1
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
2
|
Sarkar S, Gaddameedhi S. Solar ultraviolet-induced DNA damage response: Melanocytes story in transformation to environmental melanomagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:736-751. [PMID: 32281145 PMCID: PMC9675355 DOI: 10.1002/em.22370] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 05/14/2023]
Abstract
Exposure to sunlight is both beneficial, as it heats the planet to a comfortable temperature, and potentially harmful, since sunlight contains ultraviolet radiation (UVR), which is deemed detrimental for living organisms. Earth's ozone layer plays a vital role in blocking most of the extremely dangerous UVC; however, low frequency/energy UVR (i.e., UVB and UVA) seeps through in minute amount and reaches the Earth's surface. Both UVB and UVA are physiologically responsible for a plethora of skin ailments, including skin cancers. The UVR is readily absorbed by the genomic DNA of skin cells, causing DNA bond distortion and UV-induced DNA damage. As a defense mechanism, the DNA damage response (DDR) signaling in skin cells activates nucleotide excision repair (NER), which is responsible for the removal of UVR-induced DNA photolesions and helps maintain the genomic integrity of the cells. Failure of proper NER function leads to mutagenesis and development of skin cancers. One of the deadliest form of skin cancers is melanoma which originates upon the genetic transformation of melanocytes, melanin producing skin cells. NER is a well-studied DNA repair system in the whole skin, as a tissue, but not much is known about it in melanocytes. Therefore, this review encapsulates NER in melanocytes, with a specific focus on its functional regulators and their cross talks due to skin heterogeneity and divulging the potential knowledge gap in the field.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - Shobhan Gaddameedhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
- Sleep and Performance Research Center, Washington State University, Spokane, WA
| |
Collapse
|
3
|
Vallerand IA, Lewinson RT, Parsons LM, Hardin J, Haber RM, Lowerison MW, Barnabe C, Patten SB. Vitiligo and major depressive disorder: A bidirectional population-based cohort study. J Am Acad Dermatol 2018; 80:1371-1379. [PMID: 30528503 DOI: 10.1016/j.jaad.2018.11.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 11/21/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vitiligo patients often report their mental health has an effect on their skin. However, it is unknown as to whether a common mental disorder, such as major depressive disorder (MDD), can also precipitate the onset of vitiligo. OBJECTIVE Evaluate a bidirectional relationship between MDD and vitiligo using The Health Improvement Network database. METHODS Incident MDD and referent cohorts were followed until the development of vitiligo. Also, incident vitiligo and referent cohorts were followed until the development of MDD. Cox proportional hazards models were used, and numerous covariates were adjusted for. RESULTS In adjusted models, MDD patients (n = 405,397) were at a 64% increased risk for vitiligo (hazard ratio 1.64, 95% confidence interval [CI] 1.43-1.87, P < .0001) compared with the referent cohort (n = 5,739,048). This risk was decreased in patients using antidepressants. Compared with the referent cohort (n = 6,137,696), patients with vitiligo (n = 7104) that were <30 years of age at diagnosis had a higher risk of developing MDD than patients ≥30 years of age (hazard ratio 1.31, 95% CI 1.14-1.50, P < .0001 vs 1.22, 95% CI 1.08-1.37, P = .001, respectively). LIMITATIONS This study did not evaluate the severity of MDD or vitiligo on outcome development. CONCLUSION These results highlight the burden of depression in patients with vitiligo and support the possible existence of pathophysiological connections between these 2 conditions.
