1
|
Tommasi C, Yogev O, Yee MB, Drousioti A, Jones M, Ring A, Singh M, Dry I, Atkins O, Naeem AS, Kriplani N, Akbar AN, Haas JG, O'Toole EA, Kinchington PR, Breuer J. Upregulation of keratin 15 is required for varicella-zoster virus replication in keratinocytes and is attenuated in the live attenuated vOka vaccine strain. Virol J 2024; 21:253. [PMID: 39385182 PMCID: PMC11465976 DOI: 10.1186/s12985-024-02514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/22/2024] [Indexed: 10/11/2024] Open
Abstract
Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles, diseases characterised by epidermal virus replication in skin and mucosa and the formation of blisters. We have previously shown that VZV infection has a profound effect on keratinocyte differentiation, altering the normal pattern of epidermal gene expression. In particular, VZV infection reduces expression of suprabasal keratins 1 and 10 and desmosomal proteins, disrupting epidermal structure to promote expression of a blistering phenotype. Here, we extend these findings to show that VZV infection upregulates the expression of keratin 15 (KRT15), a marker expressed by basal epidermal keratinocytes and hair follicles stem cells. We demonstrate that KRT15 is essential for VZV replication in the skin, since downregulation of KRT15 inhibits VZV replication in keratinocytes, while KRT15 exogenous overexpression supports viral replication. Importantly, our data show that VZV upregulation of KRT15 depends on the expression of the VZV immediate early gene ORF62. ORF62 is the only regulatory gene that is mutated in the live attenuated VZV vaccine and contains four of the five fixed mutations present in the VZV Oka vaccine. Our data indicate that the mutated vaccine ORF62 is not capable of upregulating KRT15, suggesting that this may contribute to the vaccine attenuation in skin. Taken together our data present a novel association between VZV and KRT15, which may open a new therapeutic window for a topical targeting of VZV replication in the skin via modulation of KRT15.
Collapse
Affiliation(s)
- Cristina Tommasi
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK
| | - Ohad Yogev
- Infection and Immunity Department, University College London, London, UK
- Eleven Therapeutics, Cambridge, UK
| | - Michael B Yee
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, US
- Krystalbio Inc, Pittsburgh, US
| | - Andriani Drousioti
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK
| | - Meleri Jones
- Infection and Immunity Department, University College London, London, UK
- UKHSA, Porton Down, UK
| | - Alice Ring
- Infection and Immunity Department, University College London, London, UK
| | | | - Inga Dry
- Infection and Immunity Department, University College London, London, UK
- The Roslin Institute, Edinburgh, UK
| | - Oscar Atkins
- Infection and Immunity Department, University College London, London, UK
- Francis Crick Institute, London, UK
| | - Aishath S Naeem
- Infection and Immunity Department, University College London, London, UK
- Dana-Farber Cancer Institute, Boston, US
| | - Nisha Kriplani
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Arne N Akbar
- Experimental & Translational Medicine, Division of Medicine, University College London, London, UK
| | - Jürgen G Haas
- Infection Medicine, University of Edinburgh, Edinburgh, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, US
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, University College London GOS Institute of Child Health, London, UK.
| |
Collapse
|
2
|
Lee DHY, Tsang JY, Li JJX, Lau SL, Tam F, Loong TC, Tse GM. Cytokeratin 15 is a novel and independent predictor of poor outcome in luminal B HER2-negative breast carcinomas. Pathology 2024; 56:834-841. [PMID: 38909003 DOI: 10.1016/j.pathol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 06/24/2024]
Abstract
Cytokeratin 15 (CK15) has been described as a stem cell marker in human organs and its expression is seen in breast tissue. CK15 expression is associated with aggressive features in endometrial and oesophageal cancers, but data on the breast are lacking. This study aims to investigate the clinicopathological associations and prognostic significance of CK15 in breast carcinomas. A multi-institute cohort of breast carcinomas were retrieved. Clinicopathological and outcome data were obtained and compared with immunohistochemical expression CK15 and a panel of biomarkers. In total, 1,476 cases were included, with an expression rate of 3.5%, preferentially expressed in luminal subtypes (p=0.024), with luminal B carcinomas being the highest (4.7%), as opposed to basal-like (1%) and HER2-overexpressed carcinomas (0%). Except for nodal stage (p=0.013) and nodal metastasis (p=0.048), oestrogen (p=0.035) and progesterone receptor (p=0.001) positivity, there were no associations with other clinicopathological parameters. A trend was observed with shorter breast cancer specific survival (BCSS) in CK15-positive luminal B carcinomas (p=0.062). On further subgroup multivariate analysis of luminal B HER2-negative carcinomas, CK15 expression exhibited robust correlation with shorter BCSS (HR=9.004, p=0.001) and disease-free survival (HR=7.085, p<0.001). Restricted to luminal breast carcinomas, specifically luminal B HER2-negative, CK15 is demonstrated to be a robust independent predictor of higher risk of recurrence and shorter survival, with potential as a clinical prognostic marker and an exclusive stem cell marker for this subgroup of carcinomas.
Collapse
Affiliation(s)
- Dennis H Y Lee
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Julia Y Tsang
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Joshua J X Li
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Sin Leung Lau
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Fiona Tam
- Department of Pathology, Kwong Wah Hospital, Hong Kong
| | | | - Gary M Tse
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Wu S, Huisman BW, Rietveld MH, Rissmann R, Vermeer MH, van Poelgeest MIE, El Ghalbzouri A. The development of in vitro organotypic 3D vulvar models to study tumor-stroma interaction and drug efficacy. Cell Oncol (Dordr) 2024; 47:883-896. [PMID: 38057628 DOI: 10.1007/s13402-023-00902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Vulvar squamous cell carcinoma (VSCC) is a rare disease with a poor prognosis. To date, there's no proper in vitro modeling system for VSCC to study its pathogenesis or for drug evaluation. METHODS We established healthy vulvar (HV)- and VSCC-like 3D full thickness models (FTMs) to observe the tumor-stroma interaction and their applicability for chemotherapeutic efficacy examination. VSCC-FTMs were developed by seeding VSCC tumor cell lines (A431 and HTB117) onto dermal matrices harboring two NF subtypes namely papillary fibroblasts (PFs) and reticular fibroblasts (RFs), or cancer-associated fibroblasts (CAFs) while HV-FTMs were constructed with primary keratinocytes and fibroblasts isolated from HV tissues. RESULTS HV-FTMs highly resembled HV tissues in terms of epidermal morphogenesis, basement membrane formation and collagen deposition. When the dermal compartment shifted from PFs to RFs or CAFs in VSCC-FTMs, tumor cells demonstrated more proliferation, EMT induction and stemness. In contrast to PFs, RFs started to lose their phenotype and express robust CAF-markers α-SMA and COL11A1 under tumor cell signaling induction, indicating a favored 'RF-to-CAF' transition in VSCC tumor microenvironment (TME). Additionally, chemotherapeutic treatment with carboplatin and paclitaxel resulted in a significant reduction in tumor-load and invasion in VSCC-FTMs. CONCLUSION We successfully developed in vitro 3D vulvar models mimicking both healthy and tumorous conditions which serve as a promising tool for vulvar drug screening programs. Moreover, healthy fibroblasts demonstrate heterogeneity in terms of CAF-activation in VSCC TME which brings insights in the future development of novel CAF-based therapeutic strategies in VSCC.
Collapse
Affiliation(s)
- Shidi Wu
- Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Bertine W Huisman
- Center for Human Drug Research, Leiden, 2333 CL, The Netherlands
- Department of Gynecology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Robert Rissmann
- Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Center for Human Drug Research, Leiden, 2333 CL, The Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Mariette I E van Poelgeest
- Center for Human Drug Research, Leiden, 2333 CL, The Netherlands
- Department of Gynecology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | | |
Collapse
|
4
|
Ifediba M, Baetz N, Lambert L, Benzon H, Page V, Anderson N, Roth S, Miess J, Nicolosi I, Beck S, Sopko N, Garrett C. Characterization of heterogeneous skin constructs for full thickness skin regeneration in murine wound models. Tissue Cell 2024; 88:102403. [PMID: 38728948 DOI: 10.1016/j.tice.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
An autologous heterogeneous skin construct (AHSC) has been developed and used clinically as an alternative to traditional skin grafting techniques for treatment of cutaneous defects. AHSC is manufactured from a small piece of healthy skin in a manner that preserves endogenous regenerative cellular populations. To date however, specific cellular and non-cellular contributions of AHSC to the epidermal and dermal layers of closed wounds have not been well characterized given limited clinical opportunity for graft biopsy following wound closure. To address this limitation, a three-part mouse full-thickness excisional wound model was developed for histologic and macroscopic graft tracing. First, fluorescent mouse-derived AHSC (mHSC) was allografted onto non-fluorescent recipient mice to enable macroscopic and histologic time course evaluation of wound closure. Next, mHSC-derived from haired pigmented mice was allografted onto gender- and major histocompatibility complex (MHC)-mismatched athymic nude mouse recipients. Resulting grafts were distinguished from recipient murine skin via immunohistochemistry. Finally, human-derived AHSC (hHSC) was xenografted onto athymic nude mice to evaluate engraftment and hHSC contribution to wound closure. Experiments demonstrated that mHSC and hHSC facilitated wound closure through production of viable, proliferative cellular material and promoted full-thickness skin regeneration, including hair follicles and glands in dermal compartments. This combined macroscopic and histologic approach to tracing AHSC-treated wounds from engraftment to closure enabled robust profiling of regenerated architecture and further understanding of processes underlying AHSC mechanism of action. These models may be applied to a variety of wound care investigations, including those requiring longitudinal assessments of healing and targeted identification of donor and recipient tissue contributions.
