1
|
Possamai-Della T, Cararo JH, Aguiar-Geraldo JM, Peper-Nascimento J, Zugno AI, Fries GR, Quevedo J, Valvassori SS. Prenatal Stress Induces Long-Term Behavioral Sex-Dependent Changes in Rats Offspring: the Role of the HPA Axis and Epigenetics. Mol Neurobiol 2023; 60:5013-5033. [PMID: 37233974 DOI: 10.1007/s12035-023-03348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Preclinical genetic studies have related stress early exposures with changes in gene regulatory mechanisms, including epigenetic alterations, such as modifications of DNA methylation, histone deacetylation, and histones acetylation. This study evaluates the effects of prenatal stress on the behavior, hypothalamus-pituitary-adrenal (HPA)-axis, and epigenetic parameters in stressed dams and their offspring. The rats were subjected to a protocol of chronic unpredictable mild stress on the fourteenth day of pregnancy until the birth of offspring. After birth, maternal care was evaluated for six days. Following weaning, the locomotor and depressive-like behaviors of the dams and their offspring (60 days old) were assessed. The HPA axis parameters were evaluated in serum from dams and offspring, and epigenetic parameters (histone acetyltransferase (HAT), histone deacetylase (HDAC), DNA methyltransferase (DNMT) activities, and the levels of histone H3 acetylated at lysine residue 9 (H3K9ac) and histone 3 acetylated at lysine residue 14 (H3K14ac)) were assessed in dams' and offspring' brains. Prenatal stress did not significantly influence maternal care; however, it induced manic behavior in female offspring. These behavioral alterations in the offspring were accompanied by hyperactivity of the HPA-axis, epigenetic adaptations in the activity of HDAC and DNMT, and acetylation in the histones H3K9 and H3K14. In addition, the prenatal stressed female offspring showed increased levels of ACTH compared to their male counterpart. Our findings reinforce the impact of prenatal stress on behavior, stress response, and epigenetic profile of offspring.
Collapse
Affiliation(s)
- Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gabriel R Fries
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
2
|
Kaki S, DeRosa H, Timmerman B, Brummelte S, Hunter RG, Kentner AC. Developmental Manipulation-Induced Changes in Cognitive Functioning. Curr Top Behav Neurosci 2023; 63:241-289. [PMID: 36029460 PMCID: PMC9971379 DOI: 10.1007/7854_2022_389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Schizophrenia is a complex neurodevelopmental disorder with as-yet no identified cause. The use of animals has been critical to teasing apart the potential individual and intersecting roles of genetic and environmental risk factors in the development of schizophrenia. One way to recreate in animals the cognitive impairments seen in people with schizophrenia is to disrupt the prenatal or neonatal environment of laboratory rodent offspring. This approach can result in congruent perturbations in brain physiology, learning, memory, attention, and sensorimotor domains. Experimental designs utilizing such animal models have led to a greatly improved understanding of the biological mechanisms that could underlie the etiology and symptomology of schizophrenia, although there is still more to be discovered. The implementation of the Research and Domain Criterion (RDoC) has been critical in taking a more comprehensive approach to determining neural mechanisms underlying abnormal behavior in people with schizophrenia through its transdiagnostic approach toward targeting mechanisms rather than focusing on symptoms. Here, we describe several neurodevelopmental animal models of schizophrenia using an RDoC perspective approach. The implementation of animal models, combined with an RDoC framework, will bolster schizophrenia research leading to more targeted and likely effective therapeutic interventions resulting in better patient outcomes.
Collapse
Affiliation(s)
- Sahith Kaki
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Holly DeRosa
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- University of Massachusetts Boston, Boston, MA, USA
| | - Brian Timmerman
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | | | - Amanda C Kentner
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
3
|
Varela RB, Cararo JH, Tye SJ, Carvalho AF, Valvassori SS, Fries GR, Quevedo J. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: theoretical framework, evidence, and implications. Neurosci Biobehav Rev 2022; 135:104579. [DOI: 10.1016/j.neubiorev.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
|
4
|
Shanmugan S, Cao W, Satterthwaite TD, Sammel MD, Ashourvan A, Bassett DS, Ruparel K, Gur RC, Epperson CN, Loughead J. Impact of childhood adversity on network reconfiguration dynamics during working memory in hypogonadal women. Psychoneuroendocrinology 2020; 119:104710. [PMID: 32563173 PMCID: PMC7745207 DOI: 10.1016/j.psyneuen.2020.104710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Many women with no history of cognitive difficulties experience executive dysfunction during menopause. Significant adversity during childhood negatively impacts executive function into adulthood and may be an indicator of women at risk of a mid-life cognitive decline. Previous studies have indicated that alterations in functional network connectivity underlie these negative effects of childhood adversity. There is growing evidence that functional brain networks are not static during executive tasks; instead, such networks reconfigure over time. Optimal dynamics are necessary for efficient executive function; while too little reconfiguration is insufficient for peak performance, too much reconfiguration (supra-optimal reconfiguration) is also maladaptive and associated with poorer performance. Here we examined the impact of adverse childhood experiences (ACEs) on network flexibility, a measure of dynamic reconfiguration, during a letter n-back task within three networks that support executive function: frontoparietal, salience, and default mode networks. Several animal and human subject studies have suggested that childhood adversity exerts lasting effects on executive function via serotonergic mechanisms. Tryptophan depletion (TD) was used to examine whether serotonin function drives ACE effects on network flexibility. We hypothesized that ACE would be associated with higher flexibility (supra-optimal flexibility) and that TD would further increase this measure. Forty women underwent functional imaging at two time points in this double-blind, placebo controlled, crossover study. Participants also completed the Penn Conditional Exclusion Test, a task assessing abstraction and mental flexibility. The effects of ACE and TD were evaluated using generalized estimating equations. ACE was associated with higher flexibility across networks (frontoparietal β = 0.00748, D = 2.79, p = 0.005; salience β = 0.00679, D = 3.02, p = 0.003; and default mode β = 0.00910, D = 3.53, p = 0.0004). While there was no interaction between ACE and TD, active TD increased network flexibility in both ACE groups in comparison to sham depletion (frontoparietal β = 0.00489, D = 2.15, p = 0.03; salience β = 0.00393, D = 1.91, p = 0.06; default mode β = 0.00334, D = 1.73, p = 0.08). These results suggest that childhood adversity has lasting impacts on dynamic reconfiguration of functional brain networks supporting executive function and that decreasing serotonin levels may exacerbate these effects.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wen Cao
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mary D Sammel
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arian Ashourvan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kosha Ruparel
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - C Neill Epperson
- Department of Psychiatry, Anschutz Medical Campus, University of Colorado, Aurora, CO USA
| | - James Loughead
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Ratajczak P, Kus K, Zaprutko T, Szczepański M, Rusowicz S, Nowakowska E. Antidepressant and anxiolytic efficacy of single, chronic and concomitant use of vortioxetine, dapoxetine and fluoxetine in prenatally stressed rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2019-002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Expression profiles of the internal jugular and saphenous veins: Focus on hemostasis genes. Thromb Res 2020; 191:113-124. [PMID: 32438216 DOI: 10.1016/j.thromres.2020.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/15/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Venous bed specificity could contribute to differential vulnerability to thrombus formation, and is potentially reflected in mRNA profiles. MATERIALS AND METHODS Microarray-based transcriptome analysis in wall and valve specimens from internal jugular (IJV) and saphenous (SV) veins collected during IJV surgical reconstruction in patients with impaired brain outflow. Multiplex antigenic assay in paired jugular and peripheral plasma samples. RESULTS Most of the top differentially expressed transcripts have been previously associated with both vascular and neurological disorders. Large expression differences of HOX genes, organ patterning regulators, pinpointed the vein positional identity. The "complement and coagulation cascade" emerged among enriched pathways. In IJV, upregulation of genes for coagulation inhibitors (TFPI, PROS1), activated protein C pathway receptors (THBD, PROCR), fibrinolysis activators (PLAT, PLAUR), and downregulation of the fibrinolysis inhibitor (SERPINE1) and of contact/amplification pathway genes (F11, F12), would be compatible with a thromboprotective profile in respect to SV. Further, in SV valve the prothrombinase complex genes (F5, F2) were up-regulated and the VWF showed the highest expression. Differential expression of several VWF regulators (ABO, ST3GAL4, SCARA5, CLEC4M) was also observed. Among other differentially expressed hemostasis-related genes, heparanase (HPSE)/heparanase inhibitor (HPSE2) were up-/down-regulated in IJV, which might support procoagulant features and disease conditions. The jugular plasma levels of several proteins, encoded by differentially expressed genes, were lower and highly correlated with peripheral levels. CONCLUSIONS The IJV and SV rely on differential expression of many hemostasis and hemostasis-related genes to balance local hemostasis, potentially related to differences in vulnerability to thrombosis.
