1
|
Sehara Y, Hashimotodani Y, Watano R, Ohba K, Uchibori R, Shimazaki K, Kawai K, Mizukami H. Adeno-associated Virus-mediated Ezh2 Knockdown Reduced the Increment of Newborn Neurons Induced by Forebrain Ischemia in Gerbil Dentate Gyrus. Mol Neurobiol 2024; 61:9623-9632. [PMID: 38676810 PMCID: PMC11496322 DOI: 10.1007/s12035-024-04200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
It is established that neurogenesis of dentate gyrus is increased after ischemic insult, although the regulatory mechanisms have not yet been elucidated. In this study, we focused on Ezh2 which suppresses gene expression through catalyzing trimethylation of lysine 27 of histone 3. Male gerbils were injected with adeno-associated virus (AAV) carrying shRNA targeting to Ezh2 into right dentate gyrus 2 weeks prior to forebrain ischemia. One week after ischemia, animals were injected with thymidine analogue to label proliferating cells. Three weeks after ischemia, animals were killed for histological analysis. AAV-mediated knockdown of Ezh2 significantly decreased the ischemia-induced increment of proliferating cells, and the proliferated cells after ischemia showed significantly longer migration from subgranular zone (SGZ), compared to the control group. Furthermore, the number of neural stem cells in SGZ significantly decreased after ischemia with Ezh2 knockdown group. Of note, Ezh2 knockdown did not affect the number of proliferating cells or the migration from SGZ in the non-ischemic condition. Our data showed that, specifically after ischemia, Ezh2 knockdown shifted the balance between self-renewal and differentiation toward differentiation in adult dentate gyrus.
Collapse
Affiliation(s)
- Yoshihide Sehara
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | | | - Ryota Watano
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kenji Ohba
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Ryosuke Uchibori
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kuniko Shimazaki
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
2
|
Elsnhory A, Hasan MT, Hagrass AI, Hanbal A, Fathy A, Ahmed E, Ouerdane Y, Ragab KM, Elfil M, Doheim MF. Recovery in Stroke Patients Treated With Fluoxetine Versus Placebo: A Pooled Analysis of 7,165 Patients. Neurologist 2023; 28:104-116. [PMID: 35777860 DOI: 10.1097/nrl.0000000000000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Stroke is a major cause of disability and death. Stroke recovery outcomes range from functional impairment to disability. This study was designed to compare the recovery results of stroke patients treated with fluoxetine to those treated with placebo. REVIEW SUMMARY Seventeen randomized clinical trials were identified by searching PubMed, Cochrane, Scopus, and Web of Science until June 2021. Fluoxetine enhances the National Institutes of Health Stroke Scale (NIHSS) score [mean difference (MD)=-0.67, 95% confidence interval (CI) (-1.19 to -0.15)] and the Fugl-Meyer Motor Scale (FMMS) score [MD=17.36, 95% CI (12.12-22.61)] at the 3-month follow up. However, the NIHSS score showed no significant difference between the 2 groups at 2 weeks [MD=-0.32, 95% CI (-0.72 to 0.07)] or at 6 months [MD=-0.17, 95% CI (-0.47 to 0.14)]. Fluoxetine-treated and placebo-treated patients had the same overall impact on FMMS scores at 1 month ( P =0.41). Barthel index showed no significant difference between the 2 arms at 3 months ( P =0.21) or 6 months ( P =0.68). Fluoxetine-treated patients were at a higher risk of broken bone [risk ratios (RR)=2.30, 95% CI (1.59-3.32)] and hyponatremia [RR=2.12, 95% CI (1.19-3.76)], and at lower risk of new depression [RR=0.72, 95% CI (0.61-0.84)] in comparison with placebo. CONCLUSION The efficacy of fluoxetine on the NIHSS and FMMS is likely to take time to emerge and is expected to be transient. The Barthel index score did not differ between the fluoxetine and placebo groups. The use of fluoxetine increased the incidence of hyponatremia and bone fractures while decreasing the risk of new-onset depression.
Collapse
Affiliation(s)
- Ahmed Elsnhory
- Faculty of Medicine for Boys, Al-Azhar University, Cairo
- International Medical Research Association (IMedRA) Cairo, Egypt
| | - Mohammed T Hasan
- Faculty of Medicine for Boys, Al-Azhar University, Cairo
- International Medical Research Association (IMedRA) Cairo, Egypt
| | - Abdulrahman I Hagrass
- Faculty of Medicine for Boys, Al-Azhar University, Cairo
- International Medical Research Association (IMedRA) Cairo, Egypt
| | - Ahmed Hanbal
- Faculty of Medicine for Boys, Al-Azhar University, Cairo
- International Medical Research Association (IMedRA) Cairo, Egypt
| | - Anas Fathy
- Faculty of Medicine for Boys, Al-Azhar University, Cairo
- International Medical Research Association (IMedRA) Cairo, Egypt
| | - Eslam Ahmed
- Faculty of Medicine for Boys, Al-Azhar University, Cairo
- International Medical Research Association (IMedRA) Cairo, Egypt
| | - Yassamine Ouerdane
- Faculty of Medicine, Saad Dahlab University, Blida, Algeria
- International Medical Research Association (IMedRA) Cairo, Egypt
| | - Khaled M Ragab
- Faculty of Medicine, Minia University, Minia
- International Medical Research Association (IMedRA) Cairo, Egypt
| | - Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Mohamed F Doheim
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
- International Medical Research Association (IMedRA) Cairo, Egypt
| |
Collapse
|
3
|
Luo F, Wang J, Zhang Z, You Z, Bedolla A, Okwubido-Williams F, Huang LF, Silver J, Luo Y. Inhibition of CSPG receptor PTPσ promotes migration of newly born neuroblasts, axonal sprouting, and recovery from stroke. Cell Rep 2022; 40:111137. [PMID: 35905716 DOI: 10.1016/j.celrep.2022.111137] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
In addition to neuroprotective strategies, neuroregenerative processes could provide targets for stroke recovery. However, the upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) impedes innate regenerative efforts. Here, we examine the regulatory role of PTPσ (a major proteoglycan receptor) in dampening post-stroke recovery. Use of a receptor modulatory peptide (ISP) or Ptprs gene deletion leads to increased neurite outgrowth and enhanced NSCs migration upon inhibitory CSPG substrates. Post-stroke ISP treatment results in increased axonal sprouting as well as neuroblast migration deeply into the lesion scar with a transcriptional signature reflective of repair. Lastly, peptide treatment post-stroke (initiated acutely or more chronically at 7 days) results in improved behavioral recovery in both motor and cognitive functions. Therefore, we propose that CSPGs induced by stroke play a predominant role in the regulation of neural repair and that blocking CSPG signaling pathways will lead to enhanced neurorepair and functional recovery in stroke.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jiapeng Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Zhen Zhang
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Zhen You
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alicia Bedolla
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - FearGod Okwubido-Williams
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - L Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
4
|
Javaid MA, Selim M, Ortega-Gutierrez S, Lattanzi S, Zargar S, Alaouieh DA, Hong E, Divani AA. Potential application of intranasal insulin delivery for treatment of intracerebral hemorrhage: A review of the literature. J Stroke Cerebrovasc Dis 2022; 31:106489. [PMID: 35489182 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 12/01/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke associated with high morbidity and mortality that is considered a medical emergency, mainly managed with adequate blood pressure control and creating a favorable hemostatic condition. However, to date, none of the randomized clinical trials have led to an effective treatment for ICH. It is vital to better understand the mechanisms underlying brain injury to effectively decrease ICH-associated morbidity and mortality. It is well known that initial hematoma formation and its expansion have detrimental consequences. The literature has recently focused on other pathological processes, including oxidative stress, neuroinflammation, blood-brain barrier disruption, edema formation, and neurotoxicity, that constitute secondary brain injury. Since conventional management has failed to improve clinical outcomes significantly, various neuroprotective therapies are tested in preclinical and clinical settings. Unlike intravenous administration, intranasal insulin can reach a higher concentration in the cerebrospinal fluid without causing systemic side effects. Intranasal insulin delivery has been introduced as a novel neuroprotective agent for certain neurological diseases, including ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury. Since there is an overlap of mechanisms causing neuroinflammation in these neurological diseases and ICH, we believe that preclinical studies testing the role of intranasal insulin therapy in ICH are warranted.
