1
|
Weis SN, Souza JMF, Hoppe JB, Firmino M, Auer M, Ataii NN, da Silva LA, Gaelzer MM, Klein CP, Mól AR, de Lima CMR, Souza DO, Salbego CG, Ricart CAO, Fontes W, de Sousa MV. In-depth quantitative proteomic characterization of organotypic hippocampal slice culture reveals sex-specific differences in biochemical pathways. Sci Rep 2021; 11:2560. [PMID: 33510253 PMCID: PMC7844295 DOI: 10.1038/s41598-021-82016-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Sex differences in the brain of mammals range from neuroarchitecture through cognition to cellular metabolism. The hippocampus, a structure mostly associated with learning and memory, presents high vulnerability to neurodegeneration and aging. Therefore, we explored basal sex-related differences in the proteome of organotypic hippocampal slice culture, a major in vitro model for studying the cellular and molecular mechanisms related to neurodegenerative disorders. Results suggest a greater prevalence of astrocytic metabolism in females and significant neuronal metabolism in males. The preference for glucose use in glycolysis, pentose phosphate pathway and glycogen metabolism in females and high abundance of mitochondrial respiration subunits in males support this idea. An overall upregulation of lipid metabolism was observed in females. Upregulation of proteins responsible for neuronal glutamate and GABA synthesis, along with synaptic associated proteins, were observed in males. In general, the significant spectrum of pathways known to predominate in neurons or astrocytes, together with the well-known neuronal and glial markers observed, revealed sex-specific metabolic differences in the hippocampus. TEM qualitative analysis might indicate a greater presence of mitochondria at CA1 synapses in females. These findings are crucial to a better understanding of how sex chromosomes can influence the physiology of cultured hippocampal slices and allow us to gain insights into distinct responses of males and females on neurological diseases that present a sex-biased incidence.
Collapse
Affiliation(s)
- Simone Nardin Weis
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, 70910-900, Brazil.
| | - Jaques Miranda F Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Juliana Bender Hoppe
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Marina Firmino
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS Donner, Berkeley, CA, 94720, USA
| | - Nassim N Ataii
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS Donner, Berkeley, CA, 94720, USA
| | - Leonardo Assis da Silva
- Laboratory of Electron Microscopy, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | | | - Caroline Peres Klein
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Alan R Mól
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Consuelo M R de Lima
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Diogo Onofre Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Christianne G Salbego
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Carlos André O Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, 70910-900, Brazil
| |
Collapse
|
2
|
Puthiyedth N, Riveros C, Berretta R, Moscato P. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions. PLoS One 2016; 11:e0152342. [PMID: 27050411 PMCID: PMC4822961 DOI: 10.1371/journal.pone.0152342] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/11/2016] [Indexed: 11/28/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we identified the presence of 23 non-coding features, including four miRNA precursors (miR-7, miR570, miR-1229 and miR-6821), dysregulated across the brain regions. Furthermore, we compared our results with two popular meta-analysis methods RankProd and GeneMeta to validate our findings and performed a sensitivity analysis by removing one dataset at a time to assess the robustness of our results. These new findings may provide new insights into the disease mechanisms and thus make a significant contribution in the near future towards understanding, prevention and cure of AD.