Collapse
Affiliation(s)
- Isabelle A Vallerand
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Ryan T Lewinson
- Division of Dermatology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Laurie M Parsons
- Division of Dermatology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jori Hardin
- Division of Dermatology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Richard M Haber
- Division of Dermatology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Mark W Lowerison
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada; Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Cheryl Barnabe
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Scott B Patten
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Pillaiyar T, Manickam M, Jung SH. Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal 2017; 40:99-115. [PMID: 28911859 DOI: 10.1016/j.cellsig.2017.09.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 02/08/2023]
Abstract
Human skin, eye and hair color rely on the production of melanin, depending on its quantity, quality, and distribution, Melanin plays a monumental role in protecting the skin against the harmful effect of ultraviolet radiation and oxidative stress from various environmental pollutants. However, an excessive production of melanin causes serious dermatological problems such as freckles, solar lentigo (age spots), melasma, as well as cancer. Hence, the regulation of melanin production is important for controlling the hyper-pigmentation. Melanogenesis, a biosynthetic pathway to produce melanin pigment in melanocyte, involves a series of intricate enzymatic and chemical catalyzed reactions. Several extrinsic factors include ultraviolet radiation and chemical drugs, and intrinsic factors include molecules secreted by surrounding keratinocytes or melanocytes, and fibroblasts, all of which regulate melanogenesis. This article reviews recent advances in the development of melanogenesis inhibitors that directly/indirectly target melanogenesis-related signaling pathways. Efforts have been made to provide a description of the mechanism of action of inhibitors on various melanogenesis signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National, University, Daejeon 34134, Republic of Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National, University, Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Downregulation of melanogenesis: drug discovery and therapeutic options. Drug Discov Today 2016; 22:282-298. [PMID: 27693716 DOI: 10.1016/j.drudis.2016.09.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
Abstract
Melanin, primarily responsible in humans for hair, eye and skin pigmentation, is produced by melanocytes through a process called melanogenesis. However, the abnormal accumulation of melanin causes dermatological problems such as café-au-lait macules ephelides (freckles), solar lentigo (age spots) and melasma, as well as cancer and vitiligo. Hence the regulation of melanogenesis is very important for treating hyperpigmentary disorders. Numerous antimelanogenic agents that target tyrosinase activity and/or stability, melanosome maturation, transfer and trafficking, or melanogenesis-related signaling pathways have been developed. This article reviews recent advances in research and development of human tyrosinase and melanogenesis-related signaling pathway inhibitors. Attempts have been made to provide a complete description of the mechanism of action of inhibitors on various melanogenesis signaling pathways.
Collapse
|
6
|
A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent. Int J Mol Sci 2016; 17:546. [PMID: 27077852 PMCID: PMC4849002 DOI: 10.3390/ijms17040546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/17/2023] Open
Abstract
BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B) agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription factor (MITF) in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders.
Collapse
|
7
|
Lobikin M, Chernet B, Lobo D, Levin M. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo. Phys Biol 2012. [PMID: 23196890 DOI: 10.1088/1478-3975/9/6/065002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (V(mem)) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by 'instructor' cells-a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting a strategy for cancer suppression that does not require gene therapy. Together, these data extend our understanding of the recently demonstrated role of transmembrane potential in tumor formation and metastatic cell behavior. V(mem) is an important non-genetic biophysical aspect of the microenvironment that regulates the balance between normally patterned growth and carcinogenesis.
Collapse
Affiliation(s)
- Maria Lobikin
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
8
|
Ali SA, Salim S, Sahni T, Peter J, Ali AS. 5-HT receptors as novel targets for optimizing pigmentary responses in dorsal skin melanophores of frog, Hoplobatrachus tigerinus. Br J Pharmacol 2011; 165:1515-25. [PMID: 21880033 DOI: 10.1111/j.1476-5381.2011.01630.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Biochemical identification of 5-HT has revealed similar projection patterns across vertebrates. In CNS, 5-HT regulates major physiological functions but its peripheral functions are still emerging. The pharmacology of 5-HT is mediated by a diverse range of receptors that trigger different responses. Interestingly, 5-HT receptors have been detected in pigment cells indicating their role in skin pigmentation. Hence, we investigated the role of this monoaminergic system in amphibian pigment cells, melanophores, to further our understanding of its role in pigmentation biology together with its evolutionary significance. EXPERIMENTAL APPROACH Pharmacological profiling of 5-HT receptors was achieved using potent/selective agonists and antagonists. In vitro responses of melanophores were examined by Mean Melanophores Size Index assay. The melanophores of lower vertebrates are highly sensitive to external stimuli. The immediate cellular responses to drugs were defined in terms of pigment translocation within the cells. KEY RESULTS 5-HT exerted strong concentration-dependent pigment dispersion at threshold dose of 1 × 10(-6) g·mL(-1). Specific 5-HT(1) and 5-HT(2) receptor agonists, sumatriptan and myristicin. also induced dose-dependent dispersion. Yohimbine and metergoline synergistically antagonized sumatriptan-mediated dispersion, whereas trazodone partially blocked myristicin-induced dispersion. Conversely, 5-HT(3) and 5-HT(4) receptor agonists, 1 (3 chlorophenyl) biguanide (1,3 CPB) and 5-methoxytryptamine (5-MT), caused a dose-dependent pigment aggregation. The aggregatory effect of 1,3 CPB was completely blocked by ondansetron, whereas L-lysine partially blocked the effect of 5-MT. CONCLUSIONS AND IMPLICATIONS The results suggest that 5-HT-induced physiological effects are mediated via distinct classes of receptors, which possibly participate in the modulation of pigmentary responses in amphibian.