Collapse
Affiliation(s)
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Shima Zargar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | | | - Emily Hong
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Chen W, Cai W, Hoover B, Kahn CR. Insulin action in the brain: cell types, circuits, and diseases. Trends Neurosci 2022; 45:384-400. [PMID: 35361499 PMCID: PMC9035105 DOI: 10.1016/j.tins.2022.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Since its discovery over 100 years ago, insulin has been recognized as a key hormone in control of glucose homeostasis. Deficiencies of insulin signaling are central to diabetes and many other disorders. The brain is among the targets of insulin action, and insulin resistance is a major contributor to many diseases, including brain disorders. Here, we summarize key roles of insulin action in the brain and how this involves different brain cell types. Disordered brain insulin signaling can also contribute to neuropsychiatric diseases, affecting brain circuits involved in mood and cognition. Understanding of insulin signaling in different brain cell types/circuits and how these are altered in disease may lead to the development of new therapeutic approaches to these challenging disorders.
Collapse
|
6
|
Das J, Mahammad FS, Krishnamurthy RG. An integrated chemo-informatics and in vitro experimental approach repurposes acarbose as a post-ischemic neuro-protectant. 3 Biotech 2022; 12:71. [PMID: 35223357 PMCID: PMC8847516 DOI: 10.1007/s13205-022-03130-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/23/2022] [Indexed: 11/26/2022] Open
Abstract
The increasing prevalence of ischemic stroke combined with limited therapeutic options highlights the compelling need for continued research into the development of future neuro-therapeutics. Death-Associated Protein Kinase 1 (DAPK1) and p53 protein-protein interaction serve as a signaling point for the convergence of apoptosis and necrosis in cerebral ischemia. In this study, we used an integrated chemo-informatics and in vitro experimental drug repurposing strategy to screen potential small-molecule inhibitors of DAPK1-p53 interaction from the United States of America Food and Drug Administration (FDA) approved drug database exhibiting post-ischemic neuroprotective and neuro-regenerative efficacy and mechanisms. The computational docking and molecular dynamics simulation of FDA-approved drugs followed by an in vitro experimental validation identified acarbose, an anti-diabetic medication and caloric restriction mimetic as a potential inhibitor of DAPK1-p53 interaction. The evaluation of post-ischemic neuroprotective and regenerative efficacy and mechanisms of action for acarbose was carried out using a set of experimental methods, including cell viability, proliferation and differentiation assays, fluorescence staining, and gene expression analysis. Post-ischemic administration of acarbose conferred significant neuroprotection against ischemia-reperfusion injury in vitro. The reduced fluorescence emission in cells stained with pS20 supported the potential of acarbose in inhibiting the DAPK1-p53 interaction. Acarbose prevented mitochondrial and lysosomal dysfunction, and favorably modulated gene expression related to cell survival, inflammation, and regeneration. BrdU staining and neurite outgrowth assay showed a significant increase in cell proliferation and differentiation in acarbose-treated group. This is the first study known to provide mechanistic insight into the post-ischemic neuroprotective and neuro-regenerative potential of acarbose. Our results provide a strong basis for preclinical studies to evaluate the safety and neuroprotective efficacy of acarbose against ischemic stroke. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03130-5.
Collapse
Affiliation(s)
- Jyotirekha Das
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala 673601 India
| | - Fayaz Shaik Mahammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | |
Collapse
|
7
|
Kaneko H, Namihira M, Yamamoto S, Numata N, Hyodo K. Oral administration of cyclic glycyl-proline facilitates task learning in a rat stroke model. Behav Brain Res 2022; 417:113561. [PMID: 34509530 DOI: 10.1016/j.bbr.2021.113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Cyclic glycyl-proline (cGP) exerts neuroprotective effects against ischemic stroke and may promote neural plasticity or network remodeling. We sought to determine to what extent oral administration of cGP could facilitate task learning in rats with ischemic lesions. We trained rats to perform a choice reaction time task using their forepaws. One week after changing the food to pellets containing cGP (no cGP: 0 mg/kg; low cGP: 25 mg/kg; and high cGP: 75 mg/kg), we made a focal ischemic lesion on the left or right forepaw area of the sensorimotor cortex. After recovery of task performance, we altered the correct-response side of the task, and then analyzed the number of training days required for the rat to reach a learning criterion (error rate < 15%) and the regulation of adult neurogenesis in the subventricular zones (SVZs), taking lesion size into account. The low-cGP group required fewer training days for task learning than the no-cGP group. Unexpectedly, rats with larger lesions required fewer training days in the no-cGP and low-cGP groups, but more training days in the high-cGP group. The number of Ki67-immunopositive cells (indicating proliferative cells) in ipsilesional SVZ increased more rapidly in the low-cGP and high-cGP groups than in the no-cGP group. However, lesion size had only a small effect on required training days and the number of Ki67-immunopositive cells. We conclude that oral administration of cGP can facilitate task learning in rats with focal ischemic infarction through neural plasticity and network remodeling, even with minimal neuroprotective effects.
Collapse
Affiliation(s)
- Hidekazu Kaneko
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| | - Masakazu Namihira
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | | | - Koji Hyodo
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
8
|
Williams HC, Carlson SW, Saatman KE. A role for insulin-like growth factor-1 in hippocampal plasticity following traumatic brain injury. VITAMINS AND HORMONES 2022; 118:423-455. [PMID: 35180936 DOI: 10.1016/bs.vh.2021.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) initiates a constellation of secondary injury cascades, leading to neuronal damage and dysfunction that is often beyond the scope of endogenous repair mechanisms. Cognitive deficits are among the most persistent morbidities resulting from TBI, necessitating a greater understanding of mechanisms of posttraumatic hippocampal damage and neuroplasticity and identification of therapies that improve recovery by enhancing repair pathways. Focusing here on hippocampal neuropathology associated with contusion-type TBIs, the impact of brain trauma on synaptic structure and function and the process of adult neurogenesis is discussed, reviewing initial patterns of damage as well as evidence for spontaneous recovery. A case is made that insulin-like growth factor-1 (IGF-1), a growth-promoting peptide synthesized in both the brain and the periphery, is well suited to augment neuroplasticity in the injured brain. Essential during brain development, multiple lines of evidence delineate roles in the adult brain for IGF-1 in the maintenance of synapses, regulation of neurotransmission, and modulation of forms of synaptic plasticity such as long-term potentiation. Further, IGF-1 enhances adult hippocampal neurogenesis though effects on proliferation and neuronal differentiation of neural progenitor cells and on dendritic growth of newly born neurons. Post-injury administration of IGF-1 has been effective in rodent models of TBI in improving learning and memory, attenuating death of mature hippocampal neurons and promoting neurogenesis, providing critical proof-of-concept data. More studies are needed to explore the effects of IGF-1-based therapies on synaptogenesis and synaptic plasticity following TBI and to optimize strategies in order to stimulate only appropriate, functional neuroplasticity.
Collapse
Affiliation(s)
- Hannah C Williams
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kathryn E Saatman
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
9
|
Microglia as the Critical Regulators of Neuroprotection and Functional Recovery in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:2505-2525. [PMID: 34460037 DOI: 10.1007/s10571-021-01145-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.
Collapse
|
10
|
Life and Death of Immature Neurons in the Juvenile and Adult Primate Amygdala. Int J Mol Sci 2021; 22:ijms22136691. [PMID: 34206571 PMCID: PMC8268704 DOI: 10.3390/ijms22136691] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, a large population of immature neurons has been documented in the paralaminar nucleus of the primate amygdala. A substantial fraction of these immature neurons differentiate into mature neurons during postnatal development or following selective lesion of the hippocampus. Notwithstanding a growing number of studies on the origin and fate of these immature neurons, fundamental questions about the life and death of these neurons remain. Here, we briefly summarize what is currently known about the immature neurons present in the primate ventral amygdala during development and in adulthood, as well as following selective hippocampal lesions. We provide evidence confirming that the distribution of immature neurons extends to the anterior portions of the entorhinal cortex and layer II of the perirhinal cortex. We also provide novel arguments derived from stereological estimates of the number of mature and immature neurons, which support the view that the migration of immature neurons from the lateral ventricle accompanies neuronal maturation in the primate amygdala at all ages. Finally, we propose and discuss the hypothesis that increased migration and maturation of neurons in the amygdala following hippocampal dysfunction may be linked to behavioral alterations associated with certain neurodevelopmental disorders.
