1
|
López-Erauskin J, Bravo-Hernandez M, Presa M, Baughn MW, Melamed Z, Beccari MS, Agra de Almeida Quadros AR, Arnold-Garcia O, Zuberi A, Ling K, Platoshyn O, Niño-Jara E, Ndayambaje IS, McAlonis-Downes M, Cabrera L, Artates JW, Ryan J, Hermann A, Ravits J, Bennett CF, Jafar-Nejad P, Rigo F, Marsala M, Lutz CM, Cleveland DW, Lagier-Tourenne C. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci 2024; 27:34-47. [PMID: 37996528 PMCID: PMC10842032 DOI: 10.1038/s41593-023-01496-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Jone López-Erauskin
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Mariana Bravo-Hernandez
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | | | - Michael W Baughn
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ze'ev Melamed
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melinda S Beccari
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ana Rita Agra de Almeida Quadros
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olatz Arnold-Garcia
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | | | - Karen Ling
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Elkin Niño-Jara
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - I Sandra Ndayambaje
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Larissa Cabrera
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Jonathan W Artates
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Anita Hermann
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Martin Marsala
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Don W Cleveland
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
2
|
Lee Y, Yeo IS, Kim N, Lee DK, Kim KT, Yoon J, Yi J, Hong YB, Choi BO, Kosodo Y, Kim D, Park J, Song MR. Transcriptional control of motor pool formation and motor circuit connectivity by the LIM-HD protein Isl2. eLife 2023; 12:e84596. [PMID: 37869988 PMCID: PMC10637776 DOI: 10.7554/elife.84596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
The fidelity of motor control requires the precise positional arrangement of motor pools and the establishment of synaptic connections between them. During neural development in the spinal cord, motor nerves project to specific target muscles and receive proprioceptive input from these muscles via the sensorimotor circuit. LIM-homeodomain transcription factors are known to play a crucial role in successively restricting specific motor neuronal fates. However, their exact contribution to limb-based motor pools and locomotor circuits has not been fully understood. To address this, we conducted an investigation into the role of Isl2, a LIM-homeodomain transcription factor, in motor pool organization. We found that deletion of Isl2 led to the dispersion of motor pools, primarily affecting the median motor column (MMC) and lateral motor column (LMC) populations. Additionally, hindlimb motor pools lacked Etv4 expression, and we observed reduced terminal axon branching and disorganized neuromuscular junctions in Isl2-deficient mice. Furthermore, we performed transcriptomic analysis on the spinal cords of Isl2-deficient mice and identified a variety of downregulated genes associated with motor neuron (MN) differentiation, axon development, and synapse organization in hindlimb motor pools. As a consequence of these disruptions, sensorimotor connectivity and hindlimb locomotion were impaired in Isl2-deficient mice. Taken together, our findings highlight the critical role of Isl2 in organizing motor pool position and sensorimotor circuits in hindlimb motor pools. This research provides valuable insights into the molecular mechanisms governing motor control and its potential implications for understanding motor-related disorders in humans.
Collapse
Affiliation(s)
- Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - In Seo Yeo
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Namhee Kim
- Fermentation Regulation Technology Research Group, World Institute of KimchiGwangjuRepublic of Korea
| | - Dong-Keun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Kyung-Tai Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of ToxicologyJeongeup-siRepublic of Korea
| | - Jiyoung Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Young Bin Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusanRepublic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Yoichi Kosodo
- Korea Brain Research InstituteDaeguRepublic of Korea
| | - Daesoo Kim
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| |
Collapse
|
3
|
Role of the Intermediate Filament Protein Peripherin in Health and Disease. Int J Mol Sci 2022; 23:ijms232315416. [PMID: 36499746 PMCID: PMC9740141 DOI: 10.3390/ijms232315416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Intermediate filaments are the most heterogeneous class among cytoskeletal elements. While some of them have been well-characterized, little is known about peripherin. Peripherin is a class III intermediate filament protein with a specific expression in the peripheral nervous system. Epigenetic modifications are involved in this cell-type-specific expression. Peripherin has important roles in neurite outgrowth and stability, axonal transport, and axonal myelination. Moreover, peripherin interacts with proteins involved in vesicular trafficking, signal transduction, DNA/RNA processing, protein folding, and mitochondrial metabolism, suggesting a role in all these processes. This review collects information regarding peripherin gene regulation, post-translational modifications, and functions and its involvement in the onset of a number of diseases.
Collapse
|
4
|
Multiple roles for the cytoskeleton in ALS. Exp Neurol 2022; 355:114143. [PMID: 35714755 PMCID: PMC10163623 DOI: 10.1016/j.expneurol.2022.114143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by more than sixty genes identified through classic linkage analysis and new sequencing methods. Yet no clear mechanism of onset, cure, or effective treatment is known. Popular discourse classifies the proteins encoded from ALS-related genes into four disrupted processes: proteostasis, mitochondrial function and ROS, nucleic acid regulation, and cytoskeletal dynamics. Surprisingly, the mechanisms detailing the contribution of the neuronal cytoskeletal in ALS are the least explored, despite involvement in these cell processes. Eight genes directly regulate properties of cytoskeleton function and are essential for the health and survival of motor neurons, including: TUBA4A, SPAST, KIF5A, DCTN1, NF, PRPH, ALS2, and PFN1. Here we review the properties and studies exploring the contribution of each of these genes to ALS.
