of Apoptotic Death in OLN-93 Oligodendroglial Cells. Neurochem Res 2005; 30:1257-67. [PMID: 16341587 DOI: 10.1007/s11064-005-8797-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2005] [Indexed: 01/21/2023]
Abstract
The possible interplay between extracellular signal-regulated protein kinase (ERK) activation and ethanolamine phosphoglycerides (PG) membrane bilayer translocation following oxidative stress (OS) (0.5 mM H2O2/0.05 mM Fe2+), was examined in oligodendroglia, OLN93, cells with altered plasma membrane PG composition. Cells supplemented with 50 microM docosahexaenoic acid (DHA, 22:6n3) to increase the number of potential double bond targets for OS in ethanolamine-PG (EPG) were compared to cells with diminished content of EPG, attained by the addition of 0.5 mM N,N-dimethylethanolamine (dEa). After 30 min OS, EPG translocation accompanied by sustained ERK activation and nuclear translocation culminating in apoptosis was found in DHA-supplemented cells in contrast to no EPG translocation, a brief ERK activation, but no nuclear translocation, and no cell death in DHA/dEa-supplemented cells. DHA/dEa-supplemented cells pretreated with the protein-tyrosine phosphatases inhibitor Na3VO4 followed by OS, although expressing a sustained ERK activation and nuclear translocation, failed to show apoptosis and lacked EPG translocation. In DHA-supplemented cells U0126, a MEK inhibitor, prevented ERK activation and EPG translocation and protected from cell death. These findings most likely indicate that ERK activation is an indispensable component for the signaling cascades leading to EPG translocation but only activation of the latter is leading to OS-induced apoptotic cell death.
Collapse
Affiliation(s)
- Annette Brand
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
35
|
Park BG, Yoo CI, Kim HT, Kwon CH, Kim YK. Role of mitogen-activated protein kinases in hydrogen peroxide-induced cell death in osteoblastic cells. Toxicology 2005; 215:115-25. [PMID: 16125295 DOI: 10.1016/j.tox.2005.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/05/2005] [Accepted: 07/05/2005] [Indexed: 12/17/2022]
Abstract
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. However, the underlying mechanism by which oxidants induce cell death remains unclear. The present study was undertaken to determine the role of the mitogen-activated protein kinase subfamilies in hydrogen peroxide (H2O2)-induced cell death of osteoblastic cells. H2O2 resulted in a time- and dose-dependent cell death, which was, in part, attributed to apoptosis. H2O2-induced cell death was prevented by iron chelator, hydroxyl radical scavengers. But H2O2-induced cell death was not affected by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase activation. H2O2 treatment caused a transient activation of extracellular signal-regulated kinase (ERK), followed by sustained activation. Cell death induced by H2O2 was prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2. But H2O2 induced a transient activation of p38 and c-Jun N-terminal kinase (JNK) without sustained activation and inhibitors of these kinses were not effective in preventing the cell death. H2O2 increased Bax expression and produced hyperpolarization of mitochondrial membrane potential and its effect was prevented by PD98059. The ERK activation and cell death induced by H2O2 were not dependent on the phosphorylation of epidermal growth factor receptor. Taken together, these findings suggest that the ERK signaling pathway plays an active role in mediating H2O2-induced apoptosis of osteoblasts and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.
Collapse
Affiliation(s)
- Byung Guk Park
- Department of Orthopedic Surgery, College of Medicine, Pusan National University, Pusan 602-739, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Lee WC, Choi CH, Cha SH, Oh HL, Kim- YK. Role of ERK in Hydrogen Peroxide-Induced Cell Death of Human Glioma Cells. Neurochem Res 2005; 30:263-70. [PMID: 15895830 DOI: 10.1007/s11064-005-2449-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. Activation of extracellular signal-regulated kinase (ERK) in oxidative stress remains controversial. In some cellular systems, the ERK activation is associated with protection against oxidative stress, while in other system, the ERK activation is involved in apoptotic cell death. The present study was undertaken to examine the role of ERK activation in H2O2-induced cell death of human glioma (A172) cells. H2O2 resulted in a time- and dose-dependent cell death, which was largely attributed to apoptosis. H2O2 treatment caused marked sustained activation of ERK. The ERK activation and cell death induced by H2O2 was prevented by catalase, the hydrogen peroxide scavenger, and U0126, an inhibitor of ERK upstream kinase MEK1/2. Transient transfection with constitutive active MEK1, an upstream activator of ERK1/2, increased H2O2-induced cell death, whereas transfection with dominant-negative mutants of MEK1 decreased the cell death. The ERK activation and cell death caused by H2O2 was inhibited by antioxidants (N-acetylcysteine and trolox), Ras inhibitor, and suramin. H2O2 produced depolarization of mitochondrial membrane potential and its effect was prevented by catalase and U0126. Taken together, these findings suggest that growth factor receptor/Ras/MEK/ERK signaling pathway plays an active role in mediating H2O2-induced apoptosis of human glioma cells and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.