Collapse
|
11
|
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. Combining Growth Factor and Stem Cell Therapy for Stroke Rehabilitation, A Review. Curr Drug Targets 2021; 21:781-791. [PMID: 31914912 DOI: 10.2174/1389450121666200107100747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Stroke is a serious, life-threatening condition demanding vigorous search for new therapies. Recent research has focused on stem cell-based therapies as a viable choice following ischemic stroke, based on studies displaying that stem cells transplanted to the brain not only survive but also cause functional recovery. Growth factors defined as polypeptides that regulate the growth and differentiation of many cell types. Many studies have demonstrated that combined use of growth factors may increase results by the stimulation of endogenous neurogenesis, anti-inflammatory, neuroprotection properties, and enhancement of stem cell survival rates and so may be more effective than a single stem cell therapy. This paper reviews and discusses the most promising new stroke recovery research, including combination treatment.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Littlejohn EL, DeSana AJ, Williams HC, Chapman RT, Joseph B, Juras JA, Saatman KE. IGF1-Stimulated Posttraumatic Hippocampal Remodeling Is Not Dependent on mTOR. Front Cell Dev Biol 2021; 9:663456. [PMID: 34095131 PMCID: PMC8174097 DOI: 10.3389/fcell.2021.663456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 01/29/2023] Open
Abstract
Adult hippocampal neurogenesis is stimulated acutely following traumatic brain injury (TBI). However, many hippocampal neurons born after injury develop abnormally and the number that survive long-term is debated. In experimental TBI, insulin-like growth factor-1 (IGF1) promotes hippocampal neuronal differentiation, improves immature neuron dendritic arbor morphology, increases long-term survival of neurons born after TBI, and improves cognitive function. One potential downstream mediator of the neurogenic effects of IGF1 is mammalian target of rapamycin (mTOR), which regulates proliferation as well as axonal and dendritic growth in the CNS. Excessive mTOR activation is posited to contribute to aberrant plasticity related to posttraumatic epilepsy, spurring preclinical studies of mTOR inhibitors as therapeutics for TBI. The degree to which pro-neurogenic effects of IGF1 depend upon upregulation of mTOR activity is currently unknown. Using immunostaining for phosphorylated ribosomal protein S6, a commonly used surrogate for mTOR activation, we show that controlled cortical impact TBI triggers mTOR activation in the dentate gyrus in a time-, region-, and injury severity-dependent manner. Posttraumatic mTOR activation in the granule cell layer (GCL) and dentate hilus was amplified in mice with conditional overexpression of IGF1. In contrast, delayed astrocytic activation of mTOR signaling within the dentate gyrus molecular layer, closely associated with proliferation, was not affected by IGF1 overexpression. To determine whether mTOR activation is necessary for IGF1-mediated stimulation of posttraumatic hippocampal neurogenesis, wildtype and IGF1 transgenic mice received the mTOR inhibitor rapamycin daily beginning at 3 days after TBI, following pulse labeling with bromodeoxyuridine. Compared to wildtype mice, IGF1 overexpressing mice exhibited increased posttraumatic neurogenesis, with a higher density of posttrauma-born GCL neurons at 10 days after injury. Inhibition of mTOR did not abrogate IGF1-stimulated enhancement of posttraumatic neurogenesis. Rather, rapamycin treatment in IGF1 transgenic mice, but not in WT mice, increased numbers of cells labeled with BrdU at 3 days after injury that survived to 10 days, and enhanced the proportion of posttrauma-born cells that differentiated into neurons. Because beneficial effects of IGF1 on hippocampal neurogenesis were maintained or even enhanced with delayed inhibition of mTOR, combination therapy approaches may hold promise for TBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kathryn E. Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Rudolph M, Schmeer CW, Günther M, Woitke F, Kathner-Schaffert C, Karapetow L, Lindner J, Lehmann T, Jirikowski G, Witte OW, Redecker C, Keiner S. Microglia-mediated phagocytosis of apoptotic nuclei is impaired in the adult murine hippocampus after stroke. Glia 2021; 69:2006-2022. [PMID: 33942391 DOI: 10.1002/glia.24009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/02/2023]
Abstract
Following stroke, neuronal death takes place both in the infarct region and in brain areas distal to the lesion site including the hippocampus. The hippocampus is critically involved in learning and memory processes and continuously generates new neurons. Dysregulation of adult neurogenesis may be associated with cognitive decline after a stroke lesion. In particular, proliferation of precursor cells and the formation of new neurons are increased after lesion. Within the first week, many new precursor cells die during development. How dying precursors are removed from the hippocampus and to what extent phagocytosis takes place after stroke is still not clear. Here, we evaluated the effect of a prefrontal stroke lesion on the phagocytic activity of microglia in the dentate gyrus (DG) of the hippocampus. Three-months-old C57BL/6J mice were injected once with the proliferation marker BrdU (250 mg/kg) 6 hr after a middle cerebral artery occlusion or sham surgery. The number of apoptotic cells and the phagocytic capacity of the microglia were evaluated by means of immunohistochemistry, confocal microscopy, and 3D-reconstructions. We found a transient but significant increase in the number of apoptotic cells in the DG early after stroke, associated with impaired removal by microglia. Interestingly, phagocytosis of newly generated precursor cells was not affected. Our study shows that a prefrontal stroke lesion affects phagocytosis of apoptotic cells in the DG, a region distal to the lesion core. Whether disturbed phagocytosis might contribute to inflammatory- and maladaptive processes including cognitive impairment following stroke needs to be further investigated.
Collapse
Affiliation(s)
- Max Rudolph
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian W Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Madlen Günther
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Florus Woitke
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Lina Karapetow
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Julia Lindner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics and Computer Science, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Gustav Jirikowski
- Health and Medical University Potsdam, University Potsdam, Potsdam, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christoph Redecker
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Department of Neurology, Lippe General Hospital, Lemgo, Germany
| | - Silke Keiner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
14
|
Positive Association Between Serum Insulin-Like Growth Factor-1 and Cognition in Patients with Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis 2021; 30:105790. [PMID: 33878547 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cognitive impairment is one of the main complications of cerebral small vessel disease (CSVD). Serum insulin-like growth factor-1 (IGF-1) might serve as a marker for the risk of cognitive decline in patients with CSVD. We investigated the association of IGF-1 with the development of cognitive impairment in patients with CSVD. We included 216 patients with CVSD (mean age, 67.57 ± 8.53 years; 31.9% female). We compared 117 (54.2%) patients who developed cognitive impairment with 99 (45.8%) patients without cognitive impairment. Patients who developed cognitive impairment had significantly lower levels of IGF-I (p < 0 .001), suggesting that altered IGF-1 signaling may be a risk factor for cognitive decline in patients with CSVD.
Collapse
|
15
|
Liu G, Yang X, Xue T, Chen S, Wu X, Yan Z, Wang Z, Wu D, Chen Z, Wang Z. Is Fluoxetine Good for Subacute Stroke? A Meta-Analysis Evidenced From Randomized Controlled Trials. Front Neurol 2021; 12:633781. [PMID: 33828519 PMCID: PMC8019826 DOI: 10.3389/fneur.2021.633781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/17/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose: Fluoxetine is a drug commonly used to treat mental disorders, such as depression and obsessive–compulsive disorder, and some studies have shown that fluoxetine can improve motor and function recovery after stroke. Therefore, we performed a meta-analysis to investigate the efficacy and safety of fluoxetine in the treatment of post-stroke neurological recovery. Methods: PubMed, Embase, and Cochrane Library were searched for randomized controlled trials (RCTs) that were performed to assess the efficacy and safety of fluoxetine for functional and motor recovery in subacute stroke patients up to October 2020. Review Manager 5.3 software was used to assess the data. The risk ratio (RR) and standardized mean difference (SMD) were analyzed and calculated with a fixed effects model. Results: We pooled 6,788 patients from nine RCTs. The primary endpoint was modified Rankin Scale (mRS). Fluoxetine did not change the proportion of mRS ≤ 2 (P = 0.47). The secondary endpoints were Fugl-Meyer Motor Scale (FMMS), Barthel Index (BI), and National Institutes of Health Stroke Scale (NIHSS). Fluoxetine improved the FMMS (P < 0.00001) and BI(P < 0.0001) and showed a tendency of improving NIHSS (P = 0.08). In addition, we found that fluoxetine reduced the rate of new-onset depression (P < 0.0001) and new antidepressants (P < 0.0001). Conclusion: In post-stroke treatment, fluoxetine did not improve participants' mRS and NIHSS but improved FMMS and BI. This difference could result from heterogeneities between the trials: different treatment duration, clinical scales sensitivity, patient age, delay of inclusion, and severity of the deficit.