Collapse
|
5
|
Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain 2020; 143:1975-1998. [PMID: 32408345 DOI: 10.1093/brain/awaa098] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Arie R Gafson
- Department of Brain Sciences, Imperial College, London, UK
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, Montpellier University, Montpellier, France
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Heather D Durham
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada.,CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.,Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Henrik Zetterberg
- University College London Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute at Imperial College, London
| |
Collapse
|
6
|
Castellanos-Montiel MJ, Chaineau M, Durcan TM. The Neglected Genes of ALS: Cytoskeletal Dynamics Impact Synaptic Degeneration in ALS. Front Cell Neurosci 2020; 14:594975. [PMID: 33281562 PMCID: PMC7691654 DOI: 10.3389/fncel.2020.594975] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that selectively affects motor neurons (MNs) of the cortex, brainstem, and spinal cord. Several genes have been linked to both familial (fALS) and sporadic (sALS) cases of ALS. Among all the ALS-related genes, a group of genes known to directly affect cytoskeletal dynamics (ALS2, DCTN1, PFN1, KIF5A, NF-L, NF-H, PRPH, SPAST, and TUBA4A) is of high importance for MN health and survival, considering that MNs are large polarized cells with axons that can reach up to 1 m in length. In particular, cytoskeletal dynamics facilitate the transport of organelles and molecules across the long axonal distances within the cell, playing a key role in synapse maintenance. The majority of ALS-related genes affecting cytoskeletal dynamics were identified within the past two decades, making it a new area to explore for ALS. The purpose of this review is to provide insights into ALS-associated cytoskeletal genes and outline how recent studies have pointed towards novel pathways that might be impacted in ALS. Further studies making use of extensive analysis models to look for true hits, the newest technologies such as CRIPSR/Cas9, human induced pluripotent stem cells (iPSCs) and axon sequencing, as well as the development of more transgenic animal models could potentially help to: differentiate the variants that truly act as a primary cause of the disease from the ones that act as risk factors or disease modifiers, identify potential interactions between two or more ALS-related genes in disease onset and progression and increase our understanding of the molecular mechanisms leading to cytoskeletal defects. Altogether, this information will give us a hint on the real contribution of the cytoskeletal ALS-related genes during this lethal disease.
Collapse
Affiliation(s)
| | - Mathilde Chaineau
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Kounakis K, Tavernarakis N. The Cytoskeleton as a Modulator of Aging and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:227-245. [PMID: 31493230 DOI: 10.1007/978-3-030-25650-0_12] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cytoskeleton consists of filamentous protein polymers that form organized structures, contributing to a multitude of cell life aspects. It includes three types of polymers: the actin microfilaments, the microtubules and the intermediate filaments. Decades of research have implicated the cytoskeleton in processes that regulate cellular and organismal aging, as well as neurodegeneration associated with injury or neurodegenerative disease, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, or Charcot Marie Tooth disease. Here, we provide a brief overview of cytoskeletal structure and function, and discuss experimental evidence linking cytoskeletal function and dynamics with aging and neurodegeneration.
Collapse
Affiliation(s)
- Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece. .,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.
| |
Collapse
|
8
|
Kamiya K, Furuya T, Hashimoto M, Mannoji C, Inada T, Ota M, Maki S, Ijima Y, Saito J, Kitamura M, Ohtori S, Orita S, Inage K, Yamazaki M, Koda M. Exploration of Spinal Cord Aging-Related Proteins Using a Proteomics Approach. J Exp Neurosci 2017. [PMID: 28634429 PMCID: PMC5467915 DOI: 10.1177/1179069517713019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
How aging affects the spinal cord at a molecular level is unclear. The aim of this study was to explore spinal cord aging–related proteins that may be involved in pathological mechanisms of age-related changes in the spinal cord. Spinal cords of 2-year-old and 8-week-old female Sprague-Dawley rats were dissected from the animals. Protein samples were subjected to 2-dimentional polyacrylamide gel electrophoresis followed by mass spectrometry. Screened proteins were further investigated with immunohistochemistry and Western blotting. Among the screened proteins, we selected α-crystallin B-subunit (αB-crystallin) and peripherin for further investigation because these proteins were previously reported to be related to central nervous system pathologies. Immunohistochemistry and Western blotting revealed significant upregulation of αB-crystallin and peripherin expression in aged rat spinal cord. Further exploration is needed to elucidate the precise mechanism and potential role of these upregulated proteins in spinal cord aging processes.
Collapse
Affiliation(s)
- Koshiro Kamiya
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeo Furuya
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Hashimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chikato Mannoji
- Department of Orthopedic Surgery, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Taigo Inada
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mitsutoshi Ota
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Maki
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasushi Ijima
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junya Saito
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mitsuhiro Kitamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Yamazaki
- Department of Orthopedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Masao Koda
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Zhao J, Liem RKH. α-Internexin and Peripherin: Expression, Assembly, Functions, and Roles in Disease. Methods Enzymol 2015; 568:477-507. [PMID: 26795481 DOI: 10.1016/bs.mie.2015.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
α-Internexin and peripherin are neuronal-specific intermediate filament (IF) proteins. α-Internexin is a type IV IF protein like the neurofilament triplet proteins (NFTPs, which include neurofilament light chain, neurofilament medium chain, and neurofilament high chain) that are generally considered to be the primary components of the neuronal IFs. However, α-internexin is often expressed together with the NFTPs and has been proposed as the fourth subunit of the neurofilaments in the central nervous system. α-Internexin is also expressed earlier in the development than the NFTPs and is a maker for neuronal IF inclusion disease. α-Internexin can self-polymerize in vitro and in transfected cells and it is present in the absence of the NFTP in development and in granule cells in the cerebellum. In contrast, peripherin is a type III IF protein. Like α-internexin, peripherin is specific to the nervous system, but it is expressed predominantly in the peripheral nervous system (PNS). Peripherin can also self-assemble both in vitro and in transfected cells. It is as abundant as the NFTPs in the sciatic nerve and can be considered a fourth subunit of the neurofilaments in the PNS. Peripherin has multiple isoforms that arise from intron retention, cryptic intron receptor site or alternative translation initiation. The functional significance of these isoforms is not clear. Peripherin is a major component found in inclusions of patients with amyotrophic lateral sclerosis (ALS) and peripherin expression is upregulated in ALS patients.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, USA
| | - Ronald K H Liem
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, USA.