Collapse
Affiliation(s)
- Nisha Puthiyedth
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Carlos Riveros
- Clinical Research Design, Information Technology and Statistics Suport Unit, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| | - Regina Berretta
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Pablo Moscato
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
- * E-mail:
| |
Collapse
|
3
|
Chen Y, Pan C, Xuan A, Xu L, Bao G, Liu F, Fang J, Long D. Treatment Efficacy of NGF Nanoparticles Combining Neural Stem Cell Transplantation on Alzheimer's Disease Model Rats. Med Sci Monit 2015; 21:3608-15. [PMID: 26590375 PMCID: PMC4662090 DOI: 10.12659/msm.894567] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. It causes progressive brain disorder involving loss of normal memory and thinking skills. The transplantation of neural stem cells (NSCs) has been reported to improve learning and memory function of AD rats, and protects basal forebrain cholinergic neurons. Nerve growth factor - poly (ethylene glycol) - poly (lactic-co-glycolic acid)-nanoparticles (NGF-PEG-PLGA-NPs) can facilitate the differentiation of NSCs in vitro. This study thus investigated the treatment efficacy of NGF-PEG-PLGA-NPs combining NSC transplantation in AD model rats. MATERIAL AND METHODS AD rats were prepared by injection of 192IgG-saporin into their lateral ventricles. Embryonic rat NSCs were separated, induced by NGF-PEG-PLGA-NPs in vitro, and were transplanted. The Morris water-maze test was used to evaluate learning and memory function, followed by immunohistochemical staining for basal forebrain cholinergic neurons, hippocampal synaptophysin, and acetylcholine esterase (AchE) fibers. RESULTS Rats in the combined treatment group had significantly improved spatial learning ability compared to AD model animals (p<0.05). The number of basal forebrain cholinergic neurons, hippocampal synaptophysin, and AchE-positive fibers were all significantly larger than in the NSC-transplantation group, with no difference from control animals. CONCLUSIONS NGF-PEG-PLGA-NPs plus NSC transplantation can significantly improve learning and memory functions of AD rats, replenish basal forebrain cholinergic neurons, and help form hippocampal synapses and AchE-positive fibers. These findings may offer practical support for and insight into treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yan Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Cuihuan Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Aiguo Xuan
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Liping Xu
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Guoqing Bao
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Feiei Liu
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jie Fang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Dahong Long
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
4
|
Mamczur P, Borsuk B, Paszko J, Sas Z, Mozrzymas J, Wiśniewski JR, Gizak A, Rakus D. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes. Glia 2014; 63:328-40. [DOI: 10.1002/glia.22753] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Piotr Mamczur
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Borys Borsuk
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Jadwiga Paszko
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Zuzanna Sas
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Jerzy Mozrzymas
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
- Laboratory of Neuroscience; Department of Biophysics; Wrocław Medical University, Chałubińskiego; 3, 50-368 Wrocław Poland
| | - Jacek R. Wiśniewski
- Department of Proteomics and Signal Transduction; Max-Planck-Institute of Biochemistry; Am Klopferspitz 18 D-82152 Martinsried Germany
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Dariusz Rakus
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| |
Collapse
|
5
|
Herrmann P, Druckrey-Fiskaaen C, Kouznetsova E, Heinitz K, Bigl M, Cotman SL, Schliebs R. Developmental impairments of select neurotransmitter systems in brains of Cln3(Deltaex7/8) knock-in mice, an animal model of juvenile neuronal ceroid lipofuscinosis. J Neurosci Res 2008; 86:1857-70. [PMID: 18265413 DOI: 10.1002/jnr.21630] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuronal ceroidlipofuscinoses (NCL) are a group of neurodegenerative disorders and are the most common lysosomal storage diseases of infancy and childhood. Juvenile NCL is caused by CLN3 mutation, producing retinal degeneration, uncontrollable seizures, cognitive and motor decline, and early death before the age of 30 years. To study the pathogenetic mechanisms of the disease, Cln3 knock-in mice (Cln3(Deltaex7/8)) have been generated, which reproduce the 1.02-kb deletion in the CLN3 gene observed in more than 85% of juvenile NCL patients. To characterize the impact of the common Cln3 mutation on development of autofluorescent storage material, gliosis, glucose metabolism, oxidative stress, and transmitter receptors during postnatal brain maturation, brain tissue of Cln3(Deltaex7/8) mice at the ages of 3, 4, 5, 6, 9, and 19 months was subjected to immunocytochemistry to label gliotic markers and nitric oxide synthases; photometric assays to assess enzyme activities of glycolysis and antioxidative defense systems; and level of reactive nitrogen species as well as quantitative receptor autoradiography to detect select cholinergic, glutamatergic, and GABAergic receptor subtypes. The developmental increase in cerebral cortical autofluorescent lipofuscin-like deposition is accompanied by a significant astro- and microgliosis, increased activities of lactate dehydrogenase and phosphofructokinase, decreased level of glutathione peroxidase, enhanced amount of reactive nitrogen species, and lowered binding levels of N-methyl-D-aspartate- and M1-muscarinic acetylcholine receptors in select brain regions but hardly in GABA(A) receptor sites compared with wild-type mice. Detailed elucidation of the sequence of pathological events during postnatal development highlights new potential strategies for symptomatic treatment of the disease.
