1
|
Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer's disease. Mol Neurodegener 2024; 19:30. [PMID: 38561809 PMCID: PMC10983749 DOI: 10.1186/s13024-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aβ expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
2
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Lee JW, Chun W, Lee HJ, Kim SM, Min JH, Kim DY, Kim MO, Ryu HW, Lee SU. The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9101449. [PMID: 34680566 PMCID: PMC8533549 DOI: 10.3390/biomedicines9101449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Microglia play an important role in the maintenance and neuroprotection of the central nervous system (CNS) by removing pathogens, damaged neurons, and plaques. Recent observations emphasize that the promotion and development of neurodegenerative diseases (NDs) are closely related to microglial activation. In this review, we summarize the contribution of microglial activation and its associated mechanisms in NDs, such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), based on recent observations. This review also briefly introduces experimental animal models of epilepsy, AD, PD, and HD. Thus, this review provides a better understanding of microglial functions in the development of NDs, suggesting that microglial targeting could be an effective therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| |
Collapse
|
4
|
Gong K, Chen Y, Liu W, Wang Z. Global research trends of Apolipoprotein E in central nervous system: A scientometric analysis. Int Immunopharmacol 2021; 98:107919. [PMID: 34217139 DOI: 10.1016/j.intimp.2021.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Apolipoprotein E (apoE, protein; APOE, gene) involves in cholesterol recycling and redistribution by mediating lipoprotein pathways unique to central nervous system (CNS), which is a potential therapeutic target for diseases. We visually analyzed the research hotspots of APOE related to CNS in this work, by scientometric analysis from the Web of Science Core Collection (WOSCC) database over the past two decades. A total of 25,719 references of "APOE" and 836 references of "APOE in CNS" were retrieved from the WOSCC on October 26, 2020, and then VOSviewer 1.6.15, Citespace 5.7.R2 were used for visual analysis. Over the last two decades, the research on the field of APOE in CNS is not faddish. Although many funds, organizations, and scholars were affiliated in this field, organizations and scholars, especially the top teams in this field, still lacked close cooperation with other teams around the world. Few articles with high citations had been published in the last decade, but recent studies still lacked scale and breakthrough, and the keywords associated with APOE appeared more outdated. However, the current researches have not fully elucidated the crosstalk between APOE and neuroinflammation in CNS, some new ideas may rekindle the research enthusiasm of scholars. Although the field of APOE in CNS appeared more outdated. Based on keyword analysis, we hypothesized new ideas for further investigation of neuroinflammation would light the interest of APOE in CNS for the scholars. The crosstalk between ApoE and inflammasome may be the focus of future researches. How APOE modulates the time course or intensity of the inflammasome activation, inflammatory response (proinflammatory or anti-inflammatory), and pathological process of CNS disease deserves future attention in both basic and clinical studies. More apoE/APOE-targeted pharmacological interventions will be available for preclinical experiments and clinical trials and bring hope for patients with CNS diseases.
Collapse
Affiliation(s)
- Kai Gong
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China
| | - Yuhua Chen
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China
| | - Wei Liu
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China.
| | - Zhanxiang Wang
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China.
| |
Collapse
|
5
|
Glapa-Nowak A, Szczepanik M, Iwańczak B, Kwiecień J, Szaflarska-Popławska AB, Grzybowska-Chlebowczyk U, Osiecki M, Dziekiewicz M, Stawarski A, Kierkuś J, Banasiewicz T, Banaszkiewicz A, Walkowiak J. Apolipoprotein E variants correlate with the clinical presentation of paediatric inflammatory bowel disease: A cross-sectional study. World J Gastroenterol 2021; 27:1483-1496. [PMID: 33911469 PMCID: PMC8047531 DOI: 10.3748/wjg.v27.i14.1483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It has been suggested that apolipoprotein E (APOE) polymorphisms are associated with the risk of developing inflammatory bowel disease (IBD) and the early age of disease onset. However, there are no reports regarding the relationship with clinical characteristics and disease severity.
AIM To summarise that APOE polymorphisms are associated with the risk of developing IBD and the early age of disease onset.
METHODS In total, 406 patients aged 3-18 with IBD (192 had ulcerative colitis and 214 had Crohn’s disease) were genotyped using the TaqMan hydrolysis probe assay. Clinical expression was described at diagnosis and the worst flare by disease activity scales, albumin and C-reactive protein levels, localisation and behaviour (Paris classification). Systemic steroid intake with the total number of courses, immunosuppressive, biological, and surgical treatment with the time and age of the first intervention were determined. The total number of exacerbation-caused hospitalisations, the number of days spent in hospital due to exacerbation, the number of relapses, and severe relapses were also estimated.
RESULTS Ulcerative colitis patients with the APOEε4 allele had lower C-reactive protein values at diagnosis (P = 0.0435) and the worst flare (P = 0.0013) compared to patients with the APOEε2 allele and genotype APOEε3/ε3. Crohn’s disease patients with the APOEε2 allele scored lower on the Pediatric Crohn’s Disease Activity Index at diagnosis (P = 0.0204). IBD patients with APOEε2 allele spent fewer days in the hospital due to relapse (P = 0.0440).
CONCLUSION APOE polymorphisms are associated with the risk of developing IBD and the clinical expression of IBD. However, the clinical relevance of the differences identified is rather modest.
Collapse
Affiliation(s)
- Aleksandra Glapa-Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznań University of Medical Sciences, Poznań 60-572, Poland
| | - Mariusz Szczepanik
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznań University of Medical Sciences, Poznań 60-572, Poland
| | - Barbara Iwańczak
- Department of Pediatrics, Medical University of Wroclaw, Wroclaw 50-369, Poland
| | - Jarosław Kwiecień
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze 41-800, Poland
| | | | - Urszula Grzybowska-Chlebowczyk
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Katowice 40-752, Poland
| | - Marcin Osiecki
- Department of Gastroenterology, Hepatology, Feeding Disorders and Paediatrics, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Marcin Dziekiewicz
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Andrzej Stawarski
- Department and Clinic of Pediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, Wroclaw 50-369, Poland
| | - Jarosław Kierkuś
- Department of Gastroenterology, Hepatology, Feeding Disorders and Paediatrics, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Tomasz Banasiewicz
- Chair and Department of General Surgery, Gastroenterological Surgical Oncology and Plastic Surgery, Poznań University of Medical Sciences, Poznań 60-355, Poland
| | - Aleksandra Banaszkiewicz
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznań University of Medical Sciences, Poznań 60-572, Poland
| |
Collapse
|
6
|
Praharaj PP, Patra S, Panigrahi DP, Patra SK, Bhutia SK. Clusterin as modulator of carcinogenesis: A potential avenue for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188500. [PMID: 33385484 DOI: 10.1016/j.bbcan.2020.188500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Clusterin (CLU) is an evolutionary conserved molecular chaperone present in different human tissues and fluids and established to be a significant cancer regulator. It controls several cancer-associated cellular events, including cancer cell proliferation, stemness, survival, metastasis, epithelial-mesenchymal transition, therapy resistance, and inhibition of programmed cell death to support cancer growth and recurrence. This multifunctional role of CLU makes it an ideal target for cancer control. More importantly, genetic and antisense-mediated (OGX-011) inhibition of CLU enhances the anticancer potential of different FDA-approved chemotherapeutic drugs at the clinical level, improving patient's survival. In this review, we have discussed the detailed mechanism of CLU-mediated modulation of different cancer-associated signaling pathways. We have also provided updated information on the current preclinical and clinical findings that drive trials in various cancer types for potential targeted cancer therapy.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
7
|
Nguyen AT, Wang K, Hu G, Wang X, Miao Z, Azevedo JA, Suh E, Van Deerlin VM, Choi D, Roeder K, Li M, Lee EB. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer's disease. Acta Neuropathol 2020; 140:477-493. [PMID: 32840654 PMCID: PMC7520051 DOI: 10.1007/s00401-020-02200-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Beta-amyloid deposition is a defining feature of Alzheimer's disease (AD). How genetic risk factors, like APOE and TREM2, intersect with cellular responses to beta-amyloid in human tissues is not fully understood. Using single-nucleus RNA sequencing of postmortem human brain with varied APOE and TREM2 genotypes and neuropathology, we identified distinct microglia subpopulations, including a subpopulation of CD163-positive amyloid-responsive microglia (ARM) that are depleted in cases with APOE and TREM2 risk variants. We validated our single-nucleus RNA sequencing findings in an expanded cohort of AD cases, demonstrating that APOE and TREM2 risk variants are associated with a significant reduction in CD163-positive amyloid-responsive microglia. Our results showcase the diverse microglial response in AD and underscore how genetic risk factors influence cellular responses to underlying pathologies.