Collapse
Affiliation(s)
- Sharique A Ali
- Department of Biotechnology, Saifia College of Science, Bhopal, India.
| | | | | | | | | |
Collapse
|
9
|
Salim S, Ali SA. Vertebrate melanophores as potential model for drug discovery and development: a review. Cell Mol Biol Lett 2011; 16:162-200. [PMID: 21225472 PMCID: PMC6275700 DOI: 10.2478/s11658-010-0044-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/20/2010] [Indexed: 11/21/2022] Open
Abstract
Drug discovery in skin pharmacotherapy is an enormous, continually expanding field. Researchers are developing novel and sensitive pharmaceutical products and drugs that target specific receptors to elicit concerted and appropriate responses. The pigment-bearing cells called melanophores have a significant contribution to make in this field. Melanophores, which contain the dark brown or black pigment melanin, constitute an important class of chromatophores. They are highly specialized in the bidirectional and coordinated translocation of pigment granules when given an appropriate stimulus. The pigment granules can be stimulated to undergo rapid dispersion throughout the melanophores, making the cell appear dark, or to aggregate at the center, making the cell appear light. The major signals involved in pigment transport within the melanophores are dependent on a special class of cell surface receptors called G-protein-coupled receptors (GPCRs). Many of these receptors of adrenaline, acetylcholine, histamine, serotonin, endothelin and melatonin have been found on melanophores. They are believed to have clinical relevance to skin-related ailments and therefore have become targets for high throughput screening projects. The selective screening of these receptors requires the recognition of particular ligands, agonists and antagonists and the characterization of their effects on pigment motility within the cells. The mechanism of skin pigmentation is incredibly intricate, but it would be a considerable step forward to unravel its underlying physiological mechanism. This would provide an experimental basis for new pharmacotherapies for dermatological anomalies. The discernible stimuli that can trigger a variety of intracellular signals affecting pigment granule movement primarily include neurotransmitters and hormones. This review focuses on the role of the hormone and neurotransmitter signals involved in pigment movement in terms of the pharmacology of the specific receptors.
Collapse
MESH Headings
- Animals
- Drug Discovery
- Hypothalamic Hormones/metabolism
- Melanins/metabolism
- Melanocortins/metabolism
- Melanocyte-Stimulating Hormones/metabolism
- Melanophores/metabolism
- Pituitary Hormones/metabolism
- Receptors, Adrenergic/chemistry
- Receptors, Adrenergic/metabolism
- Receptors, Cholinergic/chemistry
- Receptors, Cholinergic/metabolism
- Receptors, Endothelin/chemistry
- Receptors, Endothelin/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Histamine/chemistry
- Receptors, Histamine/metabolism
- Receptors, Melatonin/agonists
- Receptors, Melatonin/antagonists & inhibitors
- Receptors, Melatonin/metabolism
- Receptors, Serotonin/chemistry
- Receptors, Serotonin/metabolism
- Vertebrates
Collapse
Affiliation(s)
- Saima Salim
- Postgraduate Department of Biotechnology, Saifia College of Science Bhopal, Saifia, 462001 India
| | - Sharique A. Ali
- Postgraduate Department of Biotechnology, Saifia College of Science Bhopal, Saifia, 462001 India
| |
Collapse
|
10
|
Naimi-Akbar C, Ritter M, Demel S, El-Nour H, Hedblad MA, Azmitia EC, Nordlind K. Different serotonergic expression in nevomelanocytic tumors. Cancers (Basel) 2010; 2:1166-77. [PMID: 24281111 PMCID: PMC3835124 DOI: 10.3390/cancers2021166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/21/2010] [Accepted: 05/28/2010] [Indexed: 11/21/2022] Open
Abstract
The neuromediator serotonin (5-hydroxytryptamine; 5-HT) has been proposed to play a role in tumor progression. Thus, the aim of the present investigation was to determine whether alterations in the serotonergic system occur in nevomelanocytic tumors. For this purpose, paraffin-embedded biopsies of superficial spreading malignant melanoma (SSM), dysplastic compound nevi (DN) and benign compound nevi (BCN) were characterized with regard to their expression of 5-HT, the 5-HT1A and 5-HT2A receptors, and the serotonin transporter protein (SERT), by immunohistochemical analysis. Melanocytes in the region surrounding the tumor were found to express both the 5-HT1A and 5-HT2A receptors. Tumor cells that immunostained positively for the different serotonergic markers were observed in the suprabasal epidermis of DN tissue and, to an even greater extent, in the case of SSM. Furthermore, some of these latter cells expressed both 5-HT1AR and 5-HT2AR. The level of expression of 5-HT1AR at the junctional area was lower for SSM than for DN or BCN. As the degree of atypia increased, the intensity of tumor cell staining in the dermis for 5-HT1AR and SERT declined. Vessel immunoreactivity for 5-HT2A was more intense in SSM than in BCN tissue. Round-to-dendritic cells that expressed both SERT and 5-HT1AR were seen to infiltrate into the dermal region of the tumor, this infiltration being more evident in the case of DN and SSM. These latter cells were also tryptase-positive, indicating that they are mast cells. Thus, alterations in serotonergic system may be involved in nevomelanocytic tumors and mast cells may play an important role in this connection.