Collapse
Affiliation(s)
- Marytheresa Ifediba
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicholas Baetz
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Lyssa Lambert
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Haley Benzon
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Vonda Page
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicole Anderson
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Stephanie Roth
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - James Miess
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Ian Nicolosi
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Sarah Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nikolai Sopko
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA.
| | - Caroline Garrett
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| |
Collapse
|
5
|
Cohen E, Johnson CN, Wasikowski R, Billi AC, Tsoi LC, Kahlenberg JM, Gudjonsson JE, Coulombe PA. Significance of stress keratin expression in normal and diseased epithelia. iScience 2024; 27:108805. [PMID: 38299111 PMCID: PMC10828818 DOI: 10.1016/j.isci.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
A group of keratin intermediate filament genes, the type II KRT6A-C and type I KRT16 and KRT17, are deemed stress responsive as they are induced in keratinocytes of surface epithelia in response to environmental stressors, in skin disorders (e.g., psoriasis) and in carcinomas. Monitoring stress keratins is widely used to identify keratinocytes in an activated state. Here, we analyze single-cell transcriptomic data from healthy and diseased human skin to explore the properties of stress keratins. Relative to keratins occurring in healthy skin, stress-induced keratins are expressed at lower levels and show lesser type I-type II pairwise regulation. Stress keratins do not "replace" the keratins expressed during normal differentiation nor reflect cellular proliferation. Instead, stress keratins are consistently co-regulated with genes with roles in differentiation, inflammation, and/or activation of innate immunity at the single-cell level. These findings provide a roadmap toward explaining the broad diversity and contextual regulation of keratins.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Craig N. Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Allison C. Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Yang X, Liu Z, Wang X, Han Z, Zhang C, Guo L. Tumor keratin 15 expression links with less extent of invasion and better prognosis in papillary thyroid cancer patients receiving tumor resection. Ir J Med Sci 2024; 193:9-15. [PMID: 37243844 DOI: 10.1007/s11845-023-03413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Keratin 15 (KRT15) is identified as a useful biomarker in several solid tumors, while its clinical role in papillary thyroid cancer (PTC) remains unknown. Herein, this study is intended to explore the correlation of tumor KRT15 with clinical features and survival in PTC patients who received tumor resection. METHODS This study retrospectively screened 350 PTC patients who received tumor resection and 50 thyroid benign lesions (TBL) patients. KRT15 in formalin-fixed paraffin-embedded lesion specimens of all subjects was detected by immunohistochemistry (IHC). RESULTS KRT15 was reduced in PTC patients compared to TBL patients (P < 0.001). Furthermore, KRT15 was negatively associated with tumor size (P = 0.017), extrathyroidal invasion (P = 0.007), pathological tumor (pT) stage (P < 0.001), and postoperative radioiodine application (P = 0.008) in PTC patients. Regarding prognostic value, high KRT15 (cut-off by an IHC value of 3) is linked with prolonged accumulating disease-free survival (DFS) (P = 0.008) and overall survival (OS) (P = 0.008) in PTC patients. Also, the multivariate Cox regression model showed that high KRT15 (vs. low) was an independent factor for longer DFS (hazard ratio = 0.433, P = 0.049), but not for OS (P > 0.050) in PTC patients. Subgroup analyses revealed that KRT15 possessed a better prognostic value in PTC patients with age ≥ 55 years, tumor size > 4 cm, pathological node stage 1, or pathological tumor-node-metastasis stage ≤ 2 (all P < 0.050). CONCLUSION Increased tumor KRT15 associates with a lower invasive degree, prolonged DFS, and OS, revealing its prognostic utility in PTC patients undergoing tumor resection.
Collapse
Affiliation(s)
- Xianguang Yang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150080, China
| | - Zhonghao Liu
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150080, China
| | - Xueqian Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150080, China
| | - Zheng Han
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150080, China
| | - Cong Zhang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150080, China
| | - Lunhua Guo
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, 150080, China.
| |
Collapse
|
7
|
Ghaffarinia A, Póliska S, Ayaydin F, Goblos A, Parvaneh S, Manczinger M, Balogh F, Erdei L, Veréb Z, Szabó K, Bata-Csörgő Z, Kemény L. Unraveling Transcriptome Profile, Epigenetic Dynamics, and Morphological Changes in Psoriasis-like Keratinocytes: "Insights into Similarity with Psoriatic Lesional Epidermis". Cells 2023; 12:2825. [PMID: 38132145 PMCID: PMC10741855 DOI: 10.3390/cells12242825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Keratinocytes are one of the primary cells affected by psoriasis inflammation. Our study aimed to delve deeper into their morphology, transcriptome, and epigenome changes in response to psoriasis-like inflammation. We created a novel cytokine mixture to mimic mild and severe psoriasis-like inflammatory conditions in cultured keratinocytes. Upon induction of inflammation, we observed that the keratinocytes exhibited a mesenchymal-like phenotype, further confirmed by increased VIM mRNA expression and results obtained from confocal microscopy. We performed RNA sequencing to achieve a more global view, revealing 858 and 6987 DEGs in mildly and severely inflamed keratinocytes, respectively. Surprisingly, we found that the transcriptome of mildly inflamed keratinocytes more closely mimicked that of the psoriatic epidermis transcriptome than the severely inflamed keratinocytes. Genes involved in the IL-17 pathway were a major contributor to the similarities of the transcriptomes between mildly inflamed KCs and psoriatic epidermis. Mild and severe inflammation led to the gene regulation of epigenetic modifiers such as HATs, HDACs, DNMTs, and TETs. Immunofluorescence staining revealed distinct 5-hmC patterns in inflamed versus control keratinocytes, and consistently low 5-mC intensity in both groups. However, the global DNA methylation assay detected a tendency of decreased 5-mC levels in inflamed keratinocytes versus controls. This study emphasizes how inflammation severity affects the transcriptomic similarity of keratinocytes to psoriatic epidermis and proves dynamic epigenetic regulation and adaptive morphological changes in inflamed keratinocytes.
Collapse
Affiliation(s)
- Ameneh Ghaffarinia
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Ferhan Ayaydin
- HCEMM-USZ Functional Cell Biology and Immunology, Advanced Core Facility, H-6728 Szeged, Hungary;
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| | - Aniko Goblos
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6720 Szeged, Hungary; (A.G.); (Z.V.)
| | - Shahram Parvaneh
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Máté Manczinger
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- Systems Immunology Research Group, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
- HCEMM-Systems Immunology Research Group, H-6726 Szeged, Hungary
| | - Fanni Balogh
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lilla Erdei
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Zoltán Veréb
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6720 Szeged, Hungary; (A.G.); (Z.V.)
- Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary
| | - Kornélia Szabó
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- HCEMM-USZ Skin Research Group, H-6720 Szeged, Hungary; (A.G.); (S.P.); (F.B.); (L.E.); (K.S.); (Z.B.-C.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary;
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
8
|
Zhu W, Han L, Wu Y, Tong L, He L, Wang Q, Yan Y, Pan T, Shen J, Song Y, Shen Y, Zhu Q, Zhou J. Keratin 15 protects against cigarette smoke-induced epithelial mesenchymal transformation by MMP-9. Respir Res 2023; 24:297. [PMID: 38007424 PMCID: PMC10675954 DOI: 10.1186/s12931-023-02598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease, is a leading cause of morbidity and mortality worldwide. Prolonged cigarette smoking (CS) that causes irreversible airway remodeling and significantly reduces lung function is a major risk factor for COPD. Keratin15+ (Krt15+) cells with the potential of self-renewal and differentiation properties have been implicated in the maintenance, proliferation, and differentiation of airway basal cells; however, the role of Krt15 in COPD is not clear. METHODS Krt15 knockout (Krt15-/-) and wild-type (WT) mice of C57BL/6 background were exposed to CS for six months to establish COPD models. Krt15-CrePGR;Rosa26-LSL-tdTomato mice were used to trace the fate of the Krt15+ cells. Hematoxylin and eosin (H&E) and Masson stainings were performed to assess histopathology and fibrosis, respectively. Furthermore, lentivirus-delivered short hairpin RNA (shRNA) was used to knock down KRT15 in human bronchial epithelial (HBE) cells stimulated with cigarette smoke extract (CSE). The protein expression was assessed using western blot, immunohistochemistry, and enzyme-linked immunosorbent assay. RESULTS Krt15-/- CS mice developed severe inflammatory cell infiltration, airway remodeling, and emphysema. Moreover, Krt15 knockout aggravated CS-induced secretion of matrix metalloproteinase-9 (MMP-9) and epithelial-mesenchymal transformation (EMT), which was reversed by SB-3CT, an MMP-9 inhibitor. Consistent with this finding, KRT15 knockdown promoted MMP-9 expression and EMT progression in vitro. Furthermore, Krt15+ cells gradually increased in the bronchial epithelial cells and were transformed into alveolar type II (AT2) cells. CONCLUSION Krt15 regulates the EMT process by promoting MMP-9 expression and protects the lung tissue from CS-induced injury, inflammatory infiltration, and apoptosis. Furthermore, Krt15+ cells transformed into AT2 cells to protect alveoli. These results suggest Krt15 as a potential therapeutic target for COPD.
Collapse
Affiliation(s)
- Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ludan He
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yu Yan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ting Pan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Fudan University, Shanghai, 200540, China
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 200540, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China.
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China.
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Fudan University, Shanghai, 200540, China.
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China.
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 200540, China.
| |
Collapse
|
9
|
Anderson-Crannage M, Ascensión AM, Ibanez-Solé O, Zhu H, Schaefer E, Ottomanelli D, Hochberg B, Pan J, Luo W, Tian M, Chu Y, Cairo MS, Izeta A, Liao Y. Inflammation-mediated fibroblast activation and immune dysregulation in collagen VII-deficient skin. Front Immunol 2023; 14:1211505. [PMID: 37809094 PMCID: PMC10557493 DOI: 10.3389/fimmu.2023.1211505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023] Open
Abstract
Inflammation is known to play a critical role in all stages of tumorigenesis; however, less is known about how it predisposes the tissue microenvironment preceding tumor formation. Recessive dystrophic epidermolysis bullosa (RDEB), a skin-blistering disease secondary to COL7A1 mutations and associated with chronic wounding, inflammation, fibrosis, and cutaneous squamous cell carcinoma (cSCC), models this dynamic. Here, we used single-cell RNA sequencing (scRNAseq) to analyze gene expression patterns in skin cells from a mouse model of RDEB. We uncovered a complex landscape within the RDEB dermal microenvironment that exhibited altered metabolism, enhanced angiogenesis, hyperproliferative keratinocytes, infiltration and activation of immune cell populations, and inflammatory fibroblast priming. We demonstrated the presence of activated neutrophil and Langerhans cell subpopulations and elevated expression of PD-1 and PD-L1 in T cells and antigen-presenting cells, respectively. Unsupervised clustering within the fibroblast population further revealed two differentiation pathways in RDEB fibroblasts, one toward myofibroblasts and the other toward a phenotype that shares the characteristics of inflammatory fibroblast subsets in other inflammatory diseases as well as the IL-1-induced inflammatory cancer-associated fibroblasts (iCAFs) reported in various cancer types. Quantitation of inflammatory cytokines indicated dynamic waves of IL-1α, TGF-β1, TNF, IL-6, and IFN-γ concentrations, along with dermal NF-κB activation preceding JAK/STAT signaling. We further demonstrated the divergent and overlapping roles of these cytokines in inducing inflammatory phenotypes in RDEB patients as well as RDEB mouse-derived fibroblasts together with their healthy controls. In summary, our data have suggested a potential role of inflammation, driven by the chronic release of inflammatory cytokines such as IL-1, in creating an immune-suppressed dermal microenvironment that underlies RDEB disease progression.
Collapse
Affiliation(s)
- Morgan Anderson-Crannage
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Alex M. Ascensión
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Olga Ibanez-Solé
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Hongwen Zhu
- Department of Research & Development, Guizhou Atlasus Technology Co., Ltd., Guiyang, China
| | - Edo Schaefer
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Darcy Ottomanelli
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Bruno Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Jian Pan
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
- Department of Biomedical Engineering and Science, School of Engineering, Tecnun University of Navarra, San Sebastian, Spain
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
10
|
Vermeersch AS, Ali M, Gansemans Y, Van Nieuwerburgh F, Geldhof P, Ducatelle R, Deforce D, Callens J, Opsomer G. Severe udder cleft dermatitis lesion transcriptomics points to an impaired skin barrier, defective wound repair and a dysregulated inflammatory response as key elements in the pathogenesis. PLoS One 2023; 18:e0288347. [PMID: 37486897 PMCID: PMC10365316 DOI: 10.1371/journal.pone.0288347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
This study is the first to investigate the transcriptomic changes occurring in severe udder cleft dermatitis lesions (UCD) in Holstein-Friesian cows. An examination of the gene expression levels in natural UCD lesions and healthy udder skin through RNA Seq-Technology provided a deeper insight into the inflammatory pathways associated with this disease. A clear distinction between the gene expression patterns of UCD lesions and healthy skin was shown in the principal component analysis. Genes coding for inflammatory molecules were upregulated such as the chemokines C-X-C motif ligand 2 (CXCL2), 5 (CXCL5) and 8 (CXCL8), and C-C motif ligand 11 (CCL11). Moreover, the genes coding for the multifunctional molecules ADAM12 and SLPI were amongst the highest upregulated ones, whereas the most downregulated genes included the ones coding for keratins and keratin-associated molecules. Predominantly inflammatory pathways such as the chemokine signaling, cytokine receptor interaction and IL-17 signaling pathway were significantly upregulated in the pathway analysis. These results point towards a fulminant, dysregulated inflammatory response concomitant with a disruption of the skin barrier integrity and a hampered wound repair mechanism in severe UCD lesions.