Collapse
Affiliation(s)
- Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingyu Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xue
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shujun Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeya Yan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Da Wu
- Department of Neurosurgery, Yixing People's Hospital, Yixing, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Farokhi-Sisakht F, Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Mohaddes G. Cognitive Rehabilitation Improves Ischemic Stroke-Induced Cognitive Impairment: Role of Growth Factors. J Stroke Cerebrovasc Dis 2019; 28:104299. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/24/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022] Open
|
17
|
Chen YC, Ma NX, Pei ZF, Wu Z, Do-Monte FH, Keefe S, Yellin E, Chen MS, Yin JC, Lee G, Minier-Toribio A, Hu Y, Bai YT, Lee K, Quirk GJ, Chen G. A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through In Vivo Astrocyte-to-Neuron Conversion. Mol Ther 2019; 28:217-234. [PMID: 31551137 PMCID: PMC6952185 DOI: 10.1016/j.ymthe.2019.09.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/18/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Adult mammalian brains have largely lost neuroregeneration capability except for a few niches. Previous studies have converted glial cells into neurons, but the total number of neurons generated is limited and the therapeutic potential is unclear. Here, we demonstrate that NeuroD1-mediated in situ astrocyte-to-neuron conversion can regenerate a large number of functional new neurons after ischemic injury. Specifically, using NeuroD1 adeno-associated virus (AAV)-based gene therapy, we were able to regenerate one third of the total lost neurons caused by ischemic injury and simultaneously protect another one third of injured neurons, leading to a significant neuronal recovery. RNA sequencing and immunostaining confirmed neuronal recovery after cell conversion at both the mRNA level and protein level. Brain slice recordings found that the astrocyte-converted neurons showed robust action potentials and synaptic responses at 2 months after NeuroD1 expression. Anterograde and retrograde tracing revealed long-range axonal projections from astrocyte-converted neurons to their target regions in a time-dependent manner. Behavioral analyses showed a significant improvement of both motor and cognitive functions after cell conversion. Together, these results demonstrate that in vivo cell conversion technology through NeuroD1-based gene therapy can regenerate a large number of functional new neurons to restore lost neuronal functions after injury.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ning-Xin Ma
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zi-Fei Pei
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zheng Wu
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fabricio H Do-Monte
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan 00936-5067, Puerto Rico
| | - Susan Keefe
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emma Yellin
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Miranda S Chen
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jiu-Chao Yin
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Grace Lee
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Angélica Minier-Toribio
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan 00936-5067, Puerto Rico
| | - Yi Hu
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yu-Ting Bai
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kathryn Lee
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan 00936-5067, Puerto Rico
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med 2019; 13:569-586. [PMID: 30644175 DOI: 10.1002/term.2806] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/26/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that the main driving force behind the therapeutic activity observed in mesenchymal stem cells (MSCs) are the paracrine factors secreted by these cells. These biomolecules also trigger antiapoptotic events to prevent further degeneration of the diseased organ through paracrine signalling mechanisms. In comparison with the normal physiological conditions, an increased paracrine gradient is observed within the peripheral system of diseased organs that enhances the migration of tissue-specific MSCs towards the site of infection or injury to promote healing. Thus, upon administration of conditioned media derived from mesenchymal stem cell cultures (MSC-CM) could contribute in maintaining the increased paracrine factor gradient between the diseased organ and the stem cell niche in order to speed up the process of recovery. Based on the principle of the paracrine signalling mechanism, MSC-CM, also referred as the secretome of the MSCs, is a rich source of the paracrine factors and are being studied extensively for a wide range of regenerative therapies such as myocardial infarction, stroke, bone regeneration, hair growth, and wound healing. This article highlights the current technological applications and advances of MSC-CM with the aim to appraise its future potential as a regenerative therapeutic agent.
Collapse
Affiliation(s)
| | - Mohammad Tariqur Rahman
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Oh B, George P. Conductive polymers to modulate the post-stroke neural environment. Brain Res Bull 2019; 148:10-17. [PMID: 30851354 DOI: 10.1016/j.brainresbull.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
Despite the prevalence of stroke, therapies to augment recovery remain limited. Here we focus on the use of conductive polymers for cell delivery, drug release, and electrical stimulation to optimize the post-stroke environment for neural recovery. Conductive polymers and their interactions with in vitro and in vivo neural systems are explored. The ability to continuously modify the neural environment utilizing conductive polymers provides applications in directing stem cell differentiation and increasing neural repair. This exciting class of polymers offers new approaches to optimizing the post-stroke brain to improve functional recovery.
Collapse
Affiliation(s)
- Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Zhang SJ, Wang RL, Zhao HP, Tao Z, Li JC, Ju F, Han ZP, Ma QF, Liu P, Ma SB, Cao GD, Luo YM. MEPO promotes neurogenesis and angiogenesis but suppresses gliogenesis in mice with acute ischemic stroke. Eur J Pharmacol 2019; 849:1-10. [PMID: 30716313 DOI: 10.1016/j.ejphar.2019.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 02/04/2023]
Abstract
Previously study has proved the non-erythropoietic mutant erythropoietin (MEPO) exerted neuroprotective effects against ischemic cerebral injury, with an efficacy similar to that of wild-type EPO. This study investigates its effects on neurogenesis, angiogenesis, and gliogenesis in cerebral ischemic mice. Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) and reperfusion. EPO (5000 U/kg), MEPO (5000 U/kg) or equal volume of normal saline was injected intraperitoneally. Neurological function was evaluated by Rota-rod test, Neurological severity scores (NSS) and Adhesive removal test. After ischemia and reperfusion (I/R), the survival rate, brain tissue loss, neurogenesis, angiogenesis and gliogenesis were detected by Nissl staining, Immunofluorescence and Western blot, respectively. The results shown that MEPO significantly increased survival rate, reduced brain tissue loss, and improved neurological function after MCAO (P < 0.05). Furthermore, MEPO obviously enhanced the proliferation of neuronal precursors (DCX) and promoted its differentiation into mature neurons (NeuN) (P < 0.05). In addition, compared to normal saline treatment mice, MEPO increased the number of BrdU-positive cells in the cerebral vasculature (P < 0.05). Whereas, MEPO treatment also reduced the numbers of newly generated astrocytes (GFAP) and microglia (Iba1) (P < 0.05). Among all the tests in this study, there was no significant difference between EPO group and MEPO group. Taken together, MEPO promoted the regeneration of neurons and blood vessels in peripheral area of infarction, and suppressed the gliogenesis, thus promoting neurogenesis, improving neurological function and survival rate. Our findings suggest that the MEPO may be a therapeutic drug for ischemic stroke intervention.