Collapse
Affiliation(s)
- Won Chang Lee
- Department of Neurosurgery, College of Medicine, Pusan National University, Pusan 602-739, Korea
| | | | | | | | | |
Collapse
|
37
|
Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 2004; 37:768-84. [PMID: 15304253 DOI: 10.1016/j.freeradbiomed.2004.06.008] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/17/2004] [Accepted: 06/04/2004] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are constantly generated in aerobic organisms during normal metabolism and in response to both internal and external stimuli. Imbalances in the production and removal of ROS have been hypothesized to play a causative role in numerous disease pathologies such as cancer, ischemia/reperfusion injury, and degenerative diseases such as photoaging, atherosclerosis, arthritis, and neurodegeneration. A feature often associated with these diseases is a malfunctioning of the connective tissue remodeling process due to increased activity of extracellular matrix-degrading metalloproteinases (MMPs). This review summarizes the evidence that implicates ROS as key regulators of MMP production and the importance of these interactions in disease pathologies.
Collapse
Affiliation(s)
- Kristin K Nelson
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | |
Collapse
|
38
|
Mronga T, Stahnke T, Goldbaum O, Richter-Landsberg C. Mitochondrial pathway is involved in hydrogen-peroxide-induced apoptotic cell death of oligodendrocytes. Glia 2004; 46:446-55. [PMID: 15095374 DOI: 10.1002/glia.20022] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oligodendrocytes, the myelin-forming cells of the CNS, are specifically sensitive to oxidative stress and respond by the onset of programmed cell death (PCD). To further unravel the molecular events underlying their enhanced susceptibility, we have investigated whether mitochondrial damage occurs during oxidative stress-induced PCD in cultured rat brain oligodendrocytes. Mitochondria are considered as a central control point of apoptosis, and mitochondrial dysfunction has been linked to neurodegenerative disease. Upon a number of stimuli through the release of cytochrome c, they coordinate caspase activation, causing morphological and biochemical changes associated with PCD. Oxidative stress was exerted by the application of hydrogen peroxide. The data show that hydrogen peroxide-induced apoptosis in oligodendrocytes involves mitochondrial damage and cytochrome c release and is accompanied by the activation of the death-related caspases 3 and 9. Concomitantly, the activation and nuclear translocation of extracellular signal regulated kinases ERK1,2 are observed, which have been implicated to participate in the regulation of cell death and survival. DNA fragmentation could not be attenuated by the ERK1,2 inhibitor PD 98059, indicating that the ERK1,2- pathway in oligodendrocytes may be involved in the initial survival response after exposure to stressful stimuli.
Collapse
Affiliation(s)
- Thomas Mronga
- Department of Biology, Molecular Neurobiology, University of Oldenburg, Oldenburg, Germany
| | | | | | | |
Collapse
|
39
|
Baud O, Greene AE, Li J, Wang H, Volpe JJ, Rosenberg PA. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 2004; 24:1531-40. [PMID: 14973232 PMCID: PMC6730475 DOI: 10.1523/jneurosci.3989-03.2004] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative mechanisms of injury are important in many neurological disorders, including hypoxic-ischemic brain damage. Cerebral palsy after preterm birth is hypothesized to be caused by hypoxic-ischemic injury of developing oligodendrocytes (OLs). Here we examined the developmental sensitivity of OLs to exogenous hydrogen peroxide (H2O2) with stage-specific rat oligodendrocyte cultures. We found that H2O2 itself or that generated by glucose oxidase was more toxic to developing than to mature OLs. Mature OLs were able to degrade H2O2 faster than developing OLs, suggesting that higher antioxidant enzyme activity might be the basis for their resistance. Catalase expression and activity were relatively constant during oligodendrocyte maturation, whereas glutathione peroxidase (GPx) was upregulated with a twofold to threefold increase in its expression and activity. Thus, it appeared that the developmental change in resistance to H2O2 was caused by modulation of GPx but not by catalase expression. To test the relative roles of catalase and GPx in the setting of oxidative stress, we measured enzyme activity in cells exposed to H2O2 and found that H2O2 induced a decrease in catalase activity in developing but not in mature OLs. Inhibition of GPx by mercaptosuccinate led to an increase in the vulnerability of mature OLs to H2O2 as well as a reduction in catalase activity. Finally, H2O2-dependent inactivation of catalase in developing OLs was prevented by the GPx mimic ebselen. These data provide evidence for a key role for GPx-catalase cooperativity in the resistance of mature OLs to H2O2-induced cell death.