Collapse
Affiliation(s)
- Aivi T Nguyen
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kui Wang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 213 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
- Department of Information Theory and Data Science, School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Gang Hu
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 213 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
- School of Statistics and Data Science, Key Laboratory for Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin, China
| | - Xuran Wang
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhen Miao
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua A Azevedo
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Choi
- Heinz College of Public Policy and Information Systems, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 213 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Dey M, Gunn-Moore FJ, Platt B, Smith TK. Brain region-specific lipid alterations in the PLB4 hBACE1 knock-in mouse model of Alzheimer's disease. Lipids Health Dis 2020; 19:201. [PMID: 32867761 PMCID: PMC7457777 DOI: 10.1186/s12944-020-01367-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipid dysregulation is associated with several key characteristics of Alzheimer's disease (AD), including amyloid-β and tau neuropathology, neurodegeneration, glucose hypometabolism, as well as synaptic and mitochondrial dysfunction. The β-site amyloid precursor protein cleavage enzyme 1 (BACE1) is associated with increased amyloidogenesis, and has been affiliated with diabetes via its role in metabolic regulation. METHODS The research presented herein investigates the role of hBACE1 in lipid metabolism and whether specific brain regions show increased vulnerability to lipid dysregulation. By utilising advanced mass spectrometry techniques, a comprehensive, quantitative lipidomics analysis was performed to investigate the phospholipid, sterol, and fatty acid profiles of the brain from the well-known PLB4 hBACE1 knock-in mouse model of AD, which also shows a diabetic phenotype, to provide insight into regional alterations in lipid metabolism. RESULTS Results show extensive region - specific lipid alterations in the PLB4 brain compared to the wild-type, with decreases in the phosphatidylethanolamine content of the cortex and triacylglycerol content of the hippocampus and hypothalamus, but increases in the phosphatidylcholine, phosphatidylinositol, and diacylglycerol content of the hippocampus. Several sterol and fatty acids were also specifically decreased in the PLB4 hippocampus. CONCLUSION Collectively, the lipid alterations observed in the PLB4 hBACE1 knock-in AD mouse model highlights the regional vulnerability of the brain, in particular the hippocampus and hypothalamus, to lipid dysregulation, hence supports the premise that metabolic abnormalities have a central role in both AD and diabetes.
Collapse
Affiliation(s)
- Madhurima Dey
- School of Biology, University of St. Andrews, Medical & Biological Sciences Building, St. Andrews, Fife, Scotland
| | - Frank J Gunn-Moore
- School of Biology, University of St. Andrews, Medical & Biological Sciences Building, St. Andrews, Fife, Scotland
| | - Bettina Platt
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland
| | - Terry K Smith
- Biomedical Science Research Complex, University of St. Andrews, St. Andrews, Fife, Scotland.
| |
Collapse
|
9
|
Williams T, Borchelt DR, Chakrabarty P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer's disease. Mol Neurodegener 2020; 15:8. [PMID: 32005122 PMCID: PMC6995170 DOI: 10.1186/s13024-020-0358-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
One of the primary genetic risk factors for Alzheimer’s disease (AD) is the presence of the Ɛ4 allele of apolipoprotein E (APOE). APOE is a polymorphic lipoprotein that is a major cholesterol carrier in the brain. It is also involved in various cellular functions such as neuronal signaling, neuroinflammation and glucose metabolism. Humans predominantly possess three different allelic variants of APOE, termed E2, E3, and E4, with the E3 allele being the most common. The presence of the E4 allele is associated with increased risk of AD whereas E2 reduces the risk. To understand the molecular mechanisms that underlie APOE-related genetic risk, considerable effort has been devoted towards developing cellular and animal models. Data from these models indicate that APOE4 exacerbates amyloid β plaque burden in a dose-dependent manner. and may also enhance tau pathogenesis in an isoform-dependent manner. Other studies have suggested APOE4 increases the risk of AD by mechanisms that are distinct from modulation of Aβ or tau pathology. Further, whether plasma APOE, by influencing systemic metabolic pathways, can also possibly alter CNS function indirectly is not complete;y understood. Collectively, the available studies suggest that APOE may impact multiple signaling pathways and thus investigators have sought therapeutics that would disrupt pathological functions of APOE while preserving or enhancing beneficial functions. This review will highlight some of the therapeutic strategies that are currently being pursued to target APOE4 towards preventing or treating AD and we will discuss additional strategies that holds promise for the future.
Collapse
Affiliation(s)
- Tosha Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Herring SK, Moon HJ, Rawal P, Chhibber A, Zhao L. Brain clusterin protein isoforms and mitochondrial localization. eLife 2019; 8:48255. [PMID: 31738162 PMCID: PMC6860991 DOI: 10.7554/elife.48255] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
Clusterin (CLU), or apolipoprotein J (ApoJ), is the third most predominant genetic risk factor associated with late-onset Alzheimer’s disease (LOAD). In this study, we use multiple rodent and human brain tissue and neural cell models to demonstrate that CLU is expressed as multiple isoforms that have distinct cellular or subcellular localizations in the brain. Of particular significance, we identify a non-glycosylated 45 kDa CLU isoform (mitoCLU) that is localized to the mitochondrial matrix and expressed in both rodent and human neurons and astrocytes. In addition, we show that rodent mitoCLU is translated from a non-canonical CUG (Leu) start site in Exon 3, a site that coincides with an AUG (Met) in human CLU. Last, we reveal that mitoCLU is present at the gene and protein level in the currently available CLU–/– mouse model. Collectively, these data provide foundational knowledge that is integral in elucidating the relationship between CLU and the development of LOAD.
Collapse
Affiliation(s)
- Sarah K Herring
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States
| | - Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States
| | - Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States
| | - Anindit Chhibber
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, United States.,Neuroscience Graduate Program, University of Kansas, Lawrence, United States
| |
Collapse
|
11
|
Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. J Neurosci 2019; 39:7408-7427. [PMID: 31331998 DOI: 10.1523/jneurosci.2994-18.2019] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
In blood, apolipoprotein E (ApoE) is a component of circulating lipoproteins and mediates the clearance of these lipoproteins from blood by binding to ApoE receptors. Humans express three genetic ApoE variants, ApoE2, ApoE3, and ApoE4, which exhibit distinct ApoE receptor-binding properties and differentially affect Alzheimer's disease (AD), such that ApoE2 protects against, and ApoE4 predisposes to AD. In brain, ApoE-containing lipoproteins are secreted by activated astrocytes and microglia, but their functions and role in AD pathogenesis are largely unknown. Ample evidence suggests that ApoE4 induces microglial dysregulation and impedes Aβ clearance in AD, but the direct neuronal effects of ApoE variants are poorly studied. Extending previous studies, we here demonstrate that the three ApoE variants differentially activate multiple neuronal signaling pathways and regulate synaptogenesis. Specifically, using human neurons (male embryonic stem cell-derived) cultured in the absence of glia to exclude indirect glial mechanisms, we show that ApoE broadly stimulates signal transduction cascades. Among others, such stimulation enhances APP synthesis and synapse formation with an ApoE4>ApoE3>ApoE2 potency rank order, paralleling the relative risk for AD conferred by these ApoE variants. Unlike the previously described induction of APP transcription, however, ApoE-induced synaptogenesis involves CREB activation rather than cFos activation. We thus propose that in brain, ApoE acts as a glia-secreted signal that activates neuronal signaling pathways. The parallel potency rank order of ApoE4>ApoE3>ApoE2 in AD risk and neuronal signaling suggests that ApoE4 may in an apparent paradox promote AD pathogenesis by causing a chronic increase in signaling, possibly via enhancing APP expression.SIGNIFICANCE STATEMENT Humans express three genetic variants of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), whereas ApoE2 protects against AD. Significant evidence suggests that ApoE4 impairs microglial function and impedes astrocytic Aβ clearance in brain, but the direct neuronal effects of ApoE are poorly understood, and the differences between ApoE variants in these effects are unclear. Here, we report that ApoE acts on neurons as a glia-secreted signaling molecule that, among others, enhances synapse formation. In activating neuronal signaling, the three ApoE variants exhibit a differential potency of ApoE4>ApoE3>ApoE2, which mirrors their relative effects on AD risk, suggesting that differential signaling by ApoE variants may contribute to AD pathogenesis.
Collapse
|
12
|
Teter B, Morihara T, Lim GP, Chu T, Jones MR, Zuo X, Paul RM, Frautschy SA, Cole GM. Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol Dis 2019; 127:432-448. [PMID: 30951849 PMCID: PMC8092921 DOI: 10.1016/j.nbd.2019.02.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) genetics implies a causal role for innate immune genes, TREM2 and CD33, products that oppose each other in the downstream Syk tyrosine kinase pathway, activating microglial phagocytosis of amyloid (Aβ). We report effects of low (Curc-lo) and high (Curc-hi) doses of curcumin on neuroinflammation in APPsw transgenic mice. Results showed that Curc-lo decreased CD33 and increased TREM2 expression (predicted to decrease AD risk) and also increased TyroBP, which controls a neuroinflammatory gene network implicated in AD as well as phagocytosis markers CD68 and Arg1. Curc-lo coordinately restored tightly correlated relationships between these genes' expression levels, and decreased expression of genes characteristic of toxic pro-inflammatory M1 microglia (CD11b, iNOS, COX-2, IL1β). In contrast, very high dose curcumin did not show these effects, failed to clear amyloid plaques, and dysregulated gene expression relationships. Curc-lo stimulated microglial migration to and phagocytosis of amyloid plaques both in vivo and in ex vivo assays of sections of human AD brain and of mouse brain. Curcumin also reduced levels of miR-155, a micro-RNA reported to drive a neurodegenerative microglial phenotype. In conditions without amyloid (human microglial cells in vitro, aged wild-type mice), Curc-lo similarly decreased CD33 and increased TREM2. Like curcumin, anti-Aβ antibody (also reported to engage the Syk pathway, increase CD68, and decrease amyloid burden in human and mouse brain) increased TREM2 in APPsw mice and decreased amyloid in human AD sections ex vivo. We conclude that curcumin is an immunomodulatory treatment capable of emulating anti-Aβ vaccine in stimulating phagocytic clearance of amyloid by reducing CD33 and increasing TREM2 and TyroBP, while restoring neuroinflammatory networks implicated in neurodegenerative diseases.
