1
|
Vermeersch AS, Ali M, Gansemans Y, Van Nieuwerburgh F, Geldhof P, Ducatelle R, Deforce D, Callens J, Opsomer G. Severe udder cleft dermatitis lesion transcriptomics points to an impaired skin barrier, defective wound repair and a dysregulated inflammatory response as key elements in the pathogenesis. PLoS One 2023; 18:e0288347. [PMID: 37486897 PMCID: PMC10365316 DOI: 10.1371/journal.pone.0288347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
This study is the first to investigate the transcriptomic changes occurring in severe udder cleft dermatitis lesions (UCD) in Holstein-Friesian cows. An examination of the gene expression levels in natural UCD lesions and healthy udder skin through RNA Seq-Technology provided a deeper insight into the inflammatory pathways associated with this disease. A clear distinction between the gene expression patterns of UCD lesions and healthy skin was shown in the principal component analysis. Genes coding for inflammatory molecules were upregulated such as the chemokines C-X-C motif ligand 2 (CXCL2), 5 (CXCL5) and 8 (CXCL8), and C-C motif ligand 11 (CCL11). Moreover, the genes coding for the multifunctional molecules ADAM12 and SLPI were amongst the highest upregulated ones, whereas the most downregulated genes included the ones coding for keratins and keratin-associated molecules. Predominantly inflammatory pathways such as the chemokine signaling, cytokine receptor interaction and IL-17 signaling pathway were significantly upregulated in the pathway analysis. These results point towards a fulminant, dysregulated inflammatory response concomitant with a disruption of the skin barrier integrity and a hampered wound repair mechanism in severe UCD lesions.
Collapse
Affiliation(s)
- A S Vermeersch
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Ali
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Y Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - P Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - J Callens
- Dierengezondheidszorg Vlaanderen, Torhout, Belgium
| | - G Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Lai J, Basford JR, Pittelkow MR. Levels of secretory leukocyte protease inhibitor expression in acute wounds. J Wound Care 2022; 31:S15-S19. [PMID: 35797252 DOI: 10.12968/jowc.2022.31.sup7.s15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Even with our best practices, we are frequently unable to prevent slow and stalled wound healing-particularly in people with impaired circulation and conditions such as diabetes. As a result, greater insight into the nature of wound healing and alternative treatment approaches is needed. An avenue that may be of particular promise is increasing understanding of the role of secretory leukocyte protease inhibitor (SLPI) as there is evidence that it enhances wound healing, its expression increases in response to inflammation and infection, and it exhibits anti-protease, anti-inflammatory, antiviral antibacterial and antifungal activities. METHOD The response of SLPI levels to wounding and skin injury was assessed by taking punch skin biopsies from healthy volunteers and assessing the levels of SLPI at the site of injury at the time of wounding (baseline) as well as one, two, three, four, seven, nine and 12 weeks later. RESULTS A total of 35 volunteers took part in the study. Significant elevations were found: levels of SLPI were greatly increased, 12 times that at baseline, and remained elevated at three weeks despite re-epithelialisation having occurred. CONCLUSION These findings not only suggest that levels of SLPI rise rapidly following wounding, but that these elevations are sustained, and continue to increase even when re-epithelialisation has occurred. These results suggest that the role and potential benefits of this protease inhibitor deserve further exploration.
Collapse
Affiliation(s)
- Jengyu Lai
- Department of Dermatology, Mayo Clinic College of Medicine, Rochester, MN, US.,International University of the Health Sciences, St Kitts, West Indies
| | - Jeffrey R Basford
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, MN, US
| | - Mark R Pittelkow
- Department of Dermatology, Mayo Clinic College of Medicine, Rochester, MN, US
| |
Collapse
|
4
|
Yamamoto M, Aizawa R. Maintaining a protective state for human periodontal tissue. Periodontol 2000 2021; 86:142-156. [PMID: 33690927 DOI: 10.1111/prd.12367] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Periodontitis, caused by infection with periodontal pathogens, is primarily characterized by inflammatory bone resorption and destruction of connective tissue. Simply describing periodontitis as a specific bacterial infection cannot completely explain the various periodontal tissue destruction patterns observed. Periodontal tissue damage is thought to be caused by various factors. In recent years, research goals for periodontal pathogens have shifted from searching for specific pathogens to investigating mechanisms that damage periodontal tissues. Bacteria interact directly with the host in several ways, influencing expression and activity of molecules that evade host defenses, and destroying local tissues and inhibiting their repair. The host's innate and acquired immune systems are important defense mechanisms that protect periodontal tissues from attack and invasion of periodontal pathogens, thus preventing infection. Innate and acquired immunity have evolved to confront the microbial challenge, forming a seamless defense network in periodontal tissues. In the innate immune response, host cells quickly detect, via specialized receptors, macromolecules and nucleic acids present on bacterial cell walls, and this triggers a protective, inflammatory response. The work of this subsystem of host immunity is performed mainly by phagocytes, beta-defensin, and the complement system. In addition, the first line of defense in oral innate immunity is the junctional epithelium, which acts as a physical barrier to the entry of oral bacteria and other nonself substances. In the presence of a normal flora, junctional epithelial cells differentiate actively and proliferate apically, with concomitant increase in chemotactic factor expression recruiting neutrophils. These immune cells play an important role in maintaining homeostasis and the protective state in periodontal tissue because they eliminate unwanted bacteria over time. Previous studies indicate a mechanism for attracting immune cells to periodontal tissue with the purpose of maintaining a protective state; although this mechanism can function without bacteria, it is enhanced by the normal flora. A better understanding of the relationship between the protective state and its disruption in periodontal disease could lead to the development of new treatment strategies for periodontal disease.
Collapse
Affiliation(s)
- Matsuo Yamamoto
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryo Aizawa
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
5
|
Nugteren S, Samsom JN. Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer. Cytokine Growth Factor Rev 2021; 59:22-35. [PMID: 33602652 DOI: 10.1016/j.cytogfr.2021.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
The immune system is continuously challenged with large quantities of exogenous antigens at the barriers between the external environment and internal human tissues. Antimicrobial activity is essential at these sites, though the immune responses must be tightly regulated to prevent tissue destruction by inflammation. Secretory Leukocyte Protease Inhibitor (SLPI) is an evolutionarily conserved, pleiotropic protein expressed at mucosal surfaces, mainly by epithelial cells. SLPI inhibits proteases, exerts antimicrobial activity and inhibits nuclear factor-kappa B (NF-κB)-mediated inflammatory gene transcription. SLPI maintains homeostasis at barrier tissues by preventing tissue destruction and regulating the threshold of inflammatory immune responses, while protecting the host from infection. However, excessive expression of SLPI in cancer cells may have detrimental consequences, as recent studies demonstrate that overexpression of SLPI increases the metastatic potential of epithelial tumors. Here, we review the varied functions of SLPI in the respiratory tract, skin, gastrointestinal tract and genitourinary tract, and then discuss the mechanisms by which SLPI may contribute to cancer.
Collapse
Affiliation(s)
- Sandrine Nugteren
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
The Whey Acidic Protein WFDC12 Is Specifically Expressed in Terminally Differentiated Keratinocytes and Regulates Epidermal Serine Protease Activity. J Invest Dermatol 2020; 141:1198-1206.e13. [PMID: 33157095 DOI: 10.1016/j.jid.2020.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
WFDC proteins such as peptidase inhibitor 3 and SLPI inhibit proteases in the epidermis and other tissues. In this study, we tested the hypothesis that further WFDC protein family members might contribute to epidermal homeostasis. We found that in addition to peptidase inhibitor 3 and SLPI, WFDC5 and WFDC12 were expressed in human epidermis. In contrast to WFDC5, the expression of WFDC12 was induced during the late differentiation of keratinocytes and was restricted to the outermost layer of live cells. Single-cell RNA sequencing demonstrated that WFDC12-positive keratinocytes were characterized by the upregulation of LCE mRNA expression and downregulated the expression of keratins and claudins. Immunogold-electron microscopy revealed the colocalization of WFDC12 with corneodesmosomes in the lower stratum corneum. WFDC12 was elevated in the affected skin of patients with psoriasis, atopic dermatitis, and Darier disease. By contrast, WFDC12 expression was strongly upregulated not only in the affected but even more so in clinically normal-appearing skin of patients with Netherton syndrome. Finally, functional analysis showed distinct inhibitory activity of WFDC12 on neutrophil elastase and epidermal kallikrein‒related peptidase. Altogether, our study identified WFDC12 as a marker of the last stage of epidermal keratinocyte differentiation and suggests that WFDC12 contributes to the control of protease activity in the stratum corneum.