Collapse
Affiliation(s)
- A S Vermeersch
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Ali
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Y Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - P Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - J Callens
- Dierengezondheidszorg Vlaanderen, Torhout, Belgium
| | - G Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
11
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
12
|
Ievlev V, Lynch TJ, Freischlag KW, Gries CB, Shah A, Pai AC, Ahlers BA, Park S, Engelhardt JF, Parekh KR. Krt14 and Krt15 differentially regulate regenerative properties and differentiation potential of airway basal cells. JCI Insight 2023; 8:162041. [PMID: 36512409 PMCID: PMC9977304 DOI: 10.1172/jci.insight.162041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Keratin expression dynamically changes in airway basal cells (BCs) after acute and chronic injury, yet the functional consequences of these changes on BC behavior remain unknown. In bronchiolitis obliterans (BO) after lung transplantation, BC clonogenicity declines, which is associated with a switch from keratin15 (Krt15) to keratin14 (Krt14). We investigated these keratins' roles using Crispr-KO in vitro and in vivo and found that Krt14-KO and Krt15-KO produce contrasting phenotypes in terms of differentiation and clonogenicity. Primary mouse Krt14-KO BCs did not differentiate into club and ciliated cells but had enhanced clonogenicity. By contrast, Krt15-KO did not alter BC differentiation but impaired clonogenicity in vitro and reduced the number of label-retaining BCs in vivo after injury. Krt14, but not Krt15, bound the tumor suppressor stratifin (Sfn). Disruption of Krt14, but not of Krt15, reduced Sfn protein abundance and increased expression of the oncogene dNp63a during BC differentiation, whereas dNp63a levels were reduced in Krt15-KO BCs. Overall, the phenotype of Krt15-KO BCs contrasts with Krt14-KO phenotype and resembles the phenotype in BO with decreased clonogenicity, increased Krt14, and decreased dNp63a expression. This work demonstrates that Krt14 and Krt15 functionally regulate BC behavior, which is relevant in chronic disease states like BO.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas J. Lynch
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kyle W. Freischlag
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Caitlyn B. Gries
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Anit Shah
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Albert C. Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Bethany A. Ahlers
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo Park
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Transcriptome Analysis Reveals Genes Contributed to Min Pig Villi Hair Follicle in Different Seasons. Vet Sci 2022; 9:vetsci9110639. [DOI: 10.3390/vetsci9110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The Min pig, a local pig breed in China, has a special trait which has intermittent villus and coat hair regeneration. However, the regulation and mechanism of villus in Min pigs have not yet been described. We observed and described the phenotype of Min pig dermal villi in detail and sequenced the mRNA transcriptome of Min pig hair follicles. A total of 1520 differentially expressed genes (DEG) were obtained.K-means hierarchical clustering showed that there was a significant expression pattern difference in winter compared with summer. Gene enrichment and network analysis results showed that the hair growth in Min pigs was closely related to the composition of desmosomes and regulated by an interaction network composed of eight core genes, namely DSP, DSC3, DSG4, PKP1, TGM1, KRT4, KRT15, and KRT84. Methylation analysis of promoters of target genes showed that the PKP1 gene was demethylated. Our study will help to supplement current knowledge of the growth mechanism of different types of hair.
Collapse
|
14
|
Transient expression of an adenine base editor corrects the Hutchinson-Gilford progeria syndrome mutation and improves the skin phenotype in mice. Nat Commun 2022; 13:3068. [PMID: 35654881 PMCID: PMC9163128 DOI: 10.1038/s41467-022-30800-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature ageing disorder caused by a point mutation in the LMNA gene (LMNA c.1824 C > T), resulting in the production of a detrimental protein called progerin. Adenine base editors recently emerged with a promising potential for HGPS gene therapy. However adeno-associated viral vector systems currently used in gene editing raise concerns, and the long-term effects of heterogeneous mutation correction in highly proliferative tissues like the skin are unknown. Here we use a non-integrative transient lentiviral vector system, expressing an adenine base editor to correct the HGPS mutation in the skin of HGPS mice. Transient adenine base editor expression corrected the mutation in 20.8-24.1% of the skin cells. Four weeks post delivery, the HGPS skin phenotype was improved and clusters of progerin-negative keratinocytes were detected, indicating that the mutation was corrected in both progenitor and differentiated skin cells. These results demonstrate that transient non-integrative viral vector mediated adenine base editor expression is a plausible approach for future gene-editing therapies.
Collapse
|
15
|
Chen W, Miao C. KRT15 promotes colorectal cancer cell migration and invasion through β-catenin/MMP-7 signaling pathway. Med Oncol 2022; 39:68. [PMID: 35477819 DOI: 10.1007/s12032-021-01619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/20/2021] [Indexed: 11/30/2022]
Abstract
KRT15 has been reported to act as an oncogene in colorectal cancer. However, whether KRT15 promotes colorectal cancer migration and invasion remain unclear. In this study, western blot and qRT-PCR assay were used to determine the expression of KRT15 in colorectal cancer cells. Wound-healing and transwell migration assay were performed to assess the migration of colorectal cancer cells. Matrigel transwell invasion assay was employed to examine the invasion of colorectal cancer cells. We found that KRT15 was highly expressed in colorectal cancer cells. Ectopic expression of KRT15 dramatically promoted colorectal cancer cell migration and invasion. Conversely, silencing KRT15 remarkably suppressed the migration and invasion of colorectal cancer cells. Importantly, we found that MMP-7 was crucial for KRT15-induced migration and invasion of colorectal cancer cells. Knockdown of MMP-7 significantly diminished the migration and invasion induced by KRT15; overexpression of MMP-7 almost completely rescued the inhibitory effects of KRT15 shRNAs on colorectal cancer cell migration and invasion. In addition, by gain- and loss-of function, we confirmed that β-catenin was responsible for the increased expression of MMP-7 induced by KRT15 colorectal cancer cell lines. In conclusion, KRT15 promotes migration and invasion of colorectal cancer cell at least partly through β-catenin/MMP7 signaling pathway, suggesting KRT15 is a potential therapeutic target for patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Weida Chen
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital (PKUIH), Beijing, 102206, People's Republic of China
| | - Chengli Miao
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital (PKUIH), Beijing, 102206, People's Republic of China.
| |
Collapse
|
16
|
Comparative Analysis of Type I Keratin Expression By Nail Consistency: An Immunohistochemistry Study. Appl Immunohistochem Mol Morphol 2022; 30:298-303. [PMID: 35384880 DOI: 10.1097/pai.0000000000001011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
The nail plate is one of the essential structures of the nail apparatus and is highly keratinized, making it difficult to handle this tissue experimentally. Different types of nail consistency were identified by applying distal pressure to the nail plate. To analyze the relationship between the keratins expressed in the nail plate and nail consistency, we chose a sample of 32 adult individuals (age 49.81±3.21 y) with the same number of each sex, who had a similar percentage of nail consistency types (56.25% hard consistency nails and 43.75% soft consistency nails). Immunohistochemical analyses showed that hard consistency nails contain more keratin 17 than soft consistency nails (P=0.026). These novel results allow nail consistency to be defined by the differential expression of keratins in the nail plate, and have potential clinical implications for the diagnosis of possible nail disorders and/or systemic disease.
Collapse
|
17
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
18
|
Tago K, Ohta S, Aoki-Ohmura C, Funakoshi-Tago M, Sashikawa M, Matsui T, Miyamoto Y, Wada T, Oshio T, Komine M, Matsugi J, Furukawa Y, Ohtsuki M, Yamauchi J, Yanagisawa K. K15 promoter-driven enforced expression of NKIRAS exhibits tumor suppressive activity against the development of DMBA/TPA-induced skin tumors. Sci Rep 2021; 11:20658. [PMID: 34667224 PMCID: PMC8526694 DOI: 10.1038/s41598-021-00200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
NKIRAS1 and NKIRAS2 (also called as κB-Ras) were identified as members of the atypical RAS family that suppress the transcription factor NF-κB. However, their function in carcinogenesis is still controversial. To clarify how NKIRAS acts on cellular transformation, we generated transgenic mice in which NKIRAS2 was forcibly expressed using a cytokeratin 15 (K15) promoter, which is mainly activated in follicle bulge cells. The ectopic expression of NKIRAS2 was mainly detected in follicle bulges of transgenic mice with NKIRAS2 but not in wild type mice. K15 promoter-driven expression of NKIRAS2 failed to affect the development of epidermis, which was evaluated using the expression of K10, K14, K15 and filaggrin. However, K15 promoter-driven expression of NKIRAS2 effectively suppressed the development of skin tumors induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA). This observation suggested that NKIRAS seemed to function as a tumor suppressor in follicle bulges. However, in the case of oncogenic HRAS-driven cellular transformation of murine fibroblasts, knockdown of NKIRAS2 expression drastically suppressed HRAS-mutant-provoked cellular transformation, suggesting that NKIRAS2 was required for the cellular transformation of murine fibroblasts. Furthermore, moderate enforced expression of NKIRAS2 augmented oncogenic HRAS-provoked cellular transformation, whereas an excess NKIRAS2 expression converted its functional role into a tumor suppressive phenotype, suggesting that NKIRAS seemed to exhibit a biphasic bell-shaped enhancing effect on HRAS-mutant-provoked oncogenic activity. Taken together, the functional role of NKIRAS in carcinogenesis is most likely determined by not only cellular context but also its expression level.