Collapse
|
7
|
Sex-dependent metabolic effects of pregestational exercise on prenatally stressed mice. J Dev Orig Health Dis 2020; 12:271-279. [PMID: 32406352 DOI: 10.1017/s2040174420000343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stressful events during the prenatal period have been related to hyperactive hypothalamic-pituitary-adrenal (HPA) axis responses as well as metabolic changes in adult life. Moreover, regular exercise may contribute to the improvement of the symptoms associated with stress and stress-related chronic diseases. Therefore, this study aims to investigate the effects of exercise, before the gestation period, on the metabolic changes induced by prenatal stress in adult mice. Female Balb/c mice were divided into three groups: control (CON), prenatal restraint stress (PNS) and exercise before the gestational period plus PNS (EX + PNS). When adults, the plasmatic biochemical analysis, oxidative stress, gene expression of metabolic-related receptors and sex differences were assessed in the offspring. Prenatal stress decreased neonatal and adult body weight when compared to the pregestational exercise group. Moreover, prenatal stress was associated with reduced body weight in adult males. PNS and EX + PNS females showed decreased hepatic catalase. Pregestational exercise prevented the stress-induced cholesterol increase in females but did not prevent the liver mRNA expression reduction on the peroxisome proliferator-activated receptors (PPARs) α and γ in PNS females. Conversely, PNS and EX + PNS males showed an increased PPARα mRNA expression. In conclusion, pregestational exercise prevented some effects of prenatal stress on metabolic markers in a sex-specific manner.
Collapse
|
8
|
Memory deterioration based on the tobacco smoke exposure and methylazoxymethanol acetate administration vs. aripiprazole, olanzapine and enrichment environment conditions. Pharmacol Biochem Behav 2020; 189:172855. [PMID: 31954117 DOI: 10.1016/j.pbb.2020.172855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 11/20/2022]
Abstract
Enrichment environment conditions, as well as tobacco smoke exposure, may affect cognitive function (e.g. spatial memory) in an animal model of schizophrenia and schizophrenic patients. The aim of this study was to find whether spatial memory function impairment is found in methylazoxymethanol acetate treated rats (an animal model of schizophrenia) and whether aripiprazole (1.5 mg/kg) and olanzapine (0.5 mg/kg) modify these functions. We also were able to determine whether tobacco smoke exposure and enrichment environment conditions have an impact on drug efficacy. The effect of methylazoxymethanol acetate, tobacco smoke exposure, enrichment environment and the use of drugs were studied in the Morris Water Maze test (spatial memory). The results of our study clearly show that enriched environment may have a procognitive effect while tobacco smoke and methylazoxymethanol acetate have a contradictory effect. This paper also confirmed that the use of neuroleptics, namely ARI and OLA, reduced the process of spatial memory deterioration tested in the Morris water maze both in terms of the number of escape latencies and crossed quadrants.
Collapse
|
9
|
Lee H, Kim HK, Kwon JT, Kim YO, Seo J, Lee S, Cho IH, Kim HJ. Effects of Tianeptine on Adult Rats Following Prenatal Stress. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2018; 16:197-208. [PMID: 29739134 PMCID: PMC5953020 DOI: 10.9758/cpn.2018.16.2.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/01/2017] [Accepted: 05/25/2017] [Indexed: 01/24/2023]
Abstract
Objective Exposing a pregnant female to stress during the critical period of embryonic fetal brain development increases the risk of psychiatric disorders in the offspring. The objective of this study was to investigate the effect of antidepressant tianeptine on prenatally stressed (PNS) rats. Methods In this study, a repeated variable stress paradigm was applied to pregnant rats during the last week of gestation. To investigate the effects of antidepressant tianeptine on PNS rats, behavioral and protein expression analyses were performed. Forced swim test, open field test, and social interaction test were performed to determine changes in PNS rats compared to non-stressed offspring. Haloperidol was used as a positive control as an antipsychotic drug based on previous studies. Results Behavioral changes were restored after treatment with tianeptine or haloperidol. Western blot and immunohistochemical analyses of the prefrontal cortex revealed downregulation of several neurodevelopmental proteins in PNS rats. After treatment with tianeptine or haloperidol, their expression levels were increased. Conclusion Downregulation of several proteins in PNS rats might have caused subsequent behavioral changes in PNS rats. After tianeptine or haloperidol treatment, behavioral changes in PNS rats were restored. Therefore, tianeptine might decrease incidence of prenatal stress related-psychiatric disorders such as depression and schizophrenia.
Collapse
Affiliation(s)
- Hwayoung Lee
- Department of Clinical Pharmacology and Soonchunhyang Medical Research Institute, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology and Soonchunhyang Medical Research Institute, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology and Soonchunhyang Medical Research Institute, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Young Ock Kim
- Department of Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong, Korea
| | - Jonghoon Seo
- Department of Clinical Pharmacology and Soonchunhyang Medical Research Institute, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Brain Korea 21 Plus Program, and Institute of Korean Medicine, College of Oriental Medicine, Kyung Hee University, Seoul, Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology and Soonchunhyang Medical Research Institute, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
10
|
Resting-state functional connectivity in children born from gestations complicated by preeclampsia: A pilot study cohort. Pregnancy Hypertens 2018; 12:23-28. [PMID: 29674194 DOI: 10.1016/j.preghy.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Individuals (PE-F1s) born from preeclampsia (PE)-complicated pregnancies have elevated risks for cognitive impairment. Intervals of disturbed maternal plasma angiokines precede clinical signs of PE. We hypothesized pan-blastocyst dysregulation of angiokines underlies altered PE-F1 brain vascular and neurological development. This could alter brain functional connectivity (FC) patterns at rest. MATERIALS AND METHODS Resting-state functional MRI datasets of ten, matched child pairs (5 boys and 5 girls aged 7-10 years of age) from PE or control pregnancies were available for study. Seed-based analysis and independent component analysis (ICA) methodologies were used to assess whether differences in resting-state functional connectivity (rs-FC) were present between PE-F1s and controls. Bilateral amygdala, bilateral hippocampus, and medial prefrontal cortex (MPFC) were selected as regions of interest (ROI) for the seed-based analysis based on previous imaging differences that we reported in this set of children. RESULTS Compared to controls, PE-F1 children had increased rs-FC between the right amygdala and left frontal pole, the left amygdala and bilateral frontal pole, and the MPFC and precuneus. PE-F1 children additionally had decreased rs-FC between the MPFC and the left occipital fusiform gyrus compared to controls. CONCLUSION These are the first reported rs-FC data for PE-F1s of any age. Theysuggest that PE alters FC during human fetal brain development. Altered FC may contribute to the behavioural and neurological alterations reported in PE-F1s. Longitudinal MRI studies with larger sample sizes are required to confirm these novel findings.
Collapse
|
11
|
Li C, Cao F, Li S, Huang S, Li W, Abumaria N. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus. Front Mol Neurosci 2018; 10:454. [PMID: 29375311 PMCID: PMC5768633 DOI: 10.3389/fnmol.2017.00454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/26/2017] [Indexed: 12/28/2022] Open
Abstract
Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications.
Collapse
Affiliation(s)
- Chaoqun Li
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feifei Cao
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengli Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nashat Abumaria
- Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Heslin K, Coutellier L. Npas4 deficiency and prenatal stress interact to affect social recognition in mice. GENES BRAIN AND BEHAVIOR 2018; 17:e12448. [PMID: 29227584 DOI: 10.1111/gbb.12448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
Abstract
Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia have an expansive array of reported genetic and environmental contributing factors. However, none of these factors alone can account for a substantial proportion of cases of either disorder. Instead, many gene-by-environment interactions are responsible for neurodevelopmental disturbances that lead to these disorders. The current experiment used heterozygous knock-out mice to examine a potential interaction between 2 factors commonly linked to neurodevelopmental disorders and cognitive deficit: imbalanced excitatory/inhibitory signaling in the cortex and prenatal stress (PNS) exposure. Both of these factors have been linked to disrupt GABAergic signaling in the prefrontal cortex (PFC), a common feature of neurodevelopmental disorders. The neuronal PAS domain protein 4 (Npas4) gene is instrumental in regulation of the excitatory/inhibitory balance in the cortex and hippocampus in response to activation. Npas4 heterozygous and wild-type male and female mice were exposed to either PNS or standard gestation, then evaluated during adulthood in social and anxiety behavioral measures. The combination of PNS and Npas4 deficiency in male mice impaired social recognition. This behavioral deficit was associated with decreased parvalbumin and cFos protein expression in the infralimbic region of the PFC following social stimulation in Npas4 heterozygous males. In contrast, females displayed fewer behavioral effects and molecular changes in PFC in response to PNS and decreased Npas4.
Collapse
Affiliation(s)
- K Heslin
- Department of Psychology, The Ohio State University, Columbus, Ohio
| | - L Coutellier
- Department of Psychology, The Ohio State University, Columbus, Ohio.,Department of Neuroscience, The Ohio State University, Columbus, Ohio
| |
Collapse
|
13
|
Nie L, Wei G, Peng S, Qu Z, Yang Y, Yang Q, Huang X, Liu J, Zhuang Z, Yang X. Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer's disease. Biofactors 2017; 43:593-611. [PMID: 28608594 DOI: 10.1002/biof.1369] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/06/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease accompanied by neuropsychiatric symptoms, such as anxiety and depression. The levels of melatonin decrease in brains of AD patients. The potential effect of melatonin on anxiety and depression behaviors in AD and the underlying mechanisms remain unclear. In this study, we treated 10-month-old triple transgenic mice of AD (3xTg-AD) with melatonin (10 mg/kg body weight/day) for 1 month and explored the effects of melatonin on anxiety and depression-like behaviors in 3xTg-AD mice and the protein expression of hippocampal tissues. The behavioral test showed that melatonin ameliorated anxiety and depression-like behaviors of 3xTg-AD mice as measured by open field test, elevated plus maze test, forced swimming test, and tail suspension test. By carrying out two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, we revealed a total of 46 differentially expressed proteins in hippocampus between the wild-type (WT) mice and non-treated 3xTg-AD mice. A total of 21 differentially expressed proteins were revealed in hippocampus between melatonin-treated and non-treated 3xTg-AD mice. Among these differentially expressed proteins, glutathione S-transferase P 1 (GSTP1) (an anxiety-associated protein) and complexin-1 (CPLX1) (a depression-associated protein) were significantly down-regulated in hippocampus of 3xTg-AD mice compared with the WT mice. The expression of these two proteins was modulated by melatonin treatment. Our study suggested that melatonin could be used as a potential candidate drug to improve the neuropsychiatric behaviors in AD via modulating the expression of the proteins (i.e. GSTP1 and CPLX1) involved in anxiety and depression behaviors. © 2017 BioFactors, 43(4):593-611, 2017.