Collapse
|
7
|
Abstract
BACKGROUND Psoriasis is a frequent chronic inflammatory systemic disease. It is associated with changes in the microbiome, which may trigger psoriasis and influence the course of the disease. OBJECTIVE Current methods for detection and the potential role of the microbiome in the pathogenesis of psoriasis are described. MATERIAL AND METHODS A literature search was conducted using the databases Medline and PubMed as well as a general internet and book research. RESULTS Both skin and gut microbiota are involved in the immunopathogenesis and may substantially modulate psoriasis. Antimicrobial peptides may serve as a link between the microbiome and the immunological mechanisms in psoriasis by regulating the microbiome at interfaces and can trigger psoriasis as antigens. Recent innovative methods, such as 16S rRNA next-generation sequencing significantly facilitate microbiome analysis. CONCLUSION The analysis of the microbiome in patients with psoriasis before, during and after treatment provides a basis for the identification of potential biomarkers for predicting individual treatment responses and facilitating the decision for a certain treatment.
Collapse
|
8
|
Niehues H, Rösler B, van der Krieken DA, van Vlijmen-Willems IMJJ, Rodijk-Olthuis D, Peppelman M, Schalkwijk J, van den Bogaard EHJ, Zeeuwen PLJM, van de Veerdonk FL. STAT1 gain-of-function compromises skin host defense in the context of IFN-γ signaling. J Allergy Clin Immunol 2018; 143:1626-1629.e5. [PMID: 30576757 DOI: 10.1016/j.jaci.2018.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Hanna Niehues
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Berenice Rösler
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Danique A van der Krieken
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Malou Peppelman
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ellen H J van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Kobashi M, Morizane S, Sugimoto S, Sugihara S, Iwatsuki K. Expression of serine protease inhibitors in epidermal keratinocytes is increased by calcium but not 1,25-dihydroxyvitamin D3or retinoic acid. Br J Dermatol 2017; 176:1525-1532. [DOI: 10.1111/bjd.15153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 11/29/2022]
Affiliation(s)
- M. Kobashi
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - S. Morizane
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - S. Sugimoto
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - S. Sugihara
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - K. Iwatsuki
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| |
Collapse
|
10
|
Haneda T, Imai Y, Uchiyama R, Jitsukawa O, Yamanishi K. Activation of Molecular Signatures for Antimicrobial and Innate Defense Responses in Skin with Transglutaminase 1 Deficiency. PLoS One 2016; 11:e0159673. [PMID: 27442430 PMCID: PMC4956052 DOI: 10.1371/journal.pone.0159673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/06/2016] [Indexed: 01/01/2023] Open
Abstract
Mutations of the transglutaminase 1 gene (TGM1) are a major cause of autosomal recessive congenital ichthyoses (ARCIs) that are associated with defects in skin barrier structure and function. However, the molecular processes induced by the transglutaminase 1 deficiency are not fully understood. The aim of the present study was to uncover those processes by analysis of cutaneous molecular signatures. Gene expression profiles of wild-type and Tgm1-/-epidermis were assessed using microarrays. Gene ontology analysis of the data showed that genes for innate defense responses were up-regulated in Tgm1-/-epidermis. Based on that result, the induction of Il1b and antimicrobial peptide genes, S100a8, S100a9, Defb14, Camp, Slpi, Lcn2, Ccl20 and Wfdc12, was confirmed by quantitative real-time PCR. A protein array revealed that levels of IL-1β, G-CSF, GM-CSF, CXCL1, CXCL2, CXCL9 and CCL2 were increased in Tgm1-/-skin. Epidermal growth factor receptor (EGFR) ligand genes, Hbegf, Areg and Ereg, were activated in Tgm1-/-epidermis. Furthermore, the antimicrobial activity of an epidermal extract from Tgm1-/-mice was significantly increased against both Escherichia coli and Staphylococcus aureus. In the epidermis of ichthyosiform skins from patients with TGM1 mutations, S100A8/9 was strongly positive. The expression of those antimicrobial and defense response genes was also increased in the lesional skin of an ARCI patient with TGM1 mutations. These results suggest that the up-regulation of molecular signatures for antimicrobial and innate defense responses is characteristic of skin with a transglutaminase 1 deficiency, and this autonomous process might be induced to reinforce the defective barrier function of the skin.
Collapse
Affiliation(s)
- Takashi Haneda
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yasutomo Imai
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ryosuke Uchiyama
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Orie Jitsukawa
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kiyofumi Yamanishi
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- * E-mail:
| |
Collapse
|
11
|
Majewski P, Majchrzak-Gorecka M, Grygier B, Skrzeczynska-Moncznik J, Osiecka O, Cichy J. Inhibitors of Serine Proteases in Regulating the Production and Function of Neutrophil Extracellular Traps. Front Immunol 2016; 7:261. [PMID: 27446090 PMCID: PMC4928128 DOI: 10.3389/fimmu.2016.00261] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023] Open
Abstract
Neutrophil extracellular traps (NETs), DNA webs released into the extracellular environment by activated neutrophils, are thought to play a key role in the entrapment and eradication of microbes. However, NETs are highly cytotoxic and a likely source of autoantigens, suggesting that NET release is tightly regulated. NET formation involves the activity of neutrophil elastase (NE), which cleaves histones, leading to chromatin decondensation. We and others have recently demonstrated that inhibitors of NE, such as secretory leukocyte protease inhibitor (SLPI) and SerpinB1, restrict NET production in vitro and in vivo. SLPI was also identified as a NET component in the lesional skin of patients suffering from the autoinflammatory skin disease psoriasis. SLPI-competent NET-like structures (a mixture of SLPI with neutrophil DNA and NE) stimulated the synthesis of interferon type I (IFNI) in plasmacytoid dendritic cells (pDCs) in vitro. pDCs uniquely respond to viral or microbial DNA/RNA but also to nucleic acids of “self” origin with the production of IFNI. Although IFNIs are critical in activating the antiviral/antimicrobial functions of many cells, IFNIs also play a role in inducing autoimmunity. Thus, NETs decorated by SLPI may regulate skin immunity through enhancing IFNI production in pDCs. Here, we review key aspects of how SLPI and SerpinB1 can control NET production and immunogenic function.
Collapse
Affiliation(s)
- Pawel Majewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Monika Majchrzak-Gorecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Beata Grygier
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Joanna Skrzeczynska-Moncznik
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Oktawia Osiecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow , Poland
| |
Collapse
|
12
|
Niehues H, van Vlijmen-Willems IMJJ, Bergboer JGM, Kersten FFJ, Narita M, Hendriks WJAJ, van den Bogaard EH, Zeeuwen PLJM, Schalkwijk J. Late cornified envelope (LCE) proteins: distinct expression patterns of LCE2 and LCE3 members suggest nonredundant roles in human epidermis and other epithelia. Br J Dermatol 2016; 174:795-802. [PMID: 26556599 DOI: 10.1111/bjd.14284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Deletion of the late cornified envelope (LCE) proteins LCE3B and LCE3C is a strong and widely replicated psoriasis risk factor. It is amenable to biological analysis because it precludes the expression of two epidermis-specific proteins, rather than being a single-nucleotide polymorphism of uncertain significance. The biology of the 18-member LCE family of highly homologous proteins has remained largely unexplored so far. OBJECTIVES To analyse LCE3 expression at the protein level in human epithelia, as a starting point for functional analyses of these proteins in health and disease. METHODS We generated the first pan-LCE3 monoclonal antibody and provide a detailed analysis of its specificity towards individual LCE members. LCE2 and LCE3 expression in human tissues and in reconstructed human skin models was studied using immunohistochemical analyses and quantitative polymerase chain reaction. RESULTS Our study reveals that LCE2 and LCE3 proteins are differentially expressed in human epidermis, and colocalize only in the upper stratum granulosum layer. Using an in vitro reconstructed human skin model that mimics epidermal morphogenesis, we found that LCE3 proteins are expressed at an early time point during epidermal differentiation in the suprabasal layers, while LCE2 proteins are found only in the uppermost granular layer and stratum corneum. CONCLUSIONS Based on the localization of LCE2 and LCE3 in human epidermis we conclude that members of the LCE protein family are likely to have distinct functions in epidermal biology. This finding may contribute to understanding why LCE3B/C deletion increases psoriasis risk.