Collapse
Affiliation(s)
- Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| | - Satoshi Ohta
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Chihiro Aoki-Ohmura
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Miho Sashikawa
- Department of Dermatology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Takeshi Matsui
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Taeko Wada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Tomoyuki Oshio
- Department of Dermatology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Mayumi Komine
- Department of Dermatology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Jitsuhiro Matsugi
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Mamitaro Ohtsuki
- Department of Dermatology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.,Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ken Yanagisawa
- Division of Structural Biochemistry, Department of Biochemistry, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| |
Collapse
|
19
|
Konger RL, Derr-Yellin E, Zimmers TA, Katona T, Xuei X, Liu Y, Zhou HM, Simpson ER, Turner MJ. Epidermal PPARγ Is a Key Homeostatic Regulator of Cutaneous Inflammation and Barrier Function in Mouse Skin. Int J Mol Sci 2021; 22:ijms22168634. [PMID: 34445339 PMCID: PMC8395473 DOI: 10.3390/ijms22168634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Both agonist studies and loss-of-function models indicate that PPARγ plays an important role in cutaneous biology. Since PPARγ has a high level of basal activity, we hypothesized that epidermal PPARγ would regulate normal homeostatic processes within the epidermis. In this current study, we performed mRNA sequencing and differential expression analysis of epidermal scrapings from knockout mice and wildtype littermates. Pparg-/-epi mice exhibited a 1.5-fold or greater change in the expression of 11.8% of 14,482 identified transcripts. Up-regulated transcripts included those for a large number of cytokines/chemokines and their receptors, as well as genes associated with inflammasome activation and keratinization. Several of the most dramatically up-regulated pro-inflammatory genes in Pparg-/-epi mouse skin included Igfl3, 2610528A11Rik, and Il1f6. RT-PCR was performed from RNA obtained from non-lesional full-thickness skin and verified a marked increase in these transcripts, as well as transcripts for Igflr1, which encodes the receptor for Igfl3, and the 2610528A11Rik receptor (Gpr15). Transcripts for Il4 were detected in Pparg-/-epi mouse skin, but transcripts for Il17 and Il22 were not detected. Down-regulated transcripts included sebaceous gland markers and a number of genes associated with lipid barrier formation. The change in these transcripts correlates with an asebia phenotype, increased transepidermal water loss, alopecia, dandruff, and the appearance of spontaneous inflammatory skin lesions. Histologically, non-lesional skin showed hyperkeratosis, while inflammatory lesions were characterized by dermal inflammation and epidermal acanthosis, spongiosis, and parakeratosis. In conclusion, loss of epidermal Pparg alters a substantial set of genes that are associated with cutaneous inflammation, keratinization, and sebaceous gland function. The data indicate that epidermal PPARγ plays an important role in homeostatic epidermal function, particularly epidermal differentiation, barrier function, sebaceous gland development and function, and inflammatory signaling.
Collapse
Affiliation(s)
- Raymond L. Konger
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Correspondence: ; Tel.: +1-317-274-4154
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Terrence Katona
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
| | - Xiaoling Xuei
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Yunlong Liu
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
| | - Ed Ronald Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew J. Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of Dermatology, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Wang J, Mongan M, Zhang X, Xia Y. Isolation and long-term expansion of murine epidermal stem-like cells. PLoS One 2021; 16:e0254731. [PMID: 34270586 PMCID: PMC8284819 DOI: 10.1371/journal.pone.0254731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022] Open
Abstract
Epidermis is the most outer layer of the skin and a physical barrier protecting the internal tissues from mechanical and environmental insults. The basal keratinocytes, which, through proliferation and differentiation, supply diverse cell types for epidermal homeostasis and injury repair. Sustainable culture of murine keratinocyte, however, is a major obstacle. Here we developed murine keratinocyte lines using low-Ca2+ (0.06 mM) keratinocyte serum-free medium (KSFM-Ca2+) without feeder cells. Cells derived in this condition could be subcultured for >70 passages. They displayed basal epithelial cell morphology and expressed keratin (Krt) 14, but lacked the epithelial-characteristic intercellular junctions. Moreover, these cells could be adapted to grow in the Defined-KSFM (DKSFM) media containing 0.15 mM Ca2+, and the adapted cells established tight- and adherens-junctions and exhibited increased Krt1/10 expression while retained subculture capacity. Global gene expression studies showed cells derived in KSFM-Ca2+ media had enriched stem/proliferation markers and cells adapted in DKSFM media had epithelial progenitor signatures. Correspondingly, KSFM-Ca2+-derived cells exhibited a remarkable capacity of clonal expansion, whereas DKSFM-adapted cells could differentiate to suprabasal epithelial cell types in 3-dimentional (3D) organoids. The generation of stem-like murine keratinocyte lines and the conversion of these cells to epithelial progenitors capable of terminal differentiation provide the critically needed resources for skin research.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Maureen Mongan
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ying Xia
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
21
|
Marycz K, Pielok A, Kornicka-Garbowska K. Equine Hoof Stem Progenitor Cells (HPC) CD29 + /Nestin + /K15 + - a Novel Dermal/epidermal Stem Cell Population With a Potential Critical Role for Laminitis Treatment. Stem Cell Rev Rep 2021; 17:1478-1485. [PMID: 34037924 PMCID: PMC8149919 DOI: 10.1007/s12015-021-10187-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Laminitis is a life threating, extremely painful and frequently recurrent disease of horses which affects hoof structure. It results from the disruption of blood flow to the laminae, contributing to laminitis and in severe separation of bone from the hoof capsule. Still, the pathophysiology of the disease remains unclear, mainly due to its complexity. In the light of the presented data, in the extremally difficult process of tissue structure restoration after disruption, a novel type of progenitor cells may be involved. Herein, we isolated and performed the initial characterization of stem progenitor cells isolated from the coronary corium of the equine feet (HPC). Phenotype of the cells was investigated with flow cytometry and RT-qPCR revealing the presence of nestin, CD29, and expression of progenitor cell markers including SOX2, OCT4, NANOG and K14. Morphology of HPC was investigated with light, confocal and SEM microscopes. Cultured cells were characterised by spindle shaped morphology, eccentric nuclei, elongated mitochondria, and high proliferation rate. Plasticity and multilineage differentiation potential was confirmed by specific staining and gene expression analysis. We conclude that HPC exhibit in vitro expansion and plasticity similar to mesenchymal stem cells, which can be isolated from the equine foot, and may be directly involved in the pathogenesis and recovery of laminitis. Obtained results are of importance to the field of laminitis treatment as determining the repairing cell populations could contribute to the discovery of novel therapeutic targets and agents including and cell‐based therapies for affected animals.
Collapse
Affiliation(s)
- Krzysztof Marycz
- International Institute of Translational Medicine (MIMT), ul. Jesionowa 11, 55-114, Malin Wisznia Mała, Poland. .,Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. CK Norwida 27, 50-375, Wrocław, Poland.
| | - Ariadna Pielok
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. CK Norwida 27, 50-375, Wrocław, Poland
| | - Katarzyna Kornicka-Garbowska
- International Institute of Translational Medicine (MIMT), ul. Jesionowa 11, 55-114, Malin Wisznia Mała, Poland.,Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. CK Norwida 27, 50-375, Wrocław, Poland
| |
Collapse
|
22
|
Kim YW, Ko EA, Jung SC, Lee D, Seo Y, Kim S, Kim JH, Bang H, Zhou T, Ko JH. Transcriptomic insight into the translational value of two murine models in human atopic dermatitis. Sci Rep 2021; 11:6616. [PMID: 33758305 PMCID: PMC7988112 DOI: 10.1038/s41598-021-86049-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
This study sought to develop a novel diagnostic tool for atopic dermatitis (AD). Mouse transcriptome data were obtained via RNA-sequencing of dorsal skin tissues of CBA/J mice affected with contact hypersensitivity (induced by treatment with 1-chloro-2,4-dinitrobenzene) or brush stimulation-induced AD-like skin condition. Human transcriptome data were collected from German, Swedish, and American cohorts of AD patients from the Gene Expression Omnibus database. edgeR and SAM algorithms were used to analyze differentially expressed murine and human genes, respectively. The FAIME algorithm was then employed to assign pathway scores based on KEGG pathway database annotations. Numerous genes and pathways demonstrated similar dysregulation patterns in both the murine models and human AD. Upon integrating transcriptome information from both murine and human data, we identified 36 commonly dysregulated differentially expressed genes, which were designated as a 36-gene signature. A severity score (AD index) was applied to each human sample to assess the predictive power of the 36-gene AD signature. The diagnostic power and predictive accuracy of this signature were demonstrated for both AD severity and treatment outcomes in patients with AD. This genetic signature is expected to improve both AD diagnosis and targeted preclinical research.
Collapse
Affiliation(s)
- Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju, 63243, Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju, 63243, Korea
| | - Donghee Lee
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Yelim Seo
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Seongtae Kim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Jung-Ha Kim
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, Seoul, 06973, Korea
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
23
|
Transcript levels of keratin 1/5/6/14/15/16/17 as potential prognostic indicators in melanoma patients. Sci Rep 2021; 11:1023. [PMID: 33441834 PMCID: PMC7806772 DOI: 10.1038/s41598-020-80336-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Keratins (KRTs), the intermediate filament-forming proteins of epithelial cells, are extensively used as diagnostic biomarkers in cancers and associated with tumorigenesis and metastasis in multiple cancers. However, the diverse expression patterns and prognostic values of KRTs in melanoma have yet to be elucidated. In the current study, we examined the transcriptional and clinical data of KRTs in patients with melanoma from GEO, TCGA, ONCOMINE, GEPIA, cBioPortal, TIMER and TISIDB databases. We found that the mRNA levels of KRT1/2/5/6/8/10/14/15/16/17 were significantly differential expressed between primary melanoma and metastatic melanoma. The expression levels of KRT1/2/5/6/10/14/15/16/17 were correlated with advanced tumor stage. Survival analysis revealed that the high transcription levels of KRT1/5/6/14/15/16/17 were associated with low overall survival in melanoma patients. GSEA analysis indicated that the most involved hallmarks pathways were P53 pathway, KRAS signaling, estrogen response early and estrogen response late. Furthermore, we found some correlations among the expression of KRTs and the infiltration of immune cells. Our study may provide novel insights for the selection of prognostic biomarkers for melanoma.
Collapse
|
24
|
Moses RL, Boyle GM, Howard-Jones RA, Errington RJ, Johns JP, Gordon V, Reddell P, Steadman R, Moseley R. Novel epoxy-tiglianes stimulate skin keratinocyte wound healing responses and re-epithelialization via protein kinase C activation. Biochem Pharmacol 2020; 178:114048. [PMID: 32446889 DOI: 10.1016/j.bcp.2020.114048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Epoxy-tiglianes are a novel class of diterpene esters. The prototype epoxy-tigliane, EBC-46 (tigilanol tiglate), possesses potent anti-cancer properties and is currently in clinical development as a local treatment for human and veterinary cutaneous tumors. EBC-46 rapidly destroys treated tumors and consistently promotes wound re-epithelialization at sites of tumor destruction. However, the mechanisms underlying these keratinocyte wound healing responses are not completely understood. Here, we investigated the effects of EBC-46 and an analogue (EBC-211) at 1.51 nM-151 µM concentrations, on wound healing responses in immortalized human skin keratinocytes (HaCaTs). Both EBC-46 and EBC-211 (1.51 nM-15.1 µM) accelerated G0/G1-S and S-G2/M cell cycle transitions and HaCaT proliferation. EBC-46 (1.51-151 nM) and EBC-211 (1.51 nM-15.1 µM) further induced significant HaCaT migration and scratch wound repopulation. Stimulated migration/wound repopulation responses were even induced by EBC-46 (1.51 nM) and EBC-211 (1.51-151 nM) with proliferation inhibitor, mitomycin C (1 μM), suggesting that epoxy-tiglianes can promote migration and wound repopulation independently of proliferation. Expression profiling analyses showed that epoxy-tiglianes modulated keratin, DNA synthesis/replication, cell cycle/proliferation, motility/migration, differentiation, matrix metalloproteinase (MMP) and cytokine/chemokine gene expression, to facilitate enhanced responses. Although epoxy-tiglianes down-regulated established cytokine and chemokine agonists of keratinocyte proliferation and migration, enhanced HaCaT responses were demonstrated to be mediated via protein kinase C (PKC) phosphorylation and significantly abrogated by pan-PKC inhibitor, bisindolylmaleimide-1 (BIM-1, 1 μM). By identifying how epoxy-tiglianes stimulate keratinocyte healing responses and re-epithelialization in treated skin, our findings support the further development of this class of small molecules as potential therapeutics for other clinical situations associated with impaired re-epithelialization, such as non-healing skin wounds.