| |
Collapse
|
10
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
11
|
Adebola AA, Di Castri T, He CZ, Salvatierra LA, Zhao J, Brown K, Lin CS, Worman HJ, Liem RKH. Neurofilament light polypeptide gene N98S mutation in mice leads to neurofilament network abnormalities and a Charcot-Marie-Tooth Type 2E phenotype. Hum Mol Genet 2014; 24:2163-74. [PMID: 25552649 DOI: 10.1093/hmg/ddu736] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is the most commonly inherited neurological disorder with a prevalence of 1 in 2500 people worldwide. Patients suffer from degeneration of the peripheral nerves that control sensory information of the foot/leg and hand/arm. Multiple mutations in the neurofilament light polypeptide gene, NEFL, cause CMT2E. Previous studies in transfected cells showed that expression of disease-associated neurofilament light chain variants results in abnormal intermediate filament networks associated with defects in axonal transport. We have now generated knock-in mice with two different point mutations in Nefl: P8R that has been reported in multiple families with variable age of onset and N98S that has been described as an early-onset, sporadic mutation in multiple individuals. Nefl(P8R/+) and Nefl(P8R/P8R) mice were indistinguishable from Nefl(+/+) in terms of behavioral phenotype. In contrast, Nefl(N98S/+) mice had a noticeable tremor, and most animals showed a hindlimb clasping phenotype. Immunohistochemical analysis revealed multiple inclusions in the cell bodies and proximal axons of spinal cord neurons, disorganized processes in the cerebellum and abnormal processes in the cerebral cortex and pons. Abnormal processes were observed as early as post-natal day 7. Electron microscopic analysis of sciatic nerves showed a reduction in the number of neurofilaments, an increase in the number of microtubules and a decrease in the axonal diameters. The Nefl(N98S/+) mice provide an excellent model to study the pathogenesis of CMT2E and should prove useful for testing potential therapies.
Collapse
Affiliation(s)
- Adijat A Adebola
- Department of Pathology and Cell Biology, Taub Institute for Research in Alzheimer's Disease and the Aging Brain and
| | | | | | | | - Jian Zhao
- Department of Pathology and Cell Biology
| | | | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Taub Institute for Research in Alzheimer's Disease and the Aging Brain and
| | - Howard J Worman
- Department of Pathology and Cell Biology, Department of Medicine, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Ronald K H Liem
- Department of Pathology and Cell Biology, Taub Institute for Research in Alzheimer's Disease and the Aging Brain and
| |
Collapse
|
12
|
The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. MEMBRANES 2014; 4:642-77. [PMID: 25295627 PMCID: PMC4289860 DOI: 10.3390/membranes4040642] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.
Collapse
|
13
|
McLean JR, Smith GA, Rocha EM, Osborn TM, Dib S, Hayes MA, Beagan JA, Brown TB, Lawson TFS, Hallett PJ, Robertson J, Isacson O. ALS-associated peripherin spliced transcripts form distinct protein inclusions that are neuroprotective against oxidative stress. Exp Neurol 2014; 261:217-29. [PMID: 24907400 DOI: 10.1016/j.expneurol.2014.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/26/2014] [Indexed: 01/27/2023]
Abstract
Intracellular proteinaceous inclusions are well-documented hallmarks of the fatal motor neuron disorder amyotrophic lateral sclerosis (ALS). The pathological significance of these inclusions remains unknown. Peripherin, a type III intermediate filament protein, is upregulated in ALS and identified as a component within different types of ALS inclusions. The formation of these inclusions may be associated with abnormal peripherin splicing, whereby an increase in mRNA retaining introns 3 and 4 (Per-3,4) leads to the generation of an aggregation-prone isoform, Per-28. During the course of evaluating peripherin filament assembly in SW-13 cells, we identified that expression of both Per-3,4 and Per-28 transcripts formed inclusions with categorically distinct morphology: Per-3,4 was associated with cytoplasmic condensed/bundled filaments, small inclusions (<10μM), or large inclusions (≥10μM); while Per-28 was associated with punctate inclusions in the nucleus and/or cytoplasm. We found temporal and spatial changes in inclusion morphology between 12 and 48h post-transfected cells, which were accompanied by unique immunofluorescent and biochemical changes of other ALS-relevant proteins, including TDP-43 and ubiquitin. Despite mild cytotoxicity associated with peripherin transfection, Per-3,4 and Per-28 expression increased cell viability during H2O2-mediated oxidative stress in BE(2)-M17 neuroblastoma cells. Taken together, this study shows that ALS-associated peripherin isoforms form dynamic cytoplasmic and intranuclear inclusions, effect changes in local endogenous protein expression, and afford cytoprotection against oxidative stress. These findings may have important relevance to understanding the pathophysiological role of inclusions in ALS.
