1
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Kummer KK, Zeidler M, Kalpachidou T, Kress M. Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine 2021; 144:155582. [PMID: 34058569 DOI: 10.1016/j.cyto.2021.155582] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The pleiotropic cytokine interleukin-6 (IL-6) is emerging as a molecule with both beneficial and destructive potentials. It can exert opposing actions triggering either neuron survival after injury or causing neurodegeneration and cell death in neurodegenerative or neuropathic disorders. Importantly, neurons respond differently to IL-6 and this critically depends on their environment and whether they are located in the peripheral or the central nervous system. In addition to its hub regulator role in inflammation, IL-6 is recently emerging as an important regulator of neuron function in health and disease, offering exciting possibilities for more mechanistic insight into the pathogenesis of mental, neurodegenerative and pain disorders and for developing novel therapies for diseases with neuroimmune and neurogenic pathogenic components.
Collapse
Affiliation(s)
- Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Austria
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Austria.
| |
Collapse
|
3
|
Bernal L, Cisneros E, Roza C. Activation of the regeneration-associated gene STAT3 and functional changes in intact nociceptors after peripheral nerve damage in mice. Eur J Pain 2021; 25:886-901. [PMID: 33345380 DOI: 10.1002/ejp.1718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the context of neuropathic pain, the contribution of regeneration to the development of positive symptoms is not completely understood. Several efforts have been done to described changes in axotomized neurons, however, there is scarce data on changes occurring in intact neurons, despite experimental evidence of functional changes. To address this issue, we analysed by immunohistochemistry the presence of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), an accepted marker of regeneration, within DRGs where axotomized neurons were retrogradely labelled following peripheral nerve injury. Likewise, we have characterized abnormal electrophysiological properties in intact fibres after partial nerve injury. METHODS/RESULTS We showed that induction of pSTAT3 in sensory neurons was similar after partial or total transection of the sciatic nerve and to the same extent within axotomized and non-axotomized neurons. We also examined pSTAT3 presence on non-peptidergic and peptidergic nociceptors. Whereas the percentage of neurons marked by IB4 decrease after injury, the proportion of CGRP neurons did not change, but its expression switched from small- to large-diameter neurons. Besides, the percentage of CGRP+ neurons expressing pSTAT3 increased significantly 2.5-folds after axotomy, preferentially in neurons with large diameters. Electrophysiological recordings showed that after nerve damage, most of the neurons with ectopic spontaneous activity (39/46) were non-axotomized C-fibres with functional receptive fields in the skin far beyond the site of damage. CONCLUSIONS Neuronal regeneration after nerve injury, likely triggered from the site of injury, may explain the abnormal functional properties gained by intact neurons, reinforcing their role in neuropathic pain. SIGNIFICANCE Positive symptoms in patients with peripheral neuropathies correlate to abnormal functioning of different subpopulations of primary afferents. Peripheral nerve damage triggers regenerating programs in the cell bodies of axotomized but also in non-axotomized nociceptors which is in turn, develop abnormal spontaneous and evoked discharges. Therefore, intact nociceptors have a significant role in the development of neuropathic pain due to their hyperexcitable peripheral terminals. Therapeutical targets should focus on inhibiting peripheral hyperexcitability in an attempt to limit peripheral and central sensitization.
Collapse
Affiliation(s)
- Laura Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| | - Elsa Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain.,Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain.,Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
4
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
5
|
|
6
|
Leukemia Inhibitory Factor Receptor Is Involved in Apoptosis in Rat Astrocytes Exposed to Oxygen-Glucose Deprivation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1613820. [PMID: 30937308 PMCID: PMC6415309 DOI: 10.1155/2019/1613820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Leukemia inhibitory factor (LIF) and leukemia inhibitory factor receptor (Lifr) protect CNS cells, specifically neurons and myelin-sheath oligodendrocytes, in conditions of oxygen-glucose deprivation (OGD). In the case of astrocyte apoptosis resulting from reperfusion injury following hypoxia, the function of the Lifr remains to be fully elucidated. This study established models of in vivo ischemia/reperfusion (I/R) using an in vitro model of OGD to investigate the direct impact of silencing the Lifr on astrocyte apoptosis. Astrocytes harvested from newborn Wistar rats were exposed to OGD. Cell viability and apoptosis levels were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and annexin V/propidium iodide (PI) staining assays, respectively. Apoptosis was further investigated by the TdT-mediated dUTP nick-end labelling (TUNEL) assay. A standard western blotting protocol was applied to determine levels of the protein markers Bcl2, Bax, p-Akt/Akt, p-Stat3/Stat3, and p-Erk/Erk. The cell viability assay (MTT) showed that astrocyte viability decreased in response to OGD. Furthermore, blocking RNA to silence the Lifr further reduces astrocyte viability and increases levels of apoptosis as detected by annexin V/PI double staining. Likewise, western blotting after Lifr silencing demonstrated increased levels of the apoptosis-related proteins Bax and p-Erk/Erk and correspondingly lower levels of Bcl2, p-Akt/Akt, and p-Stat/Stat3. The data gathered in these analyses indicate that the Lifr plays a pivotal role in the astrocyte apoptosis induced by hypoxic/low-glucose environments. Further investigation of the relationship between apoptosis and the Lifr may provide a potential therapeutic target for the treatment of neurological injuries.
Collapse
|
7
|
Kaval Oğuz E, Öztürk G. An In Vitro Model for Conditioning Lesion Effect. Cell Mol Neurobiol 2019; 39:61-71. [PMID: 30415355 DOI: 10.1007/s10571-018-0633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/03/2018] [Indexed: 11/24/2022]
Abstract
Axons of a peripheral nerve grow faster after an axotomy if it attains a prior injury a few days earlier. This is called conditioning lesion effect (CLE) and very much valued since it may provide new insights into neuron biology and axonal regeneration. There are established in vivo experimental paradigms to study CLE, however, there is a need to have an in vitro conditioning technique where CLE occurs in a maximally controlled environment. Mouse primary sensory neurons were isolated from lumbar 4-5 dorsal root ganglia and incubated at 37 °C on a silicon-coated watch glass that prevents cell attachment. After this conditioning period they were transferred to laminin coated culture dishes. Similar cultures were set up with freshly isolated neurons from control animals and from the animals that received a sciatic nerve cut 3 days earlier. All preparations were placed on a live cell imaging microscopy providing physiological conditions and photographed for 48 h. Axonal regeneration and neuronal survival was assessed. During the conditioning incubation period neurons remained in suspended aggregates and did not grow axons. The regeneration rate of the in vitro conditioned neurons was much higher than the in vivo conditioned and control preparations during the first day of normal incubation. However, higher regeneration rates were compromised by progressive substantial neuronal death in both types of conditioned cultures but not in the control preparations. By using neutralizing antibodies, we demonstrated that activity of endogenous leukemia inhibitory factor is essential for induction of CLE in this model.
Collapse
Affiliation(s)
| | - Gürkan Öztürk
- Physiology Department, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
- Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
8
|
Davis SM, Collier LA, Goodwin S, Lukins DE, Powell DK, Pennypacker KR. Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats. Brain Res 2018; 1707:62-73. [PMID: 30445025 DOI: 10.1016/j.brainres.2018.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/19/2023]
Abstract
Preclinical studies using rodent models of stroke have had difficulty in translating their results to human patients. One possible factor behind this inability is the lack of studies utilizing aged rodents of both sexes. Previously, this lab showed that leukemia inhibitory factor (LIF) promoted recovery after stroke through antioxidant enzyme upregulation. This study examined whether LIF promotes neuroprotection in aged rats of both sexes. LIF did not reduce tissue damage in aged animals, but LIF-treated female rats showed partial motor skill recovery. The LIF receptor (LIFR) showed membrane localization in young male and aged rats of both sexes after stroke. Although LIF increased neuronal LIFR expression in vitro, it did not increase LIFR in the aged brain. Levels of LIFR protein in brain tissue were significantly downregulated between young males and aged males/females at 72 h after stroke. These results demonstrated that low LIFR expression reduces the neuroprotective efficacy of LIF in aged rodents of both sexes. Furthermore, the ability of LIF to promote motor improvement is dependent upon sex in aged rodents.
Collapse
Affiliation(s)
- Stephanie M Davis
- Department of Neurology, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, United States.
| | - Lisa A Collier
- Department of Neurology, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, United States.
| | - Sarah Goodwin
- Department of Neurology, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, United States.
| | - Douglas E Lukins
- Department of Radiology, University of Kentucky, 800 Rose St., Lexington, KY 40536, United States.
| | - David K Powell
- Spinal Cord and Brain Injury Research Center, 741 S. Limestone, Lexington, KY 40536, United States.
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, United States; Department of Neuroscience, University of Kentucky, 800 Rose St., Lexington, KY 40536, United States.
| |
Collapse
|
9
|
Davis SM, Pennypacker KR. The role of the leukemia inhibitory factor receptor in neuroprotective signaling. Pharmacol Ther 2017; 183:50-57. [PMID: 28827150 DOI: 10.1016/j.pharmthera.2017.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Several neurotropic cytokines relay their signaling through the leukemia inhibitory factor receptor. This 190kDa subunit couples with the 130kDa gp130 subunit to transduce intracellular signaling in neurons and oligodendrocytes that leads to expression of genes associated with neurosurvival. Moreover, activation of this receptor alters the phenotype of immune cells to an anti-inflammatory one. Although cytokines that activate the leukemia inhibitory factor receptor have been studied in the context of neurodegenerative disease, therapeutic targeting of the specific receptor subunit has been understudied in by comparison. This review examines the role of this receptor in the CNS and immune system, and its application in the treatment in stroke and other brain pathologies.