Collapse
Affiliation(s)
- Olivier Baud
- Department of Neurology, Division of Neuroscience, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
40
|
Lee YJ, Cho HN, Jeoung DI, Soh JW, Cho CK, Bae S, Chung HY, Lee SJ, Lee YS. HSP25 overexpression attenuates oxidative stress-induced apoptosis: roles of ERK1/2 signaling and manganese superoxide dismutase. Free Radic Biol Med 2004; 36:429-44. [PMID: 14975446 DOI: 10.1016/j.freeradbiomed.2003.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 11/05/2003] [Accepted: 11/07/2003] [Indexed: 11/24/2022]
Abstract
HSP25 has been shown to induce resistance to radiation and oxidative stress; however, its exact mechanisms remain unclear. In the present study, a high concentration of H2O2 was found to induce DNA fragmentation in L929 mouse fibroblast cells, and HSP25 overexpression attenuated this phenomenon. To elucidate the mechanisms of H2O2-mediated cell death, ERK1/2, p38 MAPK, and JNK1/2 phosphorylation in the cells after treatment with H2O2 were examined. ERK1/2 and JNK1/2 were activated by H2O2; ERK1/2 activation was inhibited in HSP25-overexpressed cells, while JNK1/2 was indifferent. Inhibition of ERK1/2 activation by treatment of the cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced cell death; similarly treated HSP25-overexpressed cells were not at all affected. Moreover, inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 transfection did not affect H2O2-mediated cell death in control cells. Dominant-negative Ras or Raf transfection inhibited H2O2-mediated ERK1/2 activation and cell death in control cells. On the contrary, HSP25-overexpressed cells did not show any differences. Upstream pathways of H2O2-mediated ERK1/2 activation and cell death involved both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta, while in HSP25-overexpressed cells these kinases did not respond to H2O2 treatment. Since HSP25 overexpression reduced reactive oxygen species (ROS), increased manganese superoxide dismutase (MnSOD) gene expression, and increased enzyme activity, involvement of MnSOD in HSP25-mediated attenuation of H2O2-mediated ERK1/2 activation and cell death was examined. Blockage of MnSOD with antisense oligonucleotides prevented DNA fragmentation and returned the ERK1/2 activation to the control level. Indeed, when MnSOD was overexpressed in L929 cells, similar to in HSP25-overexpressed cells, DNA fragmentation and ERK1/2 activation were reduced. From the above results, we suggest for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated downregulation of ERK1/2.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Division of Molecular Life Science, College of Natural Science, Ewha Woman's University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee YJ, Cho HN, Soh JW, Jhon GJ, Cho CK, Chung HY, Bae S, Lee SJ, Lee YS. Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation. Exp Cell Res 2003; 291:251-66. [PMID: 14597424 DOI: 10.1016/s0014-4827(03)00391-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress is known to induce apoptosis in a wide variety of cell types, apparently by modulating intracellular signaling pathways. High concentrations of H2O2 have been found to induce apoptosis in L929 mouse fibroblast cells. To elucidate the mechanisms of H2O2-mediated apoptosis, ERK1/2, p38-MAPK, and JNK1/2 phosphorylation was examined, and ERK1/2 and JNK1/2 were found to be activated by H2O2. Inhibition of ERK1/2 activation by treatment of L929 cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced apoptosis, while inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 or MKK4 or MKK7 transfection did not affect H2O2-mediated apoptosis. H2O2-mediated ERK1/2 activation was not only Ras-Raf dependent, but also both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta dependent. H2O2-mediated PKCdelta-dependent and tyrosine kinase-dependent ERK1/2 activations were independent from each other. Based on the above results, we suggest for the first time that oxidative damage-induced apoptosis is mediated by ERK1/2 phosphorylation which is not only Ras-Raf dependent, but also both tyrosine kinase and PKCdelta dependent.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Division of Molecular Life Sciences, Ewha Woman's University, College of Natural Science, Seoul 120-750, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Scott GS, Virág L, Szabó C, Hooper DC. Peroxynitrite-induced oligodendrocyte toxicity is not dependent on poly(ADP-ribose) polymerase activation. Glia 2003; 41:105-16. [PMID: 12509801 DOI: 10.1002/glia.10137] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oligodendrocyte loss is a characteristic feature of several CNS disorders, including multiple sclerosis (MS) and spinal cord injury. However, the mechanisms responsible for oligodendrocyte destruction remain undefined. As recent studies have implicated peroxynitrite in the pathogenesis of both spinal cord injury and MS, we have examined whether peroxynitrite may mediate at least some of the oligodendrocyte damage and demyelination observed in these conditions. Primary rat oligodendrocytes were exposed to authentic peroxynitrite in vitro and assessed for