Collapse
Affiliation(s)
- Jesse R McLean
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Gaynor A Smith
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Emily M Rocha
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Teresia M Osborn
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Samar Dib
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Melissa A Hayes
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jonathan A Beagan
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tana B Brown
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tristan F S Lawson
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
14
|
The effects of bilateral common carotid artery occlusion on expression of peripherin and choline acetyltransferase activity in C57BL/6 mice. Brain Res 2013; 1491:167-75. [DOI: 10.1016/j.brainres.2012.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/02/2012] [Accepted: 11/09/2012] [Indexed: 11/21/2022]
|
15
|
|
16
|
Latapy C, Rioux V, Guitton MJ, Beaulieu JM. Selective deletion of forebrain glycogen synthase kinase 3β reveals a central role in serotonin-sensitive anxiety and social behaviour. Philos Trans R Soc Lond B Biol Sci 2012; 367:2460-74. [PMID: 22826345 PMCID: PMC3405679 DOI: 10.1098/rstb.2012.0094] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Serotonin (5-HT) neurotransmission is thought to underlie mental illnesses, such as bipolar disorder, depression, autism and schizophrenia. Independent studies have indicated that 5-HT or drugs acting on 5-HT neurotransmission regulate the serine/threonine kinase glycogen synthase kinase 3β (GSK3β). Furthermore, GSK3β inhibition rescues behavioural abnormalities in 5-HT-deficient mice with a loss-of-function mutation equivalent to the human variant (R441H) of tryptophan hydroxylase 2. In an effort to define neuroanatomical correlates of GSK3β activity in the regulation of behaviour, we generated CamKIIcre-floxGSK3β mice in which the gsk3b gene is postnatally inactivated in forebrain pyramidal neurons. Behavioural characterization showed that suppression of GSK3β in these brain areas has anxiolytic and pro-social effects. However, while a global reduction of GSK2β expression reduced responsiveness to amphetamine and increased resilience to social defeat, these behavioural effects were not found in CamKIIcre-floxGSK3β mice. These findings demonstrate a dissociation of behavioural effects related to GSK3 inhibition, with forebrain GSK3β being involved in the regulation of anxiety and sociability while social preference, resilience and responsiveness to psychostimulants would involve a function of this kinase in subcortical areas such as the hippocampus and striatum.
Collapse
Affiliation(s)
- Camille Latapy
- Department of Psychiatry and Neuroscience, Laval University, , Quebec City, Quebec, Canada
| | | | | | | |
Collapse
|
17
|
Boutahar N, Wierinckx A, Camdessanche JP, Antoine JC, Reynaud E, Lassabliere F, Lachuer J, Borg J. Differential effect of oxidative or excitotoxic stress on the transcriptional profile of amyotrophic lateral sclerosis-linked mutant SOD1 cultured neurons. J Neurosci Res 2011; 89:1439-50. [PMID: 21647936 DOI: 10.1002/jnr.22672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/17/2011] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal, degenerative disorder of motor neurons. The causes of most cases of ALS are as yet undefined. In a previous study, it was shown that N-methyl-D-aspartate (NMDA) and H(2)O(2) stimuli reduce neuronal survival in cortical neurons in culture (Boutahar et al., 2008). To identify variations in gene expression in response to these neurotoxins in transgenic vs. control cortical neurons cultures, both microarray and RT-PCR analysis were performed. High-density oligonucleotide microarrays showed changes in the expression of about 600 genes involved in protein degradation, neurotrophic factors pathway, cell cycle, inflammation, cytoskeleton, cell adhesion, transcription, or signalling. The most up-regulated genes following H(2)O(2) treatment were involved in cytoskeletal organization and axonal transport, such as ARAP2, KIF17, and DKK2, or in trophic factors pathways, such as insulin-like growth factor-binding protein 4 (IGFBP4), FGF17, and serpin2. The most down-regulated genes were involved in ion transport, such as TRPV1. After NMDA treatment, the most up-regulated genes were involved in protein degradation, such as ubiquitin-conjugating enzyme E2I and cathepsin H, and the most down-regulated genes were involved in ion transport, such as SCN7A. We conclude that these neurotoxins act through different transcriptional inductions, and these changes may reflect an adaptative cellular response to the cellular stress induced by the neurotoxins involved in ALS in the presence of mutant human SOD1.
Collapse
Affiliation(s)
- Nadia Boutahar
- Laboratoire de Neurobiochimie, Université de Lyon, Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Swarup V, Julien JP. ALS pathogenesis: recent insights from genetics and mouse models. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:363-9. [PMID: 20728492 DOI: 10.1016/j.pnpbp.2010.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/15/2010] [Accepted: 08/11/2010] [Indexed: 12/11/2022]
Abstract
For the vast majority of cases of amyotrophic lateral sclerosis (ALS) the etiology remains unknown. After the discovery of missense mutations in the gene coding for the Cu/Zn superoxide dismutase 1 (SOD1) in subsets of familial ALS, several transgenic mouse lines have been generated with various forms of SOD1 mutants overexpressed at different levels. Studies with these mice yielded complex results with multiple targets of damage in disease including mitochondria, proteasomes, and secretory pathways. Many unexpected discoveries were made. For instance, the toxicity of mutant SOD1 seems unrelated to copper-mediated catalysis but rather to formation of misfolded SOD1 species and aggregates. Transgenic studies revealed a potential role of wtSOD1 in exacerbating mutant SOD1-mediated disease. Another key finding came from chimeric mouse studies and from Cre-lox mediated gene deletion experiments which have highlighted the importance of non-neuronal cells in the disease progression. Involvement of cytoskeletal components in ALS pathogenesis is supported by several mouse models of motor neuron disease with neurofilament abnormalities and with genetic defects in microtubule-based transport. Recently, the generation of new animal models of ALS has been made possible with the discovery of ALS-linked mutations in other genes encoding for alsin, dynactin, senataxin, VAPB, TDP-43 and FUS. Following the discovery of mutations in the TARDBP gene linked to ALS, there have been some reports of transgenic mice with high level overexpression of WT or mutant forms of TDP-43 under strong gene promoters. However, these TDP-43 transgenic mice do not exhibit all pathological features the human ALS disease. Here, we will describe these new TDP-43 transgenic mice and discuss their validity as animal models of human ALS.