Collapse
Affiliation(s)
- B Teter
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America; Alzheimer's Translational Center, Veterans Administration (Research 151), Bldg. 114, Rm. 114-1, 11301 Wilshire Blvd, Los Angeles, CA 90073, United States of America.
| | - T Morihara
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| | - G P Lim
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - T Chu
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - M R Jones
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America
| | - X Zuo
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - R M Paul
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America
| | - S A Frautschy
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| | - G M Cole
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| |
Collapse
|
13
|
Belloy ME, Napolioni V, Greicius MD. A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. Neuron 2019; 101:820-838. [PMID: 30844401 PMCID: PMC6407643 DOI: 10.1016/j.neuron.2019.01.056] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/08/2019] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is considered a polygenic disorder. This view is clouded, however, by lingering uncertainty over how to treat the quasi "monogenic" role of apolipoprotein E (APOE). The APOE4 allele is not only the strongest genetic risk factor for AD, it also affects risk for cardiovascular disease, stroke, and other neurodegenerative disorders. This review, based mostly on data from human studies, ranges across a variety of APOE-related pathologies, touching on evolutionary genetics and risk mitigation by ethnicity and sex. The authors also address one of the most fundamental question pertaining to APOE4 and AD: does APOE4 increase AD risk via a loss or gain of function? The answer will be of the utmost importance in guiding future research in AD.
Collapse
Affiliation(s)
- Michaël E Belloy
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Valerio Napolioni
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
14
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The Role of APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in Aging and Alzheimer's Disease. Front Aging Neurosci 2019; 11:14. [PMID: 30804776 PMCID: PMC6378415 DOI: 10.3389/fnagi.2019.00014] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
APOE4 is the greatest genetic risk factor for late-onset Alzheimer’s disease (AD), increasing the risk of developing the disease by 3-fold in the 14% of the population that are carriers. Despite 25 years of research, the exact mechanisms underlying how APOE4 contributes to AD pathogenesis remain incompletely defined. APOE in the brain is primarily expressed by astrocytes and microglia, cell types that are now widely appreciated to play key roles in the pathogenesis of AD; thus, a picture is emerging wherein APOE4 disrupts normal glial cell biology, intersecting with changes that occur during normal aging to ultimately cause neurodegeneration and cognitive dysfunction. This review article will summarize how APOE4 alters specific pathways in astrocytes and microglia in the context of AD and the aging brain. APOE itself, as a secreted lipoprotein without enzymatic activity, may prove challenging to directly target therapeutically in the classical sense. Therefore, a deeper understanding of the underlying pathways responsible for APOE4 toxicity is needed so that more tractable pathways and drug targets can be identified to reduce APOE4-mediated disease risk.
Collapse
Affiliation(s)
- Celia G Fernandez
- The Neurodegeneration Consortium, Institute of Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mary E Hamby
- The Neurodegeneration Consortium, Institute of Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Morgan L McReynolds
- The Neurodegeneration Consortium, Institute of Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - William J Ray
- The Neurodegeneration Consortium, Institute of Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
16
|
Clemens V, Regen F, Le Bret N, Heuser I, Hellmann-Regen J. Retinoic Acid Enhances Apolipoprotein E Synthesis in Human Macrophages. J Alzheimers Dis 2019; 61:1295-1300. [PMID: 29376871 DOI: 10.3233/jad-170823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E (ApoE) represents a pivotal target in Alzheimer's disease (AD) and is modulated through retinoic acid (RA), an endogenous neuroprotective and anti-inflammatory compound. A major source of ApoE are microglia, which are pathologically activated in AD. Activated microglia are known to block RA signaling. This suggests a vicious cycle between inflammation, RA signaling, and ApoE homeostasis in AD pathogenesis. To test this hypothesis, we investigated effects of RA and proinflammatory activation on ApoE synthesis in primary human macrophage-derived microglial-like cells. Our results indicate that proinflammatory activation attenuates ApoE synthesis, an effect blocked by RA.
Collapse
Affiliation(s)
- Vera Clemens
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| | - Francesca Regen
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| | - Nathalie Le Bret
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| | - Isabella Heuser
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry, Section Clinical Neurobiology, Campus Benjamin Franklin, Charité, University Medicine Berlin, Germany
| |
Collapse
|
17
|
Facci L, Barbierato M, Skaper SD. Astrocyte/Microglia Cocultures as a Model to Study Neuroinflammation. Methods Mol Biol 2018; 1727:127-137. [PMID: 29222778 DOI: 10.1007/978-1-4939-7571-6_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glial cell activation plays an important role in the pathogenesis of various neurodegenerative disorders as well as in chronic and neuropathic pain. This chapter describes a model which allows one to assess the individual and combined contributions of astrocytes and microglia in response to a pro-inflammatory stimulus, with emphasis on ionotropic purinergic receptors.
Collapse
Affiliation(s)
- Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
18
|
Bester J, Soma P, Kell DB, Pretorius E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget 2016; 6:35284-303. [PMID: 26462180 PMCID: PMC4742105 DOI: 10.18632/oncotarget.6074] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer-type dementia (AD) is a neurodegenerative disorder and the most common form of dementia. Patients typically present with neuro- and systemic inflammation and iron dysregulation, associated with oxidative damage that reflects in hypercoagulability. Hypercoagulability is closely associated with increased fibrin(ogen) and in AD patients fibrin(ogen) has been implicated in the development of neuroinflammation and memory deficits. There is still no clear reason precisely why (a) this hypercoagulable state, (b) iron dysregulation and (c) increased fibrin(ogen) could together lead to the loss of neuronal structure and cognitive function. Here we suggest an alternative hypothesis based on previous ultrastructural evidence of the presence of a (dormant) blood microbiome in AD. Furthermore, we argue that bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, might be the cause of the continuing and low-grade inflammation, characteristic of AD. Here, we follow an integrated approach, by studying the viscoelastic and ultrastructural properties of AD plasma and whole blood by using scanning electron microscopy, Thromboelastography (TEG®) and the Global Thrombosis Test (GTT®). Ultrastructural analysis confirmed the presence and close proximity of microbes to erythrocytes. TEG® analysis showed a hypercoagulable state in AD. TEG® results where LPS was added to naive blood showed the same trends as were found with the AD patients, while the GTT® results (where only platelet activity is measured), were not affected by the added LPS, suggesting that LPS does not directly impact platelet function. Our findings reinforce the importance of further investigating the role of LPS in AD.
Collapse
Affiliation(s)
- Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Prashilla Soma
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
19
|
Yamazaki Y, Painter MM, Bu G, Kanekiyo T. Apolipoprotein E as a Therapeutic Target in Alzheimer's Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs 2016; 30:773-89. [PMID: 27328687 PMCID: PMC5526196 DOI: 10.1007/s40263-016-0361-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that causes progressive cognitive decline. The majority of AD cases are sporadic and late-onset (>65 years old) making it the leading cause of dementia in the elderly. While both genetic and environmental factors contribute to the development of late-onset AD (LOAD), APOE polymorphism is a major genetic risk determinant for LOAD. In humans, the APOE gene has three major allelic variants: ε2, ε3, and ε4, of which APOE ε4 is the strongest genetic risk factor for LOAD, whereas APOE ε2 is protective. Mounting evidence suggests that APOE ε4 contributes to AD pathogenesis through multiple pathways including facilitated amyloid-β deposition, increased tangle formation, synaptic dysfunction, exacerbated neuroinflammation, and cerebrovascular defects. Since APOE modulates multiple biological processes through its corresponding protein apolipoprotein E (apoE), APOE gene and apoE properties have been a promising target for therapy and drug development against AD. In this review, we summarize the current evidence regarding how the APOE ε4 allele contributes to the pathogenesis of AD and how relevant therapeutic approaches can be developed to target apoE-mediated pathways in AD.
Collapse
Affiliation(s)
- Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Meghan M Painter
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
20
|
Ries M, Sastre M. Mechanisms of Aβ Clearance and Degradation by Glial Cells. Front Aging Neurosci 2016; 8:160. [PMID: 27458370 PMCID: PMC4932097 DOI: 10.3389/fnagi.2016.00160] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022] Open
Abstract
Glial cells have a variety of functions in the brain, ranging from immune defense against external and endogenous hazardous stimuli, regulation of synaptic formation, calcium homeostasis, and metabolic support for neurons. Their dysregulation can contribute to the development of neurodegenerative disorders, including Alzheimer’s disease (AD). One of the most important functions of glial cells in AD is the regulation of Amyloid-β (Aβ) levels in the brain. Microglia and astrocytes have been reported to play a central role as moderators of Aβ clearance and degradation. The mechanisms of Aβ degradation by glial cells include the production of proteases, including neprilysin, the insulin degrading enzyme, and the endothelin-converting enzymes, able to hydrolyse Aβ at different cleavage sites. Besides these enzymes, other proteases have been described to have some role in Aβ elimination, such as plasminogen activators, angiotensin-converting enzyme, and matrix metalloproteinases. Other relevant mediators that are released by glial cells are extracellular chaperones, involved in the clearance of Aβ alone or in association with receptors/transporters that facilitate their exit to the blood circulation. These include apolipoproteins, α2macroglobulin, and α1-antichymotrypsin. Finally, astrocytes and microglia have an essential role in phagocytosing Aβ, in many cases via a number of receptors that are expressed on their surface. In this review, we examine all of these mechanisms, providing an update on the latest research in this field.