Collapse
Affiliation(s)
- Stephanie M Davis
- Center for Advanced Translational Stroke Science, Departments of Neurology and Neuroscience, University of Kentucky, Lexington, KY 40536, United States
| | - Keith R Pennypacker
- Center for Advanced Translational Stroke Science, Departments of Neurology and Neuroscience, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
10
|
Niemi JP, Filous AR, DeFrancesco A, Lindborg JA, Malhotra NA, Wilson GN, Zhou B, Crish SD, Zigmond RE. Injury-induced gp130 cytokine signaling in peripheral ganglia is reduced in diabetes mellitus. Exp Neurol 2017. [PMID: 28645526 DOI: 10.1016/j.expneurol.2017.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neuropathy is a major diabetic complication. While the mechanism of this neuropathy is not well understood, it is believed to result in part from deficient nerve regeneration. Work from our laboratory established that gp130 family of cytokines are induced in animals after axonal injury and are involved in the induction of regeneration-associated genes (RAGs) and in the conditioning lesion response. Here, we examine whether a reduction of cytokine signaling occurs in diabetes. Streptozotocin (STZ) was used to destroy pancreatic β cells, leading to chronic hyperglycemia. Mice were injected with either low doses of STZ (5×60mg/kg) or a single high dose (1×200mg/kg) and examined after three or one month, respectively. Both low and high dose STZ treatment resulted in sustained hyperglycemia and functional deficits associated with the presence of both sensory and autonomic neuropathy. Diabetic mice displayed significantly reduced intraepidermal nerve fiber density and sudomotor function. Furthermore, low and high dose diabetic mice showed significantly reduced tactile touch sensation measured with Von Frey monofilaments. To look at the regenerative and injury-induced responses in diabetic mice, neurons in both superior cervical ganglia (SCG) and the 4th and 5th lumbar dorsal root ganglia (DRG) were unilaterally axotomized. Both high and low dose diabetic mice displayed significantly less axonal regeneration in the sciatic nerve, when measured in vivo, 48h after crush injury. Significantly reduced induction of two gp130 cytokines, leukemia inhibitory factor and interleukin-6, occurred in diabetic animals in SCG 6h after injury compared to controls. Injury-induced expression of interleukin-6 was also found to be significantly reduced in the DRG at 6h after injury in low and high dose diabetic mice. These effects were accompanied by reduced phosphorylation of signal transducer and activator of transcription 3 (STAT3), a downstream effector of the gp130 signaling pathway. We also found decreased induction of several gp130-dependent RAGs, including galanin and vasoactive intestinal peptide. Together, these data suggest a novel mechanism for the decreased response of diabetic sympathetic and sensory neurons to injury.
Collapse
Affiliation(s)
- Jon P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Angela R Filous
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alicia DeFrancesco
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jane A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nisha A Malhotra
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gina N Wilson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Bowen Zhou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Bas DB, Su J, Wigerblad G, Svensson CI. Pain in rheumatoid arthritis: models and mechanisms. Pain Manag 2016; 6:265-84. [PMID: 27086843 DOI: 10.2217/pmt.16.4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pain is one of the most challenging symptoms for patients with rheumatoid arthritis (RA). RA-related pain is frequently considered to be solely a consequence of inflammation in the joints; however, recent studies show that multiple mechanisms are involved. Indeed, RA pain may start even before the disease manifests, and frequently does not correlate with the degree of inflammation or pharmacological management. In this aspect, animal studies have the potential to provide new insights into the pathology that initiate and maintain pain in RA. The focus of this review is to describe the most commonly used animal models for studies of RA pathology, which have also been utilized in pain research, and to summarize findings providing potential clues to the mechanisms involved in the regulation of RA-induced pain.
Collapse
Affiliation(s)
- Duygu B Bas
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Jie Su
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Gustaf Wigerblad
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Camilla I Svensson
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
12
|
Leukemia Inhibitory Factor Protects Neurons from Ischemic Damage via Upregulation of Superoxide Dismutase 3. Mol Neurobiol 2016; 54:608-622. [PMID: 26746670 PMCID: PMC5026633 DOI: 10.1007/s12035-015-9587-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
Abstract
Leukemia inhibitory factor (LIF) has been shown to protect oligodendrocytes from ischemia by upregulating endogenous antioxidants. The goal of this study was to determine whether LIF protects neurons during stroke by upregulating superoxide dismutase 3 (SOD3). Animals were administered phosphate-buffered saline (PBS) or 125 μg/kg LIF at 6, 24, and 48 h after middle cerebral artery occlusion or sham surgery. Neurons were isolated from rat pups on embryonic day 18 and used between 7 and 15 days in culture. Cells were treated with LIF and/or 10 μM Akt inhibitor IV with PBS and 0.1 % DMSO acting as vehicle controls. Neurons transfected with scrambled or SOD3 small interfering RNA (siRNA) were subjected to 24-h ischemia after PBS or LIF treatment. LIF significantly increased superoxide dismutase activity and SOD3 expression in ipsilateral brain tissue compared to PBS. Following 24-h ischemia, LIF reduced cell death and increased SOD3 messenger RNA (mRNA) in vitro compared to PBS. Adding Akt inhibitor IV with LIF counteracted the decrease in cell death. Partially silencing the expression of SOD3 using siRNA prior to LIF treatment counteracted the protective effect of LIF-alone PBS treatment. These results indicate that LIF protects neurons in vivo and in vitro via upregulation of SOD3.
Collapse
|
13
|
Kong EH, Ma SY, Jeong JY, Kim KH. Effects of L-ascorbic acid on the production of pro-inflammatory and anti-inflammatory cytokines in C57BL/6 mouse splenocytes. KOSIN MEDICAL JOURNAL 2015. [DOI: 10.7180/kmj.2015.30.1.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Eun Hee Kong
- Department of Family Medicine, Kosin University College of Medicine, Busan, Korea
| | - Sun Young Ma
- Department of Radiation oncology, Kosin University College of Medicine, Busan, Korea
| | - Jee Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, Korea
| | - Kwang Hyuk Kim
- Department of Microbiology, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
14
|
Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. J Neurosci 2014; 34:13222-33. [PMID: 25253866 DOI: 10.1523/jneurosci.1209-13.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.
Collapse
|
15
|
Langeslag M, Malsch P, Welling A, Kress M. Reduced excitability of gp130-deficient nociceptors is associated with increased voltage-gated potassium currents and Kcna4 channel upregulation. Pflugers Arch 2014; 466:2153-65. [DOI: 10.1007/s00424-014-1443-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/18/2013] [Accepted: 01/04/2014] [Indexed: 12/20/2022]
|
16
|
Alvarez P, Green PG, Levine JD. Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biol Psychiatry 2013; 74:688-95. [PMID: 23706525 PMCID: PMC3760993 DOI: 10.1016/j.biopsych.2013.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Early-life stress and exposure to stressful stimuli play a major role in the development of chronic widespread pain in adults. However, how they interact in chronic pain syndromes remains unclear. METHODS Dams and neonatal litters were submitted to a restriction of nesting material (neonatal limited bedding [NLB]) for 1 week. As adults, these rats were exposed to a painless sound stress protocol. The involvement of sympathoadrenal catecholamines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) in nociception was evaluated through behavioral and enzyme-linked immunosorbent assays, surgical interventions, and intrathecal antisense treatments. RESULTS Adult NLB rats exhibited mild muscle hyperalgesia, which was markedly aggravated by sound stress (peaking 15 days after exposure). Adrenal medullectomy did not modify hyperalgesia in NLB rats but prevented its aggravation by sound stress. Sustained administration of epinephrine to NLB rats mimicked sound stress effect. Intrathecal treatment with antisense directed to IL-6 receptor subunit gp130 (gp130), but not to tumor necrosis factor receptor type 1 (TNFR1), inhibited hyperalgesia in NLB rats. However, antisense against either gp130 or TNFR1 inhibited sound stress-induced enhancement of hyperalgesia. Compared with control rats, NLB rats exhibit increased plasma levels of IL-6 but decreased levels of TNFα, whereas sound stress increases IL-6 plasma levels in control rats but not in NLB rats. CONCLUSIONS Early-life stress induces a persistent elevation of IL-6, hyperalgesia, and susceptibility to chronic muscle pain, which is unveiled by exposure to stress in adults. This probably depends on an interaction between adrenal catecholamines and proinflammatory cytokines acting at muscle nociceptor level.