Collapse
Affiliation(s)
- Rachael L Moses
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel A Howard-Jones
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Rachel J Errington
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Welsh Kidney Research Unit, Division of Infection and Immunity, Cardiff Institute of Tissue Engineering and Repair (CITER), School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
25
|
Lin JB, Feng Z, Qiu ML, Luo RG, Li X, Liu B. KRT 15 as a prognostic biomarker is highly expressed in esophageal carcinoma. Future Oncol 2020; 16:1903-1909. [PMID: 32449621 DOI: 10.2217/fon-2019-0603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To investigate the expression and prognostic value of KRT 15 in esophageal carcinoma. Materials & methods: The expression levels of KRT 15 were measured in 128 cases of esophageal carcinoma and matched adjacent normal tissues by immunohistochemistry and Western blot assays. Results & conclusion: Western blot analysis shown the expression levels of KRT 15 in esophageal carcinoma were significantly higher compared with those in matched adjacent normal tissues (p < 0.001). immunohistochemistry result shown the high-expression rate of KRT 15 in esophageal carcinoma were 56.3%, which was significantly higher than those in normal tissues (35.9%; p = 0.002). KRT 15 high-expression correlated with T stage, lymph node metastasis, tumor node metastasis stage and prognosis (p < 0.05). These data indicate KRT 15 as a prognostic biomarker is highly expressed in esophageal carcinoma.
Collapse
Affiliation(s)
- Jian-Bo Lin
- Thoracic Surgery Department, First Affiliated Hospital, Fujian Medical University, Chazhong Road 20#, Fuzhou City, 350005, PR China
| | - Zhi Feng
- Thoracic Surgery Department, First Affiliated Hospital, Fujian Medical University, Chazhong Road 20#, Fuzhou City, 350005, PR China
| | - Ming-Lian Qiu
- Thoracic Surgery Department, First Affiliated Hospital, Fujian Medical University, Chazhong Road 20#, Fuzhou City, 350005, PR China
| | - Rong-Gang Luo
- Thoracic Surgery Department, First Affiliated Hospital, Fujian Medical University, Chazhong Road 20#, Fuzhou City, 350005, PR China
| | - Xu Li
- Thoracic Surgery Department, First Affiliated Hospital, Fujian Medical University, Chazhong Road 20#, Fuzhou City, 350005, PR China
| | - Bo Liu
- Thoracic Surgery Department, First Affiliated Hospital, Fujian Medical University, Chazhong Road 20#, Fuzhou City, 350005, PR China
| |
Collapse
|
26
|
Serum lipids, retinoic acid and phenol red differentially regulate expression of keratins K1, K10 and K2 in cultured keratinocytes. Sci Rep 2020; 10:4829. [PMID: 32179842 PMCID: PMC7076045 DOI: 10.1038/s41598-020-61640-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/27/2020] [Indexed: 01/30/2023] Open
Abstract
Abnormal keratinocyte differentiation is fundamental to pathologies such as skin cancer and mucosal inflammatory diseases. The ability to grow keratinocytes in vitro allows the study of differentiation however any translational value is limited if keratinocytes get altered by the culture method. Although serum lipids (SLPs) and phenol red (PR) are ubiquitous components of culture media their effect on differentiation is largely unknown. We show for the first time that PR and SLP themselves suppress expression of differentiation-specific keratins K1, K10 and K2 in normal human epidermal keratinocytes (NHEK) and two important cell lines, HaCaT and N/TERT-1. Removal of SLP increased expression of K1, K10 and K2 in 2D and 3D cultures, which was further enhanced in the absence of PR. The effect was reversed for K1 and K10 by adding all-trans retinoic acid (ATRA) but increased for K2 in the absence of PR. Furthermore, retinoid regulation of differentiation-specific keratins involves post-transcriptional mechanisms as we show KRT2 mRNA is stabilised whilst KRT1 and KRT10 mRNAs are destabilised in the presence of ATRA. Taken together, our results indicate that the presence of PR and SLP in cell culture media may significantly impact in vitro studies of keratinocyte differentiation.
Collapse
|
27
|
Ivina AA, Semkin VA, Khabadze ZS, Babichenko II. [Immunohistochemical study of Ki-67, PHH3, and CK15 protein expression in oral epithelial malignancy]. Arkh Patol 2019; 81:30-34. [PMID: 31626202 DOI: 10.17116/patol20198105130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the expression of Ki-67, phosphohistone H-3 (PHH3), and cytokeratin 15 (CK15) proteins in the cells of the oral mucosa (OM) according to the degree of its malignant transformation. MATERIAL AND METHODS OM biopsy specimens from 69 patients diagnosed with focal epithelial hyperplasia, intraepithelial squamous cell neoplasia, cancer in situ, and squamous cell carcinoma were examined. Tissue antigens were determined using mouse Ki-67 monoclonal antibodies, rabbit PHH3 polyclonal antibodies, and mouse CK15 monoclonal antibodies. RESULTS There was an increase in epithelial proliferative and mitotic activities in squamous cell carcinoma and a sharp decrease in the expression of CK15 in the cytoplasm in cancer in situ and squamous cell carcinoma of the OM. CONCLUSION The protein CK15 can be used for the differential diagnosis between high-grade dysplasia and OM epithelial malignancy at the stage of carcinoma in situ and squamous cell carcinoma.
Collapse
Affiliation(s)
- A A Ivina
- People's Friendship University of Russia, Moscow, Russia,Central Research Institute of Dentistry and Maxillofacial Surgery, Ministry of Health of Russia, Moscow, Russia
| | - V A Semkin
- Central Research Institute of Dentistry and Maxillofacial Surgery, Ministry of Health of Russia, Moscow, Russia
| | - Z S Khabadze
- People's Friendship University of Russia, Moscow, Russia
| | - I I Babichenko
- People's Friendship University of Russia, Moscow, Russia,Central Research Institute of Dentistry and Maxillofacial Surgery, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
28
|
Sola-Carvajal A, Revêchon G, Helgadottir HT, Whisenant D, Hagblom R, Döhla J, Katajisto P, Brodin D, Fagerström-Billai F, Viceconte N, Eriksson M. Accumulation of Progerin Affects the Symmetry of Cell Division and Is Associated with Impaired Wnt Signaling and the Mislocalization of Nuclear Envelope Proteins. J Invest Dermatol 2019; 139:2272-2280.e12. [PMID: 31128203 DOI: 10.1016/j.jid.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is the result of a defective form of the lamin A protein called progerin. While progerin is known to disrupt the properties of the nuclear lamina, the underlying mechanisms responsible for the pathophysiology of HGPS remain less clear. Previous studies in our laboratory have shown that progerin expression in murine epidermal basal cells results in impaired stratification and halted development of the skin. Stratification and differentiation of the epidermis is regulated by asymmetric stem cell division. Here, we show that expression of progerin impairs the ability of stem cells to maintain tissue homeostasis as a result of altered cell division. Quantification of basal skin cells showed an increase in symmetric cell division that correlated with progerin accumulation in HGPS mice. Investigation of the mechanisms underlying this phenomenon revealed a putative role of Wnt/β-catenin signaling. Further analysis suggested an alteration in the nuclear translocation of β-catenin involving the inner and outer nuclear membrane proteins, emerin and nesprin-2. Taken together, our results suggest a direct involvement of progerin in the transmission of Wnt signaling and normal stem cell division. These insights into the molecular mechanisms of progerin may help develop new treatment strategies for HGPS.
Collapse
Affiliation(s)
- Agustín Sola-Carvajal
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hafdis T Helgadottir
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Daniel Whisenant
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Robin Hagblom
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Julia Döhla
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Brodin
- Bioinformatics and Expression Core Facility, Karolinska Institutet, Huddinge, Sweden
| | | | - Nikenza Viceconte
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
29
|
The monoclonal antibody EPR1614Y against the stem cell biomarker keratin K15 lacks specificity and reacts with other keratins. Sci Rep 2019; 9:1943. [PMID: 30760780 PMCID: PMC6374370 DOI: 10.1038/s41598-018-38163-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Keratin 15 (K15), a type I keratin, which pairs with K5 in epidermis, has been used extensively as a biomarker for stem cells. Two commercial antibodies, LHK15, a mouse monoclonal and EPR1614Y, a rabbit monoclonal, have been widely employed to study K15 expression. Here we report differential reactivity of these antibodies on epithelial cells and tissue sections. Although the two antibodies specifically recognised K15 on western blot, they reacted differently on skin sections and cell lines. LHK15 reacted in patches, whereas EPR1614Y reacted homogenously with the basal keratinocytes in skin sections. In cultured cells, LHK15 did not react with K15 deficient NEB-1, KEB-11, MCF-7 and SW13 cells expressing only exogenous K8 and K18 but reacted when these cells were transduced with K15. On the other hand, EPR1614Y reacted with these cells even though they were devoid of K15. Taken together these results suggest that EPR1614Y recognises a conformational epitope on keratin filaments which can be reconstituted by other keratins as well as by K15. In conclusion, this report highlights that all commercially available antibodies may not be equally specific in identifying the K15 positive stem cell.
Collapse
|
30
|
Alsaegh MA, Altaie AM, Zhu S. Expression of keratin 15 in dentigerous cyst, odontogenic keratocyst and ameloblastoma. Mol Clin Oncol 2019; 10:377-381. [PMID: 30847177 DOI: 10.3892/mco.2019.1802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/15/2019] [Indexed: 02/01/2023] Open
Abstract
The etiology and pathogenesis of odontogenic lesions are poorly understood. Keratin 15 (K15) is a type I cytoskeletal protein that provides structural support to the cells and has been considered to be a stem cell marker. The aim of the present study was to evaluate the expression of K15 in the epithelial lining of dentigerous cysts (DCs), odontogenic keratocysts (OKCs) and ameloblastomas (ABs). The study included 41 samples of DCs (n=13), OKCs (n=12), and AB tissues (n=16). K15 protein expression was evaluated via immunohistochemistry and data were statistically analyzed using a Kruskal-Wallis test. K15 was expressed in the majority of the studied lesions with various distributions in the different study samples. The Kruskal-Wallis test revealed non-significant differences in the expression of K15 among the three odontogenic lesions (P=0.380). The present study confirmed the high expression of K15 in the different epithelial layers of DC, OKC and AB. This type of expression excludes the reliability of regarding K15 as a stem cell marker in DC, OKC and AB. However, K15 may reflect the abnormal differentiation of pathological epithelial cells in these lesions.