Collapse
Affiliation(s)
- Miriam Ries
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital London, UK
| | - Magdalena Sastre
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital London, UK
| |
Collapse
|
21
|
Neuronal Regulation of Neuroprotective Microglial Apolipoprotein E Secretion in Rat In Vitro Models of Brain Pathophysiology. J Neuropathol Exp Neurol 2015; 74:818-34. [PMID: 26185969 DOI: 10.1097/nen.0000000000000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein E (ApoE) is mainly secreted by glial cells and is involved in many brain functions, including neuronal plasticity, β-amyloid clearance, and neuroprotection. Microglia--the main immune cells of the brain--are one source of ApoE, but little is known about the physiologic regulation of microglial ApoE secretion by neurons and whether this release changes under inflammatory or neurodegenerative conditions. Using rat primary neural cell cultures, we show that microglia release ApoE through a Golgi-mediated secretion pathway and that ApoE progressively accumulates in neuroprotective microglia-conditioned medium. This constitutive ApoE release is negatively affected by microglial activation both with lipopolysaccharide and with ATP. Microglial ApoE release is stimulated by neuron-conditioned media and under coculture conditions. Neuron-stimulated microglial ApoE release is mediated by serine and glutamate through N-methyl-D-aspartate receptors and is differently regulated by activation states (i.e. lipopolysaccharide vs ATP) and by 6-hydroxydopamine. Microglial ApoE silencing abrogated protection of cerebellar granule neurons against 6-hydroxydopamine toxicity in cocultures, indicating that microglial ApoE release is neuroprotective. Our findings shed light on the reciprocal cross-talk between neurons and microglia that is crucial for normal brain functions. They also open the way for the identification of possible pharmacologic targets that can modulate neuroprotective microglial ApoE release under pathologic conditions.
Collapse
|
22
|
Bettens K, Vermeulen S, Van Cauwenberghe C, Heeman B, Asselbergh B, Robberecht C, Engelborghs S, Vandenbulcke M, Vandenberghe R, De Deyn PP, Cruts M, Van Broeckhoven C, Sleegers K. Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations. Mol Neurodegener 2015; 10:30. [PMID: 26179372 PMCID: PMC4502563 DOI: 10.1186/s13024-015-0024-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The clusterin (CLU) gene has been identified as an important risk locus for Alzheimer's disease (AD). Although the actual risk-increasing polymorphisms at this locus remain to be identified, we previously observed an increased frequency of rare non-synonymous mutations and small insertion-deletions of CLU in AD patients, which specifically clustered in the β-chain domain of CLU. Nonetheless the pathogenic nature of these variants remained unclear. Here we report a novel non-synonymous CLU mutation (p.I360N) in a Belgian Alzheimer patient and have explored the pathogenic nature of this and 10 additional CLU mutations on protein localization and secretion in vitro using immunocytochemistry, immunodetection and ELISAs. RESULTS Three patient-specific CLU mutations in the β-chain (p.I303NfsX13, p.R338W and p.I360N) caused an alteration of the subcellular CLU localization and diminished CLU transport through the secretory pathway, indicative of possible degradation mechanisms. For these mutations, significantly reduced CLU intensity was observed in the Golgi while almost all CLU protein was exclusively present in the endoplasmic reticulum. This was further confirmed by diminished CLU secretion in HEK293T and HEK293 FLp-In cell lines. CONCLUSIONS Our data lend further support to the contribution of rare coding CLU mutations in the pathogenesis of neurodegenerative diseases. Functional analyses suggest reduced secretion of the CLU protein as the mode of action for three of the examined CLU mutations. One of those is a frameshift mutation leading to a loss of secreted protein, and the other two mutations are amino acid substitutions in the disulfide bridge region, possibly interfering with heterodimerization of the α- and β-chain of CLU.
Collapse
Affiliation(s)
- Karolien Bettens
- VIB Department of Molecular Genetics, University of Antwerp - CDE, Building V Universiteitsplein 1, B-2610, Antwerpen, Belgium. .,Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.
| | - Steven Vermeulen
- VIB Department of Molecular Genetics, University of Antwerp - CDE, Building V Universiteitsplein 1, B-2610, Antwerpen, Belgium. .,Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.
| | - Caroline Van Cauwenberghe
- VIB Department of Molecular Genetics, University of Antwerp - CDE, Building V Universiteitsplein 1, B-2610, Antwerpen, Belgium. .,Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.
| | - Bavo Heeman
- VIB Department of Molecular Genetics, University of Antwerp - CDE, Building V Universiteitsplein 1, B-2610, Antwerpen, Belgium. .,Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.
| | - Bob Asselbergh
- VIB Department of Molecular Genetics, University of Antwerp - CDE, Building V Universiteitsplein 1, B-2610, Antwerpen, Belgium. .,Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.
| | - Caroline Robberecht
- VIB Department of Molecular Genetics, University of Antwerp - CDE, Building V Universiteitsplein 1, B-2610, Antwerpen, Belgium. .,Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium. .,Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerp, Belgium.
| | - Mathieu Vandenbulcke
- Department of Psychiatry and Memory Clinic, University of Leuven and University Hospitals Leuven Gasthuisberg, Leuven, Belgium.
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurology, University of Leuven and University Hospitals Leuven Gasthuisberg, Leuven, Belgium.
| | - Peter Paul De Deyn
- Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium. .,Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerp, Belgium. .,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.
| | - Marc Cruts
- VIB Department of Molecular Genetics, University of Antwerp - CDE, Building V Universiteitsplein 1, B-2610, Antwerpen, Belgium. .,Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.
| | - Christine Van Broeckhoven
- VIB Department of Molecular Genetics, University of Antwerp - CDE, Building V Universiteitsplein 1, B-2610, Antwerpen, Belgium. .,Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.
| | - Kristel Sleegers
- VIB Department of Molecular Genetics, University of Antwerp - CDE, Building V Universiteitsplein 1, B-2610, Antwerpen, Belgium. .,Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
23
|
Li X, Montine KS, Keene CD, Montine TJ. Different mechanisms of apolipoprotein E isoform-dependent modulation of prostaglandin E2 production and triggering receptor expressed on myeloid cells 2 (TREM2) expression after innate immune activation of microglia. FASEB J 2015; 29:1754-62. [PMID: 25593125 DOI: 10.1096/fj.14-262683] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/15/2014] [Indexed: 01/14/2023]
Abstract
Several lines of evidence support immune response in brain as a mechanism of injury in Alzheimer disease (AD). Moreover, immune activation is heightened in apolipoprotein E (APOE) ε4 carriers; inhibitors of prostaglandin (PG) synthesis show a partially protective effect on AD risk from APOE ε4; and genetic variants in triggering receptor expressed on myeloid cells 2 (TREM2) are a rare but potent risk for AD. We tested the hypothesis that APOE ε4 inheritance modulates both the PGE2 pathway and TREM2 expression using primary murine microglia from targeted replacement (TR) APOE3/3 and APOE4/4 mice. Microglial cyclooxygenase-2, microsomal PGE synthase, and PGE2 expression were increased 2- to 25-fold in both genotypes by TLR activators; however, this induction was significantly (P < 0.01) greater in TR APOE4/4 microglia with TLR3 and TLR4 activators. Microglial TREM2 expression was reduced approximately 85% by all TLR activators; this reduction was approximately one-third greater in microglia from TR APOE4/4 mice. Importantly, both receptor-associated protein and a nuclear factor κ-light-chain-enhancer inhibitor blocked TR APOE4/4-dependent effects on the PGE2 pathway but not on TREM2 expression. These data demonstrate complementary, but mechanistically distinct, regulation of pro- and anti-inflammatory mediators in TR APOE4/4 murine microglia that yields a more proinflammatory state than with TR APOE3/3.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Kathleen S Montine
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
Majerova P, Zilkova M, Kazmerova Z, Kovac A, Paholikova K, Kovacech B, Zilka N, Novak M. Microglia display modest phagocytic capacity for extracellular tau oligomers. J Neuroinflammation 2014; 11:161. [PMID: 25217135 PMCID: PMC4172893 DOI: 10.1186/s12974-014-0161-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/25/2014] [Indexed: 11/10/2022] Open
Abstract
Background Abnormal misfolded tau protein is a driving force of neurofibrillary degeneration in Alzheimer’s disease. It has been shown that tau oligomers play a crucial role in the formation of intracellular neurofibrillary tangles. They are intermediates between soluble tau monomers and insoluble tau filaments and are suspected contributors to disease pathogenesis. Oligomeric tau can be released into the extracellular space and spread throughout the brain. This finding opens the question of whether brain macrophages or blood monocytes have the potential to phagocytose extracellular oligomeric tau. Methods We have used stable rat primary microglial cells, rat peripheral monocytes-derived macrophages, BV2 microglial and TIB67 macrophage immortalized cell lines that were challenged by tau oligomers prepared by an in vitro aggregation reaction. The efficiency of cells to phagocytose oligomeric protein was evaluated with confocal microscopy. The ability to degrade tau protein was analyzed by immunoblotting. Results Confocal microscopy analyses showed that macrophages were significantly more efficient in phagocytosing oligomerized tau proteins than microglial cells. In contrast to macrophages, microglia are able to degrade the internalized oligomeric tau only after stimulation with lipopolysaccharide (LPS). Conclusions Our data suggests that microglia may not be the principal phagocytic cells able to target extracellular oligomeric tau. We found that peripheral macrophages display a high potency for elimination of oligomeric tau and therefore could play an important role in the modulation of neurofibrillary pathology in Alzheimer’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0161-z) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Ortega FJ, Vukovic J, Rodríguez MJ, Bartlett PF. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells. Glia 2013; 62:247-58. [PMID: 24311472 DOI: 10.1002/glia.22603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 12/16/2022]
Abstract
Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.
Collapse
Affiliation(s)
- Francisco J Ortega
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
26
|
Di Benedetto B, Rupprecht R. Targeting glia cells: novel perspectives for the treatment of neuropsychiatric diseases. Curr Neuropharmacol 2013; 11:171-85. [PMID: 23997752 PMCID: PMC3637671 DOI: 10.2174/1570159x11311020004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022] Open
Abstract
Neuropsychiatric disorders are devastating mental illnesses with a high economic burden. The additional morbidity associated with social issues that arises along with the course of these diseases increases the need for a clear understanding of their etiopathogenesis to allow an implementation of novel pharmacological strategies. Yet a poor knowledge about interactions occurring at the glia-neuron interface in health and disease still hampers innovative discoveries, despite the fact that glia cells have been long described to actively participate in the regulation of brain circuits. The purpose of this review was to collect the scattered literature on the involvement of glia cells in neuropsychiatric disorders and to describe how also these cells besides neurons might be responsive to current pharmacological interventions. We hope thereby to offer alternative approaches for investigations that may open avenues to search for new potential targets for drug discovery.