Collapse
Affiliation(s)
- H Niehues
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - I M J J van Vlijmen-Willems
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - J G M Bergboer
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, U.S.A
| | - F F J Kersten
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - M Narita
- Cancer Research U.K. Cambridge Institute, University of Cambridge, The Li Ka Shing Centre, Cambridge, U.K
| | - W J A J Hendriks
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - E H van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - P L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - J Schalkwijk
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Majchrzak-Gorecka M, Majewski P, Grygier B, Murzyn K, Cichy J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev 2015; 28:79-93. [PMID: 26718149 DOI: 10.1016/j.cytogfr.2015.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Secretory leukocyte protease inhibitor (SLPI), a ∼12kDa nonglycosylated cationic protein, is emerging as an important regulator of innate and adaptive immunity and as a component of tissue regenerative programs. First described as an inhibitor of serine proteases such as neutrophil elastase, this protein is increasingly recognized as a molecule that benefits the host via its anti-proteolytic, anti-microbial and immunomodulatory activities. Here, we discuss the diverse functions of SLPI. Moreover, we review several novel layers of SLPI-mediated control that protect the host from excessive/dysregulated inflammation typical of infectious, allergic and autoinflammatory diseases and that support healing responses through affecting cell proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Monika Majchrzak-Gorecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Majewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Beata Grygier
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
14
|
de Koning HD, van Vlijmen-Willems IMJJ, Rodijk-Olthuis D, van der Meer JWM, Zeeuwen PLJM, Simon A, Schalkwijk J. Mast-cell interleukin-1β, neutrophil interleukin-17 and epidermal antimicrobial proteins in the neutrophilic urticarial dermatosis in Schnitzler's syndrome. Br J Dermatol 2015; 173:448-56. [PMID: 25904179 DOI: 10.1111/bjd.13857] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Schnitzler's syndrome (SchS) is an autoinflammatory disease characterized by a chronic urticarial rash, a monoclonal component and signs of systemic inflammation. Interleukin (IL)-1β is pivotal in the pathophysiology. OBJECTIVES Here we investigated the cellular source of proinflammatory mediators in the skin of patients with SchS. METHODS Skin biopsies of lesional and nonlesional skin from eight patients with SchS and healthy controls, and patients with cryopyrin-associated periodic syndrome (CAPS), delayed-pressure urticaria (DPU) and cold-contact urticaria (CCU) were studied. We studied in vivoIL-1β, IL-17 and antimicrobial protein (AMP) expression in resident skin cells and infiltrating cells. In addition we investigated the in vitro effect of IL-1β, IL-17 and polyinosinic-polycytidylic acid (poly:IC) stimulation on cultured epidermal keratinocytes. RESULTS Remarkably, we found IL-1β-positive dermal mast cells in both lesional and nonlesional skin of patients with SchS, but not in healthy control skin and CCU, and fewer in CAPS. IL-17-positive neutrophils were observed only in lesional SchS and DPU skin. In lesional SchS epidermis, mRNA and protein expression levels of AMPs were strongly increased compared with nonlesional skin and that of healthy controls. When exposed to IL-1β, poly:IC or IL-17, patient and control primary human keratinocytes produced AMPs in similar amounts. CONCLUSIONS Dermal mast cells of patients with SchS produce IL-1β. This presumably leads to activation of keratinocytes and neutrophil influx, and further amplification of inflammation by IL-17 (from neutrophils and mast cells) and epidermal AMP production leading to chronic histamine-independent neutrophilic urticarial dermatosis.
Collapse
Affiliation(s)
- H D de Koning
- Department of Dermatology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.,Department of Internal Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.,Nijmegen Center for Immunodeficiency and Autoinflammation, Nijmegen, the Netherlands
| | | | - D Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - J W M van der Meer
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.,Nijmegen Center for Immunodeficiency and Autoinflammation, Nijmegen, the Netherlands
| | - P L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.,Nijmegen Center for Immunodeficiency and Autoinflammation, Nijmegen, the Netherlands
| | - A Simon
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.,Nijmegen Center for Immunodeficiency and Autoinflammation, Nijmegen, the Netherlands
| | - J Schalkwijk
- Department of Dermatology, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.,Nijmegen Center for Immunodeficiency and Autoinflammation, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Elastin Modification by 4-Hydroxynonenal in Hairless Mice Exposed to UV-A. Role in Photoaging and Actinic Elastosis. J Invest Dermatol 2015; 135:1873-1881. [DOI: 10.1038/jid.2015.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
|
16
|
Rostoker R, Abelson S, Genkin I, Ben-Shmuel S, Sachidanandam R, Scheinman EJ, Bitton-Worms K, Orr ZS, Caspi A, Tzukerman M, LeRoith D. CD24(+) cells fuel rapid tumor growth and display high metastatic capacity. Breast Cancer Res 2015; 17:78. [PMID: 26040280 PMCID: PMC4479226 DOI: 10.1186/s13058-015-0589-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction Breast tumors are comprised of distinct cancer cell populations which differ in their tumorigenic and metastatic capacity. Characterization of cell surface markers enables investigators to distinguish between cancer stem cells and their counterparts. CD24 is a well-known cell surface marker for mammary epithelial cells isolation, recently it was suggested as a potential prognostic marker in a wide variety of malignancies. Here, we demonstrate that CD24+ cells create intra-tumor heterogeneity, and display highly metastatic properties. Methods The mammary carcinoma Mvt1 cells were sorted into CD24− and CD24+ cells. Both subsets were morphologically and phenotypically characterized, and tumorigenic capacity was assessed via orthotopic inoculation of each subset into the mammary fat pad of wild-type and MKR mice. The metastatic capacity of each subset was determined with the tail vein metastasis assay. The role of CD24 in tumorigenesis was further examined with shRNA technology. GFP-labeled cells were monitored in vivo for differentiation. The genetic profile of each subset was analyzed using RNA sequencing. Results CD24+ cells displayed a more spindle-like cytoplasm. The cells formed mammospheres in high efficiency and CD24+ tumors displayed rapid growth in both WT and MKR mice, and were more metastatic than CD24- cells. Interestingly, CD24-KD in CD24+ cells had no effect both in vitro and in vivo on the various parameters studied. Moreover, CD24+ cells gave rise in vivo to the CD24− that comprised the bulk of the tumor. RNA-seq analysis revealed enrichment of genes and pathways of the extracellular matrix in the CD24+ cells. Conclusion CD24+ cells account for heterogeneity in mammary tumors. CD24 expression at early stages of the cancer process is an indication of a highly invasive tumor. However, CD24 is not a suitable therapeutic target; instead we suggest here new potential targets accounting for early differentiated cancer cells tumorigenic capacity. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0589-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran Rostoker
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Sagi Abelson
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 31096, Israel.
| | - Inna Genkin
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Sarit Ben-Shmuel
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Ravi Sachidanandam
- Department of Oncological Science, Icahn School of Medicine at Mt Sinai and the James J Peters VA Medical Center, New York, USA.
| | - Eyal J Scheinman
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Keren Bitton-Worms
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Zila Shen Orr
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Avishay Caspi
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Maty Tzukerman
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 31096, Israel.
| | - Derek LeRoith
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel. .,Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Noronha SAACD, Noronha SMRD, Lanziani LE, Ferreira LM, Gragnani A. Innate and adaptive immunity gene expression of human keratinocytes cultured of severe burn injury. Acta Cir Bras 2015; 29 Suppl 3:60-7. [PMID: 25351159 DOI: 10.1590/s0102-86502014001700012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Evaluate the expression profile of genes related to Innate and Adaptive Immune System (IAIS) of human Primary Epidermal keratinocytes (hPEKP) of patients with severe burns. METHODS After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific IAIS PCR Arrays plates (SA Biosciences). RESULTS After the analysis of gene expression we found that 63% of these genes were differentially expressed, of which 77% were repressed and 23% were hyper-regulated. Among these, the following genes (fold increase or decrease): IL8 (41), IL6 (32), TNF (-92), HLA-E (-86), LYS (-74), CCR6 (- 73), CD86 (-41) and HLA-A (-35). CONCLUSIONS This study contributes to the understanding of the molecular mechanisms underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.