Collapse
Affiliation(s)
- Mohammed Amjed Alsaegh
- Department of Oral and Maxillofacial Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Oral and Maxillofacial Surgery, College of Dentistry, Ajman University, Fujairah Campus, Al-Hulifat, Fujairah 2202, United Arab Emirates
| | - Alaa Muayad Altaie
- Sharjah Medical Research Institute, Medical College, Sharjah University, Sharjah 27272, United Arab Emirates
| | - Shengrong Zhu
- Department of Oral and Maxillofacial Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
31
|
Zhuang L, Lawlor KT, Schlueter H, Pieterse Z, Yu Y, Kaur P. Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions. Life Sci Alliance 2018; 1:e201700009. [PMID: 30456360 PMCID: PMC6238533 DOI: 10.26508/lsa.201700009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022] Open
Abstract
The cellular and molecular microenvironment of epithelial stem/progenitor cells is critical for their long-term self-renewal. We demonstrate that mesenchymal stem cell-like dermal microvascular pericytes are a critical element of the skin's microenvironment influencing human skin regeneration using organotypic models. Specifically, pericytes were capable of promoting homeostatic skin tissue renewal by conferring more planar cell divisions generating two basal cells within the proliferative compartment of the human epidermis, while ensuring complete maturation of the tissue both spatially and temporally. Moreover, we provide evidence supporting the notion that BMP-2, a secreted protein preferentially expressed by pericytes in human skin, confers cell polarity and planar divisions on epidermal cells in organotypic cultures. Our data suggest that human skin regeneration is regulated by highly conserved mechanisms at play in other rapidly renewing tissues such as the bone marrow and in lower organisms such as Drosophila. Our work also provides the means to significantly improve ex vivo skin tissue regeneration for autologous transplantation.
Collapse
Affiliation(s)
- Lizhe Zhuang
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | - Zalitha Pieterse
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Pritinder Kaur
- Peter MacCallum Cancer Centre, Melbourne, Australia.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
32
|
Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018; 132:270-295. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Abstract
Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct. The printing of skin faces challenges broadly associated with general 3D bioprinting, including the selection of cell types and biomaterials, and additionally requires in vitro culture formats that allow for growth at an air-liquid interface. This paper provides a thorough review of current 3D bioprinting technologies used to engineer human skin constructs and presents the overall pipelines of designing a biomimetic artificial skin via 3D bioprinting from the design phase (i.e. pre-processing phase) through the tissue maturation phase (i.e. post-processing) and into final product evaluation for drug screening, development, and drug delivery applications.
Collapse
|
33
|
Chen XD, Ruan SB, Lin ZP, Zhou Z, Zhang FG, Yang RH, Xie JL. Effects of porcine acellular dermal matrix treatment on wound healing and scar formation: Role of Jag1 expression in epidermal stem cells. Organogenesis 2018; 14:25-35. [PMID: 29420128 DOI: 10.1080/15476278.2018.1436023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Shu-Bin Ruan
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Ze-Peng Lin
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Ziheng Zhou
- b Department of Burn Surgery , First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Feng-Gang Zhang
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Rong-Hua Yang
- a Department of Burn Surgery , The First People's Hospital of Foshan , Foshan , Guangdong , China
| | - Ju-Lin Xie
- b Department of Burn Surgery , First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , Guangdong , China
| |
Collapse
|
34
|
From HSV infection to erythema multiforme through autoimmune crossreactivity. Autoimmun Rev 2018; 17:576-581. [PMID: 29635075 DOI: 10.1016/j.autrev.2017.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/24/2017] [Indexed: 12/26/2022]
Abstract
Scientific and clinical data indicate that human herpes simplex virus 1 (HSV1) and, at a lesser extent, human herpes simplex virus 2 (HSV2) are factor(s) implicated in the development of erythema multiforme (EM). With a focus on oral EM, the present structured review of proteomic and epitope databases searched for the molecular basis that might link HSV1 and HSV2 infections to EM. It was found that a high number of peptides are shared between the two HSVs and human proteins related to the oral mucosa. Moreover, a great number of the shared peptides are also present in epitopes that have been experimentally validated as immunopositive in the human host. The results suggest the involvement of HSV infections in the induction of oral EM via a mechanism of autoimmune cross-reactivity and, in particular, highlight a potential major role for 180kDa bullous pemphigoid antigen and HSV1 infection in the genesis of crossreactions potentially conducive to EM.
Collapse
|
35
|
Ivina AA, Semkin VA, Babichenko II. [Cytokeratin 15 as a diagnostic marker for oral epithelial malignization]. STOMATOLOGIIA 2018; 97:61-62. [PMID: 30589428 DOI: 10.17116/stomat20189706161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The paper presents an example of an immunohistochemical study of malignancy in oral epithelial hyperplasia. In the described case in view of the difficulty in determining the onset of the epithelial malignancy with the usual histological technique, an immunohistochemical method was used with antibodies to proteins Ki-67, human papillomavirus (HPV) type 16 and cytokeratin 15. The results of immunohistochemical study indicated increased proliferative activity of epithelial cells, presence of papillomavirus HPV16 in their cytoplasm and synthesis of cytokeratin 15 in all layers of the epithelium. These characteristics of squamous intraepithelial neoplasia may be a diagnostic criterion for the beginning of oral epithelial malignization.
Collapse
Affiliation(s)
- A A Ivina
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| | - V A Semkin
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - I I Babichenko
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
36
|
Ruan N, Lin C, Dong X, Hu X, Zhang Y. Induction of Rhesus Keratinocytes into Functional Ameloblasts by Mouse Embryonic Dental Mesenchyme. Tissue Eng Regen Med 2017; 15:173-181. [PMID: 30603545 DOI: 10.1007/s13770-017-0098-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022] Open
Abstract
Fast progresses in stem cell-based tooth tissue engineering have been achieved in recent years in several animal models including the mouse, rat, dog, and pig. Moreover, various postnatal mesenchymal stem cells of dental origin have been isolated and shown capable of differentiating into odontoblasts and generating dentin. Meanwhile, human keratinocyte stem/progenitor cells, gingival epithelial cells, and even iPSC-derived epithelium have been demonstrated to be able to differentiate into functional ameloblasts. Translational medicine studies in the nonhuman primate are irreplaceable steps towards clinical application of stem cell-based tissue engineering therapy. In the present study, we first examined the epithelial stem cell markers in the rhesus skin using immunostaining. Keratinocyte stem cells were then isolated from rhesus epidermis, cultured in vitro, and characterized by epithelial stem cell markers. Epithelial sheets of these cultured keratinocytes, which were recombined with E13.5 mouse dental mesenchyme that possesses odontogenic potential in the presence of exogenous FGF8, were induced to differentiate into enamel-secreting ameloblasts. Our results demonstrate that in the presence of appropriate odontogenic signals, rhesus keratinocytes can be induced to gain odontogenic competence and are capable of participating in odontogenesis, indicating that rhesus keratinocytes are an ideal epithelial cell source for further translational medicine study of tooth tissue engineering in nonhuman primates.
Collapse
Affiliation(s)
- Ningsheng Ruan
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 Fujian People's Republic of China
| | - Chensheng Lin
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 Fujian People's Republic of China
| | - Xiuqing Dong
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 Fujian People's Republic of China
| | - Xuefeng Hu
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 Fujian People's Republic of China
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, 350108 Fujian People's Republic of China
| |
Collapse
|
37
|
In vitro co-culture of epithelial cells and smooth muscle cells on aligned nanofibrous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:191-205. [DOI: 10.1016/j.msec.2017.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 01/06/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
38
|
Perlecan expression influences the keratin 15-positive cell population fate in the epidermis of aging skin. Aging (Albany NY) 2017; 8:751-68. [PMID: 26996820 PMCID: PMC4925826 DOI: 10.18632/aging.100928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
The epidermis is continuously renewed by stem cell proliferation and differentiation. Basal keratinocytes append the dermal‐epidermal junction, a cell surface‐associated, extracellular matrix that provides structural support and influences their behaviour. It consists of laminins, type IV collagen, nidogens, and perlecan, which are necessary for tissue organization and structural integrity. Perlecan is a heparan sulfate proteoglycan known to be involved in keratinocyte survival and differentiation. Aging affects the dermal epidermal junction resulting in decreased contact with keratinocytes, thus impacting epidermal renewal and homeostasis. We found that perlecan expression decreased during chronological skin aging. Our in vitro studies revealed reduced perlecan transcript levels in aged keratinocytes. The production of in vitro skin models revealed that aged keratinocytes formed a thin and poorly organized epidermis. Supplementing these models with purified perlecan reversed the phenomenon allowing restoration of a well‐differentiated multi‐layered epithelium. Perlecan down‐regulation in cultured keratinocytes caused depletion of the cell population that expressed keratin 15. This phenomenon depended on the perlecan heparan sulphate moieties, which suggested the involvement of a growth factor. Finally, we found defects in keratin 15 expression in the epidermis of aging skin. This study highlighted a new role for perlecan in maintaining the self‐renewal capacity of basal keratinocytes.
Collapse
|
39
|
Dai Y, Zhang Q, Jiang Y, Yin L, Zhang X, Chen Y, Cai X. Screening of differentially expressed proteins in psoriasis vulgaris by two-dimensional gel electrophoresis and mass spectrometry. Exp Ther Med 2017; 14:3369-3374. [PMID: 29042920 PMCID: PMC5639297 DOI: 10.3892/etm.2017.5012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/22/2016] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to elucidate differentially expressed proteins in lesional tissues of psoriasis vulgaris (PV) and normal tissues. Lesional skin tissues were collected from PV patients, along with normal skin tissues from healthy individuals. The protein content of the samples was extracted and then separated by two-dimensional gel electrophoresis (2-DGE). Any proteins that were differentially expressed in the lesional skin of PV patients compared with the healthy controls were analyzed by mass spectrometry and bioinformatics. In the stratum corneum and dermis of PV patients, the total number of proteins identified by 2-DGE was 1,969±21 and 1,928±49, respectively. Of these, 30 proteins were differentially expressed in the PV patients, of which 14 were identified as: Type 1 keratin cytoskeleton proteins (including K1C10, K1C14, K1C15 and K1C16); the type 2 keratin cytoskeleton protein, K2C1; actin-associated proteins (including ARP3, ACTA and ACTBM); prohibitin; heat shock proteins (HSPB1 and CH60); centrosome protein, CP135; and membrane associated proteins (including ANXA4 and ANXA5). The differential expression of protein between PV lesions and normal tissue can be considered as pathological biomarker. Elucidating the abnormal regulation of these proteins can provide mechanism of the development of PV and may contribute to significant approaches for PV treatments.