Collapse
Affiliation(s)
- Si-Jia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rong-Liang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Hai-Ping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Jin-Cheng Li
- Department of Neurology, Zibo Central Hospital, Zibo 255036, China
| | - Fei Ju
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zi-Ping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China
| | - Qing-Feng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shu-Bei Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Guo-Dong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Yu-Min Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China; Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
21
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Turcato F, Kim P, Barnett A, Jin Y, Scerba M, Casey A, Selman W, Greig NH, Luo Y. Sequential combined Treatment of Pifithrin-α and Posiphen Enhances Neurogenesis and Functional Recovery After Stroke. Cell Transplant 2018; 27:607-621. [PMID: 29871513 PMCID: PMC6041885 DOI: 10.1177/0963689718766328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective: Although cerebral ischemia can activate endogenous reparative processes, such as
proliferation of endogenous neural stem cells (NSCs) in the subventricular zone (SVZ)
and subgranular zone (SGZ), the majority of these new cells die shortly after injury and
do not appropriately differentiate into neurons, or migrate and functionally integrate
into the brain. The purpose of this study was to examine a novel strategy for treatment
of stroke after injury by optimizing the survival of ischemia-induced endogenous NSCs in
the SVZ and SGZ. Methods: Adult SVZ and SGZ NSCs were grown as neurospheres in culture and treated with a p53
inactivator, pifithrin-α (PFT-α), and an amyloid precursor protein (APP)-lowering drug,
posiphen, and effects on neurosphere number, size and neuronal differentiation were
evaluated. This combined sequential treatment approach was then evaluated in mice
challenged with middle cerebral artery occlusion (MCAo). Locomotor behavior and
cognition were evaluated at 4 weeks, and the number of new surviving neurons was
quantified in nestin creERT2-YFP mice. Results: PFT-α and posiphen enhanced the self-renewal, proliferation rate and neuronal
differentiation of adult SVZ and SGZ NSCs in culture. Their sequential combination in
mice challenged with MCAo-induced stroke mitigated locomotor and cognitive impairments
and increased the survival of SVZ and SGZ NSCs cells. PFT-α and the combined
posiphen+PFT-α treatment similarly improved locomotion behavior in stroke challenged
mice. Notably, however, the combined treatment provided significantly more potent
cognitive function enhancement in stroke mice, as compared with PFT-α single
treatment. Interpretation: Delayed combined sequential treatment with an inhibitor of p53 dependent apoptosis
(PFT-α) and APP synthesis (posiphen) proved able to enhance stroke-induced endogenous
neurogenesis and improve the functional recovery in stroke animals. Whereas the combined
sequential treatment provided no further improvement in locomotor function, as compared
with PFT-α alone treatment, suggesting a potential ceiling in the locomotion behavioral
outcome in stroke animals, combined treatment more potently augmented cognitive function
recovery after stroke.
Collapse
Affiliation(s)
- Flavia Turcato
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA.,2 Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paul Kim
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Austin Barnett
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Yongming Jin
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Mike Scerba
- 3 National Institute of Aging, Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, Baltimore, USA
| | - Anthony Casey
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Warren Selman
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Nigel H Greig
- 3 National Institute of Aging, Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, Baltimore, USA
| | - Yu Luo
- 1 Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
23
|
Lee RHC, Lee MHH, Wu CYC, Couto e Silva A, Possoit HE, Hsieh TH, Minagar A, Lin HW. Cerebral ischemia and neuroregeneration. Neural Regen Res 2018; 13:373-385. [PMID: 29623912 PMCID: PMC5900490 DOI: 10.4103/1673-5374.228711] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies against stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isozymes, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia.
Collapse
Affiliation(s)
- Reggie H. C. Lee
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Michelle H. H. Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, China
| | - Celeste Y. C. Wu
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Alexandre Couto e Silva
- Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Harlee E. Possoit
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Tsung-Han Hsieh
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, Shreveport, LA, USA
- Cardiovascular and Metabolomics Research Center, Hualien Tzu Chi Hospital, Hualien, Taiwan, China
| |
Collapse
|
24
|
Modulation of Post-Stroke Plasticity and Regeneration by Stem Cell Therapy and Exogenic Factors. CELLULAR AND MOLECULAR APPROACHES TO REGENERATION AND REPAIR 2018. [DOI: 10.1007/978-3-319-66679-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Jin GH, Lee JB. Effect of Recombinant Human Growth Hormone Add on Therapy on Acute Stroke Outcome. BRAIN & NEUROREHABILITATION 2018. [DOI: 10.12786/bn.2018.11.e4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ga-Heon Jin
- The Faculty of Beauty Health Sciences, Major in Ophthalmic Optics, Shinhan University, Uijeongbu, Korea
| | - Jun-Beom Lee
- Department of Neurology, Hongik Hospital, Seoul, Korea
| |
Collapse
|
26
|
Abstract
Stroke represents the most common fatal neurological disease especially in highly developed countries. Even today, treatment options are very limited. The development of new therapeutic approaches replies, to a great extent, on experimental rodent models of focal cerebral ischemia. Since ~80% of ischemic strokes occur in the area of middle cerebral artery (MCA), a number of these stroke models are based on this artery. The intraluminal monofilament model of MCA occlusion involves the insertion of a surgical filament inside the external carotid artery and its extension into the internal carotid artery until the tip occludes the source of the MCA-thus arresting blood flow with resultant infarction in the MCA area. This technique can be utilized to model both permanent and transient occlusions. A major advantage of this technique is that it does not require craniectomy, which may affect intracranial pressure and temperature. Although the restored blood flow is unlike the pathophysiology of spontaneous human stroke, it more closely mimics the therapeutic state of mechanical thrombectomy which is increasingly being applied to patients with stroke.
Collapse
|
27
|
From cord to caudate: characterizing umbilical cord blood stem cells and their paracrine interactions with the injured brain. Pediatr Res 2018; 83:205-213. [PMID: 28981488 DOI: 10.1038/pr.2017.251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
Stem cells are proving to be a promising therapy for a wide range of pediatric disorders, from neonatal hypoxic-ischemic encephalopathy to pediatric leukemia. Owing to their low immunogenicity and ease of availability, umbilical cord blood (UCB) progenitor cells are increasingly replacing fetal- and adult-derived cells in therapeutic settings. Multiple environmental and demographic factors affect the number and type of stem cells extracted from UCB, and these differences have been associated with disparities in outcomes after transplantation. To avoid variations in efficacy, as well as the potential adverse effects of stem cell transplantation, evaluation of the stem cell secretome is critical to identify key paracrine signals released by the stem cells that could be used to provide similar neuroprotective effects to stem cell transplantation. This article describes the cell types found in UCB and reviews the available literature surrounding the effects of collection timing and volume, maternal risk factors, delivery characteristics, and neonatal demographics on the cellular composition of UCB. In addition, the current findings regarding the stem cell secretome are discussed to identify factors that could be used to supplement or replace stem cell transplantation in pediatric neuroprotection.
Collapse
|
28
|
Saraiva C, Esteves M, Bernardino L. MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem Pharmacol 2017; 141:118-131. [DOI: 10.1016/j.bcp.2017.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022]
|
29
|
MANF Promotes Differentiation and Migration of Neural Progenitor Cells with Potential Neural Regenerative Effects in Stroke. Mol Ther 2017; 26:238-255. [PMID: 29050872 PMCID: PMC5763030 DOI: 10.1016/j.ymthe.2017.09.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
Cerebral ischemia activates endogenous reparative processes, such as increased proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) and migration of neural progenitor cells (NPCs) toward the ischemic area. However, this reparative process is limited because most of the NPCs die shortly after injury or are unable to arrive at the infarct boundary. In this study, we demonstrate for the first time that endogenous mesencephalic astrocyte-derived neurotrophic factor (MANF) protects NSCs against oxygen-glucose-deprivation-induced injury and has a crucial role in regulating NPC migration. In NSC cultures, MANF protein administration did not affect growth of cells but triggered neuronal and glial differentiation, followed by activation of STAT3. In SVZ explants, MANF overexpression facilitated cell migration and activated the STAT3 and ERK1/2 pathway. Using a rat model of cortical stroke, intracerebroventricular injections of MANF did not affect cell proliferation in the SVZ, but promoted migration of doublecortin (DCX)+ cells toward the corpus callosum and infarct boundary on day 14 post-stroke. Long-term infusion of MANF into the peri-infarct zone increased the recruitment of DCX+ cells in the infarct area. In conclusion, our data demonstrate a neuroregenerative activity of MANF that facilitates differentiation and migration of NPCs, thereby increasing recruitment of neuroblasts in stroke cortex.