Collapse
Affiliation(s)
- Clara Naimi-Akbar
- Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden; E-Mails: (C.N.-A.); (M.R.); (S.D.); (H.E.-N.); (M.-A.H.)
| | - Markus Ritter
- Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden; E-Mails: (C.N.-A.); (M.R.); (S.D.); (H.E.-N.); (M.-A.H.)
| | - Sasika Demel
- Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden; E-Mails: (C.N.-A.); (M.R.); (S.D.); (H.E.-N.); (M.-A.H.)
| | - Husameldin El-Nour
- Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden; E-Mails: (C.N.-A.); (M.R.); (S.D.); (H.E.-N.); (M.-A.H.)
| | - Mari-Anne Hedblad
- Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden; E-Mails: (C.N.-A.); (M.R.); (S.D.); (H.E.-N.); (M.-A.H.)
| | - Efrain C. Azmitia
- Department of Biology and Psychiatry, New York University, NY, USA; E-Mail:
| | - Klas Nordlind
- Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden; E-Mails: (C.N.-A.); (M.R.); (S.D.); (H.E.-N.); (M.-A.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+46-8-51777882; Fax.:+46-8-51777851
| |
Collapse
|
11
|
Nordlind K, Azmitia EC, Slominski A. The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp Dermatol 2007; 17:301-11. [PMID: 18177349 DOI: 10.1111/j.1600-0625.2007.00670.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is an important mediator of bidirectional interactions between the neuroendocrine system and the skin. The rate of synthesis of 5-HT from l-tryptophan can be enhanced by brain-derived neuronal growth factor, cytokines, exposure to ultraviolet light and steroids. The major source of 5-HT in the skin are platelets, which, upon aggregation, release this biogenic amine. Moreover, the epidermal and dermal skin express the enzymes required for the transformation of tryptophan to 5-HT, and certain skin cells, such as melanocytes, have been demonstrated to produce 5-HT. In addition, rodent mast cells produce 5-HT, but human mast cells have not yet been fully examined in this respect. Skin cells express functionally active, membrane-bound receptors for 5-HT, as well as proteins that transport 5-HT. The interactions of 5-HT with these various proteins determines the nature, magnitude and duration of serotonergic responses. The immune and vasculature systems in the skin are traditional targets for bioregulation by 5-HT. Moreover, recent findings indicate that keratinocytes, melanocytes and dermal fibroblasts also respond to this amine in various ways. Thus, mammalian skin is both a site for the production of and a target for bioregulation by 5-HT. This indicates that agonists and antagonists directed towards specific 5-HT receptors could be useful in connection with treatment of skin diseases. Based on our increasing knowledge concerning these receptors and their plasticity, future research will focus on the development of serotonergic drugs that exert metabotrophic effects on the cells of the skin without affecting the central nervous system.