Collapse
Affiliation(s)
- Lulin Nie
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Gang Wei
- Thyroid & Breast Surgery Department, Hubei Maternal & Children Hospital, Wuhan, 430070, China
| | - Shengming Peng
- College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhongsen Qu
- Department of Neurology, Shanghai Jiaotong University Affiliated the Sixth Hospital, Shanghai, 200233, China
| | - Ying Yang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Qian Yang
- Department of cell biology and Anatomy, LSU Health Sciences Center, New Orleans, LA, 70112
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhixiong Zhuang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| |
Collapse
|
14
|
Lee YA, Kim YJ, Goto Y. Cognitive and affective alterations by prenatal and postnatal stress interaction. Physiol Behav 2016; 165:146-53. [DOI: 10.1016/j.physbeh.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 01/20/2023]
|
15
|
Yoshino Y, Kawabe K, Mori T, Mori Y, Yamazaki K, Numata S, Nakata S, Yoshida T, Iga JI, Ohmori T, Ueno SI. Low methylation rates of dopamine receptor D2 gene promoter sites in Japanese schizophrenia subjects. World J Biol Psychiatry 2016; 17:449-56. [PMID: 27269479 DOI: 10.1080/15622975.2016.1197424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES According to the dopamine hypothesis, several studies on the gene for the dopamine receptor D2 (DRD2) have been conducted. However, no trait biomarkers on DRD2 are available. We examined whether the methylation rates in the upstream region of DRD2 in leukocytes are different in schizophrenia (SCZ) subjects compared to control subjects. METHODS We selected seven CpG sites in the upstream region of DRD2 that may theoretically bind major transcription factors. The methylation rates in these regions of 50 medicated and 18 drug-naïve SCZ subjects were compared with those of age-matched control subjects. RESULTS The methylation rates were significantly lower in medicated (CpG2, P < 0.0001; CpG4, P = 0.013; CpG7, P < 0.0001; and average: 12.9 ± 1.8 vs. 14.1 ± 2.2, P = 0.005) and drug-naïve SCZ subjects (CpG1, P = 0.006; CpG2, P = 0.001; CpG3, P = 0.001; CpG5, P = 0.02; CpG6, P = 0.015; CpG7, P = 0.027; and average: 9.86 ± 0.9 vs. 11.2 ± 1.3, P = 0.002). CONCLUSIONS We confirmed low methylation rates in the upstream region of DRD2 in both medicated and drug-naïve SCZ subjects. Low methylation rates of DRD2 in leukocytes may be a trait biomarker for SCZ.
Collapse
Affiliation(s)
- Yuta Yoshino
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Kentaro Kawabe
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Takaaki Mori
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Yoko Mori
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Kiyohiro Yamazaki
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Shusuke Numata
- b Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences , The University of Tokushima Graduate School , Tokushima , Japan
| | - Shunsuke Nakata
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Taku Yoshida
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Jun-Ichi Iga
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| | - Tetsuro Ohmori
- b Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences , The University of Tokushima Graduate School , Tokushima , Japan
| | - Shu-Ichi Ueno
- a Department of Neuropsychiatry, Molecules and Function , Ehime University Graduate School of Medicine , Toon , Ehime , Japan
| |
Collapse
|
16
|
Ratajczak P, Kus K, Gołembiowska K, Noworyta-Sokołowska K, Woźniak A, Zaprutko T, Nowakowska E. The influence of aripiprazole and olanzapine on neurotransmitters level in frontal cortex of prenatally stressed rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:122-130. [PMID: 27458700 DOI: 10.1016/j.etap.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES The study aims to verify whether alterations in the level of neurotransmitters have occurred in prenatally stressed rats (animal model of schizophrenia), and whether aripiprazole (ARI) and olanzapine (OLA) modify this level. METHODS The effects of ARI (1.5mg/kg) and OLA (0.5mg/kg) were studied by means of microdialysis in freely moving rats (observation time 120min). The level of neurotransmitters (DA, 5-HT, NA) and their metabolites (DOPAC, HVA, 5-HIAA) was analyzed by HPLC with coulochemical detection. RESULTS Obtained results indicate that after a single administration of ARI and OLA in the prenatally stressed rats the increase of DA, DOPAC, and 5-HT was observed. In turn ARI administration increase the level of HVA and 5-HIAA and also decrease the level of NA. After OLA administration the level of NA and HVA increased and no significant change in 5-HIAA was observed. CONCLUSION Alterations observed as a result of ARI and OLA administration may be pivotal in identifying animal models of mental disorders and in the analysis of neuroleptics effectiveness.
Collapse
Affiliation(s)
- P Ratajczak
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Dabrowskiego 79, 60-529 Poznan, Poland
| | - K Kus
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Dabrowskiego 79, 60-529 Poznan, Poland
| | - K Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Cracow, Poland
| | - K Noworyta-Sokołowska
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Cracow, Poland
| | - A Woźniak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - T Zaprutko
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Dabrowskiego 79, 60-529 Poznan, Poland
| | - E Nowakowska
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Dabrowskiego 79, 60-529 Poznan, Poland.
| |
Collapse
|
17
|
Lee H, Won H, Im J, Kim YO, Lee S, Cho IH, Kim HK, Kwon JT, Kim HJ. Effect of Valeriana fauriei extract on the offspring of adult rats exposed to prenatal stress. Int J Mol Med 2016; 38:251-8. [PMID: 27220809 DOI: 10.3892/ijmm.2016.2589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/20/2016] [Indexed: 11/06/2022] Open
Abstract
Exposing a pregnant female to stress is a risk factor for the development of psychiatric disorders in the offspring. In the present study, we examined the effects of an extract of Valeriana fauriei (VF) root (100 mg/kg/day, administered on postnatal days 35-56) on behavioral patterns as well as protein expression in the prefrontal cortex of the offspring of prenatally-stressed rats. Modified behavioral tests, including the forced swim test, the open field test, a social interaction test and the prepulse inhibition test were performed and many of the parameters were found to decrease in the offspring of the rats exposed to PNS compared with the offspring of the non-stressed rats. Western blot and immunohistochemical analyses of the prefrontal cortex revealed that the downregulation of several neurodevelopmental proteins in the offspring of rats dams exposed to PNS was reversed after treatment with VF extract. These findings demonstrate that the downregulation of several proteins in the prefrontal cortex of the offspring of prenatally‑stressed rats may be associated with subsequent behavioral changes, and that these phenomena recovered following VF treatment. Our results suggest that VF decreases the incidence of prenatal stress related-psychiatric disorders, such as depression and schizophrenia.
Collapse
Affiliation(s)
- Hwayoung Lee
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hansol Won
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jiyun Im
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Young Ock Kim
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong, Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science and Brain Korea 21 Plus Program, Institute of Korean Medicine, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
18
|
Ratajczak P, Kus K, Giermaziak W, Nowakowska E. The influence of aripiprazole and olanzapine on the anxiolytic-like effect observed in prenatally stressed rats (animal model of schizophrenia) exposed to the ethyl alcohol. Pharmacol Rep 2016; 68:415-22. [DOI: 10.1016/j.pharep.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/15/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022]
|
19
|
Genetic variant analysis of the putative regulatory regions of the LRRC7 gene in bipolar disorder. Psychiatr Genet 2016; 26:99-100. [PMID: 26901794 DOI: 10.1097/ypg.0000000000000119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Lasting Differential Effects on Plasticity Induced by Prenatal Stress in Dorsal and Ventral Hippocampus. Neural Plast 2016; 2016:2540462. [PMID: 26881096 PMCID: PMC4736977 DOI: 10.1155/2016/2540462] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/18/2015] [Accepted: 12/20/2015] [Indexed: 12/14/2022] Open
Abstract
Early life adversaries have a profound impact on the developing brain structure and functions that persist long after the original traumatic experience has vanished. One of the extensively studied brain structures in relation to early life stress has been the hippocampus because of its unique association with cognitive processes of the brain. While the entire hippocampus shares the same intrinsic organization, it assumes different functions in its dorsal and ventral sectors (DH and VH, resp.), based on different connectivity with other brain structures. In the present review, we summarize the differences between DH and VH and discuss functional and structural effects of prenatal stress in the two sectors, with the realization that much is yet to be explored in understanding the opposite reactivity of the DH and VH to stressful stimulation.