Collapse
Affiliation(s)
- Vivek Swarup
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Department of Psychiatry and Neuroscience of Laval University, Quebec, QC, Canada
| | | |
Collapse
|
19
|
Abstract
The causes of amyotrophic lateral sclerosis (ALS) are poorly understood. A small proportion, about 2%, is associated with a mutation in the superoxide dismutase (SOD1) gene, and mice expressing this mutant gene exhibit a progressive, ALS-like neurodegenerative disease. Studies of these animals, as well as of human post mortem tissue, reveal the presence of multiple pathological processes, including oxidative stress, glutamate excitotoxicity, neuroinflammation, mitochondrial degeneration, alterations in neurofilaments and neurotubules, mitochondrial damage, aggregation of proteins, abnormalities in growth factors, and apoptosis. We propose that alterations in the disposition of zinc ions may be important in the initiation and development of ALS. SOD1 binds zinc, and many of the mutant forms of this enzyme associated with ALS show altered zinc binding. Alterations in the expression of metallothioneins (MTs), which regulate cellular levels of zinc, have been reported in mutant SOD1 mice, and deletion of MTs in these animals accelerates disease progression. Zinc plays a key role in all the pathological processes associated with ALS. Our zinc hypothesis also may help explain evidence for environmental factors in some cases of ALS, such as in the Chamorro tribe in Guam and in the Gulf War.
Collapse
Affiliation(s)
- Andrew P Smith
- The Forbes Norris ALS Research Center, California Pacific Medical Center Research Institute, California 94115, USA
| | | |
Collapse
|
20
|
Perrot R, Eyer J. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 2009; 80:282-95. [PMID: 19539727 DOI: 10.1016/j.brainresbull.2009.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022]
Abstract
Intermediate filaments represent the most abundant cytoskeletal element in mature neurons. Mutations and/or accumulations of neuronal intermediate filament proteins are frequently observed in several human neurodegenerative disorders. Although it is now admitted that disorganization of the neurofilament network may be directly involved in neurodegeneration, certain type of perikaryal intermediate filament aggregates confer protection in motor neuron disease. The use of various mouse models provided a better knowledge of the role played by the disorganization of intermediate filaments in the pathogenesis of neurodegenerative disorders, but the mechanisms leading to the formation of these aggregates remain elusive. Here, we will review some neurodegenerative diseases involving intermediate filaments abnormalities and possible mechanisms susceptible to provoke them.
Collapse
Affiliation(s)
- Rodolphe Perrot
- Department of Anatomy and Physiology of Laval University, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | | |
Collapse
|
21
|
Perrot R, Berges R, Bocquet A, Eyer J. Review of the Multiple Aspects of Neurofilament Functions, and their Possible Contribution to Neurodegeneration. Mol Neurobiol 2008; 38:27-65. [DOI: 10.1007/s12035-008-8033-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|
22
|
Hull E, Spoja C, Cordova M, Cohlberg JA. Neurofilament protein aggregation in a cell line model system. Biochem Biophys Res Commun 2008; 366:73-9. [DOI: 10.1016/j.bbrc.2007.11.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|
23
|
Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci U S A 2008; 105:1333-8. [PMID: 18212115 DOI: 10.1073/pnas.0711496105] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of brain serotonin (5-HT) neurotransmission is thought to underlie mental conditions as diverse as depression, anxiety disorders, bipolar disorder, autism, and schizophrenia. Despite treatment of these conditions with serotonergic drugs, the molecular mechanisms by which 5-HT is involved in the regulation of aberrant emotional behaviors are poorly understood. Here, we generated knockin mice expressing a mutant form of the brain 5-HT synthesis enzyme, tryptophan hydroxylase 2 (Tph2). This mutant is equivalent to a rare human variant (R441H) identified in few individuals with unipolar major depression. Expression of mutant Tph2 in mice results in markedly reduced ( approximately 80%) brain 5-HT production and leads to behavioral abnormalities in tests assessing 5-HT-mediated emotional states. This reduction in brain 5-HT levels is accompanied by activation of glycogen synthase kinase 3beta (GSK3beta), a signaling molecule modulated by many psychiatric therapeutic agents. Importantly, inactivation of GSK3beta in Tph2 knockin mice, using pharmacological or genetic approaches, alleviates the aberrant behaviors produced by 5-HT deficiency. These findings establish a critical role of Tph2 in the maintenance of brain serotonin homeostasis and identify GSK3beta signaling as an important pathway through which brain 5-HT deficiency induces abnormal behaviors. Targeting GSK3beta and related signaling events may afford therapeutic advantages for the management of certain 5-HT-related psychiatric conditions.