Collapse
Affiliation(s)
- Klas Nordlind
- Department of Dermatology, Karolinska University Hospital, Solna, Stockholm, Sweden.
| | | | | |
Collapse
|
12
|
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol Rev 2006; 86:1309-79. [PMID: 17015491 DOI: 10.1152/physrev.00026.2005] [Citation(s) in RCA: 416] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
Collapse
|
13
|
Chu CY, Liu YL, Chiu HC, Jee SH. Dopamine-induced apoptosis in human melanocytes involves generation of reactive oxygen species. Br J Dermatol 2006; 154:1071-9. [PMID: 16704636 DOI: 10.1111/j.1365-2133.2006.07293.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies have shown that significant increases in urinary and plasma levels of several monoamines and their metabolites characterize the onset of vitiligo and its progression. Recently, both epidermal keratinocytes and melanocytes were found to have the capacity for the biosynthesis of several catecholamines and serotonin. Some monoamines and their metabolites can induce apoptosis and cytotoxicity in neural cells. However, no previous report has investigated the potential role of these monoamines in inducing apoptosis or cytotoxicity in melanocytes. OBJECTIVES To study the effects of dopamine (DA), norepinephrine (NE), epinephrine (EP), and serotonin (5-HT) on melanocyte cytotoxicity and apoptosis. METHODS Primary cultures of normal human melanocytes established from the foreskins of normal individuals were treated with different concentrations of DA, NE, EP and 5-HT for 5 and 7 days. Cell viability was measured by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Melanocyte apoptosis was evaluated by morphological examination and flow cytometric analysis. We also measured the generation of reactive oxygen species (ROS) after DA treatment. RESULTS Among the four monoamines used in this study, only DA had an effect, dose-dependently decreasing the melanocyte viability at concentrations ranging from 0.01 to 100 micromol L(-1) (0.1 and 1 micromol L(-1), P < 0.05; 10 micromol L(-1), P < 0.01). In addition, DA-induced melanocyte apoptosis was evidenced by the increased percentage of sub-G1 cells from 7.71 +/- 0.28% (control) to 12.22 +/- 1.05% (0.1 micromol L(-1) DA) (P < 0.005), and treatment with the antioxidant N-acetylcysteine (NAC) reversed this apoptotic effect. DA treatment led to the generation of ROS, which could be prevented by pretreatment with NAC. CONCLUSIONS DA can induce melanocyte apoptosis, which might be related to the generation of ROS. This novel effect might play an important role in the development or progression of vitiligo, which is currently viewed as a disease process closely related to melanocyte apoptosis.
Collapse
Affiliation(s)
- C-Y Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, 7 Chung-Shan South Road, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
14
|
Nordlind K, Thorslund K, Lonne-Rahm S, Mohabbati S, Berki T, Morales M, Azmitia EC. Expression of serotonergic receptors in psoriatic skin. Arch Dermatol Res 2006; 298:99-106. [PMID: 16794822 DOI: 10.1007/s00403-006-0652-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 01/30/2006] [Accepted: 02/16/2006] [Indexed: 11/24/2022]
Abstract
Psoriasis appears to be influenced by stress, which causes release of adrenal hormones. Serotonin, or hormonal actions on serotonin and serotonin receptors, may have a role in psoriasis. Distribution of serotonin receptors was studied in involved and noninvolved skin in patients with psoriasis and compared to normal skin, by using immunohistochemistry and antibodies to 5-HT1A, 5-HT2A and 5-HT3 receptors (R). There was a decreased (P<0.001) number of 5-HT1AR positive cells, the majority being tryptase positive, in involved and noninvolved psoriatic papillary dermis, compared to normal skin. 5-HTlAR expression was also found in the upper part of the epidermis, on vessel walls and on melanocytes. 5-HT2AR expressing papillary mononuclear cells, CD3 positive, were increased (P<0.001 and P<0.01, respectively) in involved and noninvolved psoriatic skin, compared to normal skin, an increase (P<0.01) also being found in the involved compared to noninvolved skin. Expression of 5-HT3R could be found in the basal epidermal layer of noninvolved but not in the involved skin of psoriasis, where it was only found in the acrosyringium. The present findings are compatible with the 5-HT1A and 5-HT2A receptors having antagonistic functions, and raise the possibility of using receptor specific drugs in the treatment of psoriasis.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antibodies, Monoclonal
- Female
- Humans
- Male
- Mice
- Middle Aged
- Psoriasis/metabolism
- Receptor, Serotonin, 5-HT1A/biosynthesis
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/immunology
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/immunology
Collapse
Affiliation(s)
- Klas Nordlind
