1
|
Mammano F, Paller AS, White TW. Connexin Hemichannel Inhibition and Human Genodermatoses. J Invest Dermatol 2024:S0022-202X(24)02053-0. [PMID: 39269388 DOI: 10.1016/j.jid.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Pathogenic variants in genes encoding connexins that cause skin diseases, such as keratitis-ichthyosis-deafness (KID) syndrome and hidrotic ectodermal dysplasia (HED) or Clouston syndrome, display increased hemichannel activity. Mechanistic insights derived from biophysical studies of the variant connexins support the hypothesis that inhibition of the acquired hemichannel activity could alleviate epidermal pathology. Use of pharmacological blockers and engineered mAbs in mouse models of HED and KID confirm that hemichannel inhibition is a promising target for new therapeutic approaches to KID and HED. Insights from this work could apply to other connexin-based genetic skin diseases in which hemichannel activity is elevated.
Collapse
Affiliation(s)
- Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, USA.
| |
Collapse
|
2
|
Pun R, Cavanaugh AM, Aldrich E, Tran O, Rudd JC, Hansen LA, North BJ. PKCμ promotes keratinocyte cell migration through Cx43 phosphorylation-mediated suppression of intercellular communication. iScience 2024; 27:109033. [PMID: 38375220 PMCID: PMC10875573 DOI: 10.1016/j.isci.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Downregulation of intercellular communication through suppression of gap junctional conductance is necessary during wound healing. Connexin 43 (Cx43), a prominent gap junction protein in skin, is downregulated following wounding to restrict communication between keratinocytes. Previous studies found that PKCμ, a novel PKC isozyme, regulates efficient cutaneous wound healing. However, the molecular mechanism by which PKCμ regulates wound healing remains unknown. We have identified that PKCμ suppresses intercellular communication and enhances cell migration in an in vitro wound healing model by regulating Cx43 containing gap junctions. PKCμ can directly interact with and phosphorylate Cx43 at S368, which leads to Cx43 internalization and downregulation. Finally, utilizing phosphomimetic and non-phosphorylatable S368 substitutions and gap junction inhibitors, we confirmed that PKCμ regulates intercellular communication and in vitro wound healing by controlling Cx43-S368 phosphorylation. These results define PKCμ as a critical regulator of Cx43 phosphorylation to control cell migration and wound healing in keratinocytes.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ann M. Cavanaugh
- Department of Biology, College of Arts and Sciences, Creighton University, Omaha, NE 68178, USA
| | - Emily Aldrich
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Olivia Tran
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Justin C. Rudd
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Laura A. Hansen
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
3
|
Skieresz-Szewczyk K, Jackowiak H. Pattern Distribution of Connexins in the Ortho- and Parakeratinized Epithelium of the Lingual Mucosa in Birds. Cells 2023; 12:1776. [PMID: 37443811 PMCID: PMC10341081 DOI: 10.3390/cells12131776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Connexins are important proteins involved in cell-to-cell communication and cytodifferentiation during renewal and cornification of the multilayered epithelia. So far, there is a lack of reports on this subject in birds' structurally different ortho- and parakeratinized epithelium of the tongue. The study aims to describe the distribution and expression profiles of the α-connexins (Cx40 and 43) and β-connexins (Cx26, 30, and 31) in those epithelia in duck, goose, and domestic turkey. Research revealed the presence of the mentioned connexins and the occurrence of interspecies differences. Connexins form gap junctions in the cell membrane or are in the cytoplasm of keratinocytes. Differences in connexin expression were noted between the basal and intermediate layers, which may determine the proliferation of keratinocytes. Cx40, 43, and Cx30 in the gap junction of the keratinocytes of the intermediate layer are related to the synchronization of the cornification process. Because of the exfoliation of cornified plaques, a lack of connexins was observed in the cornified layer of orthokeratinized epithelium. However, in parakeratinized epithelium, connexins were present in the cell membrane of keratinocytes and thus maintained cellular integrity in gradually desquamating cells. The current studies will be useful in further comparative analyses of normal and pathological epithelia of the oral cavity in birds.