Collapse
Affiliation(s)
- Yinan Dai
- Department of Dermatology, 202 Hospital of PLA, Shenyang, Liaoning 110001, P.R. China
| | - Qingrui Zhang
- Department of Dermatology, 202 Hospital of PLA, Shenyang, Liaoning 110001, P.R. China.,Central Laboratory, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Jiang
- Central Laboratory, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lu Yin
- Department of Dermatology, 202 Hospital of PLA, Shenyang, Liaoning 110001, P.R. China
| | - Xiaodong Zhang
- Department of Dermatology, 202 Hospital of PLA, Shenyang, Liaoning 110001, P.R. China
| | - Yang Chen
- Central Laboratory, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xinze Cai
- Central Laboratory, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
40
|
Ojeh N, Akgül B, Tomic-Canic M, Philpott M, Navsaria H. In vitro skin models to study epithelial regeneration from the hair follicle. PLoS One 2017; 12:e0174389. [PMID: 28350869 PMCID: PMC5370106 DOI: 10.1371/journal.pone.0174389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/08/2017] [Indexed: 11/18/2022] Open
Abstract
The development of dermal equivalents (DEs) for the treatment of burns has contributed toward efficient wound closure. A collagen-glycosaminoglycan DE (C-GAG) grafted with hair follicles converted a full-thickness wound to partial-thickness resulting in complete wound closure and restored hair. In this study we compared the ability of both intact pilosebaceous units (PSU) or truncated hair follicles (THF) to regenerate a multilayered epidermis in vitro when implanted into de-epidermalized dermis (DED) or C-GAG with the epidermis generated in vivo using C-CAG. Keratinocytes explanted from the outer root sheath of PSU and THF in both DED and C-GAG but only formed a multilayered epidermis with PSU in DED. PSU were more effective at forming multilayered epidermis in DED than THF. Both DED and C-GAG skin expressed proliferation (PCNA), differentiation (K1, K10), hyperproliferation (K6, K16), basal (K14), putative stem cell (p63), extracellular matrix protein (Collagen IV), mesenchymal (vimentin) and adherens junction (β-catenin) markers. These data suggest DEs supported initial maintenance of the implanted hair follicles, in particular PSU, and provide an excellent model with which to investigate the regulation of hair follicle progenitor epithelial cells during epidermal regeneration. Although neither PSU nor THF formed multilayered epidermis in C-CAG in vitro, hair follicles implanted into engrafted C-GAG on a burns patient resulted in epithelial regeneration and expression of proliferation and differentiation markers in a similar manner to that seen in vitro. However, the failure of C-GAG to support epidermal regeneration in vitro suggests in vivo factors are essential for full epidermal regeneration using C-GAG.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Centre for Cutaneous Research, Blizard Institute, Bart’s & The London School of Medicine and Dentistry, London, United Kingdom
- * E-mail:
| | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart’s & The London School of Medicine and Dentistry, London, United Kingdom
| | - Harshad Navsaria
- Centre for Cutaneous Research, Blizard Institute, Bart’s & The London School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
41
|
Isolating subpopulations of human epidermal basal cells based on polyclonal serum against trypsin-resistant CSPG4 epitopes. Exp Cell Res 2016; 350:368-379. [PMID: 28011196 DOI: 10.1016/j.yexcr.2016.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Chondroitin sulfate proteoglycan 4 (CSPG4) is highly expressed by human epidermal keratinocytes located at the tip of the dermal papilla where keratinocytes show characteristics of stem cells. However, since available antibodies to CSPG4 are directed against trypsin-sensitive epitopes we have been unable to study these keratinocytes isolated directly from skin samples by flow cytometry. By choosing epitopes of CSPG4 relatively close to the cell membrane we were able to generate a polyclonal antibody that successfully detects CSPG4 on keratinocytes after trypsinization. Although CSPG4-positive basal cells express higher levels of Itgβ1 the colony-forming efficiency is slightly lower than CSPG4-negative basal cells. Sorting the directly isolated keratinocytes based on Itgβ1 did not reveal differences in colony-forming efficiency between keratinocytes expressing high or low levels of Itgβ1. However, after the first passage Itgβ1 could be used to predict colony-forming efficiency whether the culture was established from CSPG4-positive or CSPG4-negative basal cell keratinocytes. Although we were unable to detect differences in the colony-forming assay, global gene expression profiling showed that CSPG4-positive basal cell keratinocytes are distinct from CSPG4-negative basal cell keratinocytes. Our study demonstrates that it is possible to generate antibodies against trypsin-resistant epitopes of CSPG4. Our study also documents a marked change in behaviour upon cell culturing and challenges the way we assess for stemness within the human epidermal basal layer.
Collapse
|
42
|
Epidermal Cells Expressing Putative Cell Markers in Nonglabrous Skin Existing in Direct Proximity with the Distal End of the Arrector Pili Muscle. Stem Cells Int 2016; 2016:1286315. [PMID: 27375744 PMCID: PMC4916308 DOI: 10.1155/2016/1286315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/17/2016] [Indexed: 11/17/2022] Open
Abstract
Inconsistent with the view that epidermal stem cells reside randomly spread along the basal layer of the epidermal rete ridges, we found that epidermal cells expressing stem cell markers in nonglabrous skin exist in direct connection with the distal end of the arrector pili muscle. The epidermal cells that express stem cell markers consist of a subpopulation of basal keratinocytes located in a niche at the lowermost portion of the rete ridges at the distal arrector pili muscle attachment site. Keratinocytes in the epidermal stem cell niche express K15, MCSP, and α6 integrin. α5 integrin marks the distal end of the APM colocalized with basal keratinocytes expressing stem cell markers located in a well-protected and nourished environment at the lowermost point of the epidermis; these cells are hypothesized to participate directly in epidermal renewal and homeostasis and also indirectly in wound healing through communication with the hair follicle bulge epithelial stem cell population through the APM. Our findings, plus a reevaluation of the literature, support the hierarchical model of interfollicular epidermal stem cell units of Fitzpatrick. This new view provides insights into epidermal control and the possible involvement of epidermal stem cells in nonmelanoma skin carcinogenesis.
Collapse
|
43
|
Saleh FY, Awad SS, Nasif GA, Halim C. Epithelial expression of cytokeratins 15 and 19 in vitiligo. J Cosmet Dermatol 2016; 15:312-317. [PMID: 27139521 DOI: 10.1111/jocd.12223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cytokeratins (CK) belong to the family of intermediate filament proteins, and among them specific epithelial keratins are considered markers for stem cells activation. OBJECTIVES This study aims to investigate the expression of CK15 and CK19 as possible stem cell markers in vitiligo during phototherapy. METHODS The study was conducted on vitiligo patients receiving narrow-band ultraviolet therapy. Immunohistochemical staining for CK15 and CK19 was carried out, and clinical follow-up continued for 4 weeks. RESULTS Of 28 patients, CK15 expression was demonstrated in 17 cases (61%) while CK19 expression was demonstrated in 11 cases (39%). Cells expressing positive staining were demonstrated in follicular and interfollicular epithelium. Expression was clearly demonstrated in patients younger than 20 years old, with shorter disease duration, with disease stability, and with normally pigmented hairs. Expression of cytokeratins was significantly correlated to improvement of vitiligo lesions. CONCLUSION CK15 and CK19 are expressed in vitiligo during UV repigmentation in the follicular and interfollicular epithelium. This expression of cytokeratins was significantly correlated to improvement and can be considered valuable tool to monitor stem cells stimulation for the sake of the repigmentation process in vitiligo.
Collapse
Affiliation(s)
- Fatma Y Saleh
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sherif S Awad
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ghada A Nasif
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Christein Halim
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
44
|
Bulysheva AA, Burcus N, Lundberg C, Edelblute CM, Francis MP, Heller R. Recellularized human dermis for testing gene electrotransfer ex vivo. ACTA ACUST UNITED AC 2016; 11:035002. [PMID: 27121769 DOI: 10.1088/1748-6041/11/3/035002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene electrotransfer (GET) is a proven and valuable tool for in vivo gene delivery to a variety of tissues such as skin, cardiac muscle, skeletal muscle, and tumors, with controllable gene delivery and expression levels. Optimizing gene expression is a challenging hurdle in preclinical studies, particularly for skin indications, due to differences in electrical conductivity of animal compared to human dermis. Therefore, the goal of this study was to develop an ex vivo model for GET using recellularized human dermis to more closely mimic human skin. Decellularized human dermis (DermACELL(®)) was cultured with human dermal fibroblasts and keratinocytes for 4 weeks. After one week of fibroblast culture, fibroblasts infiltrated and dispersed throughout the dermis. Air-liquid interface culture led to epithelial cell proliferation, stratification and terminal differentiation with distinct basal, spinous, granular and cornified strata. Firefly luciferase expression kinetics were evaluated after GET of recellularized constructs for testing gene delivery parameters to skin in vitro. Elevated luciferase expression persisted up to a week following GET compared to controls without electrotransfer. In summary, recellularized dermis structurally and functionally resembled native human skin in tissue histological organization and homeostasis, proving an effective 3D human skin model for preclinical gene delivery studies.
Collapse
Affiliation(s)
- Anna A Bulysheva
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ray JG, Ranganathan K, Chattopadhyay A. Malignant transformation of oral submucous fibrosis: overview of histopathological aspects. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:200-9. [PMID: 27422418 DOI: 10.1016/j.oooo.2015.11.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022]
Abstract
Oral submucous fibrosis (OSF), first described in 1952, is a potentially malignant disorder associated with betel quid and areca nut chewing, mostly prevalent in the population of the Indian subcontinent and South East Asia. Malignant transformation of OSF to squamous cell carcinoma (SCC) has been estimated to be between 2% and 8%. Our study aimed to review the histopathologic changes that contribute to the understanding of the malignant transformation of OSF. Changes in epithelial thickness and dysplasia characterized by micronuclei, altered AgNOR counts and distribution, keratin protein alteration, and alteration of P63 and E-cadherin characterize the epithelial changes during the transformation of OSF to SCC. Common mechanisms have been proposed to be involved in OSF and SCC, through collagen maturation and their interaction with myofibroblasts and mast cells. Fibrosis-driven vascular constriction that results in epithelial hypoxia has also been proposed as an important mechanism for the malignant transformation of OSF. However, reassessment of the classical view is required, because with demonstration of large blood vasculature in the connective tissue stroma of OSF, the hypothesis associated with tissue hypoxia-induced malignant transformation of OSF can be questioned.
Collapse
Affiliation(s)
- Jay Gopal Ray
- Professor and Head, Department of Oral Pathology, Dr. R. Ahmed Dental College and Hospital, Kolkata, West Bengal, India
| | - Kannan Ranganathan
- Professor and Head, Head, Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, Uthandi, Chennai, Tamil Nadu, India
| | - Amit Chattopadhyay
- Adj. Professor of Oral Medicine, Case Western Reserve University, School of Dental Medicine, Cleveland, OH, USA.
| |
Collapse
|
46
|
Panousopoulou E, Hobbs C, Mason I, Green JBA, Formstone CJ. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci 2016; 129:1915-27. [PMID: 26989131 PMCID: PMC4893800 DOI: 10.1242/jcs.180703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
Epiboly is a morphogenetic process that is employed in the surface ectoderm of anamniotes during gastrulation to cover the entire embryo. We propose here that mammals also utilise this process to expand the epidermis and enclose the body cavity and spinal cord with a protective surface covering. Our data supports a model whereby epidermal spreading is driven by the primary establishment of the epidermal basal progenitor monolayer through radial cell intercalation of a multi-layered epithelium towards the basal lamina. By using a suspension organotypic culture strategy, we find that this process is fibronectin-dependent and autonomous to the skin. The radial cell rearrangements that drive epidermal spreading also require ROCK activity but are driven by cell protrusions and not myosin II contractility. Epidermal progenitor monolayer formation and epidermal spreading are delayed in Crash mice, which possess a dominant mutation in Celsr1, an orthologue of the core planar cell polarity (PCP) Drosophila protein Flamingo (also known as Stan). We observe a failure of ventral enclosure in Crash mutants suggesting that defective epidermal spreading might underlie some ventral wall birth defects. Summary: The nascent mammalian epidermis spreads to enclose the embryo trunk through a process akin to epiboly, which has important implications for human birth defects of the abdominal wall.