cytotoxicity. Mitochondrial function, measured by the reduction of MTT to formazan, and mitochondrial membrane potential were used as indicators of cell viability. Cell death was quantitated by measuring either the release of lactate dehydrogenase from, or the uptake of propidium iodide into, damaged and dying cells. Peroxynitrite dose-dependently reduced the viability of primary oligodendrocytes and induced cell death. Furthermore, peroxynitrite significantly increased DNA strand breakage and the activity of poly(ADP-ribose) polymerase (PARP) in oligodendrocyte cultures. To identify whether PARP activation plays a role in peroxynitrite-induced oligodendrocyte toxicity, we examined the effects of the PARP inhibitors 3-aminobenzamide (3AB) and 5-iodo-6-amino-1,2-benzopyrone (INH(2)BP) on mitochondrial function and cell death in oligodendrocytes. The presence of 3AB and INH(2)BP did not protect oligodendrocytes from peroxynitrite-induced cytotoxicity. However, both compounds significantly reduced PARP activity in these cells. Primary oligodendrocytes generated from PARP-deficient mice were also highly susceptible to peroxynitrite-induced cell death. Therefore, our results show that peroxynitrite exerts cytotoxic effects on oligodendrocytes in vitro independently of PARP activation.
Collapse
Affiliation(s)
- Gwen S Scott
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
43
|
Inder T, Mocatta T, Darlow B, Spencer C, Volpe JJ, Winterbourn C. Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr Res 2002; 52:213-8. [PMID: 12149498 DOI: 10.1203/00006450-200208000-00013] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Free radical mediated cellular injury has been hypothesized to play a key role in the pathogenesis of white matter injury in the premature infant, although direct evidence is lacking. Between April 1999 and May 2001, 22 very low birthweight infants, 30 term infants, and 17 adults had samples of cerebrospinal fluid (CSF) collected for clinical indications. Only CSF samples without any evidence of meningeal inflammation were analyzed for the levels of the lipid peroxidation products, 8-isoprostane and malondialdehyde (MDA), and protein carbonyls as a measure of protein oxidation. Chlorotyrosine was monitored as a measure of neutrophil oxidative activity. In the premature infants with subsequent evidence of white matter injury on magnetic resonance imaging at term, there was a significant elevation in the CSF level of protein carbonyls in comparison with the level in healthy premature infants, term infants, and adult controls (all p < 0.001). A significant difference in the levels of the lipid peroxidation products, 8-isoprostane and MDA, was apparent between premature infants with white matter injury and adult controls (isoprostanes p = 0.02, MDA p = 0.014). There was a trend toward higher levels of 8-isoprostane in the premature infants with white matter injury in comparison with those without white matter injury (p = 0.08), with 5 of the 14 infants with white matter injury having levels that were more than 10-fold higher than the top of the adult range. There was no significant difference in the level of chlorotyrosines among any of the groups. These preliminary data provide evidence of an association of elevated oxidative products during the evolution of white matter injury in the human premature infant.
Collapse
Affiliation(s)
- Terrie Inder
- The Murdoch Children's Research Institute and Howard Florey Institute and Royal Women's and Royal Children's Hospital, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002; 192:1-15. [PMID: 12115731 DOI: 10.1002/jcp.10119] [Citation(s) in RCA: 1680] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS), whether produced endogenously as a consequence of normal cell functions or derived from external sources, pose a constant threat to cells living in an aerobic environment as they can result in severe damage to DNA, protein, and lipids. The importance of oxidative damage to the pathogenesis of many diseases as well as to degenerative processes of aging has becoming increasingly apparent over the past few years. Cells contain a number of antioxidant defenses to minimize fluctuations in ROS, but ROS generation often exceeds the cell's antioxidant capacity, resulting in a condition termed oxidative stress. Host survival depends upon the ability of cells and tissues to adapt to or resist the stress, and repair or remove damaged molecules or cells. Numerous stress response mechanisms have evolved for these purposes, and they are rapidly activated in response to oxidative insults. Some of the pathways are preferentially linked to enhanced survival, while others are more frequently associated with cell death. Still others have been implicated in both extremes depending on the particular circumstances. In this review, we discuss the various signaling pathways known to be activated in response to oxidative stress in mammalian cells, the mechanisms leading to their activation, and their roles in influencing cell survival. These pathways constitute important avenues for therapeutic interventions aimed at limiting oxidative damage or attenuating its sequelae.