Collapse
|
21
|
The levels of the GluN2A NMDA receptor subunit are modified in both the neonatal and adult rat brain by an early experience involving denial of maternal contact. Neurosci Lett 2015; 612:98-103. [PMID: 26679226 DOI: 10.1016/j.neulet.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/27/2015] [Accepted: 12/04/2015] [Indexed: 11/24/2022]
Abstract
The composition of the N-methyl-d-aspartate receptor receptor in GluN2A/GluN2B subunits is important in determining its characteristics and its role in plasticity, a property of the brain which is known to be critically affected by early experiences. In the present work we employed an early experience model involving either receipt (RER) or denial (DER) of the expected reward of maternal contact within the context of learning by the pups of a T-maze on postnatal days (PND) 10-13. We investigated the effects of the RER and DER early experiences on GluN1, GluN2A and GluN2B levels in the prefrontal cortex (PFC), hippocampus and amygdala of the rat. We show that on PND13 the DER animals had lower GluN2A levels in the PFC. In adulthood DER males had higher GluN2A levels in the hippocampus, both under basal conditions and after exposure to a novel environment. The early experiences did not affect the response to the novelty. After exposure to a novel environment animals of all three groups (DER, RER, Control) responded with an increase in GluN2A levels in the brain areas examined. We did not detect any effects on GluN1 or GluN2B levels. The alterations in GluN2A levels observed in the DER animals could in part be responsible for their behavioral phenotype, described previously, which includes an increased susceptibility for the expression of depressive-like behavior.
Collapse
|
22
|
Han X, Shao W, Liu Z, Fan S, Yu J, Chen J, Qiao R, Zhou J, Xie P. iTRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression. Neuroscience 2015; 298:220-92. [DOI: 10.1016/j.neuroscience.2015.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/20/2015] [Accepted: 04/02/2015] [Indexed: 01/26/2023]
|
23
|
Lee H, Joo J, Nah SS, Kim JW, Kim HK, Kwon JT, Lee HY, Kim YO, Kim HJ. Changes in Dpysl2 expression are associated with prenatally stressed rat offspring and susceptibility to schizophrenia in humans. Int J Mol Med 2015; 35:1574-86. [PMID: 25847191 PMCID: PMC4432923 DOI: 10.3892/ijmm.2015.2161] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/26/2015] [Indexed: 11/06/2022] Open
Abstract
Exposure to stress during critical periods of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. In the present study, a repeated-variable stress paradigm was applied to pregnant rats during the last week of gestation, which is analogous to the second trimester of brain development in humans. Behavioral and proteomic analyses were conducted in prenatally-stressed (PNS) adult offspring and non-stressed (NS) adult controls. In the behavioral tests, grooming behavior in the social interaction test, line-crossing behavior in the open field test, and swimming behavior in the forced swimming test were decreased in the PNS group. Western blot analysis and immunohistochemical analysis revealed that the expression of dihydropyrimidinase-like 2 (Dpysl2) or collapsin response mediator protein 2 (Crmp2) was downregulated in the prefrontal cortex and hippocampus of rats in the PNS group. Subsequently, single-nucleotide polymorphisms (SNPs) of the human dihydropyrimidinase-like 2 (DPYSL2) gene were analyzed in a population. Two functional SNPs (rs9886448 in the promoter region and rs2289593 in the exon region) were associated with susceptibility to schizophrenia. The present findings demonstrated that the downregulation of genes such as Dpysl2 and Dypsl3 in a rat model of prenatal stress may affect subsequent behavioral changes and that polymorphisms of the DPYSL2 gene in humans may be associated with the development of schizophrenia. Taken together with previous studies investigating the association between the DPYSL2 gene and schizophrenia, the present findings may contribute additional evidence regarding developmental theories of the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Hwayoung Lee
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jaesoon Joo
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seong-Su Nah
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hwa-Young Lee
- Department of Psychiatry, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Young Ock Kim
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
24
|
Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Mol Psychiatry 2015; 20:320-8. [PMID: 24662927 PMCID: PMC5293540 DOI: 10.1038/mp.2014.21] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 01/13/2014] [Accepted: 01/31/2014] [Indexed: 02/06/2023]
Abstract
Astrocytes are glial cells specific to the central nervous system and involved in numerous brain functions, including regulation of synaptic transmission and of immune reactions. There is mounting evidence suggesting astrocytic dysfunction in psychopathologies such as major depression, however, little is known about the underlying etiological mechanisms. Here we report a two-stage study investigating genome-wide DNA methylation associated with astrocytic markers in depressive psychopathology. We first characterized prefrontal cortex samples from 121 individuals (76 who died during a depressive episode and 45 healthy controls) for the astrocytic markers GFAP, ALDH1L1, SOX9, GLUL, SCL1A3, GJA1 and GJB6. A subset of 22 cases with consistently downregulated astrocytic markers was then compared with 17 matched controls using methylation binding domain-2 (MBD2) sequencing followed by validation with high-resolution melting and bisulfite Sanger sequencing. With these data, we generated a genome-wide methylation map unique to altered astrocyte-associated depressive psychopathology. The map revealed differentially methylated regions (DMRs) between cases and controls, the majority of which displayed reduced methylation levels in cases. Among intragenic DMRs, those found in GRIK2 (glutamate receptor, ionotropic kainate 2) and BEGAIN (brain-enriched guanylate kinase-associated protein) were most significant and also showed significant correlations with gene expression. Cell-sorted fractions were investigated and demonstrated an important non-neuronal contribution of methylation status in BEGAIN. Functional cell assays revealed promoter and enhancer-like properties in this region that were markedly decreased by methylation. Furthermore, a large number of our DMRs overlapped known Encyclopedia of DNA elements (ENCODE)-identified regulatory elements. Taken together, our data indicate significant differences in the methylation patterns specific to astrocytic dysfunction associated with depressive psychopathology, providing a potential framework for better understanding this disease phenotype.
Collapse
|
25
|
Debnath M, Venkatasubramanian G, Berk M. Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev 2015; 49:90-104. [PMID: 25496904 PMCID: PMC7112550 DOI: 10.1016/j.neubiorev.2014.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022]
Abstract
Mounting evidence indicates that schizophrenia is associated with adverse intrauterine experiences. An adverse or suboptimal fetal environment can cause irreversible changes in brain that can subsequently exert long-lasting effects through resetting a diverse array of biological systems including endocrine, immune and nervous. It is evident from animal and imaging studies that subtle variations in the intrauterine environment can cause recognizable differences in brain structure and cognitive functions in the offspring. A wide variety of environmental factors may play a role in precipitating the emergent developmental dysregulation and the consequent evolution of psychiatric traits in early adulthood by inducing inflammatory, oxidative and nitrosative stress (IO&NS) pathways, mitochondrial dysfunction, apoptosis, and epigenetic dysregulation. However, the precise mechanisms behind such relationships and the specificity of the risk factors for schizophrenia remain exploratory. Considering the paucity of knowledge on fetal programming of schizophrenia, it is timely to consolidate the recent advances in the field and put forward an integrated overview of the mechanisms associated with fetal origin of schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health & Neurosciences, Bangalore 560029, India.
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre and Department of Psychiatry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, India
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, The Florey Institute of Neuroscience and Mental Health, and Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
26
|
The effects of violence exposure on the development of impulse control and future orientation across adolescence and early adulthood: Time-specific and generalized effects in a sample of juvenile offenders. Dev Psychopathol 2015; 27:1267-83. [DOI: 10.1017/s0954579414001394] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractImpulse control and future orientation increase across adolescence, but little is known about how contextual factors shape the development of these capacities. The present study investigates how stress exposure, operationalized as exposure to violence, alters the developmental pattern of impulse control and future orientation across adolescence and early adulthood. In a sample of 1,354 serious juvenile offenders, higher exposure to violence was associated with lower levels of future orientation at age 15 and suppressed development of future orientation from ages 15 to 25. Increases in witnessing violence or victimization were linked to declines in impulse control 1 year later, but only during adolescence. Thus, beyond previous experiences of exposure to violence, witnessing violence and victimization during adolescence conveys unique risk for suppressed development of self-regulation.
Collapse
|
27
|
Maur DG, Pascuan CG, Genaro AM, Zorrilla-Zubilete MA. Involvement of Nitric Oxide, Neurotrophins and HPA Axis in Neurobehavioural Alterations Induced by Prenatal Stress. ADVANCES IN NEUROBIOLOGY 2015; 10:61-74. [PMID: 25287536 DOI: 10.1007/978-1-4939-1372-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies suggest that negative emotions during pregnancy generate adverse effects on the cognitive, behavioural and emotional development of the descendants. The psychoneuroendocrine pathways involve the transplacentary passage of maternal glucocorticoids in order to influence directly on fetal growth and brain development.Nitric oxide is a gaseous neurotransmitter that plays an important role in the control of neural activity by diffusing into neurons and participates in learning and memory processes. It has been demonstrated that nitric oxide is involved in the regulation of corticosterone secretion. Thus, it has been found that the neuronal isoform of nitric oxide synthase (nNOS) is an endogenous inhibitor of glucocorticoid receptor (GR) in the hippocampus and that nNOS in the hippocampus may participate in the modulation of hypothalamic-pituitary-adrenal axis activity via GR.Neurotrophins are a family of secreted growth factors consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and NT4. Although initially described in the nervous system, they regulate processes such as cell survival, proliferation and differentiation in several other compartments. It has been demonstrated that the NO-citrulline cycle acts together with BDNF in maintaining the progress of neural differentiation.In the present chapter, we explore the interrelation between nitric oxide, glucocorticoids and neurotrophins in brain areas that are key structures in learning and memory processes. The participation of this interrelation in the behavioural and cognitive alterations induced in the offspring by maternal stress is also addressed.