Collapse
Affiliation(s)
- Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California San Francisco,Department of Division of Neuroscience, University of California San Francisco,Corresponding author’s contact information: Dr. Jon D. Levine, Departments of Medicine, Oral and Maxillofacial Surgery and Division of Neuroscience, University of California at San Francisco, C-555, Box 0440, 521 Parnassus Avenue, San Francisco, CA 94143-0440. Phone: +1-415-476-5108, Fax: +1-415-476-6305,
| | - Paul G. Green
- Department of Oral and Maxillofacial Surgery, University of California San Francisco,Department of Division of Neuroscience, University of California San Francisco
| | - Jon D. Levine
- Department of Oral and Maxillofacial Surgery, University of California San Francisco,Department of Medicine, University of California San Francisco,Department of Division of Neuroscience, University of California San Francisco
| |
Collapse
|
17
|
Saleh A, Chowdhury SKR, Smith DR, Balakrishnan S, Tessler L, Schartner E, Bilodeau A, Van Der Ploeg R, Fernyhough P. Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons. Mol Brain 2013; 6:45. [PMID: 24152426 PMCID: PMC4016027 DOI: 10.1186/1756-6606-6-45] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/21/2013] [Indexed: 01/07/2023] Open
Abstract
Background A luminex-based screen of cytokine expression in dorsal root ganglia (DRG) and nerve of type 1 diabetic rodents revealed interleukin-1 (IL-1α) and IL-1β to be significantly depressed. We, therefore, tested the hypothesis that impaired IL-1α and IL-1β expression in DRG may contribute to aberrant axon regeneration and plasticity seen in diabetic sensory neuropathy. In addition, we determined if these cytokines could optimize mitochondrial bioenergetics since mitochondrial dysfunction is a key etiological factor in diabetic neuropathy. Results Cytokines IL-1α and IL-1β were reduced 2-fold (p<0.05) in DRG and/or nerve of 2 and 5 month streptozotocin (STZ)-diabetic rats. IL-2 and IL-10 were unchanged. IL-1α and IL-1β induced similar 2 to 3-fold increases in neurite outgrowth in cultures derived from control or diabetic rats (p<0.05). STAT3 phosphorylation on Tyr705 or Ser727 was depressed in DRG from STZ-diabetic mice and treatment of cultures derived from STZ-diabetic rats with IL-1β for 30 min raised phosphorylation of STAT3 on Tyr705 and Ser727 by 1.5 to 2-fold (p<0.05). shRNA-based or AG490 inhibition of STAT3 activity or shRNA blockade of endogenous IL-1β expression completely blocked neurite outgrowth. Cultured neurons derived from STZ-diabetic mice were treated for 24 hr with IL-1β and maximal oxygen consumption rate and spare respiratory capacity, both key measures of bioenergetic fidelity that were depressed in diabetic compared with control neurons, were enhanced 2-fold. This effect was blocked by AG490. Conclusions Endogenous synthesis of IL-1β is diminished in nerve tissue in type 1 diabetes and we propose this defect triggers reduced STAT3 signaling and mitochondrial function leading to sup-optimal axonal regeneration and plasticity.
Collapse
Affiliation(s)
- Ali Saleh
- Division of Neurodegenerative Disorders, St, Boniface Hospital Research Centre, R4048 - 351 Tache Ave, Winnipeg, MB R2H 2A6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Brázda V, Klusáková I, Hradilová Svíženská I, Dubový P. Dynamic response to peripheral nerve injury detected by in situ hybridization of IL-6 and its receptor mRNAs in the dorsal root ganglia is not strictly correlated with signs of neuropathic pain. Mol Pain 2013; 9:42. [PMID: 23953943 PMCID: PMC3844395 DOI: 10.1186/1744-8069-9-42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022] Open
Abstract
Background IL-6 is a typical injury-induced mediator. Together with its receptors, IL-6 contributes to both induction and maintenance of neuropathic pain deriving from changes in activity of primary sensory neurons in dorsal root ganglia (DRG). We used in situ hybridization to provide evidence of IL-6 and IL-6 receptors (IL-6R and gp130) synthesis in DRG along the neuraxis after unilateral chronic constriction injury (CCI) of the sciatic nerve as an experimental model of neuropathic pain. Results All rats operated upon to create unilateral CCI displayed mechanical allodynia and thermal hyperalgesia in ipsilateral hind paws. Contralateral hind paws and forepaws of both sides exhibited only temporal and nonsignificant changes of sensitivity. Very low levels of IL-6 and IL-6R mRNAs were detected in naïve DRG. IL-6 mRNA was bilaterally increased not only in DRG neurons but also in satellite glial cells (SGC) activated by unilateral CCI. In addition to IL-6 mRNA, substantial increase of IL-6R mRNA expression occurred in DRG neurons and SGC following CCI, while the level of gp130 mRNA remained similar to that of DRG from naïve rats. Conclusions Here we evidence for the first time increased synthesis of IL-6 and IL-6R in remote cervical DRG nonassociated with the nerve injury. Our results suggest that unilateral CCI of the sciatic nerve induced not only bilateral elevation of IL-6 and IL-6R mRNAs in L4–L5 DRG but also their propagation along the neuraxis to remote cervical DRG as a general neuroinflammatory reaction of the nervous system to local nerve injury without correlation with signs of neuropathic pain. Possible functional involvement of IL-6 signaling is discussed.
Collapse
Affiliation(s)
- Václav Brázda
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| | | | | | | |
Collapse
|
19
|
Saleh A, Schapansky J, Smith DR, Young N, Odero GL, Aulston B, Fernyhough P, Glazner GW. Normalization of NF-κB activity in dorsal root ganglia neurons cultured from diabetic rats reverses neuropathy-linked markers of cellular pathology. Exp Neurol 2012; 241:169-78. [PMID: 23159890 DOI: 10.1016/j.expneurol.2012.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS Dorsal root ganglia (DRG) sensory neurons cultured from 3 to 5 month streptozotocin (STZ)-induced diabetic rats exhibit structural and biochemical changes seen in peripheral nerve fibers in vivo, including axonal swellings, oxidative damage, reduced axonal sprouting, and decreased NF-κB activity. NF-κB is a transcription factor required by DRG neurons for survival and plasticity, and regulates transcription of antioxidant proteins (e.g. MnSOD). We hypothesized that the diabetes-induced decrease in NF-κB activity in DRG contributes to pathological phenomena observed in cultured DRG neurons from diabetic rats. METHODS NF-κB localization was assessed in intact DRG and neuron cultures using immunostaining. NF-κB activity was manipulated in sensory neuron cultures derived from age-matched normal or 3-5 month STZ-diabetic rats using pharmacological means and lentiviral expression of shRNA. The impact of diabetes and altered NF-κB activity on neuronal phenotype involved analysis of neurite outgrowth, neurite morphology, oxidative stress (lipid peroxidation) and expression of MnSOD. RESULTS STZ-induced diabetes caused a significant decrease in nuclear localization of NF-κB subunits p50 and c-rel, but no change in p65 in intact DRG. Inhibition of NF-κB in normal neuron cultures significantly increased axonal swellings and oxidative stress, and reduced both neurite outgrowth and expression of MnSOD. These phenomena mimicked markers of pathology in cultured DRG neurons from diabetic rats. Enhancement of NF-κB activity in cultured diabetic DRG neurons ameliorated the sub-optimal neurite outgrowth and MnSOD levels triggered by diabetes. Exogenous insulin enhanced nuclear localization of p50 and c-rel but not p65 in diabetic neuronal cultures. CONCLUSION/INTERPRETATION The diabetes-induced decrease of nuclear localization of NF-κB subunits p50 and c-rel in DRG contributes to development of in vitro markers of peripheral neuropathy, possibly through impaired mitochondrial ROS scavenging by deficient MnSOD.
Collapse
Affiliation(s)
- A Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Saleh A, Roy Chowdhury SK, Smith DR, Balakrishnan S, Tessler L, Martens C, Morrow D, Schartner E, Frizzi KE, Calcutt NA, Fernyhough P. Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology 2012; 65:65-73. [PMID: 23022047 DOI: 10.1016/j.neuropharm.2012.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/26/2023]
Abstract
Diabetes causes mitochondrial dysfunction in sensory neurons that may contribute to peripheral neuropathy. Ciliary neurotrophic factor (CNTF) promotes sensory neuron survival and axon regeneration and prevents axonal dwindling, nerve conduction deficits and thermal hypoalgesia in diabetic rats. In this study, we tested the hypothesis that CNTF protects sensory neuron function during diabetes through normalization of impaired mitochondrial bioenergetics. In addition, we investigated whether the NF-κB signal transduction pathway was mobilized by CNTF. Neurite outgrowth of sensory neurons derived from streptozotocin (STZ)-induced diabetic rats was reduced compared to neurons from control rats and exposure to CNTF for 24 h enhanced neurite outgrowth. CNTF also activated NF-κB, as assessed by Western blotting for the NF-κB p50 subunit and reporter assays for NF-κB promoter activity. Conversely, blockade of NF-κB signaling using SN50 peptide inhibited CNTF-mediated neurite outgrowth. Studies in mice with STZ-induced diabetes demonstrated that systemic therapy with CNTF prevented functional indices of peripheral neuropathy along with deficiencies in dorsal root ganglion (DRG) NF-κB p50 expression and DNA binding activity. DRG neurons derived from STZ-diabetic mice also exhibited deficiencies in maximal oxygen consumption rate and associated spare respiratory capacity that were corrected by exposure to CNTF for 24 h in an NF-κB-dependent manner. We propose that the ability of CNTF to enhance axon regeneration and protect peripheral nerve from structural and functional indices of diabetic peripheral neuropathy is associated with targeting of mitochondrial function, in part via NF-κB activation, and improvement of cellular bioenergetics.
Collapse
Affiliation(s)
- Ali Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vazquez E, Kahlenbach J, Segond von Banchet G, König C, Schaible HG, Ebersberger A. Spinal interleukin-6 is an amplifier of arthritic pain in the rat. ACTA ACUST UNITED AC 2012; 64:2233-42. [DOI: 10.1002/art.34384] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Jacques SJ, Ahmed Z, Forbes A, Douglas MR, Vigenswara V, Berry M, Logan A. AAV8(gfp) preferentially targets large diameter dorsal root ganglion neurones after both intra-dorsal root ganglion and intrathecal injection. Mol Cell Neurosci 2012; 49:464-74. [PMID: 22425560 DOI: 10.1016/j.mcn.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022] Open
Abstract
Adeno-associated viral vectors (AAV) are increasingly used to deliver therapeutic genes to the central nervous system (CNS) where they promote transgene expression in post mitotic neurones for long periods with little or no toxicity. In adult rat dorsal root ganglia (DRG), we investigated the cellular tropism of AAV8 containing the green fluorescent protein gene (gfp) after either intra-lumbar DRG or intrathecal injection and showed that transduced DRG neurones (DRGN) expressed GFP irrespective of the delivery route, while non-neuronal cells were GFP(-). After intra-DRG delivery of AAV8(gfp), the mean DRGN transduction rate was 11%, while intrathecal delivery transduced a mean of 1.5% DRGN. After intra-DRG injection, 2% of small DRGN (<30 μm in diameter) were GFP(+) compared with 32% of large DRGN (>60 μm in diameter). Axons of transduced DRGN were also GFP(+); no intra-spinal neurones were transduced. A small number of contralateral DRGN were transduced after intra-DRG injection, suggesting that AAV8 may diffuse from injected DRG into the spinal canal. Microglia and astrocytes were highly ramified with increased GFAP(+) immunoreactivity (i.e. activated) in the neuropil around GFP(+) DRG axon projections within the cord after intra-DRG injection. This study showed that after both intra-DRG and intrathecal delivery, strong preferential AAV8 tropism exists for large DRGN unassociated with cell death, but GFP(+) axons projecting in the spinal cord induced local glial activation. These results open up opportunities for targeted delivery of therapeutics such as neurotrophic factors to the injured spinal cord.