- Unit of Dermatology and Venereology, Department of Medicine, Karolinska University Hospital, Solna 17176 , Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
15
|
Burkhart CG, Burkhart CN. The mole theory: primary function of melanocytes and melanin may be antimicrobial defense and immunomodulation (not solar protection). Int J Dermatol 2006; 44:340-2. [PMID: 15811092 DOI: 10.1111/j.1365-4632.2004.02556.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Craig G Burkhart
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | |
Collapse
|
16
|
Abstract
It was recently discovered that mammalian skin can produce serotonin and transform it into melatonin. Pathways for the biosynthesis and biodegradation of serotonin and melatonin have been characterized in human and rodent skin and in their major cellular populations. Moreover, receptors for serotonin and melatonin receptors are expressed in keratinocytes, melanocytes, and fibroblasts and these mediate phenotypic actions on cellular proliferation and differentiation. Melatonin exerts receptor-independent effects, including activation of pathways protective of oxidative stress and the modification of cellular metabolism. While serotonin is known to have several roles in skin-e.g., pro-edema, vasodilatory, proinflammatory, and pruritogenic-melatonin has been experimentally implicated in hair growth cycling, pigmentation physiology, and melanoma control. Thus, the widespread expression of a cutaneous seorotoninergic/melatoninergic syste,m(s) indicates considerable selectivity of action to facilitate intra-, auto-, or paracrine mechanisms that define and influence skin function in a highly compartmentalized manner. Notably, the cutaneous melatoninergic system is organized to respond to continuous stimulation in contrast to the pineal gland, which (being insulated from the external environment) responds to discontinuous activation by the circadian clock. Overall, the cutaneous serotoninergic/melatoninergic system could counteract or buffer external (environmental) or internal stresses to preserve the biological integrity of the organ and to maintain its homeostasis.-Slominski, A. J., Wortsman, J., Tobin, D. J. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun.
Collapse
|
17
|
Slominski A, Pisarchik A, Johansson O, Jing C, Semak I, Slugocki G, Wortsman J. Tryptophan hydroxylase expression in human skin cells. Biochim Biophys Acta Mol Basis Dis 2003; 1639:80-6. [PMID: 14559114 DOI: 10.1016/s0925-4439(03)00124-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We attempted to further characterize cutaneous serotoninergic and melatoninergic pathways evaluating the key biosynthetic enzyme tryptophan hydroxylase (TPH). There was wide expression of TPH mRNA in whole human skin, cultured melanocytes and melanoma cells, dermal fibroblasts, squamous cell carcinoma cells and keratinocytes. Gene expression was associated with detection of TPH immunoreactive species by Western blotting. Characterization of the TPH immunoreactive species performed with two different antibodies showed expression of the expected protein (55-60 kDa), and of forms with higher and lower molecular weights. This pattern of broad spectrum of TPH expression including presumed degradation products suggests rapid turnover of the enzyme, as previously reported in mastocytoma cells. RP-HPLC of skin extracts showed fluorescent species with the retention time of serotonin and N-acetylserotonin. Immunocytochemistry performed in skin biopsies localized TPH immunoreactivity to normal and malignant melanocytes. We conclude that while the TPH mRNA and protein are widely expressed in cultured normal and pathological epidermal and dermal skin cells, in vivo TPH expression is predominantly restricted to cells of melanocytic origin.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology, University of Tennessee Health Science Center, 930 Madison Ave., #519 Memphis, TN 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Slominski A, Pisarchik A, Semak I, Sweatman T, Wortsman J. Characterization of the serotoninergic system in the C57BL/6 mouse skin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3335-44. [PMID: 12899690 DOI: 10.1046/j.1432-1033.2003.03708.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We showed expression of the tryptophan hydroxylase gene and of tryptophan hydroxylase protein immunoreactivity in mouse skin and skin cells. Extracts from skin and melanocyte samples acetylated serotonin to N-acetylserotonin and tryptamine to N-acetyltryptamine. A different enzyme from arylalkylamine N-acetyltransferase mediated this reaction, as this gene was defective in the C57BL6 mouse, coding predominantly for a protein without enzymatic activity. Serotonin (but not tryptamine) acetylation varied according to hair cycle phase and anatomic location. Serotonin was also metabolized to 5-hydroxytryptophol and 5-hydroxyindole acetic acid, probably through stepwise transformation catalyzed by monoamine oxidase, aldehyde dehydrogenase and aldehyde reductase. Activity of the melatonin-forming enzyme hydroxyindole-O-methyltransferase was notably below detectable levels in all samples of mouse corporal skin, although it was detectable at low levels in the ears and in Cloudman melanoma (derived from the DBA/2 J mouse strain). In conclusion, mouse skin has the molecular and biochemical apparatus necessary to produce and metabolize serotonin and N-acetylserotonin, and its activity is determined by topography, physiological status of the skin, cell type and mouse strain.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | | | | | |
Collapse
|
19
|
Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J. Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol 2003; 196:144-53. [PMID: 12767050 DOI: 10.1002/jcp.10287] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We tested the expression of genes coding receptors of a cutaneous serotoninergic/melatoninergic system in whole human skin and in normal and pathologic cultured skin cells. Evaluation of serotonin (5HT), melatonin (MT), and melatonin-related receptors (MRR) showed expression of the isoforms 5HT2B, 5HT7, and MT1 genes in almost all the tested samples. Expression of other isoforms was less prevalent; 5HT2C, MRR, and MT2 were rarely detected. We also found novel isoforms for MT2, MRR, and 5HT2B and documented the process of RNA editing for 5HT2C. Testing for functional activity of these receptors with serotonin and melatonin (10(-14) to 10(-10) M) showed variable effects depending on cell type and culture conditions. Thus, serotonin stimulated proliferation of melanocytes in medium deprived of growth factors, while inhibiting cell growth in the presence of growth factors. Melatonin inhibited both apoptosis of HaCaT keratinocytes incubated in serum-free media, and proliferation of cells cultured in medium supplemented with serum. Melatonin also increased the numbers of viable fibroblasts incubated in serum free medium. N-acetylserotonin (NAS) and 5 methoxytryptamine (5MTT) were generally without effect on cell proliferation, with the exception of an inhibition of melanocyte proliferation at the higher 5MTT concentration of 10(-10) M. Thus, skin cells represent a true target for the products of the serotoninergic/melatoninergic cutaneous pathway with their actions modulating cell proliferation or viability.
Collapse
MESH Headings
- 5-Methoxytryptamine/pharmacology
- Amino Acid Sequence
- Apoptosis/drug effects
- Base Sequence
- Cell Division/drug effects
- Cells, Cultured
- Gene Expression/drug effects
- Humans
- Melatonin/pharmacology
- Phenotype
- Pituitary Gland/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Melatonin
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serotonin/analogs & derivatives
- Serotonin/pharmacology
- Skin/cytology
- Skin/drug effects
- Skin/metabolism
- Skin/pathology
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Slominski A, Pisarchik A, Semak I, Sweatman T, Szczesniewski A, Wortsman J. Serotoninergic system in hamster skin. J Invest Dermatol 2002; 119:934-42. [PMID: 12406341 DOI: 10.1046/j.1523-1747.2002.00156.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have cloned the tryptophan hydroxylase cDNA from hamster pituitary and demonstrated its expression in the skin, melanotic and amelanotic melanomas, spleen, heart, and the eye. We further demonstrated that skin, melanomas, spleen, pituitary, and eye but not heart expressed arylalkylamine N-acetyltransferase mRNA. The cutaneous expression of the arylalkylamine N-acetyltransferase gene was accompanied by enzymatic activity for the conversion of serotonin and tryptamine to N-acetylserotonin and N-acetyltryptamine, respectively. There was marked regional variation in the serotonin N-acetyltransferase activity, which was higher in ear skin than in corpus skin, and was lower in melanomas than in normal skin. Serotonin N-acetyltransferase activity was significantly inhibited by Cole bisubstrate at low concentration (</= 1 micro m); this evidence in conjunction with arylalkylamine N-acetyltransferase mRNA expression implies an involvement of arylalkylamine N-acetyltransferase in serotonin metabolism in the skin. We also documented both the in vitro transformation of serotonin to N-acetylserotonin using liquid chromatography/mass spectrometry and the generation/storage of N-acetylserotonin in cultured melanoma cells. Thus, we have uncovered a cutaneous pathway displaying capabilities for serotonin biosynthesis and/or its metabolism to N-acetylserotonin in rodent skin. As serotonin has powerful vasodilator, immunomodulator, and growth factor actions, this pathway could be involved in skin physiology and/or pathology.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A.