Collapse
|
30
|
Preclinical Studies and Translational Applications of Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5135429. [PMID: 28698874 PMCID: PMC5494071 DOI: 10.1155/2017/5135429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/16/2017] [Accepted: 05/02/2017] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) which refers to bleeding in the brain is a very deleterious condition with high mortality and disability rate. Surgery or conservative therapy remains the treatment option. Various studies have divided the disease process of ICH into primary and secondary injury, for which knowledge into these processes has yielded many preclinical and clinical treatment options. The aim of this review is to highlight some of the new experimental drugs as well as other treatment options like stem cell therapy, rehabilitation, and nanomedicine and mention some translational clinical applications that have been done with these treatment options.
Collapse
|
31
|
Parker K, Berretta A, Saenger S, Sivaramakrishnan M, Shirley SA, Metzger F, Clarkson AN. PEGylated insulin-like growth factor-I affords protection and facilitates recovery of lost functions post-focal ischemia. Sci Rep 2017; 7:241. [PMID: 28325900 PMCID: PMC5428211 DOI: 10.1038/s41598-017-00336-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/21/2017] [Indexed: 12/04/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is involved in the maturation and maintenance of neurons, and impaired IGF-I signaling has been shown to play a role in various neurological diseases including stroke. The aim of the present study was to investigate the efficacy of an optimized IGF-I variant by adding a 40 kDa polyethylene glycol (PEG) chain to IGF-I to form PEG-IGF-I. We show that PEG-IGF-I has a slower clearance which allows for twice-weekly dosing to maintain steady-state serum levels in mice. Using a photothrombotic model of focal stroke, dosing from 3 hrs post-stroke dose-dependently (0.3–1 mg/kg) decreases the volume of infarction and improves motor behavioural function in both young 3-month and aged 22–24 month old mice. Further, PEG-IGF-I treatment increases GFAP expression when given early (3 hrs post-stroke), increases Synaptophysin expression and increases neurogenesis in young and aged. Finally, neurons (P5–6) cultured in vitro on reactive astrocytes in the presence of PEG-IGF-I showed an increase in neurite length, indicating that PEG-IGF-I can aid in sprouting of new connections. This data suggests a modulatory role of IGF-I in both protective and regenerative processes, and indicates that therapeutic approaches using PEG-IGF-I should be given early and where the endogenous regenerative potential is still high.
Collapse
Affiliation(s)
- Kim Parker
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Antonio Berretta
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Stefanie Saenger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manaswini Sivaramakrishnan
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Simon A Shirley
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand
| | - Friedrich Metzger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Andrew N Clarkson
- Department of Anatomy and Brain Health Research Center, University of Otago, Dunedin 9054, New Zealand. .,Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand. .,Faculty of Pharmacy, The University of Sydney, Sydney, Australia.
| |
Collapse
|
32
|
Abstract
Recent advancements in stem cell biology and neuromodulation have ushered in a battery of new neurorestorative therapies for ischemic stroke. While the understanding of stroke pathophysiology has matured, the ability to restore patients' quality of life remains inadequate. New therapeutic approaches, including cell transplantation and neurostimulation, focus on reestablishing the circuits disrupted by ischemia through multidimensional mechanisms to improve neuroplasticity and remodeling. The authors provide a broad overview of stroke pathophysiology and existing therapies to highlight the scientific and clinical implications of neurorestorative therapies for stroke.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Anand Veeravagu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
33
|
Becerra-Calixto A, Cardona-Gómez GP. Neuroprotection Induced by Transplanted CDK5 Knockdown Astrocytes in Global Cerebral Ischemic Rats. Mol Neurobiol 2016; 54:6681-6696. [PMID: 27744570 DOI: 10.1007/s12035-016-0162-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/23/2016] [Indexed: 11/29/2022]
Abstract
Cerebral ischemia is a cerebrovascular episode that generates a high incidence of death and physical and mental disabilities worldwide. Excitotoxicity, release of free radicals, and exacerbated immune response cause serious complications in motor and cognitive areas during both short and long time frames post-ischemia. CDK5 is a kinase that is widely involved in the functions of neurons and astrocytes, and its over-activation is implicated in neurodegenerative processes. In this study, we evaluated the brain parenchymal response to the transplantation of CDK5-knockdown astrocytes into the somatosensory cortex after ischemia in rats. Male Wistar rats were subjected to the two-vessel occlusion (2VO) model of global cerebral ischemia and immediately transplanted with shCDK5miR- or shSCRmiR-transduced astrocytes or with untransduced astrocytes (Control). Our findings showed that animals transplanted with shCDK5miR astrocytes recovered motor and neurological performance better than with those transplanted with WT or shSCRmiR astrocytes. Cell transplantation produced an overall prevention of neuronal loss, and CDK5-knockdown astrocytes significantly increased the immunoreactivity (IR) of endogenous GFAP in branches surrounding blood vessels, accompanied by the upregulation of PECAM-1 IR in the walls of vessels in the motor and somatosensory regions and by an increase in Ki67 IR in the subventricular zone (SVZ), partially associated with the production of BDNF. Together, our data suggest that transplantation of shCDK5miR astrocytes protects the neurovascular unit in ischemic rats, allowing the motor and neurological function recovery.
Collapse
Affiliation(s)
- Andrea Becerra-Calixto
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.
| |
Collapse
|
34
|
Wesley UV, Hatcher JF, Ayvaci ER, Klemp A, Dempsey RJ. Regulation of Dipeptidyl Peptidase IV in the Post-stroke Rat Brain and In Vitro Ischemia: Implications for Chemokine-Mediated Neural Progenitor Cell Migration and Angiogenesis. Mol Neurobiol 2016; 54:4973-4985. [PMID: 27525674 DOI: 10.1007/s12035-016-0039-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia evokes abnormal release of proteases in the brain microenvironment that spatiotemporally impact angio-neurogenesis. Dipeptidyl peptidase IV (DPPIV), a cell surface and secreted protease, has been implicated in extracellular matrix remodeling by regulating cell adhesion, migration, and angiogenesis through modifying the functions of the major chemokine stromal-derived factor, SDF1. To elucidate the possible association of DPPIV in ischemic brain, we examined the expression of DPPIV in the post-stroke rat brain and under in vitro ischemia by oxygen glucose deprivation (OGD). We further investigated the effects of DPPIV on SDF1 mediated in vitro chemotactic and angiogenic functions. DPPIV protein and mRNA levels were significantly upregulated during repair phase in the ischemic cortex of the rat brain, specifically in neurons, astrocytes, and endothelial cells. In vitro exposure of Neuro-2a neuronal cells and rat brain endothelial cells to OGD resulted in upregulation of DPPIV. In vitro functional analysis showed that DPPIV decreases the SDF1-mediated angiogenic potential of rat brain endothelial cells and inhibits the migration of Neuro-2a and neural progenitor cells. Western blot analyses revealed decreased levels of phosphorylated ERK1/2 and AKT in the presence of DPPIV. DPPIV inhibitor restored the effects of SDF1. Proteome profile array screening further revealed that DPPIV decreases matrix metalloproteinase-9, a key downstream effector of ERK-AKT signaling pathways. Overall, delayed induction of DPPIV in response to ischemia/reperfusion suggests that DPPIV may play an important role in endogenous brain tissue remodeling and repair processes. This may be mediated through modulation of SDF1-mediated cell migration and angiogenesis.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA.
| | - James F Hatcher
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA
| | - Emine R Ayvaci
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA
| | - Abby Klemp
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Clinical Science Center, 600 Highland Ave, Box 8660, Madison, WI, 53792, USA.
| |
Collapse
|
35
|
Liu Y, Wang S, Luo S, Li Z, Liang F, Zhu Y, Pei Z, Huang R. Intravenous PEP-1-GDNF is protective after focal cerebral ischemia in rats. Neurosci Lett 2016; 617:150-5. [DOI: 10.1016/j.neulet.2016.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/17/2023]
|
36
|
TAKAGI Y. History of Neural Stem Cell Research and Its Clinical Application. Neurol Med Chir (Tokyo) 2016; 56:110-24. [PMID: 26888043 PMCID: PMC4791305 DOI: 10.2176/nmc.ra.2015-0340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/15/2016] [Indexed: 12/11/2022] Open
Abstract
"Once development was ended…in the adult centers, the nerve paths are something fixed and immutable. Everything may die, nothing may be regenerated," wrote Santiago Ramón y Cajal, a Spanish neuroanatomist and Nobel Prize winner and the father of modern neuroscience. This statement was the central dogma in neuroscience for a long time. However, in the 1960s, neural stem cells (NSCs) were discovered. Since then, our knowledge about NSCs has continued to grow. This review focuses on our current knowledge about NSCs and their surrounding microenvironment. In addition, the clinical application of NSCs for the treatment of various central nervous system diseases is also summarized.