Collapse
|
24
|
Motil J, Dubey M, Chan WKH, Shea TB. Inhibition of dynein but not kinesin induces aberrant focal accumulation of neurofilaments within axonal neurites. Brain Res 2007; 1164:125-31. [PMID: 17640622 DOI: 10.1016/j.brainres.2006.09.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/29/2006] [Accepted: 09/30/2006] [Indexed: 01/25/2023]
Abstract
Studies from several laboratories indicate that the microtubule motors kinesin and dynein respectively participate in anterograde and retrograde axonal transport of neurofilaments. Inhibition of dynein function by transfection with a construct expressing dynamitin or intracellular delivery of anti-dynein antibodies accelerates anterograde transport, which has been interpreted to indicate that the opposing action of both motors mediates the normal distribution of neurofilaments along axons. Herein, we demonstrate that, while expression of relatively low levels of exogenous dynamitin indeed accelerated anterograde neurofilament transport along axonal neurites in culture, expression of progressively increasing levels of dynamitin induced focal accumulation of neurofilaments within axonal neurites and eventually caused neurite retraction. Inhibition of kinesin inhibited anterograde transport, but did not induce similar focal accumulations. These findings are consistent with studies indicating that perturbations in dynein activity can contribute to the aberrant accumulations of neurofilaments that accompany ALS/motor neuron disease.
Collapse
Affiliation(s)
- Jennifer Motil
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
25
|
Barry DM, Millecamps S, Julien JP, Garcia ML. New movements in neurofilament transport, turnover and disease. Exp Cell Res 2007; 313:2110-20. [PMID: 17451679 DOI: 10.1016/j.yexcr.2007.03.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 01/21/2023]
Abstract
Revealing the mechanisms by which neurofilament transport and turnover are regulated has proven difficult over the years but recent studies have given new insight into these processes. Mature neurofilament fibers may incorporate a fourth functional subunit, alpha-internexin, as new evidence suggests. Recent findings have made the role of phosphorylation in regulating neurofilament transport velocity controversial. Kinesin and dynein may transport neurofilaments in slow axonal transport as they have been found to associate with neurofilaments. Neurofilament transport and turnover rates may be reduced depending on the existing stationary neurofilament network. Finally, mutations in neurofilament light that have been linked to Charcot-Marie-Tooth disease as well as other neurofilament abnormalities in human disease are discussed.
Collapse
Affiliation(s)
- Devin M Barry
- Division of Biological Sciences, University of Missouri-Columbia, 1201 East Rollins Street, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
26
|
Julien JP, Kriz J. Chapter 6 Animal models of motor neuron death. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:121-138. [PMID: 18808891 DOI: 10.1016/s0072-9752(07)80009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
27
|
Wang Y, Liu H, Shen Y, Wang Z, Li H. Peripherin as a marker for degeneration of spiral ganglion neurons after aminoglycoside ototoxicity. Acta Otolaryngol 2006; 126:1128-33. [PMID: 17050303 DOI: 10.1080/00016480600672584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONCLUSION Our data show that temporary appearance of atypical type 1 neurons, like type 3 neurons, might be another degenerating form of spiral ganglion neurons (SGNs); peripherin might be a marker of degenerating neurons. OBJECTIVES Further morphological and biochemical studies on surviving SGNs after loss of hair cells might offer clues for preventing their degeneration. MATERIALS AND METHODS We observed the ultrastructural features of surviving SGNs and analyzed the peripherin immunoreactivity at 4, 10, or 20 weeks after systemic injection of neomycin in rats. RESULTS Type 3 neurons, similar to type 1 neurons but unmyelinated, appeared in the spiral ganglion by 4-week survival, and showed a survival advantage in remaining SGNs by longer surviving periods. We observed neurons packed with dense intermediate filament and with multiple layers of dense myelin sheath (atypical type 1 neurons) in the degenerating neurons. Atypical type 1 neurons were observed among the degenerating neurons in the 4- and 10-week survival groups, but disappeared in longer surviving animals. By means of immunohistochemistry, only smaller SGNs of normal rats were strongly stained by anti-peripherin antibody, whereas increased immunoreactivity was observed in both large and small remaining neurons after neomycin treatment, especially in 10- and 20-week survival animals.
Collapse
Affiliation(s)
- Yucheng Wang
- Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai
| | | | | | | | | |
Collapse
|
28
|
Perrin FE, Boisset G, Lathuilière A, Kato AC. Cell death pathways differ in several mouse models with motoneurone disease: analysis of pure motoneurone populations at a presymptomatic age. J Neurochem 2006; 98:1959-72. [PMID: 16831193 DOI: 10.1111/j.1471-4159.2006.04024.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To identify candidate genes that are responsible for motoneurone degeneration, we combined laser capture microdissection with microarray technology. We analysed gene expression in pure motoneurones from two mouse mutants that develop motoneurone degeneration, progressive motor neuronopathy and wobbler. At a presymptomatic age, there was a significant differential expression of a restricted number of genes (25 and 72 in progressive motor neuronopathy and wobbler respectively, of 22 600 transcripts screened). We compared these results to our previous analyses in the copper-zinc superoxide dismutase mutant mouse (SOD1(G93A)) in which we observed a de-regulation of 27 genes. Some of these genes were de-regulated uniquely in one mouse mutant and some have already been identified in cell death pathways implicated in amyotrophic lateral sclerosis and animal models of motoneurone degeneration (i.e. de-regulation of intermediate filaments, axonal transport, the ubiquitin-proteasome system and excitotoxicity). One gene, vimentin, was differentially up-regulated in all mouse mutants; this main candidate gene has been confirmed by in situ hybridization and immunohistochemistry to be expressed in motoneurones in all mouse mutants. Furthermore, vimentin expression correlated with the state of motoneurone degeneration. These results identify early molecular changes that may be involved in the pathogenesis of motoneurones leading to cell death and favour a complex multipathway induction of the disease; surprisingly, there was no important modification in cell death-associated genes. This is the first study to show a clear difference in the genes that are de-regulated at an early stage in three different mouse models of motoneurone disease.