Collapse
Affiliation(s)
| | | | | | | | - Alfredo Gragnani
- Department of Surgery, Paulista School of Medicine, Federal University of Sao Paulo, Brazil
| |
Collapse
|
18
|
Diminished humoral responses against and reduced gene expression levels of human endogenous retrovirus-K (HERV-K) in psoriasis. J Transl Med 2014; 12:256. [PMID: 25224121 PMCID: PMC4174287 DOI: 10.1186/s12967-014-0256-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 11/15/2022] Open
Abstract
Background Psoriasis is a multifactorial, chronic disease of skin affecting 2-3% of the world’s population. Genetic studies of psoriasis have identified a number of susceptibility genes that are involved in anti-viral immunity. Furthermore, physiological studies have also found an increase in anti-viral proteins in psoriatic skin. These findings suggest the presence of an anti-viral state in psoriatic skin. However, the triggers for this anti-viral cascade and its consequences for host immunity are not known. Endogenous retroviruses have previously been described in many autoimmune diseases including psoriasis. Methods In the present study we examined the humoral immune response against human endogenous retrovirus-K (HERV-K) proteins and the cutaneous expression levels of multiple HERV-K genes in psoriasis patients and healthy controls. Results In psoriatic sera we observed a significant decrease in IgM response against three HERV-K proteins: Env surface unit (SU), Env transmembrane protein (TM), and Gag capsid (CA) in comparison to sera obtained from blood bank healthy controls. A decrease in IgG response was also observed against CA. Furthermore, using quantitative RT-PCR we observed a decrease in the expression of HERV-K Env, Gag, Pol and Rec as well as ERV-9 genes in lesional psoriatic skin as compared to healthy skin. Conclusions Together, our results suggest that the pro-inflammatory, anti-viral state in psoriasis is associated with diminished expression of HERV-K gene transcripts and a concomitant decrease in humoral responses to HERV-K. Our results indicate that a simple model where continuous, minimally changing HERV-K expression serves as an antigenic trigger in psoriasis might not be correct and further studies are needed to decipher the possible relationship between psoriasis and HERVs. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0256-4) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Romas LM, Hasselrot K, Aboud LG, Birse KD, Ball TB, Broliden K, Burgener AD. A comparative proteomic analysis of the soluble immune factor environment of rectal and oral mucosa. PLoS One 2014; 9:e100820. [PMID: 24978053 PMCID: PMC4076261 DOI: 10.1371/journal.pone.0100820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/30/2014] [Indexed: 02/04/2023] Open
Abstract
Objective Sexual transmission of HIV occurs across a mucosal surface, which contains many soluble immune factors important for HIV immunity. Although the composition of mucosal fluids in the vaginal and oral compartments has been studied extensively, the knowledge of the expression of these factors in the rectal mucosa has been understudied and is very limited. This has particular relevance given that the highest rates of HIV acquisition occur via the rectal tract. To further our understanding of rectal mucosa, this study uses a proteomics approach to characterize immune factor components of rectal fluid, using saliva as a comparison, and evaluates its antiviral activity against HIV. Methods Paired salivary fluid (n = 10) and rectal lavage fluid (n = 10) samples were collected from healthy, HIV seronegative individuals. Samples were analyzed by label-free tandem mass spectrometry to comprehensively identify and quantify mucosal immune protein abundance differences between saliva and rectal fluids. The HIV inhibitory capacity of these fluids was further assessed using a TZM-bl reporter cell line. Results Of the 315 proteins identified in rectal lavage fluid, 72 had known immune functions, many of which have described anti-HIV activity, including cathelicidin, serpins, cystatins and antileukoproteinase. The majority of immune factors were similarly expressed between fluids, with only 21 differentially abundant (p<0.05, multiple comparison corrected). Notably, rectal mucosa had a high abundance of mucosal immunoglobulins and antiproteases relative to saliva, Rectal lavage limited HIV infection by 40–50% in vitro (p<0.05), which is lower than the potent anti-HIV effect of oral mucosal fluid (70–80% inhibition, p<0.005). Conclusions This study reveals that rectal mucosa contains many innate immune factors important for host immunity to HIV and can limit viral replication in vitro. This indicates an important role for this fluid as the first line of defense against HIV.
Collapse
Affiliation(s)
- Laura M. Romas
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Klara Hasselrot
- Karolinska Institutet, Department of Medicine Solna, Unit of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lindsay G. Aboud
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kenzie D. Birse
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Kristina Broliden
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
| | - Adam D. Burgener
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
20
|
Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res 2013; 351:289-300. [DOI: 10.1007/s00441-013-1558-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 01/31/2023]
|
21
|
Zeeuwen PLJM, Boekhorst J, van den Bogaard EH, de Koning HD, van de Kerkhof PMC, Saulnier DM, van Swam II, van Hijum SAFT, Kleerebezem M, Schalkwijk J, Timmerman HM. Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol 2012; 13:R101. [PMID: 23153041 PMCID: PMC3580493 DOI: 10.1186/gb-2012-13-11-r101] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 10/01/2012] [Accepted: 11/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury. RESULTS We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes. CONCLUSIONS We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis.
Collapse
Affiliation(s)
- Patrick LJM Zeeuwen
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | - Jos Boekhorst
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
| | - Ellen H van den Bogaard
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | - Heleen D de Koning
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter MC van de Kerkhof
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Iris I van Swam
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
| | - Sacha AFT van Hijum
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
| | - Michiel Kleerebezem
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
- Wageningen University, Host-Microbe Interactomics Group, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Joost Schalkwijk
- Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, PO BOX 9101, 6500 HB Nijmegen, The Netherlands
| | - Harro M Timmerman
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
| |
Collapse
|
22
|
Skrzeczynska-Moncznik J, Wlodarczyk A, Zabieglo K, Kapinska-Mrowiecka M, Marewicz E, Dubin A, Potempa J, Cichy J. Secretory leukocyte proteinase inhibitor-competent DNA deposits are potent stimulators of plasmacytoid dendritic cells: implication for psoriasis. THE JOURNAL OF IMMUNOLOGY 2012; 189:1611-7. [PMID: 22786767 DOI: 10.4049/jimmunol.1103293] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Secretory leukocyte proteinase inhibitor (SLPI) is a well-established inhibitor of serine proteases such as human neutrophil elastase (HNE) and a NF-κB regulatory agent in immune cells. In this paper, we report that SLPI plays a previously uncharacterized role in regulating activation of plasmacytoid dendritic cells (pDCs). As the main source of IFN type I (IFNI), pDCs are crucial contributors to inflammatory and likely wound-healing responses associated with psoriasis. The mechanisms responsible for activation of pDCs in psoriatic skin are therefore of substantial interest. We demonstrate that in lesional skin of psoriasis patients, SLPI together with its enzymatic target HNE and DNA, is a component of neutrophil extracellular traps (NETs). Whereas SLPI(+) neutrophils and NETs were found to colocalize with pDCs in psoriatic skin, a mixture of SLPI with neutrophil DNA and HNE induced a marked production of IFNI by pDCs. IFNI synthesis by stimulated pDCs was dependent on intracellular DNA receptor TLR9. Thus, SLPI may contribute to psoriasis by enabling pDCs to sense extracellular DNA and produce IFNI.
Collapse
Affiliation(s)
- Joanna Skrzeczynska-Moncznik
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
van den Bogaard EH, Rodijk-Olthuis D, Jansen PAM, van Vlijmen-Willems IMJJ, van Erp PE, Joosten I, Zeeuwen PLJM, Schalkwijk J. Rho kinase inhibitor Y-27632 prolongs the life span of adult human keratinocytes, enhances skin equivalent development, and facilitates lentiviral transduction. Tissue Eng Part A 2012; 18:1827-36. [PMID: 22519508 DOI: 10.1089/ten.tea.2011.0616] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The use of tissue-engineered human skin equivalents (HSE) for fundamental research and industrial application requires the expansion of keratinocytes from a limited number of skin biopsies donated by adult healthy volunteers or patients. A pharmacological inhibitor of Rho-associated protein kinases, Y-27632, was recently reported to immortalize neonatal human foreskin keratinocytes. Here, we investigated the potential use of Y-27632 to expand human adult keratinocytes and evaluated its effects on HSE development and in vitro gene delivery assays. Y-27632 was found to significantly increase the life span of human adult keratinocytes (up to five to eight passages). The epidermal morphology of HSEs generated from high-passage, Y-27632-treated keratinocytes resembled the native epidermis and was improved by supplementing Y-27632 during the submerged phase of HSE development. In addition, Y-27632-treated keratinocytes responded normally to inflammatory stimuli, and could be used to generate HSEs with a psoriatic phenotype, upon stimulation with relevant cytokines. Furthermore, Y-27632 significantly enhanced both lentiviral transduction efficiency of primary adult keratinocytes and epidermal morphology of HSEs generated thereof. Our study indicates that Y-27632 is a potentially powerful tool that is used for a variety of applications of adult human keratinocytes.