Collapse
Affiliation(s)
- B Di Benedetto
- Max Planck Institute of Psychiatry, Munich, Germany ; Department of Psychiatry and Psychotherapy, Regensburg University, Germany
| | | |
Collapse
|
27
|
Yang Y, Cudaback E, Jorstad NL, Hemingway JF, Hagan CE, Melief EJ, Li X, Yoo T, Khademi SB, Montine KS, Montine TJ, Keene CD. APOE3, but not APOE4, bone marrow transplantation mitigates behavioral and pathological changes in a mouse model of Alzheimer disease. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:905-17. [PMID: 23831297 DOI: 10.1016/j.ajpath.2013.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/03/2013] [Accepted: 05/24/2013] [Indexed: 12/24/2022]
Abstract
Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset Alzheimer disease and confers a proinflammatory, neurotoxic phenotype to microglia. Here, we tested the hypothesis that bone marrow cell APOE genotype modulates pathological progression in experimental Alzheimer disease. We performed bone marrow transplants (BMT) from green fluorescent protein-expressing human APOE3/3 or APOE4/4 donor mice into lethally irradiated 5-month-old APPswe/PS1ΔE9 mice. Eight months later, APOE4/4 BMT-recipient APPswe/PS1ΔE9 mice had significantly impaired spatial working memory and increased detergent-soluble and plaque Aβ compared with APOE3/3 BMT-recipient APPswe/PS1ΔE9 mice. BMT-derived microglia engraftment was significantly reduced in APOE4/4 recipients, who also had correspondingly less cerebral apoE. Gene expression analysis in cerebral cortex of APOE3/3 BMT recipients showed reduced expression of tumor necrosis factor-α and macrophage migration inhibitory factor (both neurotoxic cytokines) and elevated immunomodulatory IL-10 expression in APOE3/3 recipients compared with those that received APOE4/4 bone marrow. This was not due to detectable APOE-specific differences in expression of microglial major histocompatibility complex class II, C-C chemokine receptor (CCR) type 1, CCR2, CX3C chemokine receptor 1 (CX3CR1), or C5a anaphylatoxin chemotactic receptor (C5aR). Together, these findings suggest that BMT-derived APOE3-expressing cells are superior to those that express APOE4 in their ability to mitigate the behavioral and neuropathological changes in experimental Alzheimer disease.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kumamaru H, Saiwai H, Kobayakawa K, Kubota K, van Rooijen N, Inoue K, Iwamoto Y, Okada S. Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures. J Neuroinflammation 2012; 9:116. [PMID: 22651847 PMCID: PMC3419615 DOI: 10.1186/1742-2094-9-116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/31/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND There is increasing interest in astrocyte biology because astrocytes have been demonstrated to play prominent roles in physiological and pathological conditions of the central nervous system, including neuroinflammation. To understand astrocyte biology, primary astrocyte cultures are most commonly used because of the direct accessibility of astrocytes in this system. However, this advantage can be hindered by microglial contamination. Although several authors have warned regarding microglial contamination in this system, complete microglial elimination has never been achieved. METHODS The number and proliferative potential of contaminating microglia in primary astrocyte cultures were quantitatively assessed by immunocytologic and flow cytometric analyses. To examine the utility of clodronate for microglial elimination, primary astrocyte cultures or MG-5 cells were exposed to liposomal or free clodronate, and then immunocytologic, flow cytometric, and gene expression analyses were performed. The gene expression profiles of microglia-eliminated and microglia-contaminated cultures were compared after interleukin-6 (IL-6) stimulation. RESULTS The percentage of contaminating microglia exceeded 15% and continued to increase because of their high proliferative activity in conventional primary astrocyte cultures. These contaminating microglia were selectively eliminated low concentration of liposomal clodronate. Although primary microglia and MG-5 cells were killed by both liposomal and free clodronate, free clodronate significantly affected the viability of astrocytes. In contrast, liposomal clodronate selectively eliminated microglia without affecting the viability, proliferation or activation of astrocytes. The efficacy of liposomal clodronate was much higher than that of previously reported methods used for decreasing microglial contamination. Furthermore, we observed rapid tumor necrosis factor-α and IL-1b gene induction in conventional primary astrocyte cultures after IL-6 stimulation, which was due to the activation of the Janus kinase/signal transducer and activator of the transcription pathway in contaminating microglia. CONCLUSIONS Because contaminating microglia could result in erroneous data regarding the pro-inflammatory properties of astrocytes, astrocyte biology should be studied in the absence of microglial contamination. Our simple method will be widely applicable to experimental studies of astrocyte biology and provide clues for understanding the role of astrocytes in neural development, function and disease.
Collapse
Affiliation(s)
- Hiromi Kumamaru
- Department of Orthopedic Surgery, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Clusterin, also known as apolipoprotein J, is a ubiquitous multifunctional glycoprotein. Following its identification in 1983, clusterin was found to be clearly increased in Alzheimer's disease (AD). Later research demonstrated that clusterin could bind amyloid-beta (Abeta) peptides and prevent fibril formation, a hallmark of AD pathology. In addition to preventing excessive inflammation, intracellular clusterin was found to reduce apoptosis and oxidative stress. Although early studies were inconclusive, two recent large-scale genome-wide association studies (GWAS) independently identified variants within the clusterin gene as risk factors for developing AD. This review focuses on the characteristics of clusterin and possible mechanisms of its relationship to AD.
Collapse
Affiliation(s)
- Zhong-Chen Wu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | | | | | | |
Collapse
|
30
|
Microglial carbohydrate-binding receptors for neural repair. Cell Tissue Res 2012; 349:215-27. [DOI: 10.1007/s00441-012-1342-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/25/2012] [Indexed: 01/04/2023]
|
31
|
Straccia M, Gresa-Arribas N, Dentesano G, Ejarque-Ortiz A, Tusell JM, Serratosa J, Solà C, Saura J. Pro-inflammatory gene expression and neurotoxic effects of activated microglia are attenuated by absence of CCAAT/enhancer binding protein β. J Neuroinflammation 2011; 8:156. [PMID: 22074460 PMCID: PMC3223504 DOI: 10.1186/1742-2094-8-156] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/10/2011] [Indexed: 11/21/2022] Open
Abstract
Background Microglia and astrocytes respond to homeostatic disturbances with profound changes of gene expression. This response, known as glial activation or neuroinflammation, can be detrimental to the surrounding tissue. The transcription factor CCAAT/enhancer binding protein β (C/EBPβ) is an important regulator of gene expression in inflammation but little is known about its involvement in glial activation. To explore the functional role of C/EBPβ in glial activation we have analyzed pro-inflammatory gene expression and neurotoxicity in murine wild type and C/EBPβ-null glial cultures. Methods Due to fertility and mortality problems associated with the C/EBPβ-null genotype we developed a protocol to prepare mixed glial cultures from cerebral cortex of a single mouse embryo with high yield. Wild-type and C/EBPβ-null glial cultures were compared in terms of total cell density by Hoechst-33258 staining; microglial content by CD11b immunocytochemistry; astroglial content by GFAP western blot; gene expression by quantitative real-time PCR, western blot, immunocytochemistry and Griess reaction; and microglial neurotoxicity by estimating MAP2 content in neuronal/microglial cocultures. C/EBPβ DNA binding activity was evaluated by electrophoretic mobility shift assay and quantitative chromatin immunoprecipitation. Results C/EBPβ mRNA and protein levels, as well as DNA binding, were increased in glial cultures by treatment with lipopolysaccharide (LPS) or LPS + interferon γ (IFNγ). Quantitative chromatin immunoprecipitation showed binding of C/EBPβ to pro-inflammatory gene promoters in glial activation in a stimulus- and gene-dependent manner. In agreement with these results, LPS and LPS+IFNγ induced different transcriptional patterns between pro-inflammatory cytokines and NO synthase-2 genes. Furthermore, the expressions of IL-1β and NO synthase-2, and consequent NO production, were reduced in the absence of C/EBPβ. In addition, neurotoxicity elicited by LPS+IFNγ-treated microglia co-cultured with neurons was completely abolished by the absence of C/EBPβ in microglia. Conclusions These findings show involvement of C/EBPβ in the regulation of pro-inflammatory gene expression in glial activation, and demonstrate for the first time a key role for C/EBPβ in the induction of neurotoxic effects by activated microglia.
Collapse
Affiliation(s)
- Marco Straccia
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bruno CJ, Greco TM, Ischiropoulos H. Nitric oxide counteracts the hyperoxia-induced proliferation and proinflammatory responses of mouse astrocytes. Free Radic Biol Med 2011; 51:474-9. [PMID: 21605665 PMCID: PMC3118916 DOI: 10.1016/j.freeradbiomed.2011.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 12/21/2022]
Abstract
Preclinical studies in the premature baboon evaluating the efficacy and potential toxicity of inhaled nitric oxide indicated a significant effect on astrocyte area density, suggesting phenotypic and functional changes in astrocytes upon exposure to nitric oxide. However, the effects of nitric oxide and oxygen, the two major therapeutic gases utilized in neonatal intensive care, on astrocyte morphology and function remain vastly unknown. Herein, we report that exposure of mouse neonatal cortical astrocytes to hyperoxia results in a proinflammatory phenotype and increase in proliferation without significant changes in cellular morphology or levels of intermediate filament proteins. The proinflammatory phenotype was evident by a significant increase in cellular levels of cyclooxygenase-2 and a concomitant increase in prostaglandin E(2) secretion, a decline in the intracellular and secreted levels of apolipoprotein E, and a significant increase in the intracellular levels of clusterin. This proinflammatory phenotype was not evident upon simultaneous exposure to hyperoxia and nitric oxide. These results suggest that exposure to nitric oxide in the setting of hyperoxia confers unrecognized beneficial effects by suppressing astrocytic inflammation.