| | | | | | | | | | | |
Collapse
|
21
|
Slominski A, Pisarchik A, Semak I, Sweatman T, Wortsman J, Szczesniewski A, Slugocki G, McNulty J, Kauser S, Tobin DJ, Jing C, Johansson O. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J 2002; 16:896-8. [PMID: 12039872 DOI: 10.1096/fj.01-0952fje] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the cutaneous expression of genes and enzymes responsible for the multistep conversion of tryptophan to serotonin and further to melatonin. Samples tested were human skin, normal and pathologic (basal cell carcinoma and melanoma), cultured normal epidermal and follicular melanocytes, melanoma cell lines, normal neonatal and adult epidermal and follicular keratinocytes, squamous cell carcinoma cells, and fibroblasts from dermis and follicular papilla. The majority of the samples showed simultaneous expression of the genes for tryptophan hydroxylase, arylalkylamine N-acetyltransferase (AANAT), and hydroxyindole-O-methyltransferase (HIOMT). The products of AANAT activity were identified by RP-HPLC with fluorimetric detection in human skin and in cultured normal and malignant melanocytes and immortalized keratinocytes; HIOMT activity was detected in human skin, keratinocytes, and melanoma cells. N-acetylserotonin (NAS) was detected by RP-HPLC in human skin extracts. NAS identity was confirmed further by LC/MS in keratinocytes. In conclusion, we provide evidence that the human skin expresses intrinsic serotonin and melatonin biosynthetic pathways.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsatmali M, Ancans J, Thody AJ. Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 2002; 50:125-33. [PMID: 11799132 DOI: 10.1177/002215540205000201] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Melanocytes are cells of neural crest origin. In the human epidermis, they form a close association with keratinocytes via their dendrites. Melanocytes are well known for their role in skin pigmentation, and their ability to produce and distribute melanin has been studied extensively. One of the factors that regulates melanocytes and skin pigmentation is the locally produced melanocortin peptide alpha-MSH. The effects of alpha-MSH on melanogenesis are mediated via the MC-1R and tyrosinase, the rate-limiting enzyme in the melanogenesis pathway. Binding of alpha-MSH to its receptor increases tyrosinase activity and eumelanin production, which accounts for the skin-darkening effect of alpha-MSH. Other alpha-MSH-related melanocortin peptides, such as ACTH1-17 and desacetylated alpha-MSH, are also agonists at the MC-1R and could regulate melanocyte function. Recent evidence shows that melanocytes have other functions in the skin in addition to their ability to produce melanin. They are able to secrete a wide range of signal molecules, including cytokines, POMC peptides, catecholamines, and NO in response to UV irradiation and other stimuli. Potential targets of these secretory products are keratinocytes, lymphocytes, fibroblasts, mast cells, and endothelial cells, all of which express receptors for these signal molecules. Melanocytes may therefore act as important local regulators of a range of skin cells. It has been shown that alpha-MSH regulates NO production from melanocytes, and it is possible that the melanocortins regulate the release of other signalling molecules from melanocytes. Therefore, the melanocortin signaling system is one of the important regulators of skin homeostasis.
Collapse
Affiliation(s)
- Marina Tsatmali
- Department of Biomedical Sciences, University of Bradford, Bradford, United Kingdom
| | | | | |
Collapse
|
23
|
Abstract
The classical observations of the skin as a target for melanotropins have been complemented by the discovery of their actual production at the local level. In fact, all of the elements controlling the activity of the hypothalamus-pituitary-adrenal axis are expressed in the skin including CRH, urocortin, and POMC, with its products ACTH, alpha-MSH, and beta-endorphin. Demonstration of the corresponding receptors in the same cells suggests para- or autocrine mechanisms of action. These findings, together with the demonstration of cutaneous production of numerous other hormones including vitamin D3, PTH-related protein (PTHrP), catecholamines, and acetylcholine that share regulation by environmental stressors such as UV light, underlie a role for these agents in the skin response to stress. The endocrine mediators with their receptors are organized into dermal and epidermal units that allow precise control of their activity in a field-restricted manner. The skin neuroendocrine system communicates with itself and with the systemic level through humoral and neural pathways to induce vascular, immune, or pigmentary changes, to directly buffer noxious agents or neutralize the elicited local reactions. Therefore, we suggest that the skin neuroendocrine system acts by preserving and maintaining the skin structural and functional integrity and, by inference, systemic homeostasis.
Collapse
Affiliation(s)
- A Slominski
- Department of Pathology ,University of Tennessee, Memphis 38163, USA.
| | | |
Collapse
|