Collapse
Affiliation(s)
- Florence E Perrin
- Department of Basic Neuroscience, Faculty of Medicine, Geneva, Switzerland
| | | | | | | |
Collapse
|
29
|
Julien JP, Kriz J. Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1013-24. [PMID: 16675207 DOI: 10.1016/j.bbadis.2006.03.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/21/2006] [Accepted: 03/21/2006] [Indexed: 12/11/2022]
Abstract
The discovery of missense mutations in the gene coding for the Cu/Zn superoxide dismutase 1 (SOD1) in subsets of familial cases was rapidly followed by the generation of transgenic mice expressing various forms of SOD1 mutants. The mice overexpressing high levels of mutant SOD1 mRNAs do develop motor neuron disease but unraveling the mechanisms of pathogenesis has been very challenging. Studies with mouse lines suggest that the toxicity of mutant SOD1 is unrelated to copper-mediated catalysis but rather to propensity of a subfraction of mutant SOD1 proteins to form misfolded protein species and aggregates. However, the mechanism of toxicity of SOD1 mutants remains to be elucidated. Involvement of cytoskeletal components in ALS pathogenesis is supported by several mouse models of motor neuron disease with neurofilament abnormalities and with genetic defects in microtubule-based transport. Here, we describe how transgenic mouse models have been used for understanding pathogenic pathways of motor neuron disease and for pre-clinical drug testing.
Collapse
Affiliation(s)
- Jean-Pierre Julien
- Research Centre of CHUL, Department of Anatomy and Physiology of Laval University, 2705 Boulevard Laurier, Quebec, QC, Canada G1V 4G2.
| | | |
Collapse
|
30
|
Kriz J, Beaulieu JM, Julien JP, Krnjević K. Up-regulation of peripherin is associated with alterations in synaptic plasticity in CA1 and CA3 regions of hippocampus. Neurobiol Dis 2005; 18:409-20. [PMID: 15686970 DOI: 10.1016/j.nbd.2004.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 09/08/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022] Open
Abstract
Peripherin is a type III intermediate filament protein normally undetectable in most brain neurons. Here, we report a similar pattern of peripherin expression in the brains of both mice treated with systemic injections of kainic acid (KA) and in peripherin transgenic mice (Per mice) over-expressing the normal peripherin gene under its own promoter. Double-immunofluorescence labeling revealed a partial co-localization of peripherin with the microtubule-associated protein MAP2, but not with neurofilament proteins. Electrophysiological studies revealed that synaptic plasticity was markedly altered in Per mice: in CA1, long-term potentiation (LTP) was decreased in Per slices (+29 +/- 2.0%, vs. +58 +/- 5.4%, in WT); while in CA3, LTP was increased in Per (+63 +/- 3.5% vs. +43 +/- 2.4.0%). In the hippocampus of Per mice, the levels of MAP2 were decreased, though synaptophysin and PSD95 remained unchanged. These intriguing findings suggest a role of peripherin in the alteration of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Jasna Kriz
- Centre Hospitalier de l'Universite Laval Research Center, Quebec City, Quebec, Canada.
| | | | | | | |
Collapse
|
31
|
Abstract
Abundant abnormal aggregates of cytoskeletal proteins are neuropathological signatures of many neurodegenerative diseases that are broadly classified by filamentous aggregates of neuronal intermediate filament (IF) proteins, or by inclusions containing the microtubule-associated protein (MAP) tau. The discovery of mutations in neuronal IF and tau genes firmly establishes the importance of neuronal IF proteins and tau in the pathogenesis of neurodegenerative diseases. Multiple IF gene mutations are pathogenic for Charcot-Marie-Tooth (CMT) disease and amyotrophic lateral sclerosis (ALS)--in addition to those in the copper/zinc superoxide dismutase-1 (SOD1) gene. Tau gene mutations are pathogenic for frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), and tau polymorphisms are genetic risk factors for sporadic progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Thus, IF and tau abnormalities are linked directly to the aetiology and pathogenesis of neurodegenerative diseases. In vitro and transgenic animal models are being used to demonstrate that different mutations impair protein function, promote tau fibrilization, or perturb tau gene splicing, leading to aberrant and distinct tau aggregates. For recognition of these disorders at neuropathological examination, immunohistochemistry is needed, and this may be combined with biochemistry and molecular genetics to properly determine the nosology of a particular case. As reviewed here, the identification of molecular genetic defects and biochemical alterations in cytoskeletal proteins of human neurodegenerative diseases has facilitated experimental studies and will promote the development of assays of molecules which inhibit abnormal neuronal IF and tau protein inclusions.