Collapse
Affiliation(s)
- Steven J Jacques
- Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Couvreur O, Aubourg A, Crépin D, Degrouard J, Gertler A, Taouis M, Vacher CM. The anorexigenic cytokine ciliary neurotrophic factor stimulates POMC gene expression via receptors localized in the nucleus of arcuate neurons. Am J Physiol Endocrinol Metab 2012; 302:E458-67. [PMID: 22146310 DOI: 10.1152/ajpendo.00388.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a neural cytokine that reduces appetite and body weight when administrated to rodents or humans. We have demonstrated recently that the level of CNTF in the arcuate nucleus (ARC), a key hypothalamic region involved in food intake regulation, is positively correlated with protection against diet-induced obesity. However, the comprehension of the physiological significance of neural CNTF action was still incomplete because CNTF lacks a signal peptide and thus may not be secreted by the classical exocytosis pathways. Knowing that CNTF distribution shares similarities with that of its receptor subunits in the rat ARC, we hypothesized that CNTF could exert a direct intracrine effect in ARC cells. Here, we demonstrate that CNTF, together with its receptor subunits, translocates to the cell nucleus of anorexigenic POMC neurons in the rat ARC. Furthermore, the stimulation of hypothalamic nuclear fractions with CNTF induces the phosphorylation of several signaling proteins, including Akt, as well as the transcription of the POMC gene. These data strongly suggest that intracellular CNTF may directly modulate POMC gene expression via the activation of receptors localized in the cell nucleus, providing a novel plausible mechanism of CNTF action in regulating energy homeostasis.
Collapse
Affiliation(s)
- Odile Couvreur
- Neuroendocrinologie Moléculaire de la Prise Alimentaire, University of Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Zigmond RE. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front Mol Neurosci 2012; 4:62. [PMID: 22319466 PMCID: PMC3262188 DOI: 10.3389/fnmol.2011.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/28/2011] [Indexed: 01/24/2023] Open
Abstract
Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the "cell body response." The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons.
Collapse
Affiliation(s)
- Richard E. Zigmond
- Department of Neurosciences, Case Western Reserve University, ClevelandOH, USA
| |
Collapse
|
25
|
An autocrine neuronal interleukin-6 loop mediates chloride accumulation and NKCC1 phosphorylation in axotomized sensory neurons. J Neurosci 2011; 31:13516-26. [PMID: 21940443 DOI: 10.1523/jneurosci.3382-11.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cation-chloride cotransporter NKCC1 plays a fundamental role in the central and peripheral nervous systems by setting the value of intracellular chloride concentration. Following peripheral nerve injury, NKCC1 phosphorylation-induced chloride accumulation contributes to neurite regrowth of sensory neurons. However, the molecules and signaling pathways that regulate NKCC1 activity remain to be identified. Functional analysis of cotransporter activity revealed that inhibition of endogenously produced cytokine interleukin-6 (IL-6), with anti-mouse IL-6 antibody or in IL-6⁻/⁻ mice, prevented chloride accumulation in a subset of axotomized neurons. Nerve injury upregulated the transcript and protein levels of IL-6 receptor in myelinated, TrkB-positive sensory neurons of murine lumbar dorsal root ganglia. Expression of phospho-NKCC1 was observed mainly in sensory neurons expressing IL-6 receptor and was absent from IL-6⁻/⁻ dorsal root ganglia. The use of IL-6 receptor blocking-function antibody or soluble IL-6 receptor, together with pharmacological inhibition of Janus kinase, confirmed the role of neuronal IL-6 signaling in chloride accumulation and neurite growth of a subset of axotomized sensory neurons. Cell-specific expression of interleukin-6 receptor under pathophysiological conditions is therefore a cellular response by which IL-6 contributes to nerve regeneration through neuronal NKCC1 phosphorylation and chloride accumulation.
Collapse
|
26
|
Alterations in the expression of leukemia inhibitory factor following exercise: comparisons between wild-type and mdx muscles. PLOS CURRENTS 2011; 3:RRN1277. [PMID: 22183053 PMCID: PMC3222879 DOI: 10.1371/currents.rrn1277] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/24/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Leukemia inhibitory factor (LIF) is a pleiotropic cytokine, belonging to the interleukin-6 family of cytokines, that has been suggested to have positive effects on myogenesis following injury and to minimise dystrophic pathology in mdx mice. Previous reports have suggested that Lif mRNA is up-regulated in the limb and diaphragm muscles of mdx mice, in human cases of dystrophy and acutely following exercise. This study examined expression of Lif mRNA in the quadriceps muscles of mdx and wild-type mice that were either sedentary or allowed to exercise voluntarily for two weeks. RESULTS Exercise caused a decrease in Lif mRNA expression in wild-type muscle, but this was not the case in mdx muscle. Lif mRNA levels in sedentary mdx mice were similar to those in exercised wild type muscles, and in mdx mice there was no further decrease in levels following exercise. Similar down-regulation of Lif mRNA was observed in the tibialis anterior and diaphragm muscles of mdx mice at three and six weeks of age respectively, compared with wild-type controls. Transcripts for the LIF receptor (Lifr) were also down-regulated in these mdx muscles, suggesting LIF activity may be minimised in dystrophic muscle. However fluorescent immunohistochemical labeling of LIF did not correlate with transcript expression data, as LIF immunoreactivity could not be detected in wild-type muscle, where mRNA expression was high, but was present in dystrophic muscle where mRNA expression was low. This study also described the translocation of membrane proteins, including LIFR, to the nuclei of syncytial muscle cells during differentiation and fusion. In addition this study demonstrates that survival of donor myoblasts injected into dystrophic muscle was enhanced by co-administration of recombinant LIF. CONCLUSIONS This study provides new evidence to support a role for LIF in normal muscle biology in response to exercise. Although expression levels of Lif transcript in mdx muscles were not consistent with previous studies, the detection of LIF protein in mdx muscle but not wild-type muscle supports a role for LIF in dystrophy. This study also provides evidence of the differential localisation of the LIFR, and the potential for anti-inflammatory actions of LIF that promote survival of transplanted myoblasts in dystrophic muscle.*corresponding author: Jason White, Muscular Dystrophy Research Group, Murdoch Childrens Research Institute; email: jasondw@unimelb.edu.au.
Collapse
|
27
|
Spofford CM, Mohan S, Kang S, Jang JH, Brennan TJ. Evaluation of leukemia inhibitory factor (LIF) in a rat model of postoperative pain. THE JOURNAL OF PAIN 2011; 12:819-32. [PMID: 21729793 DOI: 10.1016/j.jpain.2011.02.351] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 01/05/2023]
Abstract
UNLABELLED Postoperative pain remains a significant problem despite optimal treatment with current pharmaceutical agents. In an effort to provide better postoperative pain control, there is a need to understand the factors that contribute to the development of pain after surgery. Leukemia inhibitory factor (LIF) is a pleiotropic cytokine released from tissues after injury. We hypothesized that LIF expression in skin, muscle, and dorsal root ganglion (DRG) would increase after plantar incision. The mRNA and protein expression of LIF and LIF receptor (LIF-R) were measured after plantar incision in the rat. Pain behaviors, immunohistochemistry, and C-fiber heat responses to LIF were also studied. LIF expression increased after incision in skin and muscle, and LIF-R was present in large and small DRG neurons. LIF administration to the hindpaw increased pain behaviors, a process that was reversed by anti-LIF. However, LIF and anti-LIF treatment at the time of incision did not augment or ameliorate pain behaviors. LIF treatment activated the second messenger system, JAK-STAT3, in cultured DRG neurons, but failed to alter spontaneous activity or heat responses in C-fiber nociceptors. In conclusion, LIF is not a target for postoperative analgesia; LIF may be important for skin and muscle repair and regeneration after incision. PERSPECTIVE This article highlights an incision pain model for the study of factors involved in nociception. The study demonstrates that LIF in is an unlikely target for novel early postoperative analgesics.