Collapse
Affiliation(s)
- Damian G Maur
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
28
|
|
29
|
Babenko O, Kovalchuk I, Metz GAS. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 2014; 48:70-91. [PMID: 25464029 DOI: 10.1016/j.neubiorev.2014.11.013] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/19/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Research efforts during the past decades have provided intriguing evidence suggesting that stressful experiences during pregnancy exert long-term consequences on the future mental wellbeing of both the mother and her baby. Recent human epidemiological and animal studies indicate that stressful experiences in utero or during early life may increase the risk of neurological and psychiatric disorders, arguably via altered epigenetic regulation. Epigenetic mechanisms, such as miRNA expression, DNA methylation, and histone modifications are prone to changes in response to stressful experiences and hostile environmental factors. Altered epigenetic regulation may potentially influence fetal endocrine programming and brain development across several generations. Only recently, however, more attention has been paid to possible transgenerational effects of stress. In this review we discuss the evidence of transgenerational epigenetic inheritance of stress exposure in human studies and animal models. We highlight the complex interplay between prenatal stress exposure, associated changes in miRNA expression and DNA methylation in placenta and brain and possible links to greater risks of schizophrenia, attention deficit hyperactivity disorder, autism, anxiety- or depression-related disorders later in life. Based on existing evidence, we propose that prenatal stress, through the generation of epigenetic alterations, becomes one of the most powerful influences on mental health in later life. The consideration of ancestral and prenatal stress effects on lifetime health trajectories is critical for improving strategies that support healthy development and successful aging.
Collapse
Affiliation(s)
- Olena Babenko
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4; Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
30
|
Kim YO, Lee HY, Won H, Nah SS, Lee HY, Kim HK, Kwon JT, Kim HJ. Influence of Panax ginseng on the offspring of adult rats exposed to prenatal stress. Int J Mol Med 2014; 35:103-9. [PMID: 25394395 PMCID: PMC4249748 DOI: 10.3892/ijmm.2014.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/07/2014] [Indexed: 01/14/2023] Open
Abstract
The exposure of pregnant females to stress during a critical period of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. Schizophrenia is a group of common mental disorders of unclear origin, affecting approximately 1% of the global population, showing a generally young age at onset. In the present study, a repeated variable stress paradigm was applied to pregnant rats during the final week of gestation. The effects of an extract of Panax ginseng C.A. Meyer (PG) on rats exposed to prenatal stress (PNS) were investigated in terms of behavioral activity and protein expression analyses. In the behavioral tests, grooming behavior in a social interaction test, line-crossing behavior in an open-field test and swimming activity in a forced-swim test were decreased in the rats exposed to PNS compared with the non-stressed offspring; the changes in behavioral activity were reversed upon oral treatment with PG (300 mg/kg). Subsequently, western blot analysis and immunohistochemical analyses of the prefrontal cortex and hippocampus revealed that the downregulation of several neurodevelopmental genes which occurred following exposure to PNS was reversed upon treatment with PG. The current findings demonstrate that the downregulation of several genes following exposure to PNS may affect subsequent behavioral changes, and that these phenomena are reversed following treatment with PG during pregnancy. Our results suggest that oral treatment with PG reduces the incidence of psychiatric disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Young Ock Kim
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong, Republic of Korea
| | - Hwa-Young Lee
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hansol Won
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seong-Su Nah
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hwa-Young Lee
- Department of Psychiatry, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
31
|
Girardi CEN, Zanta NC, Suchecki D. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior. Front Behav Neurosci 2014; 8:319. [PMID: 25309370 PMCID: PMC4159973 DOI: 10.3389/fnbeh.2014.00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/17/2022] Open
Abstract
Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation (MD) disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h) or not from their dams, to a stress challenge (i.p. saline injection). Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze (EPM), social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45). Maternally deprived rats exhibited increased plasma corticosterone (CORT) levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of MD, was associated with increased anxiety-like behavior in the EPM and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of MD, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the MD paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia.
Collapse
Affiliation(s)
- Carlos Eduardo Neves Girardi
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | - Natália Cristina Zanta
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology - Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, SP, Brazil
| |
Collapse
|
32
|
Staples MC, Porch MW, Savage DD. Impact of combined prenatal ethanol and prenatal stress exposures on markers of activity-dependent synaptic plasticity in rat dentate gyrus. Alcohol 2014; 48:523-32. [PMID: 25129673 DOI: 10.1016/j.alcohol.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022]
Abstract
Prenatal ethanol exposure and prenatal stress can each cause long-lasting deficits in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms underlying these perturbations following a learning event are still poorly understood. We examined the effects of prenatal ethanol exposure and prenatal stress exposure, either alone or in combination, on the cytosolic expression of activity-regulated cytoskeletal (ARC) protein and the synaptosomal expression of AMPA-glutamate receptor subunits (GluA1 and GluA2) in dentate gyrus of female adult offspring under baseline conditions and after 2-trial trace conditioning (TTTC). Surprisingly, baseline cytoplasmic ARC expression was significantly elevated in both prenatal treatment groups. In contrast, synaptosomal GluA1 receptor subunit expression was decreased in both prenatal treatment groups. GluA2 subunit expression was elevated in the prenatal stress group. TTTC did not alter ARC levels compared to an unpaired behavioral control (UPC) group in any of the 4 prenatal treatment groups. In contrast, TTTC significantly elevated both synaptosomal GluA1 and GluA2 subunit expression relative to the UPC group in control offspring, an effect that was not observed in any of the other 3 prenatal treatment groups. Given ARC's role in regulating synaptosomal AMPA receptors, these results suggest that prenatal ethanol-induced or prenatal stress exposure-induced increases in baseline ARC levels could contribute to reductions in both baseline and activity-dependent changes in AMPA receptors in a manner that diminishes the role of AMPA receptors in dentate gyrus synaptic plasticity and hippocampal-sensitive learning.
Collapse
Affiliation(s)
- Miranda C Staples
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Morgan W Porch
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Daniel D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
33
|
Ratajczak P, Nowakowska E, Kus K, Danielewicz R, Herman S, Woźniak A. Neuroleptics and enrichment environment treatment in memory disorders and other central nervous system function observed in prenatally stressed rats. Hum Exp Toxicol 2014; 34:526-37. [PMID: 25062975 DOI: 10.1177/0960327114543934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It is believed that the most effective method of treatment in schizophrenia is pharmacotherapy, in particular, the use of atypical neuroleptics like aripiprazole (ARI) and olanzapine (OLA). Moreover, studies of many authors have shown that enriched living conditions and tobacco smoke exposure can also affect the cognitive functions that are disturbed in the course of schizophrenia. The aim of the study was to find whether tobacco smoke and enrichment living conditions have the influence on cognitive functions in the newborn offspring of prenatally stressed rats and whether drugs such as ARI (1.5 mg/kg intraperitoneally (i.p.)) and OLA (0.5 mg/kg ip) in single and chronic treatment modify those functions (Morris water maze). The study (in the same conditions) also analyses immobility time (Porsolt test) and motor activity of animals that received ARI and OLA. It has been shown that ARI and OLA as well as enriched environment reduce cognitive function disorders and modify cognitive functions in rats exposed to tobacco smoke. In turn, current research has shown that nicotine has increased cognitive function disorders compared to the previous study (animals without tobacco smoke exposure).
Collapse
Affiliation(s)
- P Ratajczak
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - E Nowakowska
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - K Kus
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - R Danielewicz
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - S Herman
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - A Woźniak
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
34
|
Nowakowska E, Kus K, Ratajczak P, Cichocki M, Woźniak A. The influence of aripiprazole, olanzapine and enriched environment on depressant-like behavior, spatial memory dysfunction and hippocampal level of BDNF in prenatally stressed rats. Pharmacol Rep 2014; 66:404-11. [PMID: 24905516 DOI: 10.1016/j.pharep.2013.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cognitive function deficits caused by impaired neurogenesis of the brain structures are considered an important pathogenic factor in many neurological and mental diseases such as schizophrenia and depression. The aim of the study was to determine the effect of the enriched environment on cognitive functions and antidepressant-like effect of prenatally stressed rats. It was important to determine the effect of aripiprazole ARI and olanzapine OLA and clarify whether the enriched environment induces increases in brain derived neurothropic factor BDNF in the hippocampus in the prenatally stressed group (PSG) and non-stressed control group (NSCG). METHODS The effect of chronic stress applied to pregnant rats and the use of ARI (1.5mg/kg ip) and OLA (0.5mg/kg ip) were studied in the Morris water maze (MWM), Porsolt Forced swimming test (FST) and by determining BDNF levels. RESULTS The results indicated that enriched environment improved spatial memory and also had an antidepressant-like effect on prenatally stressed rats. ARI improved spatial memory both in the NSCG and PSG, while OLA caused memory improvement only in the PSG. Moreover, both ARI and OLA reduced immobility time in the NSCG and PSG. In PSG rats, BDNF decrease was observed while chronic treatment with ARI and OLA increased BDNF levels in the hippocampi of NSCG and PSG rats. CONCLUSION It has been confirmed that enriched environment improves spatial memory of animals, removes symptoms of stress, has an antidepressant-like effect, and that new neuroleptics, such as ARI or OLA, modulate these functions (increased BDNF).