Collapse
Affiliation(s)
- Nigel J Cairns
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA.
| | | | | |
Collapse
|
32
|
Lin H, Zhai J, Cañete-Soler R, Schlaepfer WW. 3' untranslated region in a light neurofilament (NF-L) mRNA triggers aggregation of NF-L and mutant superoxide dismutase 1 proteins in neuronal cells. J Neurosci 2004; 24:2716-26. [PMID: 15028764 PMCID: PMC6729506 DOI: 10.1523/jneurosci.5689-03.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases is believed to involve abnormal aggregation of proteins, but the mechanisms initiating protein aggregation are unclear. Here we report a novel phenomenon that could be instrumental in triggering protein aggregation in neurodegenerative diseases. We show that the 3' untranslated region (3'UTR) of a light neurofilament (NF-L) transcript enhances the reactivity of its own translated product and leads to loss of solubility and aggregation of NF-L protein and to coaggregation of mutant superoxide dismutase 1 (SOD1) protein. Full-length mouse NF-L cDNAs, with and without NF-L 3'UTR, were fused to the C terminus of a green fluorescent protein (GFP) reporter gene, and the GFP-tagged NF-L proteins were examined in transfected Neuro2a cells. The GFP-tagged NF-L protein expressed from the transgene containing NF-L 3'UTR, but not from the transgene lacking NF-L 3'UTR, colocalizes with endogenous heavy neurofilament protein and, at high-level expression, leads to loss of solubility and aggregation of GFP-tagged NF-L protein. Aggregation of GFP-tagged NF-L protein triggers coaggregation and loss of solubility of coexpressed DsRed-tagged mutant (G93A) SOD1 protein but not wild-type SOD1 protein. Deletional mutagenesis maps the RNA sequence causing aggregation of GFP-tagged NF-L protein to the proximal 45 nucleotides of NF-L 3'UTR. This is the site of a major destabilizing element in NF-L RNA and binding site for RNA-binding proteins. Our findings support a working model whereby NF-L RNA, or cognate RNA-binding factors, enhances the reactivity of NF-L protein and provides a triggering mechanism leading to aggregation of NF-L and other proteins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hong Lin
- Division of Neuropathology, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
33
|
Lariviere RC, Julien JP. Functions of intermediate filaments in neuronal development and disease. ACTA ACUST UNITED AC 2004; 58:131-48. [PMID: 14598376 DOI: 10.1002/neu.10270] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Five major types of intermediate filament (IF) proteins are expressed in mature neurons: the three neurofilament proteins (NF-L, NF-M, and NF-H), alpha-internexin, and peripherin. While the differential expression of IF genes during embryonic development suggests potential functions of these proteins in axogenesis, none of the IF gene knockout experiments in mice caused gross developmental defects of the nervous system. Yet, deficiencies in neuronal IF proteins are not completely innocuous. Substantial developmental loss of motor axons was detected in mice lacking NF-L and in double knockout NF-M;NF-H mice, supporting the view of a role for IFs in axon stabilization. Moreover, the absence of peripherin resulted in approximately 30% loss of small sensory axons. Mice lacking NF-L had a scarcity of IF structures and exhibited a severe axonal hypotrophy, causing up to 50% reduction in conduction velocity, a feature that would be very detrimental for large animal species. Unexpectedly, the NF-M rather than NF-H protein turned out to be required for proper radial growth of large myelinated axons. Studies with transgenic mice suggest that some types of IF accumulations, reminiscent of those found in amyotrophic lateral sclerosis (ALS), can have deleterious effects and even cause neurodegeneration. Additional evidence for the involvement of IFs in pathogenesis came from the recent discovery of neurofilament gene mutations linked to ALS and Charcot-Marie-Tooth disease (CMT2E). Conversely, we discuss how certain types of perikaryal neurofilament aggregates might confer protection in motor neuron disease.
Collapse
Affiliation(s)
- Roxanne C Lariviere
- Centre for Research in Neurosciences, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
34
|
Yoneda K, Furukawa T, Zheng YJ, Momoi T, Izawa I, Inagaki M, Manabe M, Inagaki N. An autocrine/paracrine loop linking keratin 14 aggregates to tumor necrosis factor alpha-mediated cytotoxicity in a keratinocyte model of epidermolysis bullosa simplex. J Biol Chem 2003; 279:7296-303. [PMID: 14660619 DOI: 10.1074/jbc.m307242200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a blistering cutaneous disease featuring protein aggregates. Here we investigate the molecular mechanisms linking protein aggregates to cell death in a cellular model of EBS in which HaCaT keratinocytes are transfected with plasmids expressing various mutant forms of keratin 14 (K14). In HaCaT cells, mutant K14 was found to form ubiquitinated protein aggregates that suppressed 20 S proteasome function instead of being degraded by 20 S proteasome. Keratinocytes with mutant K14-induced phosphorylation of the stress-activated kinase c-Jun, as well as up-regulation of unfolding protein Bip, indicates induction of endoplasmic reticulum stress. HaCaT cells were susceptible to apoptosis by activation of caspases-3, and -8, but not caspase-9 or -12. Tumor necrosis factor-alpha (TNFalpha) in the culture medium was increased in keratinocytes with mutant K14 compared with wild K14, and the addition of neutralizing anti-TNFalpha antibody to the culture medium rescued keratinocytes from cell death. Thus, TNFalpha release and the subsequent activation of the TNFalpha receptor by an autocrine/paracrine pathway links protein aggregates to cell death in this keratinocyte EBS cellular model. Furthermore, mutation in K14 reduced its affinity to TNFalpha receptor-associated death domain (TRADD), suggesting that the susceptibility of keratinocytes to caspase-8-mediated apoptosis is increased in mutated K14 because of impairment of the cytoprotective mechanism mediated by K14-TRADD interaction.
Collapse
Affiliation(s)
- Kozo Yoneda
- Department of Dermatology, Akita University School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | |
Collapse
|