Collapse
MESH Headings
- Animals
- Antibodies/therapeutic use
- Calcitonin Gene-Related Peptide/genetics
- Calcitonin Gene-Related Peptide/metabolism
- Cells, Cultured
- Disease Models, Animal
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Humans
- Hyperalgesia/physiopathology
- Leukemia Inhibitory Factor/administration & dosage
- Leukemia Inhibitory Factor/genetics
- Leukemia Inhibitory Factor/immunology
- Leukemia Inhibitory Factor/metabolism
- Male
- Muscle, Skeletal/metabolism
- Nerve Fibers, Unmyelinated/physiology
- Neurons/metabolism
- Pain Threshold/physiology
- Pain, Postoperative/drug therapy
- Pain, Postoperative/metabolism
- Pain, Postoperative/pathology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, OSM-LIF/metabolism
- STAT3 Transcription Factor/metabolism
- Skin/innervation
- Skin/metabolism
- Time Factors
Collapse
|
28
|
Quarta S, Vogl C, Constantin CE, Üçeyler N, Sommer C, Kress M. Genetic evidence for an essential role of neuronally expressed IL-6 signal transducer gp130 in the induction and maintenance of experimentally induced mechanical hypersensitivity in vivo and in vitro. Mol Pain 2011; 7:73. [PMID: 21951917 PMCID: PMC3197546 DOI: 10.1186/1744-8069-7-73] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/27/2011] [Indexed: 11/29/2022] Open
Abstract
Tenderness and mechanical allodynia are key symptoms of malignant tumor, inflammation and neuropathy. The proinflammatory cytokine interleukin-6 (IL-6) is causally involved in all three pathologies. IL-6 not only regulates innate immunity and inflammation but also causes nociceptor sensitization and hyperalgesia. In general and in most cell types including immune cells and sensory neurons, IL-6 binds soluble μ receptor subunits which heteromerizes with membrane bound IL-6 signal transducer gp130. In the present study, we used a conditional knock-out strategy to investigate the importance of signal transducer gp130 expressed in C nociceptors for the generation and maintenance of mechanical hypersensitivity. Nociceptors were sensitized to mechanical stimuli by experimental tumor and this nociceptor sensitization was preserved at later stages of the pathology in control mice. However, in mice with a conditional deletion of gp130 in Nav1.8 expressing nociceptors mechanical hypersensitivity by experimental tumor, nerve injury or inflammation recovery was not preserved in the maintenance phase and nociceptors exhibited normal mechanical thresholds comparable to untreated mice. Together, the results argue for IL-6 signal transducer gp130 as an essential prerequisite in nociceptors for long-term mechanical hypersensitivity associated with cancer, inflammation and nerve injury.
Collapse
Affiliation(s)
- Serena Quarta
- Div. Physiology, DPMP, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
29
|
Nitzan-Luques A, Devor M, Tal M. Genotype-selective phenotypic switch in primary afferent neurons contributes to neuropathic pain. Pain 2011; 152:2413-2426. [PMID: 21872992 DOI: 10.1016/j.pain.2011.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 07/06/2011] [Accepted: 07/20/2011] [Indexed: 12/23/2022]
Abstract
Pain is normally mediated by nociceptive Aδ and C fibers, while Aβ fibers signal touch. However, after nerve injury, Aβ fibers may signal pain. Using a genetic model, we tested the hypothesis that phenotypic switching in neurotransmitters expressed by Aβ afferents might account for heritable differences in neuropathic pain behavior. The study examined selection-line rats in which one line, high autotomy (HA), shows higher levels of spontaneous pain in the neuroma neuropathy model, and of tactile allodynia in the spinal nerve ligation (SNL) model, than the companion low autotomy (LA) line. Changes in calcitonin gene-related peptide (CGRP) and Substance P expression were evaluated immunohistochemically in L4 and L5 dorsal root ganglia 7 days after SNL surgery. Expression of CGRP was decreased in axotomized small- and medium-diameter neurons in both rat lines. However, in HA but not in LA rats, there was a tenfold increase in CGRP immunoreactivity (CGRP-IR) in large-diameter neurons. Corresponding changes in CGRP-IR in axon terminals in the nucleus gracilis were also seen. Finally, there were indications of enhanced CGRP neurotransmission in deep laminae of the dorsal horn. Substance P immunoreactivity was also upregulated in large-diameter neurons, but this change was similar in the 2 lines. Our findings suggest that phenotypic switching contributes to the heritable difference in pain behavior in HA vs LA rats. Specifically, we propose that in HA rats, but less so in LA rats, injured, spontaneously active Aβ afferents both directly drive CGRP-sensitive central nervous system pain-signaling neurons and also trigger and maintain central sensitization, hence generating spontaneous pain and tactile allodynia.
Collapse
Affiliation(s)
- Adi Nitzan-Luques
- Department of Medical Neurobiology, Faculties of Medicine and Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel Department of Cell and Developmental Biology, Institute of Life Science, Faculty of Natural Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
30
|
Girard BM, Cheppudira BP, Malley SE, Schutz KC, May V, Vizzard MA. Increased expression of interleukin-6 family members and receptors in urinary bladder with cyclophosphamide-induced bladder inflammation in female rats. Front Neurosci 2011; 5:20. [PMID: 21373362 PMCID: PMC3044559 DOI: 10.3389/fnins.2011.00020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/09/2011] [Indexed: 12/12/2022] Open
Abstract
Recent studies suggest that janus-activated kinases-signal transducer and activator of transcription signaling pathways contribute to increased voiding frequency and referred pain of cyclophosphamide (CYP)-induced cystitis in rats. Potential upstream chemical mediator(s) that may be activated by CYP-induced cystitis to stimulate JAK/STAT signaling are not known in detail. In these studies, members of the interleukin (IL)-6 family of cytokines including, leukemia inhibitory factor (LIF), IL-6, and ciliary neurotrophic factor (CNTF) and associated receptors, IL-6 receptor (R) α, LIFR, and gp130 were examined in the urinary bladder in control and CYP-treated rats. Cytokine and receptor transcript and protein expression and distribution were determined in urinary bladder after CYP-induced cystitis using quantitative, real-time polymerase chain reaction (Q-PCR), western blotting, and immunohistochemistry. Acute (4 h; 150 mg/kg; i.p.), intermediate (48 h; 150 mg/kg; i.p.), or chronic (75 mg/kg; i.p., once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Q-PCR analyses revealed significant (p ≤ 0.01) CYP duration- and tissue- (e.g., urothelium, detrusor) dependent increases in LIF, IL-6, IL-6Rα, LIFR, and gp130 mRNA expression. Western blotting demonstrated significant (p ≤ 0.01) increases in IL-6, LIF, and gp130 protein expression in whole urinary bladder with CYP treatment. CYP-induced cystitis significantly (p ≤ 0.01) increased LIF-immunoreactivity (IR) in urothelium, detrusor, and suburothelial plexus whereas increased gp130-IR was only observed in urothelium and detrusor. These studies suggest that IL-6 and LIF may be potential upstream chemical mediators that activate JAK/STAT signaling in urinary bladder pathways.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|
31
|
Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. ACTA ACUST UNITED AC 2010; 6:73-83. [DOI: 10.1017/s1740925x10000074] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a growing body of evidence that cytokines contribute to both induction and maintenance of neuropathic pain derived from changes in dorsal root ganglia (DRG), including the activity of the primary sensory neurons and their satellite glial cells (SGC). We used immunofluorescence andin situhybridization methods to provide evidence that chronic constriction injury (CCI) of the sciatic nerve induces synthesis of interleukin-6 (IL-6) in SGC, elevation of IL-6 receptor (IL-6R) and activation of signal transducer and activator of transcription 3 (STAT3) signalling. Unilateral CCI of the rat sciatic nerve induced mechanoallodynia and thermal hyperalgesia in ipsilateral hind paws, but contralateral paws exhibited only temporal changes of sensitivity. We demonstrated that IL-6 mRNA and protein, which were expressed at very low levels in naïve DRG, were bilaterally increased not only in L4-L5 DRG neurons but also in SGC activated by unilateral CCI. Besides IL-6, substantial increase of IL-6R and pSTAT3 expression occurred in SGC following CCI, however, IL-6R associated protein, gp130 levels did not change. The results may suggest that unilateral CCI of the sciatic nerve induces bilateral activation of SGC in L4-L5 DRG to transduce IL-6 signalling during neuroinflammation.
Collapse
|
32
|
Hyatt Sachs H, Rohrer H, Zigmond RE. The conditioning lesion effect on sympathetic neurite outgrowth is dependent on gp130 cytokines. Exp Neurol 2010; 223:516-22. [PMID: 20144891 DOI: 10.1016/j.expneurol.2010.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/29/2009] [Accepted: 01/31/2010] [Indexed: 12/17/2022]
Abstract
Sympathetic neurons, like sensory neurons, increase neurite outgrowth after a conditioning lesion. Studies in leukemia inhibitory factor (LIF) knockout animals showed that the conditioning lesion effect in sensory neurons is dependent in part on this cytokine; however, similar studies on sympathetic neurons revealed no such effect. Comparable studies with sensory neurons taken from mice lacking the related cytokine interleukin-6 (IL-6) have yielded conflicting results. LIF and IL-6 belong to a family of cytokines known as the gp130 family because they act on receptors containing the subunit gp130. In sympathetic ganglia, axotomy leads to increases in mRNA for four of these cytokines (LIF, IL-6, IL-11, and oncostatin M). To test the role of this family of cytokines as a whole in the conditioning lesion response in sympathetic neurons, mice in which gp130 was selectively eliminated in noradrenergic neurons were studied. The postganglionic axons of the SCG were transected, and 7days later the ganglia were removed and neurite outgrowth was measured in explant and dissociated cell cultures. In both systems, neurons from wild type animals showed enhanced growth after a conditioning lesion. In contrast, no enhancement occurred in neurons from mutant animals. This lack of stimulation of outgrowth occurred despite an increase in expression of activating transcription factor 3 (ATF3) in the mutant mice. These studies demonstrate that stimulation of enhanced growth of sympathetic neurons after a conditioning lesion is dependent on gp130 cytokine signaling and is blocked in the absence of signaling by these cytokines in spite of an increase in ATF3.
Collapse
Affiliation(s)
- H Hyatt Sachs
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland OH, 44106-4975, USA
| | | | | |
Collapse
|
33
|
Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice. ASN Neuro 2009; 1:e00024. [PMID: 19922414 PMCID: PMC2826103 DOI: 10.1042/an20090017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 10/07/2009] [Accepted: 10/12/2009] [Indexed: 11/17/2022] Open
Abstract
We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron) survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system)-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide) is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type), a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3−/− mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2−/− (recombination activating gene-2-deficient) mice adoptively transferred CD4+ T-cells isolated from CCR3−/− mice, but not in CCR3−/− mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury.