Collapse
Affiliation(s)
- Ellen H van den Bogaard
- Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
van ‘t Wout EFA, van Schadewijk A, Savage NDL, Stolk J, Hiemstra PS. α1-Antitrypsin Production by Proinflammatory and Antiinflammatory Macrophages and Dendritic Cells. Am J Respir Cell Mol Biol 2012; 46:607-13. [DOI: 10.1165/rcmb.2011-0231oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
25
|
Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. J Invest Dermatol 2012; 132:1615-26. [PMID: 22402443 PMCID: PMC3352975 DOI: 10.1038/jid.2012.33] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psoriasis vulgaris is a complex disease characterized by alterations in growth and differentiation of epidermal keratinocytes as well as marked increase in leukocyte populations. Lesions are known to contain alterations in mRNAs encoding more than 1000 products, but only a very small number of these transcripts have been localized to specific cell types or skin regions. In this study, we used laser capture microdissection (LCM) and gene array analysis to study the gene expression of cells in lesional epidermis and dermis, compared with corresponding non-lesional resions. Using this approach, we detected >1800 differentially expressed gene products in the epidermis or dermis of psoriasis lesions. These results established sets of genes that are differentially expressed between epidermal and dermal compartments, as well as between non-lesional and lesional psoriasis skin. One of our findings involved the local production of CCL19, a lymphoid organizing chemokine, and its receptor CCR7 in psoriatic dermal aggregates, along with the presence of gene products LAMP3/DC-LAMP and CD83, which typify mature DCs. Gene expression patterns obtained with LCM and microarray analysis along with T cell and DC detection by immune staining suggest a possible mechanism for lymphoid organization via CCL19/CCR7 in diseased skin.
Collapse
|
26
|
Combined use of laser capture microdissection and cDNA microarray analysis identifies locally expressed disease-related genes in focal regions of psoriasis vulgaris skin lesions. THE JOURNAL OF INVESTIGATIVE DERMATOLOGY 2012. [PMID: 22402443 DOI: 10.1038/jid.2012.1633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Psoriasis vulgaris is a complex disease characterized by alterations in growth and differentiation of epidermal keratinocytes, as well as a marked increase in leukocyte populations. Lesions are known to contain alterations in messenger RNAs encoding more than 1,000 products, but only a very small number of these transcripts has been localized to specific cell types or skin regions. In this study, we used laser capture microdissection (LCM) and gene array analysis to study the gene expression of cells in lesional epidermis (EPI) and dermis, compared with the corresponding non-lesional regions. Using this approach, we detected >1,800 differentially expressed gene products in the EPI or dermis of psoriasis lesions. These results established sets of genes that are differentially expressed between epidermal and dermal compartments, as well as between non-lesional and lesional psoriasis skin. One of our findings involved the local production of CCL19, a lymphoid-organizing chemokine, and its receptor CCR7 in psoriatic dermal aggregates, along with the presence of gene products LAMP3/DC-LAMP and CD83, which typify mature dendritic cells (DCs). Gene expression patterns obtained with LCM and microarray analysis along with T-cell and DC detection by immune staining suggest a possible mechanism for lymphoid organization via CCL19/CCR7 in diseased skin.
Collapse
|
27
|
SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem Soc Trans 2012; 39:1441-6. [PMID: 21936830 DOI: 10.1042/bst0391441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is now clear that NSPs (neutrophil serine proteases), including elastase, Pr3 (proteinase 3) and CatG (cathepsin G) are major pathogenic determinants in chronic inflammatory disorders of the lungs. Two unglycosylated natural protease inhibitors, SLPI (secretory leucocyte protease inhibitor) and elafin, and its precursor trappin-2 that are found in the lungs, have therapeutic potential for reducing the protease-induced inflammatory response. This review examines the multifaceted roles of SLPI and elafin/trappin-2 in the context of their possible use as inhaled drugs for treating chronic lung diseases such as CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease).
Collapse
|
28
|
Abstract
Almost 90 years have passed since Alexander Fleming discovered the antimicrobial activity of lysozyme, the first natural antibiotic isolated from our body. Since then, various types of molecules with antibiotic activity have been isolated from animals, insects, plants, and bacteria, and their use has revolutionized clinical medicine. So far, more than 1,200 types of peptides with antimicrobial activity have been isolated from various cells and tissues, and it appears that all living organisms use these antimicrobial peptides (AMPs) in their host defense. In the past decade, innate AMPs produced by mammals have been shown to be essential for the protection of skin and other organs. Their importance is because of their pleiotrophic functions to not only kill microbes but also control host physiological functions such as inflammation, angiogenesis, and wound healing. Recent advances in our understanding of the function of AMPs have associated their altered production with various human diseases such as psoriasis, atopic dermatitis, and rosacea. In this review, we summarize the history of AMP biology and provide an overview of recent research progress in this field.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Division of Dermatology, Department of Medicine, University of California, San Diego, San Diego, California 92121, USA
| | | |
Collapse
|
29
|
Hoffmann DC, Textoris C, Oehme F, Klaassen T, Goppelt A, Römer A, Fugmann B, Davidson JM, Werner S, Krieg T, Eming SA. Pivotal role for alpha1-antichymotrypsin in skin repair. J Biol Chem 2011; 286:28889-28901. [PMID: 21693707 DOI: 10.1074/jbc.m111.249979] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
α1-Antichymotrypsin (α1-ACT) is a specific inhibitor of leukocyte-derived chymotrypsin-like proteases with largely unknown functions in tissue repair. By examining human and murine skin wounds, we showed that following mechanical injury the physiological repair response is associated with an acute phase response of α1-ACT and the mouse homologue Spi-2, respectively. In both species, attenuated α1-ACT/Spi-2 activity and gene expression at the local wound site was associated with severe wound healing defects. Topical application of recombinant α1-ACT to wounds of diabetic mice rescued the impaired healing phenotype. LC-MS analysis of α1-ACT cleavage fragments identified a novel cleavage site within the reactive center loop and showed that neutrophil elastase was the predominant protease involved in unusual α1-ACT cleavage and inactivation in nonhealing human wounds. These results reveal critical functions for locally acting α1-ACT in the acute phase response following skin injury, provide mechanistic insight into its function during the repair response, and raise novel perspectives for its potential therapeutic value in inflammation-mediated tissue damage.
Collapse
Affiliation(s)
- Daniel C Hoffmann
- Department of Dermatology, University of Cologne, 50931 Cologne, Germany
| | - Christine Textoris
- Department of Dermatology, University of Cologne, 50931 Cologne, Germany
| | - Felix Oehme
- Biotech Development, Bayer HealthCare AG, 42117 Wuppertal, Germany
| | | | | | | | | | - Jeffrey M Davidson
- Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212,; Vanderbilt University School of Medicine, Nashville, Tennessee 37240
| | - Sabine Werner
- ETH Zurich, Honggerberg, 8092 Zurich, Switzerland, and
| | - Thomas Krieg
- Department of Dermatology, University of Cologne, 50931 Cologne, Germany,; Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, University of Cologne, 50674 Cologne, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, 50931 Cologne, Germany,; Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
30
|
Baranger K, Zani ML, Labas V, Dallet-Choisy S, Moreau T. Secretory leukocyte protease inhibitor (SLPI) is, like its homologue trappin-2 (pre-elafin), a transglutaminase substrate. PLoS One 2011; 6:e20976. [PMID: 21687692 PMCID: PMC3110255 DOI: 10.1371/journal.pone.0020976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022] Open
Abstract
Human lungs contain secretory leukocyte protease inhibitor (SLPI), elafin and its biologically active precursor trappin-2 (pre-elafin). These important low-molecular weight inhibitors are involved in controlling the potentially deleterious proteolytic activities of neutrophil serine proteases including elastase, proteinase 3 and cathepsin G. We have shown previously that trappin-2, and to a lesser extent, elafin can be linked covalently to various extracellular matrix proteins by tissue transglutaminases and remain potent protease inhibitors. SLPI is composed of two distinct domains, each of which is about 40% identical to elafin, but it lacks consensus transglutaminase sequence(s), unlike trappin-2 and elafin. We investigated the actions of type 2 tissue transglutaminase and plasma transglutaminase activated factor XIII on SLPI. It was readily covalently bound to fibronectin or elastin by both transglutaminases but did not compete with trappin-2 cross-linking. Cross-linked SLPI still inhibited its target proteases, elastase and cathepsin G. We have also identified the transglutamination sites within SLPI, elafin and trappin-2 by mass spectrometry analysis of tryptic digests of inhibitors cross-linked to mono-dansyl cadaverin or to a fibronectin-derived glutamine-rich peptide. Most of the reactive lysine and glutamine residues in SLPI are located in its first N-terminal elafin-like domain, while in trappin-2, they are located in both the N-terminal cementoin domain and the elafin moiety. We have also demonstrated that the transglutamination substrate status of the cementoin domain of trappin-2 can be transferred from one protein to another, suggesting that it may provide transglutaminase-dependent attachment properties for engineered proteins. We have thus added to the corpus of knowledge on the biology of these potential therapeutic inhibitors of airway proteases.