Collapse
Affiliation(s)
- Philipp Herrmann
- Paul-Flechsig-Institut for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Bigl M, Jandrig B, Horn LC, Eschrich K. Aberrant methylation of human L- and M-fructose 1,6-bisphosphatase genes in cancer. Biochem Biophys Res Commun 2008; 377:720-724. [PMID: 18938139 DOI: 10.1016/j.bbrc.2008.10.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/12/2008] [Indexed: 12/11/2022]
Abstract
A possible epigenetic regulation of the two isoenzymes of fructose 1,6-bisphosphatase (FBPase) was studied in liver, muscle, mamma, breast cancer and in different cancer cell lines. Results obtained after bisulfite sequencing revealed a different CpG methylation of both promoters in liver, muscle and breast tissue which is putatively involved in the cell-type specific gene expression of the two enzymes. In tumor cell lines, demethylation with 5-aza-deoxycytidine activated the expression of both isoenzymes. Additional inhibition of histone deacetylase with trichostatin A further increased FBPase mRNA concentrations. Since cancers typically have an abnormal energy metabolism and exhibit a low gluconeogenic phenotype, it was studied whether promoter methylation contributes to the decreased expression of FBPase in breast cancer. When non-malignant and malignant tissue samples from the same patient were compared a correlation between an increase of FBPase promoter methylation and a decrease of FBPase mRNA levels was observed.
Collapse
Affiliation(s)
- Marina Bigl
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | | | - Lars-Christian Horn
- Institute of Pathology, Division of Gynecologic and Perinatal Pathology, University of Leipzig, Leipzig, Germany
| | - Klaus Eschrich
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany.
| |
Collapse
|
7
|
Yehia MAH, El-Banna SG, Okab AB. Diazinon toxicity affects histophysiological and biochemical parameters in rabbits. ACTA ACUST UNITED AC 2007; 59:215-25. [PMID: 17933502 DOI: 10.1016/j.etp.2007.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 09/18/2007] [Indexed: 11/29/2022]
Abstract
Diazinon is a widely used pesticide in agriculture. So, the current work aimed to investigate the effects of diazinon exposure on some physiological and biochemical parameters, as well as, histopathological changes and histochemical acetyl-cholinesterase activity (AChE). The red Baladi rabbits were dipped into water (Control Group), diazinon at low concentrations of 0.6 mg diazinon low concentration (DLC) or high concentration of 3mg diazinon high concentration (DHC) dissolved in 1l of water for 10s. Treatment was repeated after 10 days and animals were sacrificed between 0 and 21 days after the second treatment. Blood analysis revealed that Red blood cells (RBC's), hemoglobin (Hb) and plasma total protein (TP) were significantly decreased in both diazinon concentrations (P<0.01), (P<0.05), (P<0.01) respectively. Cholesterol and microsomal protein were increased (P<0.01), while, liver/ body weight and cytochrome P-450 were decreased in both concentrations (P<0.01). Also there was a highly significant effect of concentration X day interaction on all parameters (P<0.01). Histopathological changes of liver, kidney and brain were observed after DHC dipping. Glycogen content was decreased in liver and increased in kidney Bowman's capsule. Furthermore, AChE activity was inhibited in brain tissue, decreased in liver cells, but gradually increased in kidney glomerular cells. Therefore, kidney and brain were highly affected by diazinon exposure compared with the liver. Exposure of animals to diazinon caused extensive changes in physiological, biochemical, and histopathological parameters as well as histochemical AChE. So, contact exposure of diazinon leads to negative response on animal health.