Collapse
|
34
|
Abstract
Interleukin-6 (IL-6) is a key mediator of inflammation. Inhibitors of IL-6 or of its signal transducing receptor gp130 constitute a novel class of anti-inflammatory drugs, which raise great hopes for improved treatments of painful inflammatory diseases such as rheumatoid arthritis. IL-6 and gp130 may enhance pain not only indirectly through their proinflammatory actions but also through a direct action on nociceptors (i.e., on neurons activated by painful stimuli). We found indeed that the IL-6/gp130 ligand-receptor complex induced heat hypersensitivity both in vitro and in vivo. This process was mediated by activation of PKC-delta via Gab1/2/PI(3)K and subsequent regulation of TRPV1, a member of the transient receptor potential (TRP) family of ion channels. To assess the relevance of this direct pain promoting effect of IL-6, we generated conditional knock-out mice, which lack gp130 specifically in nociceptors, and tested them in models of inflammatory and tumor-induced pain. These mice showed significantly reduced levels of inflammatory and tumor-induced pain but no changes in immune reactions or tumor growth. Our results uncover the significance of gp130 expressed in peripheral pain sensing neurons in the pathophysiology of major clinical pain disorders and suggest their use as novel pain relieving agents in inflammatory and tumor pain.
Collapse
|
35
|
Abstract
Pain normally subserves a vital role in the survival of the organism, prompting the avoidance of situations associated with tissue damage. However, the sensation of pain can become dissociated from its normal physiological role. In conditions of neuropathic pain, spontaneous or hypersensitive pain behavior occurs in the absence of the appropriate stimuli. Our incomplete understanding of the mechanisms underlying chronic pain hypersensitivity accounts for the general ineffectiveness of currently available options for the treatment of chronic pain syndromes. Despite its complex pathophysiological nature, it is clear that neuropathic pain is associated with short- and long-term changes in the excitability of sensory neurons in the dorsal root ganglia (DRG) as well as their central connections. Recent evidence suggests that the upregulated expression of inflammatory cytokines in association with tissue damage or infection triggers the observed hyperexcitability of pain sensory neurons. The actions of inflammatory cytokines synthesized by DRG neurons and associated glial cells, as well as by astrocytes and microglia in the spinal cord, can produce changes in the excitability of nociceptive sensory neurons. These changes include rapid alterations in the properties of ion channels expressed by these neurons, as well as longer-term changes resulting from new gene transcription. In this chapter we review the diverse changes produced by inflammatory cytokines in the behavior of sensory neurons in the context of chronic pain syndromes.
Collapse
|
36
|
Brázda V, Klusáková I, Svízenská I, Veselková Z, Dubový P. Bilateral changes in IL-6 protein, but not in its receptor gp130, in rat dorsal root ganglia following sciatic nerve ligature. Cell Mol Neurobiol 2009; 29:1053-62. [PMID: 19330444 DOI: 10.1007/s10571-009-9396-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/16/2009] [Indexed: 01/19/2023]
Abstract
Local intracellular signaling cascades following peripheral nerve injury lead to robust axon regeneration and neuropathic pain induction. Cytokines are classic injury-induced mediators. We used sciatic nerve ligature (ScNL) to investigate temporal changes in IL-6 and its receptor gp130 in both ipsilateral and contralateral lumbal (L4-L5) dorsal root ganglia (DRG). Rats were operated aseptically on unilateral ScNL and allowed to survive for 1, 3, 7, and 14 days. Immunohistochemistry and Western blot analysis were used to determine levels of IL-6 and gp130 in DRG. A distinct increase in immunostaining for IL-6 was found in the neuronal cell bodies of sections through both ipsilateral and contralateral DRG at 1 and 3 days after operation. After 7 and 14 days, the DRG sections displayed only a moderate elevation in immunostaining when compared with sections of naïve DRG. The levels of IL-6 protein increased in both ipsilateral and contralateral lumbal DRG following peripheral nerve injury. The elevation of IL-6 protein was significant in both ipsilateral and contralateral DRG 1, 3, 7, and 14 days after operation. On the other hand, the levels of gp130 receptor did not change significantly. The data provide evidence for changes in IL-6 levels not only in the DRG associated with the damaged nerve but also in those unassociated with nerve injury during the experimental neuropathic pain model.
Collapse
Affiliation(s)
- Václav Brázda
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
37
|
Buhren BA, Gasis M, Thorens B, Müller HW, Bosse F. Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR): cellular localization, lesion-affected expression, and impaired regenerative axonal growth. J Neurosci Res 2009; 87:1858-70. [PMID: 19170165 DOI: 10.1002/jnr.22001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) was initially described to be rapidly regulated by endocrine cells in response to nutrient ingestion, with stimulatory effects on insulin synthesis and release. Previously, we demonstrated a significant up-regulation of GIP mRNA in the rat subiculum after fornix injury. To gain more insight into the lesion-induced expression of GIP and its receptor (GIPR), expression profiles of the mRNAs were studied after rat sciatic nerve crush injury in 1) affected lumbar dorsal root ganglia (DRG), 2) spinal cord segments, and 3) proximal and distal nerve fragments by means of quantitative RT-PCR. Our results clearly identified lesion-induced as well as tissue type-specific mRNA regulation of GIP and its receptor. Furthermore, comprehensive immunohistochemical stainings not only confirmed and exceeded the previous observation of neuronal GIP expression but also revealed corresponding GIPR expression, implying putative modulatory functions of GIP/GIPR signaling in adult neurons. In complement, we also observed expression of GIP and its receptor in myelinating Schwann cells and oligodendrocytes. Polarized localization of GIPR in the abaxonal Schwann cell membranes, plasma membrane-associated GIPR expression of satellite cells, and ependymal GIPR expression strongly suggests complex cell type-specific functions of GIP and GIPR in the adult nervous system that are presumably mediated by autocrine and paracrine interactions, respectively. Notably, in vivo analyses with GIPR-deficient mice suggest a critical role of GIP/GIPR signal transduction in promoting spontaneous recovery after nerve crush, insofar as traumatic injury of GIPR-deficient mouse sciatic nerve revealed impaired axonal regeneration compared with wild-type mice.
Collapse
Affiliation(s)
- Bettina A Buhren
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
38
|
Activity-dependent neuron-glial signaling by ATP and leukemia-inhibitory factor promotes hippocampal glial cell development. ACTA ACUST UNITED AC 2009; 4:43-55. [PMID: 19267953 DOI: 10.1017/s1740925x09000076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activity-dependent signaling between neurons and astrocytes contributes to experience-dependent plasticity and development of the nervous system. However, mechanisms responsible for neuron-glial interactions and the releasable factors that underlie these processes are not well understood. The pro-inflammatory cytokine, leukemia-inhibitory factor (LIF), is transiently expressed postnatally by glial cells in the hippocampus and rapidly up-regulated by enhanced neural activity following seizures. To test the hypothesis that spontaneous neural activity regulates glial development in hippocampus via LIF signaling, we blocked spontaneous activity with the sodium channel blocker tetrodotoxin (TTX) in mixed hippocampal cell cultures in combination with blockers of LIF and purinergic signaling. TTX decreased the number of GFAP-expressing astrocytes in hippocampal cell culture. Furthermore, blocking purinergic signaling by P2Y receptors contributed to reduced numbers of astrocytes. Blocking activity or purinergic signaling in the presence of function-blocking antibodies to LIF did not further decrease the number of astrocytes. Moreover, hippocampal cell cultures prepared from LIF -/- mice had reduced numbers of astrocytes and activity-dependent neuron-glial signaling promoting differentiation of astrocytes was absent. The results show that endogenous LIF is required for normal development of hippocampal astrocytes, and this process is regulated by spontaneous neural impulse activity through the release of ATP.
Collapse
|
39
|
Neuroprotective properties of ciliary neurotrophic factor for cultured adult rat dorsal root ganglion neurons. Histochem Cell Biol 2008; 130:669-79. [PMID: 18679704 DOI: 10.1007/s00418-008-0484-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2008] [Indexed: 12/15/2022]
Abstract
We observed that recombinant ciliary neurotrophic factor (CNTF) enhanced survival and neurite outgrowth of cultured adult rat dorsal root ganglion (DRG) neurons. Among other neurotrophic factors (NGF and GDNF) and interleukin (IL)-6 cytokine members [IL-6, LIF, cardiotrophin-1, and oncostatin M (OSM)] at the same concentration (50 ng/ml), CNTF, as well as LIF and OSM, displayed high efficacy for the promotion of the number of viable neurons and neurite-bearing cells. CNTF enhanced the number of neurite-bearing cells in both small neurons (soma diameter <30 microm) and large neurons (soma diameter > or =30 microm), whereas NGF and GDNF promoted that in only small neurons. Western blot analysis revealed that CNTF induced phosphorylation of STAT3, Akt, and ERK1/2 in the neurons. Furthermore, the neurite outgrowth-promoting activity of CNTF was diminished by co-treatment with Janus kinase (JAK) 2 inhibitor, AG490; STAT3 inhibitor, STA-21; phosphatidyl inositol-3'-phosphate-kinase (PI3K) inhibitor, LY294002; and mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, in a concentration-dependent manner. Its survival-promoting activity was also affected by AG490, STA-21, and LY294002 at higher concentrations, but not by PD98059. These findings suggest the involvement of JAK2/STAT3, PI3K/Akt, and MEK/ERK signaling pathways in CNTF-induced neurite outgrowth, where the former two pathways are thought to play major roles in mediating the survival response of neurons to CNTF.