Collapse
Affiliation(s)
| | | | - Harry Ischiropoulos
- Department of Pharmacology, University of Pennsylvania Philadelphia, PA 19104
| |
Collapse
|
33
|
Cross-talk between apolipoprotein E and cytokines. Mediators Inflamm 2011; 2011:949072. [PMID: 21772670 PMCID: PMC3136159 DOI: 10.1155/2011/949072] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/02/2011] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein E (apoE) is a multifunctional glycosylated protein characterized by its wide tissue distribution. Despite its importance in lipid transport and atherosclerosis pathogenesis, apoE is associated with neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson disease, and autoimmune disorders such as multiple sclerosis and psoriasis. Among others, the role of apoE in modulating inflammation and oxidation is crucial in elucidating the risk factors of the above diseases since the function of apoE is closely linked with both proinflammatory and antiinflammatory cytokines. Moreover, apoE modulates inflammatory and immune responses in an isoform-dependent manner. Correspondingly, inflammatory cytokines can either upregulate or downregulate the production of apoE in various tissue types. However, studies on the interactions between apoE and cytokines occasionally yield conflicting results, highlighting the complex roles of apoE and cytokines in various disorders. The present paper summarizes the current knowledge about the cross-talk between apoE and cytokines, with emphasis on the effects of apoE on the Th1/Th2 balance.
Collapse
|
34
|
Cordero-Llana O, Scott SA, Maslen SL, Anderson JM, Boyle J, Chowhdury RR, Tyers P, Barker RA, Kelly CM, Rosser AE, Stephens E, Chandran S, Caldwell MA. Clusterin secreted by astrocytes enhances neuronal differentiation from human neural precursor cells. Cell Death Differ 2011; 18:907-13. [PMID: 21212797 PMCID: PMC3131926 DOI: 10.1038/cdd.2010.169] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 12/21/2022] Open
Abstract
Neuronal differentiation from expanded human ventral mesencephalic neural precursor cells (NPCs) is very limited. Astrocytes are known to secrete neurotrophic factors, and so in order to enhance neuronal survival from NPCs, we tested the effect of regional astrocyte-conditioned medium (ACM) from the rat cortex, hippocampus and midbrain on this process. Human NPC's were expanded in FGF-2 before differentiation for 1 or 4 weeks in ACM. The results show that ACM from the hippocampus and midbrain increase the number of neurons from expanded human NPCs, an effect that was not observed with cortical ACM. In addition, both hippocampal and midbrain ACM increased the number and length of phosphorylated neurofilaments. MALDI-TOF analysis used to determine differences in media revealed that although all three regional ACMs had cystatin C, α-2 macroglobulin, extracellular matrix glycoprotein and vimentin, only hippocampal and midbrain ACM also contained clusterin, which when immunodepleted from midbrain ACM eliminated the observed effects on neuronal differentiation. Furthermore, clusterin is a highly glycosylated protein that has no effect on cell proliferation but decreases apoptotic nuclei and causes a sustained increase in phosphorylated extracellular signal-regulated kinase, implicating its role in cell survival and differentiation. These findings further reveal differential effects of regional astrocytes on NPC behavior and identify clusterin as an important mediator of NPC-derived neuronal survival and differentiation.
Collapse
Affiliation(s)
- O Cordero-Llana
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - S A Scott
- Department of Clinical Neurosciences, Centre for Brain Repair, University Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - S L Maslen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - J M Anderson
- Department of Clinical Neurosciences, Centre for Brain Repair, University Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - J Boyle
- Department of Clinical Neurosciences, Centre for Brain Repair, University Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - R-R Chowhdury
- Department of Clinical Neurosciences, Centre for Brain Repair, University Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - P Tyers
- Department of Clinical Neurosciences, Centre for Brain Repair, University Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - R A Barker
- Department of Clinical Neurosciences, Centre for Brain Repair, University Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - C M Kelly
- Brain Repair Group, School of Biosciences, Museum Avenue, Cardiff CF10 3AX, UK
| | - A E Rosser
- Brain Repair Group, School of Biosciences, Museum Avenue, Cardiff CF10 3AX, UK
- Cardiff University School Medicine, Cardiff CF14 4XN, UK
| | - E Stephens
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - S Chandran
- Department of Clinical Neurosciences, Centre for Brain Repair, University Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - M A Caldwell
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
35
|
Toll-like receptor 3 mediates expression of clusterin/apolipoprotein J in vascular smooth muscle cells stimulated with RNA released from necrotic cells. Exp Cell Res 2010; 316:3489-500. [PMID: 20692254 DOI: 10.1016/j.yexcr.2010.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 11/23/2022]
Abstract
Clusterin/Apolipoprotein J is a protein that is upregulated in a broad spectrum of diverse pathological processes. The predominant form is a secreted glycoprotein (sCLU) with cytoprotective and anti-inflammatory properties which shows enhanced expression in vascular smooth muscle cells (VSMC) following aortic injury and in atherosclerotic disease. Recent evidence indicates that during atherosclerosis, Toll-like receptors (TLRs) are activated in vascular cells by endogenous ligands. Here, we analyzed whether CLU expression in VSMC is controlled by TLRs, and stimulated by factors associated with or released by necrotic cells. Activation of TLR3 by the synthetic RNA analogue polyinosinic-polycytidylic acid (poly(I:C)) in CRL2018 VSMC and in mice led to induction of CLU mRNA and protein synthesis, respectively. In TLR3-deficient 10A yolk sac cells, induction of CLU by poly(I:C) challenge depended on the ectopic expression of human TLR3. In mice lacking the TLR3-signaling adaptor protein TRIF (TIR-domain-containing adaptor protein inducing IFN-β) CLU induction by poly(I:C) was abrogated. In addition to poly(I:C) CLU gene expression in CRL2018 cells was induced by purified cellular RNA and RNA present in necrotic cell lysate. Our data indicate that cellular RNA following its release from necrotic cells in atherosclerotic lesions can act as an endogenous TLR3 ligand to induce CLU expression in VSMC and in vivo. Thus, they expand the view on TLR2 and TLR4 as known pro-atherosclerotic effectors toward TLR3. Conclusively, TLR3 activation induces expression of cytoprotective and anti-inflammatory CLU by VSMC and mice, to potentially counteract atherosclerotic pathology.
Collapse
|
36
|
The immune-modulatory role of apolipoprotein E with emphasis on multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Dev Immunol 2010; 2010:186813. [PMID: 20613949 PMCID: PMC2896842 DOI: 10.1155/2010/186813] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/18/2010] [Indexed: 01/28/2023]
Abstract
Apolipoprotein E (apoE) is a 34.2 kDa glycoprotein characterized by its wide tissue distribution and multiple functions. The nonlipid-related properties of apoE include modulating inflammation and oxidation, suppressing T cell proliferation, regulating macrophage functions, and facilitating lipid antigen presentation by CD1 molecules to natural killer T (NKT) cells, and so forth. Increasing studies have revealed that APOE ε allele might be associated with multiple sclerosis (MS), although evidence is still not sufficient enough. In this review, we summarized the current progress of the immunomodulatory functions of apoE, with special focus on the association of APOE ε allele with the clinical features of MS and of its animal model experimental autoimmune encephalomyelitis (EAE).
Collapse
|
37
|
Nuutinen T, Suuronen T, Kauppinen A, Salminen A. Valproic acid stimulates clusterin expression in human astrocytes: Implications for Alzheimer's disease. Neurosci Lett 2010; 475:64-8. [DOI: 10.1016/j.neulet.2010.03.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/04/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|
38
|
The role of apolipoprotein E in Guillain-Barré syndrome and experimental autoimmune neuritis. J Biomed Biotechnol 2010; 2010:357412. [PMID: 20182542 PMCID: PMC2825561 DOI: 10.1155/2010/357412] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 12/20/2009] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein E (apoE) is a 34.2 kDa glycosylated protein characterized by its wide tissue distribution and multiple functions. ApoE has been widely studied in lipid metabolism, cardiocerebrovascular diseases, and neurodegenerative diseases like Alzheimer's disease and mild cognitive impairment, and so forth. Recently, a growing body of evidence has pointed to nonlipid related properties of apoE, including suppression of T cell proliferation, regulation of macrophage function, facilitation of lipid antigen presentation by CD1 molecules to natural killer T (NKT) cells, and modulation of inflammation and oxidation. By these properties, apoE impacts physiology and pathophysiology at multiple levels. The present paper summarizes updated studies on the immunoregulatory function of apoE, with special focus on isoform-specific effects of apoE on Guillain-Barré syndrome (GBS) and its animal model experimental autoimmune neuritis (EAN).