Collapse
Affiliation(s)
- Kévin Baranger
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
| | - Marie-Louise Zani
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
| | - Valérie Labas
- Laboratoire de spectrométrie de masse, Plateau d'analyse intégrative des biomarqueurs cellulaires et moléculaires, INRA, Tours-Nouzilly, France
| | - Sandrine Dallet-Choisy
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
| | - Thierry Moreau
- Inserm U618 “Protéases et Vectorisation Pulmonaires”, IFR 135 Imagerie Fonctionnelle, University of Tours, Tours, France
- * E-mail:
| |
Collapse
|
31
|
Bernard JJ, Gallo RL. Protecting the boundary: the sentinel role of host defense peptides in the skin. Cell Mol Life Sci 2011; 68:2189-99. [PMID: 21573782 DOI: 10.1007/s00018-011-0712-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The skin is our primary shield against microbial pathogens and has evolved innate and adaptive strategies to enhance immunity in response to injury or microbial insult. The study of antimicrobial peptide (AMP) production in mammalian skin has revealed several of the elegant strategies that AMPs use to prevent infection. AMPs are inducible by both infection and injury and protect the host by directly killing pathogens and/or acting as multifunctional effector molecules that trigger cellular responses to aid in the anti-infective and repair response. Depending on the specific AMP, these molecules can influence cytokine production, cell migration, cell proliferation, differentiation, angiogenesis and wound healing. Abnormal production of AMPs has been associated with the pathogenesis of several cutaneous diseases and plays a role in determining a patient's susceptibility to pathogens. This review will discuss current research on the regulation and function of AMPs in the skin and in skin disorders.
Collapse
Affiliation(s)
- Jamie J Bernard
- Division of Dermatology, Department of Medicine, University of California, San Diego, San Diego, CA 92126, USA
| | | |
Collapse
|
32
|
Zuyderduyn S, Ninaber DK, Schrumpf JA, van Sterkenburg MA, Verhoosel RM, Prins FA, van Wetering S, Rabe KF, Hiemstra PS. IL-4 and IL-13 exposure during mucociliary differentiation of bronchial epithelial cells increases antimicrobial activity and expression of antimicrobial peptides. Respir Res 2011; 12:59. [PMID: 21529380 PMCID: PMC3113720 DOI: 10.1186/1465-9921-12-59] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/02/2011] [Indexed: 01/22/2023] Open
Abstract
The airway epithelium forms a barrier against infection but also produces antimicrobial peptides (AMPs) and other inflammatory mediators to activate the immune system. It has been shown that in allergic disorders, Th2 cytokines may hamper the antimicrobial activity of the epithelium. However, the presence of Th2 cytokines also affects the composition of the epithelial layer which may alter its function. Therefore, we investigated whether exposure of human primary bronchial epithelial cells (PBEC) to Th2 cytokines during mucociliary differentiation affects expression of the human cathelicidin antimicrobial protein (hCAP18)/LL-37 and human beta defensins (hBD), and antimicrobial activity. PBEC were cultured at an air-liquid interface (ALI) for two weeks in the presence of various concentrations of IL-4 or IL-13. Changes in differentiation and in expression of various AMPs and the antimicrobial proteinase inhibitors secretory leukocyte protease inhibitor (SLPI) and elafin were investigated as well as antimicrobial activity. IL-4 and IL-13 increased mRNA expression of hCAP18/LL-37 and hBD-2. Dot blot analysis also showed an increase in hCAP18/LL-37 protein in apical washes of IL-4-treated ALI cultures, whereas Western Blot analysis showed expression of a protein of approximately 4.5 kDa in basal medium of IL-4-treated cultures. Using sandwich ELISA we found that also hBD-2 in apical washes was increased by both IL-4 and IL-13. SLPI and elafin levels were not affected by IL-4 or IL-13 at the mRNA or protein level. Apical wash obtained from IL-4- and IL-13-treated cultures displayed increased antimicrobial activity against Pseudomonas aeruginosa compared to medium-treated cultures. In addition, differentiation in the presence of Th2 cytokines resulted in increased MUC5AC production as has been shown previously. These data suggest that prolonged exposure to Th2 cytokines during mucociliary differentiation contributes to antimicrobial defence by increasing the expression and release of selected antimicrobial peptides and mucus.
Collapse
Affiliation(s)
- Suzanne Zuyderduyn
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Antimicrobial peptides (AMPs) are small proteins produced by epithelial surfaces and inflammatory cells, which have broad-spectrum antimicrobial and immunomodulatory activities. They are known to be important in a number of infectious and inflammatory conditions and have been shown to be present in a number of sites throughout the female reproductive tract. Inflammation and infection are associated with a number of complications of pregnancy including preterm labor, and AMPs may play a key role in maintaining and protecting pregnancy. The aim of this review is to describe the expression and function of AMPs in the pregnant female reproductive tract and their relation to preterm labor.
Collapse
Affiliation(s)
- Lorraine Frew
- MRC Centre for Reproductive Health, The Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | |
Collapse
|
34
|
Roupé KM, Alberius P, Schmidtchen A, Sørensen OE. Gene expression demonstrates increased resilience toward harmful inflammatory stimuli in the proliferating epidermis of human skin wounds. Exp Dermatol 2011; 19:e329-32. [PMID: 20653772 DOI: 10.1111/j.1600-0625.2009.01038.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined the epidermal gene expression during the proliferative phase of wound healing. Matrix metalloproteases were the group of proteases most prominently up-regulated in skin wounds, whereas serine protease inhibitors were the most strongly up-regulated protease inhibitors. Furthermore, we found down-regulation of genes involved in the extrinsic pathway of apoptosis. This together with the up-regulation of inhibitors of leukocyte serine proteases likely represents a protective step to ensure survival of keratinocytes in the inflammatory wound environment. The down-regulation of proapoptotic genes in the extrinsic pathway of apoptosis was not accompanied by a down-regulation of receptors indicating that the keratinocytes in skin wounds did not become less responsive to external stimuli. Examining the transcription factor binding sites in the promoters of the most differentially expressed genes between normal skin and skin wounds a significant overrepresentation of binding sites were found for STAT-5, SRY and members of the FOXO-family of transcription factors.
Collapse
|
35
|
Bonnart C, Deraison C, Lacroix M, Uchida Y, Besson C, Robin A, Briot A, Gonthier M, Lamant L, Dubus P, Monsarrat B, Hovnanian A. Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest 2010; 120:871-82. [PMID: 20179351 DOI: 10.1172/jci41440] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/06/2010] [Indexed: 12/31/2022] Open
Abstract
The human epidermis serves 2 crucial barrier functions: it protects against water loss and prevents penetration of infectious agents and allergens. The physiology of the epidermis is maintained by a balance of protease and antiprotease activities, as illustrated by the rare genetic skin disease Netherton syndrome (NS), in which impaired inhibition of serine proteases causes severe skin erythema and scaling. Here, utilizing mass spectrometry, we have identified elastase 2 (ELA2), which we believe to be a new epidermal protease that is specifically expressed in the most differentiated layer of living human and mouse epidermis. ELA2 localized to keratohyalin granules, where it was found to directly participate in (pro-)filaggrin processing. Consistent with the observation that ELA2 was hyperactive in skin from NS patients, transgenic mice overexpressing ELA2 in the granular layer of the epidermis displayed abnormal (pro-)filaggrin processing and impaired lipid lamellae structure, which are both observed in NS patients. These anomalies led to dehydration, implicating ELA2 in the skin barrier defect seen in NS patients. Thus, our work identifies ELA2 as a major new epidermal protease involved in essential pathways for skin barrier function. These results highlight the importance of the control of epidermal protease activity in skin homeostasis and designate ELA2 as a major protease driving the pathogenesis of NS.
Collapse
|
36
|
Ovaere P, Lippens S, Vandenabeele P, Declercq W. The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 2009; 34:453-63. [DOI: 10.1016/j.tibs.2009.08.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/01/2009] [Accepted: 08/06/2009] [Indexed: 12/18/2022]
|
37
|
Roelandt T, Thys B, Heughebaert C, De Vroede A, De Paepe K, Roseeuw D, Rombaut B, Hachem JP. LEKTI-1 in sickness and in health. Int J Cosmet Sci 2009; 31:247-54. [PMID: 19467033 DOI: 10.1111/j.1468-2494.2009.00516.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stratum corneum (SC) is a biosensor that mediates responses to a variety of exogenous insults through various signalling mechanisms, including the activation of SC serine proteases (SP) kallikrein cascade. The SPINK5 gene encodes an SP inhibitor, the lympho-epithelial-Kazal-type-1 inhibitor (LEKTI-1), which in turn will buffer the excess of SP cascade initiation, key in the maintenance of permeability barrier homeostasis. We demonstrate that LEKTI processing can occur within the SC after secretion from stratum granulosum keratinocytes at least partially by klk7, an SC-specific chymotryptic SP. Unlike the recently described LEKTI-2, neither recombinant full-length LEKTI-1 nor recombinant LEKTI-1 fragments exhibit antimicrobial activity. Finally, we discuss the pathophysiological implications of LEKTI-1 in skin biology as well as its contribution to the pathogenesis of Netherton Syndrome and its potential involvement in atopic dermatitis.