Collapse
Affiliation(s)
- Elżbieta Nowakowska
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznań, Poland.
| | - Krzysztof Kus
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznań, Poland
| | - Piotr Ratajczak
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznań, Poland
| | - Michał Cichocki
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Woźniak
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
35
|
Moriyama C, Galic MA, Mychasiuk R, Pittman QJ, Perrot TS, Currie RW, Esser MJ. Prenatal transport stress, postnatal maternal behavior, and offspring sex differentially affect seizure susceptibility in young rats. Epilepsy Behav 2013; 29:19-27. [PMID: 23920381 DOI: 10.1016/j.yebeh.2013.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/14/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023]
Abstract
Epilepsy is a heterogeneous and chronic neurological condition of undefined etiology in the majority of cases. Similarly, the pathogenesis of the unprovoked seizures that lead to epilepsy is not known. We are interested in the factors that modify inherent seizure susceptibility, with a particular focus on those occurring during the prenatal and early postnatal periods. Female Sprague-Dawley rats were bred in-house or transported during pregnancy at one of two gestational days (G9 or G16). The effects of transport stress, maternal behavior, and offspring sex were then examined in terms of how they were related to provoked seizure susceptibility to kainic acid (KA) or a model of febrile convulsions (FCs) on postnatal day 14 (P14). We also examined the pattern of neuronal activation in the hippocampus and amygdala as indicated by the density of FosB protein immunoreactivity (FosB-ir). Results demonstrated only a small and inconsistent effect of transport alone, suggesting that the groups differed slightly prior to experimental manipulations. However, the influence of maternal behaviors such as licking and grooming (LG), arched back nursing (ABN), and dam-off time (DO) exerted a much stronger effect on the offspring. Dams designated as high LG gave birth to smaller litters, had pups that weighed less, had greater seizure susceptibility and severity, and had more FosB-ir neurons predominantly in the ventral hippocampus and the medial subnucleus of the amygdala (MeA). We also found a sex-dependent effect such that P14 males were smaller than their female littermates and had a greater seizure susceptibility and severity. Taken together, these results suggest an impact of prenatal and postnatal factors, as well as sex, on seizure susceptibility in young animals.
Collapse
Affiliation(s)
- Chikako Moriyama
- Department of Medical Neurosciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Markham JA, Mullins SE, Koenig JI. Periadolescent maturation of the prefrontal cortex is sex-specific and is disrupted by prenatal stress. J Comp Neurol 2013; 521:1828-43. [PMID: 23172080 DOI: 10.1002/cne.23262] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/01/2012] [Accepted: 11/06/2012] [Indexed: 12/19/2022]
Abstract
The prefrontal cortex (PFC) undergoes dramatic, sex-specific maturation during adolescence. Adolescence is a vulnerable window for developing mental illnesses that show significant sexual dimorphisms. Gestational stress is associated with increased risk for both schizophrenia, which is more common among men, and cognitive deficits. We have shown that male, but not female, rats exposed to prenatal stress develop postpubertal deficits in cognitive behaviors supported by the prefrontal cortex. Here we tested the hypothesis that repeated variable prenatal stress during the third week of rat gestation disrupts periadolescent development of prefrontal neurons in a sex-specific fashion. Using Golgi-Cox stained tissue, we compared dendritic arborization and spine density of prelimbic layer III neurons in prenatally stressed and control animals at juvenile (day 20), prepubertal (day 30), postpubertal (day 56), and adult (day 90) ages (N = 115). Dendritic ramification followed a sex-specific pattern that was disrupted during adolescence in prenatally stressed males, but not in females. In contrast, the impact of prenatal stress on the female PFC was not evident until adulthood. Prenatal stress also caused reductions in brain and body weights, and the latter effect was more pronounced among males. Additionally, there was a trend toward reduced testosterone levels for adult prenatally stressed males. Our findings indicate that, similarly to humans, the rat PFC undergoes sex-specific development during adolescence and furthermore that this process is disrupted by prenatal stress. These findings may be relevant to both the development of normal sex differences in cognition as well as differential male-female vulnerability to psychiatric conditions.
Collapse
Affiliation(s)
- Julie A Markham
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21228, USA.
| | | | | |
Collapse
|
37
|
Monteleone MC, Adrover E, Pallarés ME, Antonelli MC, Frasch AC, Brocco MA. Prenatal stress changes the glycoprotein GPM6A gene expression and induces epigenetic changes in rat offspring brain. Epigenetics 2013; 9:152-60. [PMID: 23959066 DOI: 10.4161/epi.25925] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Prenatal stress (PS) exerts strong impact on fetal brain development and on adult offspring brain functions. Previous work demonstrated that chronic stress alters the mRNA expression of GPM6A, a neuronal glycoprotein involved in filopodium extension. In this work, we analyzed the effect of PS on gpm6a expression and the epigenetic mechanisms involved. Pregnant Wistar rats received restraint stress during the last week of gestation. Male offspring were sacrificed on postnatal days 28 and 60. Hippocampus and prefrontal cortex samples were analyzed for gene expression (qPCR for mRNAs and microRNAs), methylation status (bisulfite conversion) and protein levels. Hippocampal neurons in culture were used to analyze microRNA overexpression effects. Prenatal stress induced changes in gpm6a levels in both tissues and at both ages analyzed, indicating a persistent effect. Two CpG islands in the gpm6a gene were identified. Variations in the methylation pattern at three specific CpGs were found in hippocampus, but not in PFC samples from PS offspring. microRNAs predicted to target gpm6a were identified in silico. qPCR measurements showed that PS modified the expression of several microRNAs in both tissues, being microRNA-133b the most significantly altered. Further studies overexpressing this microRNA in neuronal cultures showed a reduction in gmp6a mRNA and protein level. Moreover filopodium density was also reduced, suggesting that GPM6A function was affected. Gestational stress affected gpm6a gene expression in offspring likely through changes in methylation status and in posttranscriptional regulation by microRNAs. Thus, our findings propose gpm6a as a novel target for epigenetic regulation during prenatal stress.
Collapse
Affiliation(s)
- Melisa C Monteleone
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH); Universidad Nacional de San Martín (UNSAM); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín; Buenos Aires, Argentina
| | - Ezequiela Adrover
- IQUIFIB; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
| | - María Eugenia Pallarés
- IQUIFIB; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
| | - Marta C Antonelli
- IQUIFIB; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH); Universidad Nacional de San Martín (UNSAM); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín; Buenos Aires, Argentina
| | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomus (IIB-INTECH); Universidad Nacional de San Martín (UNSAM); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín; Buenos Aires, Argentina
| |
Collapse
|
38
|
Prenatal stress increased Snk Polo-like kinase 2, SCF β-TrCP ubiquitin ligase and ubiquitination of SPAR in the hippocampus of the offspring at adulthood. Int J Dev Neurosci 2013; 31:560-7. [PMID: 23850969 DOI: 10.1016/j.ijdevneu.2013.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/30/2013] [Accepted: 06/30/2013] [Indexed: 11/22/2022] Open
Abstract
Exposure to excessive glucocorticoids during fetal development period contributes to later life psychopathology. Prenatal stress decreases dendritic spine density and impair LTP in the hippocampus of rat pups, however, the mechanisms regulating these changes are still unclear. Glutamate receptors are localized in the postsynaptic density. PSD-95 is a postsynaptic scaffolding protein that plays a role in synaptic maturation and regulation of the synaptic strength and plasticity. PSD-95 interacts with other proteins to form the protein networks that promote dendritic spine formation. The present study investigated the effect of prenatal stress on the levels of scaffolding proteins of NMDA receptor in the hippocampus in order to explain how prenatal stress alters the amount of NMDA receptor in the pups' brain. Pregnant rats were randomly assigned to either the prenatal stress (PS) or the control group (C). The pregnant rats in the PS group were restrained in a plexiglas restrainer for 4h/day during the GD 14-21. Control rats were left undisturbed for the duration of their pregnancies. The amount of PSD-95, SPAR, NR2A and NR2B, as well as the levels of Snk Polo-like kinase 2 and the SCF β-TrCP ubiquitin ligase were measured in the hippocampus of the offspring. The results show that prenatal stress induces a reduction in the amount of NR2B and NR2A subunits in the hippocampus of rat pups, parallel to the decrease in PSD-95 and SPAR at P40 and P60. Moreover, prenatal stress increases Snk and β-TrCP in the hippocampus of rat pups, and the timing correlates with the decrease of SPAR and PSD-95. Prenatal stress also induces a significantly increases in the level of ubiquitinated SPAR in the hippocampus of rat pups at adulthood. The results suggest that degradation of SPAR via UPS system may contribute to the loss of PSD-95 and NMDA receptor subunits in the hippocampus of rat pups at adulthood. In conclusion, the present work demonstrates that the developing brain is critically influenced by glucocorticoids, especially during pre- and early postnatal period, which can have long-term effects on brain development. In addition, an involvement of the UPS system in the prenatal stress model has led to a greater understanding of the effects of prenatal stress later on in life.