Collapse
|
39
|
Chapter 9: Oxidative stress in malignant progression: The role of Clusterin, a sensitive cellular biosensor of free radicals. Adv Cancer Res 2010; 104:171-210. [PMID: 19878777 DOI: 10.1016/s0065-230x(09)04009-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clusterin/Apolipoprotein J (CLU) gene is expressed in most human tissues and encodes for two protein isoforms; a conventional heterodimeric secreted glycoprotein and a truncated nuclear form. CLU has been functionally implicated in several physiological processes as well as in many pathological conditions including ageing, diabetes, atherosclerosis, degenerative diseases, and tumorigenesis. A major link of all these, otherwise unrelated, diseases is that they are characterized by increased oxidative injury due to impaired balance between production and disposal of reactive oxygen or nitrogen species. Besides the aforementioned diseases, CLU gene is differentially regulated by a wide variety of stimuli which may also promote the production of reactive species including cytokines, interleukins, growth factors, heat shock, radiation, oxidants, and chemotherapeutic drugs. Although at low concentration reactive species may contribute to normal cell signaling and homeostasis, at increased amounts they promote genomic instability, chronic inflammation, lipid oxidation, and amorphous aggregation of target proteins predisposing thus cells for carcinogenesis or other age-related disorders. CLU seems to intervene to these processes due to its small heat-shock protein-like chaperone activity being demonstrated by its property to inhibit protein aggregation and precipitation, a main feature of oxidant injury. The combined presence of many potential regulatory elements in the CLU gene promoter, including a Heat-Shock Transcription Factor-1 and an Activator Protein-1 element, indicates that CLU gene is an extremely sensitive cellular biosensor of even minute alterations in the cellular oxidative load. This review focuses on CLU regulation by oxidative injury that is the common molecular link of most, if not all, pathological conditions where CLU has been functionally implicated.
Collapse
|
40
|
Abstract
The possible biological role played by Clusterin (CLU) has been puzzling researchers for a long time since its first discovery and characterization. CLU has been often described as an "enigmatic" gene, a clear indication that too many aspects of this issue have been obscure or difficult to interpret for long. The good news is that this is certainly no longer true. Since the beginning, CLU was believed to play important roles in nearly all most important biological phenomena. The diversity, sometime the contradictions, of its biological action is now likely explained by the existence of different protein products all generated by the same single copy CLU gene. The relatively recent discovery that CLU can be retained inside the cell and targeted to many intracellular sites and organelles, including the nucleus, provided us a very different view from that solely deriving from its possible role in the outer cellular environment. In particular, nuclear localization of CLU (nCLU) was found to trigger cell death in many systems. In this chapter, a critical review of previous work will enable us to reinterpret old data and observations in the attempt to progressively unravelling the CLU "enigma" by considering its localization inside and outside the cell. The final picture would supposedly reconciliate different or alternative hypothesis. Starting with an "historical" approach demonstrating that nCLU was right under our eyes since the beginning, up to the more recent contributions we will describe which stimuli would inhibit secretion and maturation of CLU leading at least one protein product to target the nucleus and kill the cell. A better understanding of this complex issue is not an easy work, considering the thoughtfulness in reviewing the existing literature and the known controversial reports. We hope that the information contained in this article will be useful for the reader to enlighten this field.
Collapse
Affiliation(s)
- Saverio Bettuzzi
- Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Biochimica Clinica e Biochimica dell'Esercizio Fisico, Parma, Italy
| | | |
Collapse
|
41
|
Sala A, Bettuzzi S, Pucci S, Chayka O, Dews M, Thomas-Tikhonenko A. Regulation of CLU gene expression by oncogenes and epigenetic factors implications for tumorigenesis. Adv Cancer Res 2010; 105:115-32. [PMID: 19879426 DOI: 10.1016/s0065-230x(09)05007-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In no other field has the function of clusterin (CLU) been more controversial than in cancer genetics. After more than 20 years of research, there is still uncertainty with regard to the role of CLU in human cancers. Some investigators believe CLU to be an oncogene, others-an inhibitor of tumorigenesis. However, owing to the recent efforts of several laboratories, the role of CLU in important cellular processes like proliferation, apoptosis, differentiation, and transformation is beginning to emerge. The "enigmatic" CLU is becoming less so. In this chapter, we will review the work of research teams interested in understanding how CLU is regulated by oncogenic signaling. We will discuss how and under what circumstances oncogenes and epigenetic factors modify CLU expression, with important consequences for mammalian tumorigenesis.
Collapse
Affiliation(s)
- Arturo Sala
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Nuutinen T, Suuronen T, Kauppinen A, Salminen A. Clusterin: a forgotten player in Alzheimer's disease. ACTA ACUST UNITED AC 2009; 61:89-104. [PMID: 19651157 DOI: 10.1016/j.brainresrev.2009.05.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/16/2022]
Abstract
Clusterin, also known as apolipoprotein J, is a versatile chaperone molecule which contains several amphipathic and coiled-coil alpha-helices, typical characteristics of small heat shock proteins. In addition, clusterin has three large intrinsic disordered regions, so-called molten globule domains, which can stabilize stressed protein structures. Twenty years ago, it was demonstrated that the expression of clusterin was clearly increased in Alzheimer's disease (AD). Later it was observed that clusterin can bind amyloid-beta peptides and prevent their fibrillization. Clusterin is also involved in the clearance of amyloid-beta peptides and fibrils by binding to megalin receptors and enhancing their endocytosis within glial cells. Clusterin is a complement inhibitor and can suppress complement activation observed in AD. Clusterin is also present in lipoprotein particles and regulates cholesterol and lipid metabolism of brain which is disturbed in AD. Clusterin is a stress-induced chaperone which is normally secreted but in conditions of cellular stress, it can be transported to cytoplasm where it can bind to Bax protein and inhibit neuronal apoptosis. Clusterin can also bind to Smad2/3 proteins and potentiate the neuroprotective TGFbeta signaling. An alternative splicing can produce a variant isoform of clusterin which can be translocated to nuclei where it induces apoptosis. The role of nuclear clusterin in AD needs to be elucidated. We will review here the extensive literature linking clusterin to AD and examine the recent progress in clusterin research with the respect to AD pathology. Though clusterin can be viewed as a multipotent guardian of brain, it is unable to prevent the progressive neuropathology in chronic AD.
Collapse
Affiliation(s)
- Tapio Nuutinen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
43
|
Pocivavsek A, Rebeck GW. Inhibition of c-Jun N-terminal kinase increases apoE expression in vitro and in vivo. Biochem Biophys Res Commun 2009; 387:516-20. [PMID: 19615334 DOI: 10.1016/j.bbrc.2009.07.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/13/2009] [Indexed: 11/24/2022]
Abstract
Apolipoprotein E (apoE), a ligand for the low-density lipoprotein receptor family, has been implicated in modulating glial inflammatory responses and the risk of neurodegeneration associated with Alzheimer's disease. Glial cells activated by lipopolysaccharide (LPS) have decreased apoE levels and we recently showed that apoE itself can modulate the inflammatory response by reducing c-Jun N-terminal kinase (JNK) activation. Reduced JNK phosphorylation is vital to overcome the LPS-induced decrease in apoE expression, suggesting that JNK inhibition may be an effective way to increase apoE protein and protract its anti-inflammatory properties. This study investigates the impact of JNK inhibition on apoE production using two JNK inhibitors. Our work in primary glia and in vivo in mice injected with JNK inhibitor demonstrates that inhibition of JNK may be an effective way to increase apoE expression.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Neuroscience, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20057-1464, USA
| | | |
Collapse
|
44
|
Pocivavsek A, Burns MP, Rebeck GW. Low-density lipoprotein receptors regulate microglial inflammation through c-Jun N-terminal kinase. Glia 2009; 57:444-53. [PMID: 18803301 PMCID: PMC2628955 DOI: 10.1002/glia.20772] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apolipoprotein E (apoE) has been implicated in modulating the central nervous system (CNS) inflammatory response. However, the molecular mechanisms involved in apoE-dependent immunomodulation are poorly understood. We hypothesize that apoE alters the CNS inflammatory response by signaling via low-density lipoprotein (LDL) receptors in glia. To address this hypothesis, we used a small bioactive peptide formed from the receptor-binding domain of apoE, apoE peptide (EP), to study LDL receptor signaling in microglia. To model glial activation, we treated primary mouse microglia and the microglial cell line BV2 with lipopolysaccharide (LPS) and studied two inflammatory responses: an increase in nitric oxide production (NO) and a decrease in apoE production. We found that treatment of primary microglia and BV2 cells with EP attenuated LPS-induced NO accumulation and apoE reduction in a dose-dependent manner. Using the receptor-associated protein to block ligand binding to members of the LDL receptor family, we found that EP attenuated both of these LPS-induced inflammatory responses via LDL receptors. We studied two intracellular signaling cascades associated with apoE: c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). LPS induced both ERK and JNK activation, whereas EP induced ERK activation, but drastically reduced JNK activation. Inhibition of JNK with SP600125 reduced LPS-induced NO production and apoE reduction in a dose-dependent manner. Treatment of microglia with suboptimal EP in combination with JNK inhibitor enhanced attenuation of LPS-induced NO production. These data suggest that microglial LDL receptors regulate JNK activation, which is necessary for apoE modulation of the inflammatory response.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Neuroscience, Georgetown University, New Research Building, Washington, District of Columbia 20057-1464, USA
| | | | | |
Collapse
|
45
|
Saura J. Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 2007; 4:26. [PMID: 17937799 PMCID: PMC2140055 DOI: 10.1186/1742-2094-4-26] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 10/15/2007] [Indexed: 01/25/2023] Open
Abstract
Primary rodent astroglial-enriched cultures are the most popular model to study astroglial biology in vitro. From the original methods described in the 1970's a great number of minor modifications have been incorporated into these protocols by different laboratories. These protocols result in cultures in which the astrocyte is the predominant cell type, but astrocytes are never 100% of cells in these preparations. The aim of this review is to bring attention to the presence of microglia in astroglial cultures because, in my opinion, the proportion of and the role that microglial cells play in astroglial cultures are often underestimated. The main problem with ignoring microglia in these cultures is that relatively minor amounts of microglia can be responsible for effects observed on cultures in which the astrocyte is the most abundant cell type. If the relative contributions of astrocytes and microglia are not properly assessed an observed effect can be erroneously attributed to the astrocytes. In order to illustrate this point the case of NO production in activated astroglial-enriched cultures is examined. Lipopolysaccharide (LPS) induces nitric oxide (NO) production in astroglial-enriched cultures and this effect is very often attributed to astrocytes. However, a careful review of the published data suggests that LPS-induced NO production in rodent astroglial-enriched cultures is likely to be mainly microglial in origin. This review considers cell culture protocol factors that can affect the proportion of microglial cells in astroglial cultures, strategies to minimize the proportion of microglia in these cultures, and specific markers that allow the determination of such microglial proportions.