Collapse
Affiliation(s)
- Mona A H Yehia
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alex. University, 165 Horria Avenue, El-Hadra, Alexandria, Egypt.
| | | | | |
Collapse
|
8
|
Dimayuga FO, Reed JL, Carnero GA, Wang C, Dimayuga ER, Dimayuga VM, Perger A, Wilson ME, Keller JN, Bruce-Keller AJ. Estrogen and brain inflammation: effects on microglial expression of MHC, costimulatory molecules and cytokines. J Neuroimmunol 2005; 161:123-36. [PMID: 15748951 DOI: 10.1016/j.jneuroim.2004.12.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 11/29/2004] [Accepted: 12/20/2004] [Indexed: 02/07/2023]
Abstract
To model the effects of estrogen on adaptive immunity in the brain, we examined the effects of 17beta-estradiol on microglial parameters related to antigen presentation and T cell activation. Specifically, the effects of 17beta-estradiol on basal and LPS-induced surface staining of Class I and II MHC, as well as CD40, CD80, CD86, CD152, CD28, CD8, CD11b, Fas, FasL, and also ERalpha and ERbeta, were examined in N9 microglial cells. Additionally, the effects of 17beta-estradiol on basal and LPS-induced release of cytokines (TNF-alpha, IFN-gamma, IL-2, IL-4, and IL-10) were determined. Data indicate that estrogen increases IL-10 while decreasing TNFalpha and IFNgamma release from resting and LPS-stimulated N9 cells. Additionally, LPS-induced surface staining of MHC Class I, CD40, and CD86 was significantly attenuated by estrogen pretreatment. The basal percentage of cells positive for MHC Class I and II, CD40, and CD152, Fas, and FasL was significantly decreased by estrogen exposure. However, CD8, CD86, CD11b, and CD28 were unaffected by estrogen, and CD80 cell surface staining significantly increased following estrogen exposure. Taken together, these data indicate that estrogen can significantly decrease components of adaptive immunity in microglial cells, and highlight the multi-faceted regulatory effects of estrogen on microglial parameters related to antigen presentation and T cell interaction.
Collapse
Affiliation(s)
- Filomena O Dimayuga
- Department of Anatomy and Neurobiology, University of Kentucky, MN 222 Chandler Medical Center, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen Q, Thorpe J, Ding Q, El-Amouri IS, Keller JN. Proteasome synthesis and assembly are required for survival during stationary phase. Free Radic Biol Med 2004; 37:859-68. [PMID: 15304258 DOI: 10.1016/j.freeradbiomed.2004.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/06/2004] [Accepted: 05/21/2004] [Indexed: 11/19/2022]
Abstract
We examined the alterations in 20S proteasome homeostasis, protein oxidation, and cell viability that occur during the stationary phase or chronological model of yeast aging. Data in this report demonstrate that proteasome subunit expression is increased, proteasome composition is altered, and levels of individual proteasome proteolytic activities are elevated during stationary phase-induced aging in Saccharomyces cerevisiae. Despite such alterations, a progressive loss of proteasome-mediated protein degradation and a significant increase in protein oxidation were observed in cells maintained under stationary phase conditions. Deletion of UMP1, a gene necessary for 20S proteasome biogenesis, had no effect on cellular viability under normal growth conditions, but impaired the ability of cells to survive under stationary phase conditions. During stationary phase, the levels of oxidized protein increased more rapidly and to higher levels in the mutant lacking UMP1 than in the wild-type cells. Taken together, these data implicate a role for proteasome synthesis and altered 20S proteasome composition in maintaining viability during stationary phase, and demonstrate that even with these modifications a gradual loss of proteasome-mediated protein degradation occurs during stationary phase-induced aging. These data also suggest a role for impaired proteasome-mediated protein degradation in increased protein oxidation and cell death observed during the aging of eukaryotic cells.