Collapse
Affiliation(s)
- Yasushi TAKAGI
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto
| |
Collapse
|
37
|
Liang AC, Mandeville ET, Maki T, Shindo A, Som AT, Egawa N, Itoh K, Chuang TT, McNeish JD, Holder JC, Lok J, Lo EH, Arai K. Effects of Aging on Neural Stem/Progenitor Cells and Oligodendrocyte Precursor Cells After Focal Cerebral Ischemia in Spontaneously Hypertensive Rats. Cell Transplant 2016; 25:705-14. [PMID: 26811151 DOI: 10.3727/096368916x690557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aging and vascular comorbidities such as hypertension comprise critical cofactors that influence how the brain responds to stroke. Ischemic stress induces neurogenesis and oligodendrogenesis in younger brains. However, it remains unclear whether these compensatory mechanisms can be maintained even under pathologically hypertensive and aged states. To clarify the age-related remodeling capacity after stroke under hypertensive conditions, we assessed infarct volume, behavioral outcomes, and surrogate markers of neurogenesis and oligodendrogenesis in acute and subacute phases after transient focal cerebral ischemia in 3- and 12-month-old spontaneously hypertensive rats (SHRs). Hematoxylin and eosin staining showed that 3- and 12-month-old SHRs exhibited similar infarction volumes at both 3 and 14 days after focal cerebral ischemia. However, recovery of behavioral deficits (neurological score assessment and adhesive removal test) was significantly less in 12-month-old SHRs compared to 3-month-old SHRs. Concomitantly, numbers of nestin(+) neural stem/progenitor cells (NSPCs) near the infarct border area or subventricular zone in 12-month-old SHRs were lower than 3-month-old SHRs at day 3. Similarly, numbers of PDGFR-α(+) oligodendrocyte precursor cells (OPCs) in the corpus callosum were lower in 12-month-old SHRs at day 3. Lower levels of NSPC and OPC numbers were accompanied by lower expression levels of phosphorylated CREB. By day 14 postischemia, NSPC and OPC numbers in 12-month-old SHRs recovered to similar levels as in 3-month-old SHRs, but the numbers of proliferating NSPCs (Ki-67(+)nestin(+) cells) and proliferating OPCs (Ki-67(+)PDGFR-α(+) cells) remained lower in the older brains even at day 14. Taken together, these findings suggest that aging may also decrease poststroke compensatory responses for neurogenesis and oligodendrogenesis even under hypertensive conditions.
Collapse
Affiliation(s)
- Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang M, Qi DS, Zhou C, Han D, Li PP, Zhang F, Zhou XY, Han M, Di JH, Ye JS, Yu HM, Song YJ, Zhang GY. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway. Brain Res 2016; 1634:140-149. [PMID: 26794251 DOI: 10.1016/j.brainres.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/31/2015] [Accepted: 01/06/2016] [Indexed: 01/23/2023]
Abstract
Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3 min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6 min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway.
Collapse
Affiliation(s)
- Mei Wang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China; Laboratory of Morphology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Da-Shi Qi
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China; Department of Genetics, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Cui Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Dong Han
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Pei-Pei Li
- Department of Endocrine, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, PR China
| | - Fang Zhang
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Xiao-Yan Zhou
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Meng Han
- Department of Orthopaedics, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, PR China
| | - Jie-Hui Di
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Jun-Song Ye
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Hong-Min Yu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China
| | - Yuan-Jian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China; Department of Genetics, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China.
| | - Guang-Yi Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
39
|
Harmatina OY. [INSULIN-LIKE GROWTH FACTOR 1 UNDER CONDITIONS OF THE BRAIN VASCULAR DISEASES.]. ACTA ACUST UNITED AC 2016; 62:95-102. [PMID: 29975480 DOI: 10.15407/fz62.04.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The system insulin-like growth factors (IGF) occupies an important place in the development and growth of the central nervous system (CNS). Gene expression of insulin-like growth factor I (IGF-1) and IGF-1 receptor are represented in all parts of the brain and are heavily concentrated in the cerebral vessels. IGF-1 is involved in neuro-, angiogenesis, in the stimulation of cell proliferation, and repair responses to damage for both the central and peripheral nervous system. IGF- 1 exerts antioxidant, anti-inflammatory and protective effects on the CNS. The review discusses the importance and the role of IGF-I in vascular diseases of the brain, in particular, aneurysms, the ischemic stroke, the aneurysmal subarachnoid hemorrhage, as well as neuroprotection.
Collapse
|
40
|
|
41
|
Marlier Q, Verteneuil S, Vandenbosch R, Malgrange B. Mechanisms and Functional Significance of Stroke-Induced Neurogenesis. Front Neurosci 2015; 9:458. [PMID: 26696816 PMCID: PMC4672088 DOI: 10.3389/fnins.2015.00458] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023] Open
Abstract
Stroke affects one in every six people worldwide, and is the leading cause of adult disability. After stroke, some limited spontaneous recovery occurs, the mechanisms of which remain largely unknown. Multiple, parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. For years, clinical studies have tried to use exogenous cell therapy as a means of brain repair, with varying success. Since the rediscovery of adult neurogenesis and the identification of adult neural stem cells in the late nineties, one promising field of investigation is focused upon triggering and stimulating this self-repair system to replace the neurons lost following brain injury. For instance, it is has been demonstrated that the adult brain has the capacity to produce large numbers of new neurons in response to stroke. The purpose of this review is to provide an updated overview of stroke-induced adult neurogenesis, from a cellular and molecular perspective, to its impact on brain repair and functional recovery.
Collapse
Affiliation(s)
- Quentin Marlier
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| | | | - Renaud Vandenbosch
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman Liege, Belgium
| |
Collapse
|
42
|
Jablonska A, Drela K, Wojcik-Stanaszek L, Janowski M, Zalewska T, Lukomska B. Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke. Mol Neurobiol 2015; 53:6413-6425. [PMID: 26607630 PMCID: PMC5085993 DOI: 10.1007/s12035-015-9530-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/08/2015] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of severe disability, and lacunar stroke is related to cognitive decline and hemiparesis. There is no effective treatment for the majority of patients with stroke. Thus, stem cell-based regenerative medicine has drawn a growing body of attention due to the capabilities for trophic factor expression and neurogenesis enhancement. Moreover, it was shown in an experimental autoimmune encephalomyelitis (EAE) model that even short-lived stem cells can be therapeutic, and we have previously observed that phenomenon indirectly. Here, in a rat model of lacunar stroke, we investigated the molecular mechanisms underlying the positive therapeutic effects of short-lived human umbilical cord-blood-derived neural stem cells (HUCB-NSCs) through the distinct measurement of exogenous human and endogenous rat trophic factors. We have also evaluated neurogenesis and metalloproteinase activity as cellular components of therapeutic activity. As expected, we observed an increased proliferation and migration of progenitors, as well as metalloproteinase activity up to 14 days post transplantation. These changes were most prominent at the 7-day time point when we observed 30 % increases in the number of bromodeoxyuridine (BrdU)-positive cells in HUCB-NSC transplanted animals. The expression of human trophic factors was present until 7 days post transplantation, which correlated well with the survival of the human graft. For these 7 days, the level of messenger RNA (mRNA) in the analyzed trophic factors was from 300-fold for CNTF to 10,000-fold for IGF, much higher compared to constitutive expression in HUCB-NSCs in vitro. What is interesting is that there was no increase in the expression of rat trophic factors during the human graft survival, compared to that in non-transplanted animals. However, there was a prolongation of a period of increased trophic expression until 14 days post transplantation, while, in non-transplanted animals, there was a significant drop in rat trophic expression at that time point. We conclude that the positive therapeutic effect of short-lived stem cells may be related to the net increase in the amount of trophic factors (rat + human) until graft death and to the prolonged increase in rat trophic factor expression subsequently.