Collapse
Affiliation(s)
- Josep Saura
- Department of Cerebral Ischaemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), CSIC, IDIBAPS, 08036-Barcelona, Spain.
| |
Collapse
|
46
|
Nuutinen T, Huuskonen J, Suuronen T, Ojala J, Miettinen R, Salminen A. Amyloid-β 1–42 induced endocytosis and clusterin/apoJ protein accumulation in cultured human astrocytes. Neurochem Int 2007; 50:540-7. [PMID: 17196306 DOI: 10.1016/j.neuint.2006.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/24/2006] [Accepted: 11/02/2006] [Indexed: 02/05/2023]
Abstract
Recent studies indicate that astrocytes may be the primary target of secreted amyloid-beta 1-42 peptides, with the neurotoxicity representing a secondary response to astrocytic stress. Our purpose was to clarify the astrocytic stress response induced by amyloid-beta peptides in human and rat astrocytes. Human amyloid-beta 1-42 peptides and fibrils induced the appearance of cytoplasmic vacuoles in normal human astrocytes (NHA) and CCFsttg1 astrocytoma cells. Vacuoles appeared 9-12h after the amyloid-beta exposure and remained present for several days. Rat primary neonatal astrocytes showed similar but less prominent vacuolar response. Human amyloid-beta peptides 1-16, 1-28, 10-20, 17-21 and 25-35 did not cause vacuole formation. Electron microscopic observations revealed large endocytic vacuoles containing fibrillar amyloid material. Stress marker analysis did not show any increase in protein levels of HSP70, HSP90, GRP78 and GRP94. However, the protein level of clusterin/apoJ, a secreted chaperone, was strongly increased both in NHA and CCFsttg1 astrocytes. Endocytic response associated with the accumulation of clusterin/apoJ protein suggests that clusterin/apoJ has a role in the clearance of amyloid-beta peptides.
Collapse
Affiliation(s)
- Tapio Nuutinen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
47
|
Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 2006; 26:4985-94. [PMID: 16687490 PMCID: PMC6674234 DOI: 10.1523/jneurosci.5476-05.2006] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To study the profile and regulation of apolipoprotein E (apoE) expression in the CNS, we generated mice in which apoE expression can be detected in vivo with unprecedented sensitivity and resolution. cDNA encoding enhanced green fluorescent protein (EGFP) with a stop codon was inserted by gene targeting into the apoE gene locus (EGFPapoE) immediately after the translation initiation site. Insertion of EGFP into one apoE allele provides a real-time location marker of apoE expression in vivo; the remaining allele is sufficient to maintain normal cellular physiology. In heterozygous EGFPapoE mice, EGFP was highly expressed in hepatocytes and peritoneal macrophages. EGFP was also expressed in brain astrocytes; however some astrocytes (approximately 25%) expressed no EGFP, suggesting that a subset of these cells does not express apoE. EGFP was expressed in <10% of microglia after kainic acid treatment, suggesting that microglia are not a major source of brain apoE. Although hippocampal neurons did not express EGFP under normal conditions, kainic acid treatment induced intense expression of EGFP in injured neurons, demonstrating apoE expression in neurons in response to excitotoxic injury. The neuronal expression was confirmed by in situ hybridization of mouse apoE mRNA and by anti-apoE immunostaining. Smooth muscle cells of large blood vessels and cells surrounding small vessels in the CNS also strongly expressed EGFP, as did cells in the choroid plexus. EGFPapoE reporter mice will be useful for studying the regulation of apoE expression in the CNS and might provide insights into the diverse mechanisms of apoE4-related neurodegeneration.
Collapse
|
48
|
Qin S, Colin C, Hinners I, Gervais A, Cheret C, Mallat M. System Xc- and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-beta peptide 1-40. J Neurosci 2006; 26:3345-56. [PMID: 16554485 PMCID: PMC6674113 DOI: 10.1523/jneurosci.5186-05.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Because senile plaques in Alzheimer's disease (AD) contain reactive microglia in addition to potentially neurotoxic aggregates of amyloid-beta (Abeta), we examined the influence of microglia on the viability of rodent neurons in culture exposed to aggregated Abeta 1-40. Microglia enhanced the toxicity of Abeta by releasing glutamate through the cystine-glutamate antiporter system Xc-. This may be relevant to Abeta toxicity in AD, because the system Xc(-)-specific xCT gene is expressed not only in cultured microglia but also in reactive microglia within or surrounding amyloid plaques in transgenic mice expressing mutant human amyloid precursor protein or in wild-type mice injected with Abeta. Inhibition of NMDA receptors or system Xc- prevented the microglia-enhanced neurotoxicity of Abeta but also unmasked a neuroprotective effect of microglia mediated by microglial secretion of apolipoprotein E (apoE) in the culture medium. Immunodepletion of apoE or targeted inactivation of the apoE gene in microglia abrogated neuroprotection by microglial conditioned medium, whereas supplementation by human apoE isoforms restored protection, which was potentiated by the presence of microglia-derived cofactors. These results suggest that inhibition of microglial system Xc- might be of therapeutic value in the treatment of AD. Its inhibition not only prevents glutamate excitotoxicity but also facilitates neuroprotection by apoE.
Collapse
|
49
|
Alvarez JI, Teale JM. Breakdown of the blood brain barrier and blood–cerebrospinal fluid barrier is associated with differential leukocyte migration in distinct compartments of the CNS during the course of murine NCC. J Neuroimmunol 2006; 173:45-55. [PMID: 16406118 DOI: 10.1016/j.jneuroim.2005.11.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Brain homeostasis is normally protected by the blood brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB), barriers that function in distinct CNS compartments and consist of different types of blood vessels including pial (subarachnoid spaces, leptomeninges), parenchymal (cerebral cortex) and ventricular vessels. In this study, a mouse model of neurocysticercosis was used to distinguish between changes in the permeability of the BBB and the BCB and determine the association of such alterations on leukocyte infiltration. Mice were intracranially infected with the parasite Mesocestoides corti and sacrificed at various times post infection. Different anatomical areas of infected brain were analyzed by three color immunofluoresence utilizing antibodies against serum proteins to assess brain barrier permeability, glial fibrillary acidic protein (GFAP) to detect astrocytes, and specific cell surface markers to determine the subpopulations of leukocytes infiltrating the CNS at particular sites. The results indicate increased permeability of all three types of vessels/structural sites as a result of infection evidenced by serum proteins and leukocyte extravasation but with considerable differences in the timing and extent of these permeability changes. Parenchymal vessels were the most resilient to changes in permeability whereas pial vessels were the least. Choroid plexus vessels of the ventricles also appeared less susceptible to increased permeability compared with pial vessels. In addition, parenchymal vessels appeared impermeable to particular types of immune cells even after extended periods of infection. Additionally, alterations in reactive astrocytes juxtaposed to blood vessels that exhibited increased permeability displayed increased expression of cytokines known to regulate brain barrier function. The results suggest that access of leukocytes and serum derived factors into the infected brain depend on several parameters including the anatomical area, type of vascular bed, cell phenotype and cytokine microenvironment.
Collapse
Affiliation(s)
- Jorge I Alvarez
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
50
|
Ejarque-Ortiz A, Medina MG, Tusell JM, Pérez-González AP, Serratosa J, Saura J. Upregulation of CCAAT/enhancer binding protein β in activated astrocytes and microglia. Glia 2006; 55:178-88. [PMID: 17078024 DOI: 10.1002/glia.20446] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) regulates the expression of key genes in inflammation but little is known about the involvement of C/EBPbeta in glial activation. In this report, we have studied the patterns of astroglial and microglial C/EBPbeta expression in primary mouse cortical cultures. We show that both astrocytes and microglia express C/EBPbeta in untreated mixed glial cultures. C/EBPbeta is upregulated when glial activation is induced by lipopolysaccharide (LPS). The LPS-induced upregulation of glial C/EBPbeta is rapid (2 h at mRNA level, 4 h at protein level). It is elicited by low concentrations of LPS (almost maximal effect at 1 ng/mL) and it is reversed by the protein synthesis inhibitor cycloheximide. C/EBPbeta nuclear levels increase both in astrocytes and microglia after LPS treatment, and the response is more marked in microglia. The LPS-induced increase in microglial C/EBPbeta is prevented by coadministration of the MAP kinase inhibitors SB203580 (p38 inhibitor) + SP600125 (JNK inhibitor) or SB203580 + U0126 (ERK inhibitor). Systemic injection of LPS also increases brain nuclear levels of C/EBPbeta as shown by Western blot, and this increase is localized in microglial cells as shown by double immunofluorescence, in the first report to our knowledge of C/EBPbeta expression in activated glial cells in vivo. These findings support a role for C/EBPbeta in the activation of astrocytes and, particularly, microglia. Given the nature of the C/EBPbeta-regulated genes, we hypothesize that this factor participates in neurotoxic effects associated with glial activation. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Aroa Ejarque-Ortiz
- Department of Pharmacology and Toxicology, IIBB-CSIC, IDIBAPS, E-08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|