Collapse
Affiliation(s)
- Qinghua Chen
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
10
|
Tomaszewicz M, Rossner S, Schliebs R, Cwikowska J, Szutowicz A. Changes in cortical acetyl-CoA metabolism after selective basal forebrain cholinergic degeneration by 192IgG-saporin. J Neurochem 2003; 87:318-24. [PMID: 14511109 DOI: 10.1046/j.1471-4159.2003.01983.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to reveal whether reduced cortical cholinergic input affects the acetyl-CoA metabolism in cholinoceptive cortical target regions which may play a causative role for the deficits in cerebral glucose metabolism observed in Alzheimer's disease. The effect of cortical cholinergic denervation produced by a single intracerebroventricular application of the cholinergic immunotoxin 192IgG-saporin, on activities of pyruvate dehydrogenase and adenosine triphosphate (ATP)-citrate lyase as well as on the level of synaptoplasmic and mitochondrial acetyl-CoA and acetylcholine release in cortical target regions was studied. Cholinergic lesion produced 83%, 72% and 32% decreases in the activities of choline acetyltransferase, acetylcholinesterase and ATP-citrate lyase in nerve terminals isolated from rat brain cortex, respectively, but no change in pyruvate dehydrogenase activity. Spontaneous and Ca2+-evoked acetylcholine release from synaptosomes was inhibited by 76% and 73%, respectively, following immunolesion. The lesion-induced 39% decrease of acetyl-CoA level in synaptosomal mitochondria was accompanied by 74% increase in synaptoplasmic fraction. Levels of acetyl-CoA and CoASH assayed in fraction of whole brain mitochondria from lesioned cortex were 61% and 48%, respectively, higher as compared to controls. The data suggest a preferential localization of ATP-citrate lyase in cholinergic nerve terminals, where it may contribute to the transport of acetyl-CoA from the mitochondrial to the cytoplasmic compartment. They provide evidence on differential distribution of acetyl-CoA in subcellular compartments of cholinergic and non-cholinergic nerve terminals. There are also indications that cholinergic activity affects acetyl-CoA level and its intracellular distribution in glial and other non-cholinergic cortical cells.
Collapse
Affiliation(s)
- Maria Tomaszewicz
- Department of Laboratory Medicine, Medical University of Gdañsk, Poland
| | | | | | | | | |
Collapse
|
11
|
Ding Q, Reinacker K, Dimayuga E, Nukala V, Drake J, Butterfield DA, Dunn JC, Martin S, Bruce-Keller AJ, Keller JN. Role of the proteasome in protein oxidation and neural viability following low-level oxidative stress. FEBS Lett 2003; 546:228-32. [PMID: 12832045 DOI: 10.1016/s0014-5793(03)00582-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous studies suggest that proteasome inhibition may play a causal role in mediating the increased levels of protein oxidation and neuron death observed in conditions associated with oxidative stress. In the present study we demonstrate that administration of non-toxic levels of oxidative stress does not result in impairment of 20S/26S proteasome activity, and actually increases the expression of specific proteasome subunits. Non-toxic levels of oxidative stress were observed to elevate the amount of protein oxidation in the presence of preserved proteasomal function, suggesting that proteasome inhibition may not mediate increases in protein oxidation following low-level oxidative stress. Preserving basal proteasome function appears to be critical to preventing the neurotoxicity of low-level oxidative stress, based on the ability of proteasome inhibitor treatment to exacerbate oxidative stress toxicity. Taken together, these data indicate that maintaining neural proteasome function may be critical to preventing neurotoxicity, but not the increase in protein oxidation, following low-level oxidative stress.
Collapse
Affiliation(s)
- Qunxing Ding
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|