Collapse
|
39
|
Zucchi FCR, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, Kovalchuk I, Kovalchuk O, Metz GAS. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS One 2013; 8:e56967. [PMID: 23451123 PMCID: PMC3579944 DOI: 10.1371/journal.pone.0056967] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/18/2013] [Indexed: 12/21/2022] Open
Abstract
The gestational state is a period of particular vulnerability to diseases that affect maternal and fetal health. Stress during gestation may represent a powerful influence on maternal mental health and offspring brain plasticity and development. Here we show that the fetal transcriptome, through microRNA (miRNA) regulation, responds to prenatal stress in association with epigenetic signatures of psychiatric and neurological diseases. Pregnant Long-Evans rats were assigned to stress from gestational days 12 to 18 while others served as handled controls. Gestational stress in the dam disrupted parturient maternal behaviour and was accompanied by characteristic brain miRNA profiles in the mother and her offspring, and altered transcriptomic brain profiles in the offspring. In the offspring brains, prenatal stress upregulated miR-103, which is involved in brain pathologies, and downregulated its potential gene target Ptplb. Prenatal stress downregulated miR-145, a marker of multiple sclerosis in humans. Prenatal stress also upregulated miR-323 and miR-98, which may alter inflammatory responses in the brain. Furthermore, prenatal stress upregulated miR-219, which targets the gene Dazap1. Both miR-219 and Dazap1 are putative markers of schizophrenia and bipolar affective disorder in humans. Offspring transcriptomic changes included genes related to development, axonal guidance and neuropathology. These findings indicate that prenatal stress modifies epigenetic signatures linked to disease during critical periods of fetal brain development. These observations provide a new mechanistic association between environmental and genetic risk factors in psychiatric and neurological disease.
Collapse
Affiliation(s)
- Fabiola C. R. Zucchi
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Mato Grosso State, Caceres, Mato Grosso, Brazil
| | - Youli Yao
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Isaac D. Ward
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David M. Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Benzies
- Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A. S. Metz
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
40
|
Ratajczak P, Kus K, Jarmuszkiewicz Z, Woźniak A, Cichocki M, Nowakowska E. Influence of aripiprazole and olanzapine on behavioral dysfunctions of adolescent rats exposed to stress in perinatal period. Pharmacol Rep 2013; 65:30-43. [DOI: 10.1016/s1734-1140(13)70961-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 09/28/2012] [Indexed: 01/12/2023]
|
41
|
Wilson CA, Terry AV. Variable maternal stress in rats alters locomotor activity, social behavior, and recognition memory in the adult offspring. Pharmacol Biochem Behav 2012; 104:47-61. [PMID: 23287801 DOI: 10.1016/j.pbb.2012.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 12/17/2022]
Abstract
Rats repeatedly exposed to variable prenatal stress (PNS) exhibit behavioral signs that are similar to those manifested in several neuropsychiatric disorders such as deficits in attention and inhibitory control, and impairments in memory-related task performance. The purpose of the study described here was to conduct a comprehensive battery of tests to further characterize the behavioral phenotype of PNS rats as well as to evaluate the sensitivity of the model to therapeutic interventions (i.e., to compounds previously shown to have therapeutic potential in neuropsychiatric disorders). The results of this study indicated that PNS in rats is associated with: 1) increased locomotor activity and stereotypic behaviors, 2) elevated sensitivity to the psychostimulant amphetamine, 3) increased aggressive behaviors toward both adult and juvenile rats and 4) delay-dependent deficits in recognition memory. There was no evidence that PNS rats exhibited deficits in other areas of motor function/learning, sensorimotor gating, spatial learning and memory, social withdrawal, or anhedonia. In addition, the results revealed that the second generation antipsychotic risperidone attenuated amphetamine-related increases in locomotor activity in PNS rats; however, the effect was not sustained over time. Furthermore, deficits in recognition memory in PNS rats were attenuated by the norepinephrine reuptake inhibitor, atomoxetine, but not by the α7 nicotinic acetylcholine receptor partial agonist, GTS-21. This study supports the supposition that important phenomenological similarities exist between rats exposed to PNS and patients afflicted with neuropsychiatric disorders thus further establishing the face validity of the model for evaluating potential therapeutic interventions.
Collapse
Affiliation(s)
- Christina A Wilson
- Dept. of Pharmacology and Toxicology, School of Graduate Studies, Georgia Health Science University, Augusta, GA 30912, United States
| | | |
Collapse
|
42
|
Wilson CA, Vazdarjanova A, Terry AV. Exposure to variable prenatal stress in rats: effects on anxiety-related behaviors, innate and contextual fear, and fear extinction. Behav Brain Res 2012; 238:279-88. [PMID: 23072929 DOI: 10.1016/j.bbr.2012.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/07/2012] [Accepted: 10/08/2012] [Indexed: 12/21/2022]
Abstract
Rats repeatedly exposed to variable prenatal stress (PNS) exhibit behavioral features often observed in neuropsychiatric disorders including elevated sensitivity to stimulants and impairments of attention, inhibitory control and memory-related task performance. However, to date there have been relatively few studies designed to assess the effects of PNS on anxiety, stress and fear responses, or the function of the hypothalamic-pituitary-adrenal (HPA) axis (a system clearly linked to stress and fear-related responses as well as neuropsychiatric disorders). In the current study, rats exposed to variable PNS were evaluated for anxiety-related behaviors in open field, elevated plus maze, and light/dark preference tasks. Innate fear responses were assessed using a predatory odor task and learned fear and extinction were assessed with a contextual fear conditioning task. As an indicator of HPA axis function, serum corticosterone levels were determined by enzyme immunoassay at various time points. The results indicated that PNS resulted in several behavioral anomalies including decreased innate fear responses to predator odor, impaired fear extinction, increased locomotor activity and stereotypic-like behaviors. Baseline levels of corticosterone in PNS subjects were similar to non-stressed controls; however, when exposed to acute stress, they exhibited an increase in corticosterone that was greater in magnitude. PNS was not associated with increased anxiety-like behaviors or deficits in learning or retention during contextual fear conditioning. Collectivity, these data support the argument that variable PNS in rats is a valid model system for studying some behavioral components of neuropsychiatric disorders as well as the influence of stress hormones.
Collapse
Affiliation(s)
- Christina A Wilson
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA 30912, United States
| | | | | |
Collapse
|
43
|
|
44
|
Taylor SB, Taylor AR, Koenig JI. The interaction of disrupted type II neuregulin 1 and chronic adolescent stress on adult anxiety- and fear-related behaviors. Neuroscience 2012; 249:31-42. [PMID: 23022220 DOI: 10.1016/j.neuroscience.2012.09.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/15/2012] [Accepted: 09/19/2012] [Indexed: 01/11/2023]
Abstract
The incidence of anxiety, mood, substance abuse disorders and schizophrenia increases during adolescence. Epidemiological evidence confirms that exposure to stress during sensitive periods of development can create vulnerabilities that put genetically predisposed individuals at increased risk for psychiatric disorders. Neuregulin 1 (NRG1) is a frequently identified schizophrenia susceptibility gene that has also been associated with the psychotic features of bipolar disorder. Previously, we established that Type II NRG1 is expressed in the hypothalamic-pituitary-adrenal (HPA) axis neurocircuitry. We also found, using a line of Nrg1 hypomorphic rats (Nrg1(Tn)), that genetic disruption of Type II NRG1 results in altered HPA axis function and environmental reactivity. The present studies used the Nrg1(Tn) rats to test whether Type II NRG1 gene disruption and chronic stress exposure during adolescence interact to alter adult anxiety- and fear-related behaviors. Male and female Nrg1(Tn) and wild-type rats were exposed to chronic variable stress (CVS) during mid-adolescence and then tested for anxiety-like behavior, cued fear conditioning and basal corticosterone secretion in adulthood. The disruption of Type II NRG1 alone significantly impacts rat anxiety-related behavior by reversing normal sex-related differences and impairs the ability to acquire cued fear conditioning. Sex-specific interactions between genotype and adolescent stress also were identified such that CVS-treated wild-type females exhibited a slight reduction in anxiety-like behavior and basal corticosterone, while CVS-treated Nrg1(Tn) females exhibited a significant increase in cued fear extinction. These studies confirm the importance of Type II NRG1 in anxiety and fear behaviors and point to adolescence as a time when stressful experiences can shape adult behavior and HPA axis function.
Collapse
Affiliation(s)
- S B Taylor
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
45
|
Abstract
Stress is known to activate distinct neuronal circuits in the brain and induce multiple changes on the cellular level, including alterations in neuronal structures. On the basis of clinical observations that stress often precipitates a depressive disease, chronic psychosocial stress serves as an experimental model to evaluate the cellular and molecular alterations associated with the consequences of major depression. Antidepressants are presently believed to exert their primary biochemical effects by readjusting aberrant intrasynaptic concentrations of neurotransmitters, such as serotonin or noradrenaline, suggesting that imbalances viihin the monoaminergic systems contribute to the disorder (monoaminergic hypothesis of depression). Here, we reviev the results that comprise our understanding of stressful experience on cellular processes, with particular focus on the monoaminergic systems and structural changes within brain target areas of monoaminergic neurons.