Collapse
Affiliation(s)
- Jennifer L Martindale
- Cell Stress and Aging Section, Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, Maryland, USA
| | | |
Collapse
|
45
|
Yung Y, Yao Z, Aebersold DM, Hanoch T, Seger R. Altered regulation of ERK1b by MEK1 and PTP-SL and modified Elk1 phosphorylation by ERK1b are caused by abrogation of the regulatory C-terminal sequence of ERKs. J Biol Chem 2001; 276:35280-9. [PMID: 11463794 DOI: 10.1074/jbc.m105995200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERK1b is an alternatively spliced form of ERK1, containing a 26-amino acid insertion between residues 340 and 341 of ERK1. Although under most circumstances the kinetics of ERK1b activation are similar to that of ERK1 and ERK2, we have previously found several conditions under which the activation of ERK1b by extracellular stimuli differs from that of other ERKs. We studied the molecular mechanisms that cause this differential regulation of ERK1b and found that ERK1b is altered in its ability to interact with MEK1 and this influenced its subcellular localization but not its kinetics of activation. ERK1b had a decreased ability to phosphorylate Elk1, but this did not change much the transcriptional activity of the latter. Importantly, the interaction of ERK1b with PTP-SL, which can act as a MAPK phosphatase, shortly after mitogenic stimulation, was significantly affected as well. Using mutants of ERK1b we found that the differential interaction of ERK1b with the three effectors is caused by the site of insertion that abrogates the cytosolic retention sequence/common docking motif of ERKs, and is not dependent on the actual sequence of the insert. Prolonged epidermal growth factor stimulation of Rat1 cells resulted in a differential inactivation and not activation of ERK1b as compared with ERK1 and ERK2. The reduced sensitivity to phosphatases without major differences in the kinetics of activation or activation of substrates, suggests that ERK1b plays a role in the transmission of extracellular signals under conditions of persistent stimulation, where ERK1b and MAPK phosphatases are induced, and the activity of ERK1 and ERK2 is suppressed.
Collapse
Affiliation(s)
- Y Yung
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
46
|
Brand A, Yavin E. Early ethanolamine phospholipid translocation marks stress-induced apoptotic cell death in oligodendroglial cells. J Neurochem 2001; 78:1208-18. [PMID: 11579130 DOI: 10.1046/j.1471-4159.2001.00496.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The consequences of H(2)O(2)/Fe(2+)-induced oxidative stress on translocation of ethanolamine phosphoglyceride (EPG) and serine phosphoglyceride (SPG) were studied in an oligodendroglia-like cell line (OLN 93) following 3 days of supplementation with 0.1 mM docosahexaenoic acid (DHA) and a series of polar head group precursors, including N-monomethyl- and N,N-dimethylethanolamine at millimolar concentrations. Added DHA was predominantly esterified in EPG species and those cells enriched in DHA showed enhanced sensitivity to oxidative stress and eventually died by apoptosis. Co-supplements with ethanolamine and DHA resulted in a rapid, but transient, EPG translocation with a maximum at 30 min following stress, as characterized by a trinitrobenzenesulfonic acid reagent. There was no significant translocation of SPG as evidenced by annexin V binding. Unlike SPG, which is usually irreversibly translocated to subserve as a tag for phagocytosis, EPG acted as a signaling molecule with biphasic kinetic characteristics. N-Monomethyl- and N,N-dimethylethanolamine supplements reduced EPG synthesis, prevented its externalization and rescued cells from apoptotic death. Following stress, the fatty acid profile of the externalized EPG showed marked losses in polyunsaturated fatty acids and aldehydes compared with the remaining intracellular EPG. Prevention of EPG species selective translocation to the outer membrane leaflet by altering phospholipid asymmetry may be important in the mechanism of rescue from cell death.
Collapse
Affiliation(s)
- A Brand
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|