Collapse
Affiliation(s)
- Anna Jablonska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luiza Wojcik-Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
43
|
Siepmann T, Penzlin AI, Kepplinger J, Illigens BM, Weidner K, Reichmann H, Barlinn K. Selective serotonin reuptake inhibitors to improve outcome in acute ischemic stroke: possible mechanisms and clinical evidence. Brain Behav 2015; 5:e00373. [PMID: 26516608 PMCID: PMC4614057 DOI: 10.1002/brb3.373] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/13/2015] [Accepted: 07/19/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several clinical studies have indicated that selective serotonin reuptake inhibitors (SSRIs) administered in patients after acute ischemic stroke can improve clinical recovery independently of depression. Due to small sample sizes and heterogeneous study designs interpretability was limited in these studies. The mechanisms of action whereby SSRI might improve recovery from acute ischemic stroke are not fully elucidated. METHODS We searched MEDLINE using the PubMed interface to identify evidence of SSRI mediated improvement of recovery from acute ischemic stroke and reviewed the literature on the potential underlying mechanisms of action. RESULTS Among identified clinical studies, a well-designed randomized, double-blind, and placebo-controlled study (FLAME - fluoxetine for motor recovery after acute ischemic stroke) demonstrated improved recovery of motor function in stroke patients receiving fluoxetine. The positive effects of SSRIs on stroke recovery were further supported by a meta-analysis of 52 trials in a total of 4060 participants published by the Cochrane collaboration. Based on animal models, the mechanisms whereby SSRIs might ameliorate functional and structural ischemic-brain damage were suggested to include stimulation of neurogenesis with migration of newly generated cells toward ischemic-brain regions, anti-inflammatory neuroprotection, improved regulation of cerebral blood flow, and modulation of the adrenergic neurohormonal system. However, to date, it remains speculative if and to what degree these mechanisms convert into humans and randomized controlled trials in large populations of stroke patients comparing different SSRIs are still lacking. CONCLUSION In addition to the need of comprehensive-clinical evidence, further elucidation of the beneficial mechanisms whereby SSRIs may improve structural and functional recovery from ischemic-brain damage is needed to form a basis for translation into clinical practice.
Collapse
Affiliation(s)
- Timo Siepmann
- Department of NeurologyUniversity Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
- Department of Psychotherapy and Psychosomatic MedicineUniversity Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Ana Isabel Penzlin
- Institute of Clinical PharmacologyUniversity Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Jessica Kepplinger
- Department of NeurologyUniversity Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Ben Min‐Woo Illigens
- Department of NeurologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusetts
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic MedicineUniversity Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Heinz Reichmann
- Department of NeurologyUniversity Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| | - Kristian Barlinn
- Department of NeurologyUniversity Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
| |
Collapse
|
44
|
Tuladhar A, Morshead CM, Shoichet MS. Circumventing the blood–brain barrier: Local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain. J Control Release 2015; 215:1-11. [DOI: 10.1016/j.jconrel.2015.07.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/19/2015] [Accepted: 07/21/2015] [Indexed: 01/05/2023]
|
45
|
George PM, Steinberg GK. Novel Stroke Therapeutics: Unraveling Stroke Pathophysiology and Its Impact on Clinical Treatments. Neuron 2015; 87:297-309. [PMID: 26182415 PMCID: PMC4911814 DOI: 10.1016/j.neuron.2015.05.041] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stroke remains a leading cause of death and disability in the world. Over the past few decades our understanding of the pathophysiology of stroke has increased, but greater insight is required to advance the field of stroke recovery. Clinical treatments have improved in the acute time window, but long-term therapeutics remain limited. Complex neural circuits damaged by ischemia make restoration of function after stroke difficult. New therapeutic approaches, including cell transplantation or stimulation, focus on reestablishing these circuits through multiple mechanisms to improve circuit plasticity and remodeling. Other research targets intact networks to compensate for damaged regions. This review highlights several important mechanisms of stroke injury and describes emerging therapies aimed at improving clinical outcomes.
Collapse
Affiliation(s)
- Paul M George
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Larpthaveesarp A, Ferriero DM, Gonzalez FF. Growth factors for the treatment of ischemic brain injury (growth factor treatment). Brain Sci 2015; 5:165-77. [PMID: 25942688 PMCID: PMC4493462 DOI: 10.3390/brainsci5020165] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.
Collapse
Affiliation(s)
- Amara Larpthaveesarp
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| | - Donna M Ferriero
- Departments of Pediatrics and Neurology, University of California, San Francisco, CA 94158, USA.
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
47
|
Kim D, Lee H, Kwon K, Park S, Heo H, Lee Y, Choi J, Shin C, Ryu J. Early immature neuronal death initiates cerebral ischemia-induced neurogenesis in the dentate gyrus. Neuroscience 2015; 284:42-54. [DOI: 10.1016/j.neuroscience.2014.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 02/03/2023]
|
48
|
Sohrabji F. Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 2015; 36:1-14. [PMID: 24882635 PMCID: PMC4247812 DOI: 10.1016/j.yfrne.2014.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022]
Abstract
The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX 77807, United States.
| |
Collapse
|
49
|
Abstract
Brain injury continues to be one of the leading causes of disability worldwide. Despite decades of research, there is currently no pharmacologically effective treatment for preventing neuronal loss and repairing the brain. As a result, novel therapeutic approaches, such as cell-based therapies, are being actively pursued to repair tissue damage and restore neurological function after injury. In this study, we examined the neuroprotective potential of amniotic fluid (AF) single cell clones, engineered to secrete glial cell derived neurotrophic factor (AF-GDNF), both in vitro and in a surgically induced model of brain injury. Our results show that pre-treatment with GDNF significantly increases cell survival in cultures of AF cells or cortical neurons exposed to hydrogen peroxide. Since improving the efficacy of cell transplantation depends on enhanced graft cell survival, we investigated whether AF-GDNF cells seeded on polyglycolic acid (PGA) scaffolds could enhance graft survival following implantation into the lesion cavity. Encouragingly, the AF-GDNF cells survived longer than control AF cells in serum-free conditions and continued to secrete GDNF both in vitro and following implantation into the injured motor cortex. AF-GDNF implantation in the acute period following injury was sufficient to activate the MAPK/ERK signaling pathway in host neural cells in the peri-lesion area, potentially boosting endogenous neuroprotective pathways. These results were complemented with promising trends in beam walk tasks in AF-GDNF/PGA animals during the 7 day timeframe. Further investigation is required to determine whether significant behavioural improvement can be achieved at a longer timeframe.
Collapse
|
50
|
Fan W, Dai Y, Xu H, Zhu X, Cai P, Wang L, Sun C, Hu C, Zheng P, Zhao BQ. Caspase-3 modulates regenerative response after stroke. Stem Cells 2014; 32:473-86. [PMID: 23939807 DOI: 10.1002/stem.1503] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of long-lasting disability in humans. However, currently there are still no effective therapies available for promoting stroke recovery. Recent studies have shown that the adult brain has the capacity to regenerate neurons after stroke. Although this neurogenic response may be functionally important for brain repair after injury, the mechanisms underlying stroke-induced neurogenesis are not known. Caspase-3 is a major executioner and has been identified as a key mediator of neuronal death in the acute stage of stroke. Recently, however, accumulating data indicate that caspase-3 also participates in various biological processes that do not cause cell death. Here, we show that cleaved caspase-3 was increased in newborn neuronal precursor cells (NPCs) in the subventricular zone (SVZ) and the dentate gyrus during the period of stroke recovery, with no evidence of apoptosis. We observed that cleaved caspase-3 was expressed by NPCs and limited its self-renewal without triggering apoptosis in cultured NPCs from the SVZ of ischemic mice. Moreover, we revealed that caspase-3 negatively regulated the proliferation of NPCs through reducing the phosphorylation of Akt. Importantly, we demonstrated that peptide inhibition of caspase-3 activity significantly promoted the proliferation and migration of SVZ NPCs and resulted in a significant increase in subsequent neuronal regeneration and functional recovery after stroke. Together, our data identify a previously unknown caspase-3-dependent mechanism that constrains stroke-induced endogenous neurogenesis and should revitalize interest in targeting caspase-3 for treatment of stroke.
Collapse
Affiliation(s)
- Wenying Fan
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|