Collapse
Affiliation(s)
- Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany
| | | |
Collapse
|
46
|
Abstract
The peak in incidence for schizophrenia is during late adolescence for both sexes, but within this time frame the peak is both earlier and steeper for males. Additionally, women have a second peak in incidence following menopause. Two meta-analyses have reported that men have an overall ∼40% greater chance of developing schizophrenia than do women (Aleman et al., 2003; McGrath et al., 2004). These and other findings have led to the suggestion that ovarian hormones may be protective against schizophrenia. Less explored is the potential role of testosterone in schizophrenia, although disruptions in steroid levels have also been reported in men with the illness. The relationship between increased gonadal hormone release per se and peri-adolescent vulnerability for psychiatric illness is difficult to tease apart from other potentially contributory factors in clinical studies, as adolescence is a turbulent period characterized by many social and biological changes. Despite the obvious opportunity provided by animal research, surprisingly little basic science effort has been devoted to this important issue. On the other hand, the animal work offers an understanding of the many ways in which gonadal steroids exert a powerful impact on the brain, both shaping its development and modifying its function during adulthood. Recently, investigators using preclinical models have described a greater male vulnerability to neurodevelopmental insults that are associated with schizophrenia; such studies may provide clinically relevant insights into the role of gonadal steroids in psychiatric illness.
Collapse
Affiliation(s)
- Julie A Markham
- Maryland Psychiatric Research Center, University of Maryland-Baltimore School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA.
| |
Collapse
|
47
|
Li M, Wang M, Ding S, Li C, Luo X. Environmental Enrichment during Gestation Improves Behavior Consequences and Synaptic Plasticity in Hippocampus of Prenatal-Stressed Offspring Rats. Acta Histochem Cytochem 2012; 45:157-66. [PMID: 22829709 PMCID: PMC3395301 DOI: 10.1267/ahc.11054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/08/2012] [Indexed: 01/23/2023] Open
Abstract
Prenatal stress can result in various behavior deficits in offspring. Here we tested the effects of environmental enrichment during gestation used as a preventive strategy on the behavior deficits of prenatal-stressed offspring rats as well as the underlying structure basis. We compared the effect size of environmental enrichment during gestation on prenatal-stressed offspring to that of environmental enrichment after weaning. Our results showed that environmental enrichment during gestation partially prevented anxiety and the damage in learning and memory in prenatal-stressed offspring as evaluated by elevated plus-maze test and Morris water maze test. At the same time, environmental enrichment during gestation inhibited the decrease in spine density of CA1 and dentate gyrus neurons and preserved the expression of synaptophysin and glucocorticoid receptors (GRs) in the hippocampus of prenatal-stressed offspring. There was no significant difference in offspring behavior between 7-day environmental enrichment during gestation and 14-day offspring environmental enrichment after weaning. These data suggest that environmental enrichment during gestation effectively prevented the behavior deficits and the abnormal synapse structures in prenatal-stressed offspring, and that it can be used as an efficient preventive strategy against prenatal stresses.
Collapse
Affiliation(s)
- Mingbo Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University
| | - Miao Wang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University
| | - Siqing Ding
- The Third Xiangya Hospital, Central South University
- The Third Xiangya Hospital, Central South University
| | - Changqi Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University
| | - Xuegang Luo
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University
| |
Collapse
|
48
|
Wilson CA, Schade R, Terry AV. Variable prenatal stress results in impairments of sustained attention and inhibitory response control in a 5-choice serial reaction time task in rats. Neuroscience 2012; 218:126-37. [PMID: 22634506 DOI: 10.1016/j.neuroscience.2012.05.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 12/19/2022]
Abstract
Rats repeatedly exposed to variable prenatal stress (PNS) exhibit schizophrenia-like behavioral signs such as social withdrawal, elevations in amphetamine-induced locomotor activity, deficits in sensory-motor gating, as well as impairments in memory-related task performance. However, to date there have been no studies designed to test the hypothesis that variable PNS would lead to disruptions in sustained attention and inhibitory response control (i.e., symptoms also commonly observed in schizophrenia and other neuropsychiatric disorders such as attention-deficit hyperactivity disorder). In the current study, the effects of variable PNS in rats were evaluated in fixed and variable stimulus duration (VSD) as well as variable intertrial interval (VITI) versions of a 5-choice serial reaction time task (5C-SRTT). In a separate series of experiments, the glutamate (N-methyl-d-aspartate [NMDA]) antagonist, MK-801 (0.025-0.05 mg/kg), and the norepinephrine reuptake inhibitor, atomoxetine (0.30-3.0mg/kg), were administered acutely to assess the sensitivity of PNS subjects to glutamatergic and noradrenergic manipulations. The results indicated that exposure to variable PNS significantly impaired accuracy in the VSD version of the 5C-SRTT and increased premature and timeout responses in the VITI version. In addition, both doses of MK-801 impaired accuracy, increased premature and timeout responses in PNS, but not control subjects. In contrast, atomoxetine decreased premature and timeout responses in both PNS and control subjects in the VITI version of the task and improved accuracy in the PNS subjects. The results suggest that exposure to variable PNS in rats results in impairments of sustained attention and inhibitory response control and that these deficits can be exacerbated by NMDA antagonism and improved by a norepinephrine uptake inhibitor. Collectively, these data further support the premise that variable PNS in rats is a valid model system for the study of neuropsychiatric disorders and their treatment.
Collapse
Affiliation(s)
- C A Wilson
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA 30912, United States
| | | | | |
Collapse
|
49
|
Zhang Z, Zhang H, Du B, Chen Z. Neonatal handling and environmental enrichment increase the expression of GAP-43 in the hippocampus and promote cognitive abilities in prenatally stressed rat offspring. Neurosci Lett 2012; 522:1-5. [PMID: 22617637 DOI: 10.1016/j.neulet.2012.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 11/25/2022]
Abstract
Neonatal handling and environmental enrichment have been used to aid the treatment and recovery of a diverse variety of brain dysfunctions. However, the underlying mechanism and the effects on cognitive function following neonatal handling and environmental enrichment are still unclear. In this study, we investigated GAP-43 protein levels in the hippocampus of prenatally stressed rat pups by Western blot on postnatal day (P) 10, P20 and P45. The cognitive ability of prenatally stressed rat pups was tested by using the Morris water maze on P45. GAP-43 protein levels were upregulated on P10 in the prenatal restraint stress (RS) group and the prenatal restraint stress plus neonatal handling and environmental enrichment (RE) group compared to the negative control (NC) group. However, the expression of GAP-43 in RS pups was lower on P20 and P45 than that in NC and RE pups. Exposure to prenatal stress prolonged average latency and total swim distance, but neonatal handling and environmental enrichment could reverse the change. Differences were also observed in the selection of search strategies. These results indicate that neonatal handling and environmental enrichment can improve the spatial learning and memory ability of prenatally stressed offspring, and the possible mechanism is the upregulation of GAP-43.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Histology and Embryology, Guangzhou Medical University, Guangzhou, China.
| | | | | | | |
Collapse
|
50
|
Matrisciano F, Tueting P, Dalal I, Kadriu B, Grayson DR, Davis JM, Nicoletti F, Guidotti A. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology 2012; 68:184-94. [PMID: 22564440 DOI: 10.1016/j.neuropharm.2012.04.013] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/26/2012] [Accepted: 04/13/2012] [Indexed: 11/18/2022]
Abstract
Human studies suggest that a variety of prenatal stressors are related to high risk for cognitive and behavioral abnormalities associated with psychiatric illness (Markham and Koenig, 2011). Recently, a downregulation in the expression of GABAergic genes (i.e., glutamic acid decarboxylase 67 and reelin) associated with DNA methyltransferase (DNMT) overexpression in GABAergic neurons has been regarded as a characteristic phenotypic component of the neuropathology of psychotic disorders (Guidotti et al., 2011). Here, we characterized mice exposed to prenatal restraint stress (PRS) in order to study neurochemical and behavioral abnormalities related to development of schizophrenia in the adult. Offspring born from non-stressed mothers (control mice) showed high levels of DNMT1 and 3a mRNA expression in the frontal cortex at birth, but these levels progressively decreased at post-natal days (PND) 7, 14, and 60. Offspring born from stressed mothers (PRS mice) showed increased levels of DNMTs compared to controls at all time-points studied including at birth and at PND 60. Using GAD67-GFP transgenic mice, we established that, in both control and PRS mice, high levels of DNMT1 and 3a were preferentially expressed in GABAergic neurons of frontal cortex and hippocampus. Importantly, the overexpression of DNMT in GABAergic neurons was associated with a decrease in reelin and GAD67 expression in PRS mice in early and adult life. PRS mice also showed an increased binding of DNMT1 and MeCP2, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine in specific CpG-rich regions of the reelin and GAD67 promoters. Thus, the epigenetic changes in PRS mice are similar to changes observed in the post-mortem brains of psychiatric patients. Behaviorally, adult PRS mice showed hyperactivity and deficits in social interaction, prepulse inhibition, and fear conditioning that were corrected by administration of valproic acid (a histone deacetylase inhibitor) or clozapine (an atypical antipsychotic with DNA-demethylation activity). Taken together, these data show that prenatal stress in mice induces abnormalities in the DNA methylation network and in behaviors indicative of a schizophrenia-like phenotype. Thus, PRS mice may be a valid model for the investigation of new drugs for schizophrenia treatment targeting DNA methylation. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Disease Models, Animal
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Female
- Frontal Lobe/metabolism
- GABAergic Neurons/metabolism
- Glutamate Decarboxylase/genetics
- Glutamate Decarboxylase/metabolism
- Hippocampus/metabolism
- Interneurons/metabolism
- Mice
- Motor Activity/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Phenotype
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reelin Protein
- Restraint, Physical
- Schizophrenia/etiology
- Schizophrenia/genetics
- Schizophrenia/metabolism
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Social Behavior
- Stress, Physiological/physiology
- Stress, Psychological/complications
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|