Collapse
Affiliation(s)
- T Roelandt
- Department of Dermatology, Universitair Ziekenhuis, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wingate KV, Torres SM, Silverstein KAT, Hendrickson JA, Rutherford MS. Expression of endogenous antimicrobial peptides in normal canine skin. Vet Dermatol 2009; 20:19-26. [DOI: 10.1111/j.1365-3164.2008.00707.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Horne AW, Stock SJ, King AE. Innate immunity and disorders of the female reproductive tract. Reproduction 2008; 135:739-49. [PMID: 18502890 DOI: 10.1530/rep-07-0564] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sexually transmitted infections, and their associated sequelae, such as tubal infertility, ectopic pregnancy and preterm labour, are a major worldwide health problem. Chlamydia trachomatis infection is thought to be the leading global cause of tubal infertility and tubal ectopic pregnancy. Preterm birth occurs in around 10% of all deliveries, and nearly 30% of preterm deliveries are associated with intrauterine infection. The mucosal innate immune system of the female reproductive tract has evolved to eliminate such sexually transmitted pathogens whilst maintaining its ability to accommodate specialized physiological functions that include menstruation, fertilization, implantation, pregnancy and parturition. The aim of this review was to describe the role and distribution of key mediators of the innate immune system, the natural antimicrobial peptides (secretory leukocyte protease inhibitor, elafin and the defensins) and the pattern recognition toll-like receptors in the normal female reproductive tract and in the context of these pathological processes.
Collapse
Affiliation(s)
- Andrew W Horne
- The Queen's Medical Research Institute, Reproductive and Developmental Sciences, Centre for Reproductive Biology, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | |
Collapse
|
40
|
Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T. Host defense peptides in wound healing. Mol Med 2008; 14:528-37. [PMID: 18385817 DOI: 10.2119/2008-00002.steinstraesser] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/25/2008] [Indexed: 12/16/2022] Open
Abstract
Host defense peptides are effector molecules of the innate immune system. They show broad antimicrobial action against gram-positive and -negative bacteria, and they likely play a key role in activating and mediating the innate as well as adaptive immune response in infection and inflammation. These features make them of high interest for wound healing research. Non-healing and infected wounds are a major problem in patient care and health care spending. Increasing infection rates, growing bacterial resistance to common antibiotics, and the lack of effective therapeutic options for the treatment of problematic wounds emphasize the need for new approaches in therapy and pathophysiologic understanding. This review focuses on the current knowledge of host defense peptides affecting wound healing and infection. We discuss the current data and highlight the potential future developments in this field of research.
Collapse
|
41
|
Tjabringa G, Bergers M, van Rens D, de Boer R, Lamme E, Schalkwijk J. Development and validation of human psoriatic skin equivalents. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:815-23. [PMID: 18669614 DOI: 10.2353/ajpath.2008.080173] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Psoriasis is an inflammatory skin disease driven by aberrant interactions between the epithelium and the immune system. Anti-psoriatic drugs can therefore target either the keratinocytes or the immunocytes. Here we sought to develop an in vitro reconstructed skin model that would display the molecular characteristics of psoriatic epidermis in a controlled manner, allowing the screening of anti-psoriatic drugs and providing a model in which to study the biology of this disease. Human skin equivalents generated from normal human adult keratinocytes after air exposure and stimulation by keratinocyte growth factor and epidermal growth factor displayed the correct morphological and molecular characteristics of normal human epidermis whereas the psoriasis-associated proteins, hBD-2, SKALP/elafin, and CK16, were absent. Skin equivalents generated from foreskin keratinocytes were clearly abnormal both morphologically and with respect to gene expression. When normal skin equivalents derived from adult keratinocytes were stimulated with psoriasis-associated cytokines [tumor necrosis factor-alpha, interleukin (IL)-1alpha, IL-6, and IL-22] or combinations thereof, strong expression of hBD-2, SKALP/elafin, CK16, IL-8, and tumor necrosis factor-alpha was induced as shown by quantitative polymerase chain reaction and immunohistochemistry. Retinoic acid but not cyclosporin A was found to inhibit cytokine-induced gene expression at both the mRNA and protein levels. These results illustrate the potential of this disease model to study the molecular pathology and pharmacological intervention in vitro.
Collapse
Affiliation(s)
- Geuranne Tjabringa
- Department of Dermatology, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Roghanian A, Sallenave JM. Neutrophil elastase (NE) and NE inhibitors: canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). J Aerosol Med Pulm Drug Deliv 2008; 21:125-44. [PMID: 18518838 DOI: 10.1089/jamp.2007.0653] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteases and antiproteases have multiple important roles both in normal homeostasis and during inflammation. Antiprotease molecules may have developed in a parallel network, consisting of "alarm" and "systemic" inhibitors. Their primary function was thought until recently to mainly prevent the potential injurious effects of excess release of proteolytic enzymes, such as neutrophil elastase (NE), from inflammatory cells. However, recently, new potential roles have been ascribed to these antiproteases. We will review "canonical" and new "noncanonical" functions for these molecules, and more particularly, those pertaining to their role in innate and adaptive immunity (antibacterial activity and biasing of the adaptive immune response).
Collapse
Affiliation(s)
- Ali Roghanian
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh University Medical School, Edinburgh, United Kingdom
| | | |
Collapse
|
43
|
Zeeuwen PLJM, de Jongh GJ, Rodijk-Olthuis D, Kamsteeg M, Verhoosel RM, van Rossum MM, Hiemstra PS, Schalkwijk J. Genetically programmed differences in epidermal host defense between psoriasis and atopic dermatitis patients. PLoS One 2008; 3:e2301. [PMID: 18523683 PMCID: PMC2409155 DOI: 10.1371/journal.pone.0002301] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/16/2008] [Indexed: 11/19/2022] Open
Abstract
In the past decades, chronic inflammatory diseases such as psoriasis, atopic dermatitis, asthma, Crohn’s disease and celiac disease were generally regarded as immune-mediated conditions involving activated T-cells and proinflammatory cytokines produced by these cells. This paradigm has recently been challenged by the finding that mutations and polymorphisms in epithelium-expressed genes involved in physical barrier function or innate immunity, are risk factors of these conditions. We used a functional genomics approach to analyze cultured keratinocytes from patients with psoriasis or atopic dermatitis and healthy controls. First passage primary cells derived from non-lesional skin were stimulated with pro-inflammatory cytokines, and expression of a panel of 55 genes associated with epidermal differentiation and cutaneous inflammation was measured by quantitative PCR. A subset of these genes was analyzed at the protein level. Using cluster analysis and multivariate analysis of variance we identified groups of genes that were differentially expressed, and could, depending on the stimulus, provide a disease-specific gene expression signature. We found particularly large differences in expression levels of innate immunity genes between keratinocytes from psoriasis patients and atopic dermatitis patients. Our findings indicate that cell-autonomous differences exist between cultured keratinocytes of psoriasis and atopic dermatitis patients, which we interpret to be genetically determined. We hypothesize that polymorphisms of innate immunity genes both with signaling and effector functions are coadapted, each with balancing advantages and disadvantages. In the case of psoriasis, high expression levels of antimicrobial proteins genes putatively confer increased protection against microbial infection, but the biological cost could be a beneficial system gone awry, leading to overt inflammatory disease.
Collapse
Affiliation(s)
- Patrick L. J. M. Zeeuwen
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (PZ); (JS)
| | - Gys J. de Jongh
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Marijke Kamsteeg
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Renate M. Verhoosel
- Department of Pulmonology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michelle M. van Rossum
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost Schalkwijk
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (PZ); (JS)
| |
Collapse
|
44
|
Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 2008; 122:261-6. [PMID: 18439663 DOI: 10.1016/j.jaci.2008.03.027] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/24/2008] [Accepted: 03/27/2008] [Indexed: 12/19/2022]
Abstract
Our skin is constantly challenged by microbes but is rarely infected. Cutaneous production of antimicrobial peptides (AMPs) is a primary system for protection, and expression of some AMPs further increases in response to microbial invasion. Cathelicidins are unique AMPs that protect the skin through 2 distinct pathways: (1) direct antimicrobial activity and (2) initiation of a host response resulting in cytokine release, inflammation, angiogenesis, and reepithelialization. Cathelicidin dysfunction emerges as a central factor in the pathogenesis of several cutaneous diseases, including atopic dermatitis, in which cathelicidin is suppressed; rosacea, in which cathelicidin peptides are abnormally processed to forms that induce inflammation; and psoriasis, in which cathelicidin peptide converts self-DNA to a potent stimulus in an autoinflammatory cascade. Recent work identified vitamin D3 as a major factor involved in the regulation of cathelicidin. Therapies targeting control of cathelicidin and other AMPs might provide new approaches in the management of infectious and inflammatory skin diseases.