Collapse
|
40
|
Averill S, Inglis JJ, King VR, Thompson SWN, Cafferty WBJ, Shortland PJ, Hunt SP, Kidd BL, Priestley JV. Reg-2 expression in dorsal root ganglion neurons after adjuvant-induced monoarthritis. Neuroscience 2008; 155:1227-36. [PMID: 18652880 DOI: 10.1016/j.neuroscience.2008.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 12/27/2022]
Abstract
Reg-2 is a secreted protein that is expressed de novo in motoneurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons after nerve injury and which can act as a Schwann cell mitogen. We now show that Reg-2 is also upregulated by DRG neurons in inflammation with a very unusual expression pattern. In a rat model of monoarthritis, Reg-2 immunoreactivity was detected in DRG neurons at 1 day, peaked at 3 days (in 11.6% of DRG neurons), and was still present at 10 days (in 5%). Expression was almost exclusively in the population of DRG neurons that expresses the purinoceptor P2X(3) and binding sites for the lectin Griffonia simplicifolia IB4, and which is known to respond to glial cell line-derived neurotrophic factor (GDNF). Immunoreactivity was present in DRG cell bodies and central terminals in the dorsal horn of the spinal cord. In contrast, very little expression was seen in the nerve growth factor (NGF) responsive and substance P expressing population. However intrathecal delivery of GDNF did not induce Reg-2 expression, but leukemia inhibitory factor (LIF) had a dramatic effect, inducing Reg-2 immunoreactivity in 39% of DRG neurons and 62% of P2X(3) cells. Changes in inflammation have previously been observed predominantly in the neuropeptide expressing, NGF responsive, DRG neurons. Our results show that changes also take place in the IB4 population, possibly driven by members of the LIF family of neuropoietic cytokines. In addition, the presence of Reg-2 in central axon terminals implicates Reg-2 as a possible modulator of second order dorsal horn cells.
Collapse
Affiliation(s)
- S Averill
- Neuroscience Centre, Institute of Cell and Molecular Science, Bart's & The London School of Medicine & Dentistry, Whitechapel, London E1 2AT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Engert S, Wendland JR, Schwab A, Petersen M. Leukemia inhibitory factor differentially regulates capsaicin and heat sensitivity in cultured rat dorsal root ganglion neurons. Neuropeptides 2008; 42:193-7. [PMID: 18258298 DOI: 10.1016/j.npep.2007.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/21/2007] [Accepted: 12/28/2007] [Indexed: 11/19/2022]
Abstract
Thermal hyperalgesia is one hallmark of neuropathic pain conditions. Although the exact pathophysiological mechanisms remain elusive, nerve growth factor (NGF) and leukemia inhibitory factor (LIF) are considered key mediators. Their local availability or synthesis are altered by nerve damage and, in turn, they entail changes in phenotype of affected neurons. We examined the effects of LIF on capsaicin sensitivity, heat responsiveness, and galanin immunoreactivity in rat dorsal root ganglion neurons cultured for up to 6 days without supplemented NGF. Using double labeling, the proportions of heat-sensitive/galanin-immunoreactive (GAL-IR) and capsaicin-sensitive/GAL-IR neurons were compared over time in culture with galanin immunoreactivity being a marker for nociceptive neurons. The time course of the proportions of neurons responding to heat (44 degrees C) or capsaicin (1 microM) which also were GAL-IR was differently affected by LIF. In the absence of LIF, within the population of heat-sensitive neurons, the proportion of neurons also GAL-IR increased from 17% to 32% between 6h and 1 day in culture to stay at this level. For the capsaicin-sensitive neurons, the proportion of neurons also GAL-IR increased from 10% after 6h to 18% at day 2 and then decreased to 4% at day 4. In contrast, LIF prevented the increase in the proportion of heat-sensitive/GAL-IR neurons and the decrease of capsaicin-sensitive/GAL-IR neurons. The results suggest that LIF partially prevents TRPV-1 downregulation in NGF-deprived nociceptive galaninergic DRG neurons. Furthermore, there is evidence that LIF regulates the expression of a heat receptor distinct from TRPV-1.
Collapse
Affiliation(s)
- Sabine Engert
- Department of Obstetrics and Gynecology, University of Würzburg, 97080 Würzburg, Germany
| | | | | | | |
Collapse
|
42
|
Dutta R, McDonough J, Chang A, Swamy L, Siu A, Kidd GJ, Rudick R, Mirnics K, Trapp BD. Activation of the ciliary neurotrophic factor (CNTF) signalling pathway in cortical neurons of multiple sclerosis patients. ACTA ACUST UNITED AC 2007; 130:2566-76. [PMID: 17898009 DOI: 10.1093/brain/awm206] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuronal and axonal degeneration results in irreversible neurological disability in multiple sclerosis (MS) patients. A number of adaptive or neuroprotective mechanisms are thought to repress neurodegeneration and neurological disability in MS patients. To investigate possible neuroprotective pathways in the cerebral cortex of MS patients, we compared gene transcripts in cortices of six control and six MS patients. Out of 67 transcripts increased in MS cortex nine were related to the signalling mediated by the neurotrophin ciliary neurotrophic factor (CNTF). Therefore, we quantified and localized transcriptional (RT-PCR, in situ hybridization) and translational (western, immunohistochemistry) products of CNTF-related genes. CNTF-receptor complex members, CNTFRalpha, LIFRbeta and GP130, were increased in MS cortical neurons. CNTF was increased and also expressed by neurons. Phosphorylated STAT3 and the anti-apoptotic molecule, Bcl2, known down stream products of CNTF signalling were also increased in MS cortical neurons. We hypothesize that in response to the chronic insults or stress of the pathogenesis of multiple sclerosis, cortical neurons up regulate a CNTF-mediated neuroprotective signalling pathway. Induction of CNTF signalling and the anti-apoptotic molecule, Bcl2, thus represents a compensatory response to disease pathogenesis and a potential therapeutic target in MS patients.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yu C, Kastin AJ, Tu H, Pan W. Opposing effects of proteasomes and lysosomes on LIFR: modulation by TNF. J Mol Neurosci 2007; 32:80-9. [PMID: 17873291 DOI: 10.1007/s12031-007-0017-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 11/30/1999] [Accepted: 02/01/2007] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB), a communicating interface for inflammation, transports cytokines through its endothelial cells. This study shows how tumor necrosis factor alpha (TNF) regulates the expression of the leukemia inhibitor factor receptor (LIFR) gp190 in RBE4 cells. The high expression of LIFR was rapidly downregulated by the proinflammatory agents lipopolysaccharide, TNF, and LIF. Downregulation by TNF affected LIFR endocytosis and lysosomal degradation, preceding decreased LIFR mRNA. Lysosomal inhibitors reversed the rapid disappearance of LIFR, whereas inhibition of the ubiquitin-proteasome pathway did not. Rather, blockade of proteasome activity, as well as inhibition of NFkappaB activation, reduced the basal expression of LIFR. Thus, NFkappaB activity and proteasome degradation of IkappaB stabilized LIFR and prevented its rapid lysosomal degradation. By a non-NFkappaB-mediated mechanism, TNF facilitated LIFR degradation and reduced LIFR activation indicated by pStat3. The novel opposite effects of proteasomes and lysosomes in controlling receptor expression shows the functional implications and interactions of circulating inflammatory cytokines in acutely modulating BBB activity.
Collapse
Affiliation(s)
- Chuanhui Yu
- The Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
44
|
Brenn D, Richter F, Schaible HG. Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. ACTA ACUST UNITED AC 2007; 56:351-9. [PMID: 17195239 DOI: 10.1002/art.22282] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Pain during mechanical stimulation of the joint and spontaneous pain are major symptoms of arthritis. An important neuronal process of mechanical hypersensitivity of the joint is the sensitization of thin myelinated Adelta fibers and unmyelinated C fibers innervating the joint. Because interleukin-6 (IL-6) is a major inflammatory mediator, we investigated whether this cytokine has the potential to sensitize joint afferents to mechanical stimuli. METHODS In electrophysiologic experiments conducted on anesthetized rats, action potentials were recorded from afferent fibers supplying the knee joint. Responses to innocuous and noxious rotation of the tibia against the femur in the knee joint were monitored before and 1-2 hours after injection of test compounds into the joint cavity. RESULTS Injection of IL-6 and coinjection of IL-6 plus soluble IL-6 receptor (sIL-6R) caused a gradual increase in the responses of C fibers to innocuous and noxious rotation within 1 hour. The increase in responses to IL-6 and IL-6 plus sIL-6R was prevented by coadministration of soluble glycoprotein 130 (sgp130), but sgp130 did not reverse established mechanical hyperexcitability. Responses of Adelta fibers were not altered by the compounds. While injection of sIL-6R alone into the normal knee joint did not influence responses to mechanical stimulation, injection of sIL-6R into the acutely inflamed knee joint caused an increase in responses. CONCLUSION IL-6 has the potential to sensitize C fibers in the joint to mechanical stimulation. Thus, IL-6 contributes to mechanical hypersensitivity, most likely due to an action of IL-6 on nerve fibers themselves.
Collapse
Affiliation(s)
- Daniel Brenn
- Friedrich Schiller University of Jena, Jena, Germany
| | | | | |
Collapse
|
45
|
von Banchet GS, Kiehl M, Schaible HG. Acute and long-term effects of IL-6 on cultured dorsal root ganglion neurones from adult rat. J Neurochem 2005; 94:238-48. [PMID: 15953366 DOI: 10.1111/j.1471-4159.2005.03185.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
IL-6 contributes to pain and hyperalgesia in inflamed tissue. We have investigated short- and long-term effects of IL-6 on dorsal root ganglion (DRG) neurones. Glycoprotein 130-like immunoreactivity (the signal transduction receptor subunit) was found in almost all neurones in DRG sections and in cultured DRG neurones from adult rat. In calcium-imaging studies bath application of IL-6 caused an increase of intracellular calcium in about one-third of the DRG neurones suggesting functional IL-6 receptors in a proportion of neurones. Long-term but not short-term exposure of DRG neurones to IL-6 in vitro significantly enhanced the proportion of DRG neurones expressing neurokinin 1 receptor-like immunoreactivity from 10% to up to 40%. This up-regulation was dependent on the activation of mitogen-activated protein kinase kinase (MEK) in the neurones, suggesting that the mitogen-activated protein kinase (MAPK) pathway is important for this effects of IL-6. Calcium-imaging studies demonstrated that previous exposure of DRG neurones to IL-6 enhanced the proportion of neurones that exhibit a substance P-induced rise in intracellular calcium. These data show that IL-6 has short- and long-term effects on a proportion of DRG neurones. These effects are likely to contribute to pro-nociceptive effects of IL-6.