Collapse
Affiliation(s)
- Eleni Panousopoulou
- Department of Craniofacial Development and Stem Cell Biology, Guys Tower, Kings College London, London SE1 1UL, UK
| | - Carl Hobbs
- Wolfson-CARD, Kings College London, London SE1 1UL, UK
| | - Ivor Mason
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London SE1 1UL, UK
| | - Jeremy B A Green
- Department of Craniofacial Development and Stem Cell Biology, Guys Tower, Kings College London, London SE1 1UL, UK
| | - Caroline J Formstone
- MRC Centre for Developmental Neurobiology, New Hunts House, Kings College London, London SE1 1UL, UK
| |
Collapse
|
47
|
Val S, Burgett K, Brown KJ, Preciado D. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi. PLoS One 2016; 11:e0148612. [PMID: 26859300 PMCID: PMC4747582 DOI: 10.1371/journal.pone.0148612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022] Open
Abstract
Background Chronic Otitis Media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi), the most common acute Otitis Media (OM) pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line. Methods NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC) cultured at air-liquid interface over 48 hours– 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling. Results Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p value<0.05). The key molecular functions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface. Conclusions NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level.
Collapse
Affiliation(s)
- Stéphanie Val
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Katelyn Burgett
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Kristy J. Brown
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC, United States of America
| | - Diego Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
- Division of Pediatric Otolaryngology, Children’s National Health System, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
48
|
JIA HAIYAN, SHI YING, LUO LONGFEI, JIANG GUAN, ZHOU QIONG, XU SHIZHENG, LEI TIECHI. Asymmetric stem-cell division ensures sustained keratinocyte hyperproliferation in psoriatic skin lesions. Int J Mol Med 2016; 37:359-68. [PMID: 26707630 PMCID: PMC4716788 DOI: 10.3892/ijmm.2015.2445] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/14/2015] [Indexed: 01/21/2023] Open
Abstract
Excessive expansion of the transit-amplifying (TA) cell compartment is a distinct morphological characteristic of psoriatic epidermal hyperplasia. In order to examine the activation of basal stem cells and how they replenish such an enlarged compartment of TA cells in psoriatic epidermis, we utilized a BrdU labeling method to monitor mitotic stem cells in a mouse model of psoriasiform dermatitis, which was induced by imiquimod. Our results showed that perpendicular and parallel cell division characteristics of dividing stem cells existed in the inflamed epidermis. When we analyzed template‑DNA strand segregation in trypsin-dissociated human psoriatic keratinocytes using BrdU pulse-chase labeling, we found that the percentage of asymmetric segregation of BrdU was significantly increased in the cell pairs of psoriatic epidermal cells compared with normal epidermal cells. Furthermore, we also examined the effects of both interleukin (IL)-17A and IL-22 cytokines on the differentiation status of cultured human keratinocytes. The results indicated that both cytokines had synergistic effects on passage-one epidermal cell sheets derived from skin explants and also on cultured keratinocytes, were involved in the maintenance of the undifferentiated stem cell phenotype, and these results suggest an efficient mechanism for preventing the premature loss of basal stem-cell pools in the pro-inflammatory cytokine-enriched milieu of the psoriatic epidermis. Our findings suggest that inhibition of hyperactive stem cells represents a potential therapeutic target to combat recalcitrant epidermal hyperplasia in psoriasis.
Collapse
Affiliation(s)
- HAI-YAN JIA
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - YING SHI
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - LONG-FEI LUO
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - GUAN JIANG
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - QIONG ZHOU
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - SHI-ZHENG XU
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - TIE-CHI LEI
- Department of Dermatology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
49
|
Yunusbaeva MM, Yunusbaev BB, Valiev RR, Khammatova AA, Khusnutdinova EK. Широкое многообразие кератинов человека. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-5-42-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
А review presents systematic data about the diversity of human keratins. The results of numerous studies concerning the structure and functions of keratins, their distribution in various cells and tissues were summarized. The role of these proteins in the development of human hereditary diseases, as well as modern approaches in use keratins in immunohistochemistry and perspectives of their further studies are discussed.
Collapse
|
50
|
Gianì F, Vella V, Nicolosi ML, Fierabracci A, Lotta S, Malaguarnera R, Belfiore A, Vigneri R, Frasca F. Thyrospheres From Normal or Malignant Thyroid Tissue Have Different Biological, Functional, and Genetic Features. J Clin Endocrinol Metab 2015; 100:E1168-78. [PMID: 26151334 DOI: 10.1210/jc.2014-4163] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Cancer stem cells from several human malignancies, including poorly differentiated thyroid carcinoma and thyroid cancer cell lines, have been cultured in vitro as sphere-forming cells. These thyroid cancer stem cells were proven to be able to reproduce the original tumor in a xenograft orthotopic model. OBJECTIVES The objective of the study was to characterize papillary thyroid carcinoma (PTC) spheres from well-differentiated thyroid cancer and normal thyroid (NT) spheres obtained from the contralateral thyroid tissue of the same patient. DESIGN Thyrospheres from PTCs and NTs were isolated. MAIN OUTCOME MEASURES Gene expression analysis by real-time PCR, immunofluorescence studies, and fluorescence-activated cell sorter analysis in thyrospheres from PTCs and NTs have been evaluated. CONCLUSIONS Compared with NT spheres, PTC spheres are larger, more irregular, and more clonogenic and have a higher rate of symmetric division. Moreover, PTC spheres express higher levels of stem cell markers and lower levels of thyroid-specific genes compared with NT spheres. Under appropriate conditions, NT spheres differentiated into thyrocytes, whereas PTC spheres did not, displaying a defect in the differentiation potential. Immunofluorescence experiments indicated that, in NT spheres, progenitor cells are mainly present in the sphere core, and the sphere periphery contains thyroid precursor cells already committed to differentiation. PTC spheres are not polarized like NT spheres. Unlike cells differentiated from NT spheres, TSH did not significantly stimulate cAMP production in cells differentiated from PTC spheres. A microarray analysis performed in paired samples (NT and PTC spheres from the same patient) indicated that NT and PTC spheres display a gene expression pattern typical of stem/progenitor cells; however, compared with NT spheres, PTC spheres display a unique gene expression pattern that might be involved in PTC progression.
Collapse
Affiliation(s)
- Fiorenza Gianì
- Department of Clinical and Molecular Bio-Medicine (F.G., V.V., M.L.N., S.L., R.V., F.F.), Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, 95122 Catania, Italy; Immunology and Pharmacotherapy Area (A.F.), Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy; Department of Motor Sciences (V.V.), School of Human and Social Sciences, "Kore" University of Enna, 94100 Enna, Italy; Division of Endocrinology (R.M., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and HUMANITAS (R.V.), Catania Oncology Center, 95126 Catania, Italy
| | - Veronica Vella
- Department of Clinical and Molecular Bio-Medicine (F.G., V.V., M.L.N., S.L., R.V., F.F.), Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, 95122 Catania, Italy; Immunology and Pharmacotherapy Area (A.F.), Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy; Department of Motor Sciences (V.V.), School of Human and Social Sciences, "Kore" University of Enna, 94100 Enna, Italy; Division of Endocrinology (R.M., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and HUMANITAS (R.V.), Catania Oncology Center, 95126 Catania, Italy
| | - Maria Luisa Nicolosi
- Department of Clinical and Molecular Bio-Medicine (F.G., V.V., M.L.N., S.L., R.V., F.F.), Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, 95122 Catania, Italy; Immunology and Pharmacotherapy Area (A.F.), Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy; Department of Motor Sciences (V.V.), School of Human and Social Sciences, "Kore" University of Enna, 94100 Enna, Italy; Division of Endocrinology (R.M., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and HUMANITAS (R.V.), Catania Oncology Center, 95126 Catania, Italy
| | - Alessandra Fierabracci
- Department of Clinical and Molecular Bio-Medicine (F.G., V.V., M.L.N., S.L., R.V., F.F.), Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, 95122 Catania, Italy; Immunology and Pharmacotherapy Area (A.F.), Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy; Department of Motor Sciences (V.V.), School of Human and Social Sciences, "Kore" University of Enna, 94100 Enna, Italy; Division of Endocrinology (R.M., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and HUMANITAS (R.V.), Catania Oncology Center, 95126 Catania, Italy
| | - Sonia Lotta
- Department of Clinical and Molecular Bio-Medicine (F.G., V.V., M.L.N., S.L., R.V., F.F.), Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, 95122 Catania, Italy; Immunology and Pharmacotherapy Area (A.F.), Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy; Department of Motor Sciences (V.V.), School of Human and Social Sciences, "Kore" University of Enna, 94100 Enna, Italy; Division of Endocrinology (R.M., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and HUMANITAS (R.V.), Catania Oncology Center, 95126 Catania, Italy
| | - Roberta Malaguarnera
- Department of Clinical and Molecular Bio-Medicine (F.G., V.V., M.L.N., S.L., R.V., F.F.), Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, 95122 Catania, Italy; Immunology and Pharmacotherapy Area (A.F.), Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy; Department of Motor Sciences (V.V.), School of Human and Social Sciences, "Kore" University of Enna, 94100 Enna, Italy; Division of Endocrinology (R.M., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and HUMANITAS (R.V.), Catania Oncology Center, 95126 Catania, Italy
| | - Antonino Belfiore
- Department of Clinical and Molecular Bio-Medicine (F.G., V.V., M.L.N., S.L., R.V., F.F.), Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, 95122 Catania, Italy; Immunology and Pharmacotherapy Area (A.F.), Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy; Department of Motor Sciences (V.V.), School of Human and Social Sciences, "Kore" University of Enna, 94100 Enna, Italy; Division of Endocrinology (R.M., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and HUMANITAS (R.V.), Catania Oncology Center, 95126 Catania, Italy
| | - Riccardo Vigneri
- Department of Clinical and Molecular Bio-Medicine (F.G., V.V., M.L.N., S.L., R.V., F.F.), Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, 95122 Catania, Italy; Immunology and Pharmacotherapy Area (A.F.), Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy; Department of Motor Sciences (V.V.), School of Human and Social Sciences, "Kore" University of Enna, 94100 Enna, Italy; Division of Endocrinology (R.M., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and HUMANITAS (R.V.), Catania Oncology Center, 95126 Catania, Italy
| | - Francesco Frasca
- Department of Clinical and Molecular Bio-Medicine (F.G., V.V., M.L.N., S.L., R.V., F.F.), Endocrinology Unit, Garibaldi-Nesima Medical Center, University of Catania, 95122 Catania, Italy; Immunology and Pharmacotherapy Area (A.F.), Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy; Department of Motor Sciences (V.V.), School of Human and Social Sciences, "Kore" University of Enna, 94100 Enna, Italy; Division of Endocrinology (R.M., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; and HUMANITAS (R.V.), Catania Oncology Center, 95126 Catania, Italy
| |
Collapse
|