Collapse
|
45
|
Nishimura J, Saiga H, Sato S, Okuyama M, Kayama H, Kuwata H, Matsumoto S, Nishida T, Sawa Y, Akira S, Yoshikai Y, Yamamoto M, Takeda K. Potent Antimycobacterial Activity of Mouse Secretory Leukocyte Protease Inhibitor. THE JOURNAL OF IMMUNOLOGY 2008; 180:4032-9. [DOI: 10.4049/jimmunol.180.6.4032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Jacobsen LC, Sørensen OE, Cowland JB, Borregaard N, Theilgaard-Mönch K. The secretory leukocyte protease inhibitor (SLPI) and the secondary granule protein lactoferrin are synthesized in myelocytes, colocalize in subcellular fractions of neutrophils, and are coreleased by activated neutrophils. J Leukoc Biol 2008; 83:1155-64. [PMID: 18285402 DOI: 10.1189/jlb.0706442] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The secretory leukocyte protease inhibitor (SLPI) re-establishes homeostasis at sites of infection by virtue of its ability to exert antimicrobial activity, to suppress LPS-induced cellular immune responses, and to reduce tissue damage through inhibition of serine proteases released by polymorphonuclear neutrophil granulocytes (PMNs). Microarray analysis of bone marrow (BM) populations highly enriched in promyelocytes, myelocytes/metamyelocytes (MYs), and BM neutrophils demonstrates a transient, high mRNA expression of SLPI and genuine secondary granule proteins (GPs) in MYs. Consistent with this finding, immunostaining of BM cells showed SLPI and the secondary GP lactoferrin (LF) to be present in cells from the myelocyte stage and throughout neutrophil differentiation. Subcellular fractionation studies demonstrated the colocalization of SLPI and LF in subcellular fractions highly enriched in secondary granules. Finally, exocytosis studies demonstrated a corelease of SLPI and LF within minutes of activation. Collectively, these findings strongly indicate that SLPI is localized in secondary granules of PMNs. However, the amount of SLPI detected in PMNs is low compared with primary keratinocytes stimulated by growth factors involved in wound healing. This implicates that neutrophil-derived SLPI might not contribute essentially to re-establishment of homeostasis at sites of infection but rather, exert physiologically relevant intracellular activities. These might include the protection of secondary GPs against proteolytic activation and/or degradation by proteases, which might be dislocated to secondary granules at minute amounts as a consequence of spillover.
Collapse
Affiliation(s)
- Lars C Jacobsen
- The Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
47
|
Abstract
The skin continuously encounters microbial pathogens. To defend against this, cells of the epidermis and dermis have evolved several innate strategies to prevent infection. Antimicrobial peptides are one of the primary mechanisms used by the skin in the early stages of immune defense. In general, antimicrobial peptides have broad antibacterial activity against gram-positive and negative bacteria and also show antifungal and antiviral activity. The antimicrobial activity of most peptides occurs as a result of unique structural characteristics that enable them to disrupt the microbial membrane while leaving human cell membranes intact. However, antimicrobial peptides also act on host cells to stimulate cytokine production, cell migration, proliferation, maturation, and extracellular matrix synthesis. The production by human skin of antimicrobial peptides such as defensins and cathelicidins occurs constitutively but also greatly increases after infection, inflammation or injury. Some skin diseases show altered expression of antimicrobial peptides, partially explaining the pathophysiology of these diseases. Thus, current research suggests that understanding how antimicrobial peptides modify susceptibility to microbes, influence skin inflammation, and modify wound healing, provides greater insight into the pathophysiology of skin disorders and offers new therapeutic opportunities.
Collapse
|
48
|
Moreau T, Baranger K, Dadé S, Dallet-Choisy S, Guyot N, Zani ML. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 2007; 90:284-95. [PMID: 17964057 DOI: 10.1016/j.biochi.2007.09.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/07/2007] [Indexed: 12/31/2022]
Abstract
Elafin and SLPI are low-molecular weight proteins that were first identified as protease inhibitors in mucous fluids including lung secretions, where they help control excessive proteolysis due to neutrophil serine proteases (elastase, proteinase 3 and cathepsin G). Elafin and SLPI are structurally related in that both have a fold with a four-disulfide core or whey acidic protein (WAP) domain responsible for inhibiting proteases. Elafin is derived from a precursor, trappin-2 or pre-elafin, by proteolysis. Trappin-2, which is itself a protease inhibitor, has a unique N-terminal domain that enables it to become cross-linked to extracellular matrix proteins by transglutaminase(s). SLPI and elafin/trappin-2 are attractive candidates as therapeutic molecules for inhibiting neutrophil serine proteases in inflammatory lung diseases. Hence, they have become the WAP proteins most studied over the last decade. This review focuses on recent findings revealing that SLPI and elafin/trappin-2 have many biological functions as diverse as anti-bacterial, anti-fungal, anti-viral, anti-inflammatory and immuno-modulatory functions, in addition to their well-recognized role as protease inhibitors.
Collapse
Affiliation(s)
- Thierry Moreau
- INSERM U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie fonctionnelle, Université François Rabelais, Tours, France.
| | | | | | | | | | | |
Collapse
|
49
|
Pollins AC, Friedman DB, Nanney LB. Proteomic investigation of human burn wounds by 2D-difference gel electrophoresis and mass spectrometry. J Surg Res 2007; 142:143-52. [PMID: 17604053 PMCID: PMC2696121 DOI: 10.1016/j.jss.2007.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/29/2006] [Accepted: 01/03/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND In humans, thermal cutaneous injury represents a serious traumatic event that induces a host of dynamic alterations. Unfortunately the molecular mechanisms that underlie these serious perturbations remain poorly understood. We applied a global analysis method to identify dynamically changing proteins within the burn environment, which could eventually become biomarkers or targets for treatment. MATERIALS AND METHODS Protein extracts of normal/unwounded skin and burn wounds were assayed by 2D-difference gel electrophoresis (DIGE), a proteomic technology by which abundance levels of intact proteins (including isoforms) were simultaneously quantified from multiple samples with statistical confidence. Through unsupervised multivariate principal component analysis, protein expression patterns from individual samples were appropriately clustered into their correct temporal healing periods grouped into postburn periods of 1-3 days, 4-6 days, or 7-10 days after injury. Forty-six proteins were subsequently selected for identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS Proteins identified with differential temporal patterns of expression included predictable cytoskeletal proteins such as vimentin, and keratins 1, 5, 6, 16, and 17. Other candidate proteins with potential involvement in healing included heat shock protein 90, members of the serpin family (Serpin B1, SCCA1 and -2), haptoglobin, gelsolin, eIF4A1, IQGAP1, and translationally controlled tumor protein. CONCLUSIONS We have used the combined technique, DIGE/mass spectrometry, to capture new insights into cutaneous responses to burn trauma and subsequent processes of early wound healing in humans. This pilot study provides a proteomic snapshot of temporal events that can be used to weave together the interconnected processes that define the response to serious cutaneous injury.
Collapse
Affiliation(s)
- Alonda C. Pollins
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN USA
| | - David B. Friedman
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN USA
| | - Lillian B. Nanney
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN USA
- Department of Cell & Developmental Biology, Vanderbilt School of Medicine, Nashville, TN USA
| |
Collapse
|
50
|
Schalkwijk J. Cross-Linking of Elafin/SKALP to Elastic Fibers in Photodamaged Skin: Too Much of a Good Thing? J Invest Dermatol 2007; 127:1286-7. [PMID: 17502858 DOI: 10.1038/sj.jid.5700691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muto et al. report that UVA light induces the expression of elafin, a potent elastase inhibitor, in skin fibroblasts. Elafin binds to elastic fibers by transglutaminase-mediated cross-linking and protects against proteolytic breakdown. Decreased degradation could contribute to accumulation of elastotic material in photodamaged skin. Elastase and its locally produced inhibitors play a role in actinic elastosis.
Collapse
Affiliation(s)
- Joost Schalkwijk
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|