Collapse
|
46
|
McMahon SB, Cafferty WBJ, Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp Neurol 2005; 192:444-62. [PMID: 15755561 DOI: 10.1016/j.expneurol.2004.11.001] [Citation(s) in RCA: 331] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/28/2004] [Accepted: 11/01/2004] [Indexed: 12/26/2022]
Abstract
A decade ago the attention of pain scientists was focused on a small number of molecules such as prostaglandin and bradykinin as peripheral pain mediators or modulators. These factors were known to be produced by tissue damage or inflammation, and considered responsible for the activation and sensitization of peripheral pain signaling sensory neurons. A small number of molecules were also identified as central pain mediators, most notably glutamate and substance P released from central nociceptive nerve terminals, and, starting at that time, appreciation that nitric oxide might be produced by dorsal horn neurons and act as a diffusible transmitter to increase excitability of central pain circuits. During the last decade evidence has emerged for many novel pain mediators. The old ones have not disappeared, although their roles have been redefined in some cases. Prostaglandin E2 (PGE2), for instance, is now recognized as playing a prominent role in CNS as well as peripheral tissues. The newly identified mediators include a variety of factors produced and released from nonneuronal cells-predominantly immune and glial cells. The evidence is now growing apace that these are important mediators of persistent pain states and can act at a number of loci. Here we review the actions of several of these factors-the pro-inflammatory cytokines, some chemokines, and some neurotrophic factors, which, in addition to their traditionally recognized roles, are all capable of changing the response properties of peripheral and central pain signaling neurons. We review these actions, first in periphery, where a substantial literature has accumulated, and then in spinal cord, where the role of factors from nonneuronal cells has only recently been identified as of considerable importance.
Collapse
Affiliation(s)
- Stephen B McMahon
- Neurorestoration Group and London Pain Consortium, Wolfson Wing, Hodgkin Building, Guy's Campus, King's College London, London Bridge, London, SE1 1UL, UK.
| | | | | |
Collapse
|
47
|
Abstract
Oncostatin M (OSM) is a member of the interleukin-6 family of cytokines. Of these cytokines, OSM is closely related structually, genetically and functionally to leukemia inhibitory factor. However, OSM-specific biological activities have been reported in hematopoiesis and liver development. Recently, we have demonstrated OSM-specific activities in the nervous systems. In the adult central nervous system (CNS), OSM receptor (OSMR) beta was observed in meningeal cells of pia mater, epithelial cells of the choroid plexus and olfactory astrocyte-like glia surrounding the glomeruli of the olfactory bulb. In the CNS of neonatal mice, OSMRbeta was also expressed in the ventral subnucleus of the hypoglossal nucleus, but disappeared at post-natal day (P) 14. In contrast with the CNS, OSMRbeta was strongly expressed in small-sized non-peptidergic neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG). Interestingly, all OSMRbeta-positive neurons in these ganglia also expressed both TRPV1 (a vanilloid receptor) and P2X3 (a purinergic receptor). In OSM-deficient mice, TRPV1/P2X3/OSMRbeta triple-positive neurons were significantly decreased. Consistent with such histological findings, OSM-deficient mice exhibited a reduction in responses to various stimuli, including mechanical and thermal stimuli. These findings suggest an important role for OSM in the development of a subset of nociceptive neurons.
Collapse
Affiliation(s)
- Yoshihiro Morikawa
- Department of Anatomy and Neurobiology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
48
|
Obreja O, Biasio W, Andratsch M, Lips KS, Rathee PK, Ludwig A, Rose-John S, Kress M. Fast modulation of heat-activated ionic current by proinflammatory interleukin 6 in rat sensory neurons. Brain 2005; 128:1634-41. [PMID: 15817518 DOI: 10.1093/brain/awh490] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pro-inflammatory cytokine interleukin-6 (IL-6) together with its soluble receptor (sIL-6R) induces and maintains thermal hyperalgesia. It facilitates the heat-induced release of calcitonin gene-related peptide from rat cutaneous nociceptors in vivo and in vitro. Here we report that exposure of nociceptive neurons to the IL-6-sIL-6R complex or the gp130-stimulating designer IL-6-sIL-6R fusion protein Hyper-IL-6 (HIL-6) resulted in a potentiation of heat-activated inward currents (I(heat)) and a shift of activation thresholds towards lower temperatures without affecting intracellular calcium levels. The Janus tyrosine kinase inhibitor AG490, the selective protein kinase C (PKC) inhibitor, bisindolylmaleimide 1 (BIM1), as well as rottlerin, a selective blocker of the PKCdelta isoform, but not the cyclooxygenase inhibitor indomethacin, effectively reduced the effect. Reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization revealed expression of mRNA for the signal-transducing beta subunit of the receptor gp130 in neuronal somata, rather than satellite cells in rat dorsal root ganglia. Together, the results suggest that IL-6-sIL-6R acts directly on sensory neurons. It increases their susceptibility to noxious heat via the gp130/Jak/PKCdelta signalling pathway.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Benzopyrans/pharmacology
- Calcium/metabolism
- Cells, Cultured
- Cyclooxygenase Inhibitors/pharmacology
- Cytokine Receptor gp130
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiology
- Hot Temperature/adverse effects
- In Situ Hybridization
- Indoles/pharmacology
- Indomethacin/pharmacology
- Interleukin-6/genetics
- Interleukin-6/pharmacology
- Janus Kinase 1
- Maleimides/pharmacology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C-delta
- Protein-Tyrosine Kinases/antagonists & inhibitors
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/metabolism
- Recombinant Fusion Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Sensory Thresholds/drug effects
- Signal Transduction/drug effects
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- O Obreja
- Institut für Physiologie und Experimentelle Pathophysiologie, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pearson RJ, Carroll SL. ErbB transmembrane tyrosine kinase receptors are expressed by sensory and motor neurons projecting into sciatic nerve. J Histochem Cytochem 2004; 52:1299-311. [PMID: 15385576 DOI: 10.1177/002215540405201006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adult spinal cord motor and dorsal root ganglion (DRG) sensory neurons express multiple neuregulin-1 (NRG-1) isoforms that act as axon-associated factors promoting neuromuscular junction formation and Schwann cell proliferation and differentiation. NRG-1 isoforms are also expressed by muscle and Schwann cells, suggesting that motor and sensory neurons are themselves acted on by NRG-1 isoforms produced by their peripheral targets. To test this hypothesis, we examined the expression of the NRG-1 receptor subunits erbB2, erbB3, and erbB4 in rat lumbar DRG and spinal cord. All three erbB receptors are expressed in these tissues. Sciatic nerve transection, an injury that induces Schwann cell expression of NRG-1, alters erbB expression in DRG and cord. Virtually all DRG neurons are erbB2- and erbB3-immunoreactive, with erbB4 also detectable in many neurons. In spinal cord white matter, erbB2 and erbB4 antibodies produce dense punctate staining, whereas the erbB3 antibody primarily labels glial cell bodies. Spinal cord dorsal and ventral horn neurons, including alpha-motor neurons, exhibit erbB2, erbB3, and erbB4 immunoreactivity. Spinal cord ventral horn also contains a population of small erbB3+/S100beta+/GFAP- cells (GFAP-negative astrocytes or oligodendrocytes). We conclude that sensory and motor neurons projecting into sciatic nerve express multiple erbB receptors and are potentially NRG-1 responsive.
Collapse
Affiliation(s)
- Richard J Pearson
- Department of Pathology, University of Alabama at Birmingham, 1720 Seventh Avenue South, SC843, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
50
|
Flatters SJL, Fox AJ, Dickenson AH. Nerve injury alters the effects of interleukin-6 on nociceptive transmission in peripheral afferents. Eur J Pharmacol 2004; 484:183-91. [PMID: 14744602 DOI: 10.1016/j.ejphar.2003.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin-6 (IL-6) is markedly upregulated in the peripheral and central nervous systems following nerve injury; however, the functional effects of this are unclear. This study investigates the effect of peripheral interleukin-6 on nociceptive transmission in naive and neuropathic states. Using an in vitro rat skin-nerve preparation, 50 ng interleukin-6 inhibited responses of single nociceptive fibers to noxious heat. A 20-ng sample of interleukin-6 only inhibited heat responses in the presence of soluble interleukin-6 receptors. To examine in vivo effects of peripheral interleukin-6, extracellular recordings from dorsal horn neurons were made in anaesthetised naive, sham-operated and neuropathic (spinal nerve ligated) rats. Peripheral interleukin-6 (40-100 ng) markedly inhibited all naturally evoked neuronal responses in naive rats, yet only neuronal responses to heat in neuropathic rats. Behaviourally, intraplantar administration of interleukin-6 (0.01-1 microg) elicited ipsilateral thermal hypoalgesia in naive rats. Thus, interleukin-6 inhibits normal peripheral nociceptive transmission, yet such anti-nociceptive effects are attenuated following nerve injury in a modality-specific manner.
Collapse
Affiliation(s)
- Sarah J L Flatters
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|