Collapse
Affiliation(s)
- Kinga Skieresz-Szewczyk
- Department of Histology and Embryology, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland;
| | | |
Collapse
|
4
|
Interrogation of Carboxy-Terminus Localized GJA1 Variants Associated with Erythrokeratodermia Variabilis et Progressiva. Int J Mol Sci 2022; 23:ijms23010486. [PMID: 35008913 PMCID: PMC8745721 DOI: 10.3390/ijms23010486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 02/04/2023] Open
Abstract
Although inherited GJA1 (encoding Cx43) gene mutations most often lead to oculodentodigital dysplasia and related disorders, four variants have been linked to erythrokeratodermia variabilis et progressiva (EKVP), a skin disorder characterized by erythematous and hyperkeratotic lesions. While two autosomal-dominant EKVP-linked GJA1 mutations have been shown to lead to augmented hemichannels, the consequence(s) of keratinocytes harboring a de novo P283L variant alone or in combination with a de novo T290N variant remain unknown. Interestingly, these variants reside within or adjacent to a carboxy terminus polypeptide motif that has been shown to be important in regulating the internalization and degradation of Cx43. Cx43-rich rat epidermal keratinocytes (REKs) or Cx43-ablated REKs engineered to express fluorescent protein-tagged P283L and/or T290N variants formed prototypical gap junctions at cell-cell interfaces similar to wildtype Cx43. Dye coupling and dye uptake studies further revealed that each variant or a combination of both variants formed functional gap junction channels, with no evidence of augmented hemichannel function or induction of cell death. Tracking the fate of EKVP-associated variants in the presence of the protein secretion blocker brefeldin A, or an inhibitor of protein synthesis cycloheximide, revealed that P283L or the combination of P283L and T290N variants either significantly extended Cx43 residency on the cell surface of keratinocytes or delayed its degradation. However, caution is needed in concluding that this modest change in the Cx43 life cycle is sufficient to cause EKVP, or whether an additional underlying mechanism or another unidentified gene mutation is contributing to the pathogenesis found in patients. This question will be resolved if further patients are identified where whole exome sequencing reveals a Cx43 P283L variant alone or, in combination with a T290N variant, co-segregates with EKVP across several family generations.
Collapse
|
5
|
Gallegos-Alcalá P, Jiménez M, Cervantes-García D, Salinas E. The Keratinocyte as a Crucial Cell in the Predisposition, Onset, Progression, Therapy and Study of the Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms221910661. [PMID: 34639001 PMCID: PMC8509070 DOI: 10.3390/ijms221910661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
The keratinocyte (KC) is the main functional and structural component of the epidermis, the most external layer of the skin that is highly specialized in defense against external agents, prevention of leakage of body fluids and retention of internal water within the cells. Altered epidermal barrier and aberrant KC differentiation are involved in the pathophysiology of several skin diseases, such as atopic dermatitis (AD). AD is a chronic inflammatory disease characterized by cutaneous and systemic immune dysregulation and skin microbiota dysbiosis. Nevertheless, the pathological mechanisms of this complex disease remain largely unknown. In this review, we summarize current knowledge about the participation of the KC in different aspects of the AD. We provide an overview of the genetic predisposing and environmental factors, inflammatory molecules and signaling pathways of the KC that participate in the physiopathology of the AD. We also analyze the link among the KC, the microbiota and the inflammatory response underlying acute and chronic skin AD lesions.
Collapse
Affiliation(s)
- Pamela Gallegos-Alcalá
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Mariela Jiménez
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Daniel Cervantes-García
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- National Council of Science and Technology, Ciudad de México 03940, Mexico
| | - Eva Salinas
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- Correspondence: ; Tel.: +52-449-9108424
| |
Collapse
|
6
|
Maslova EA, Orishchenko KE, Posukh OL. Functional Evaluation of a Rare Variant c.516G>C (p.Trp172Cys) in the GJB2 (Connexin 26) Gene Associated with Nonsyndromic Hearing Loss. Biomolecules 2021; 11:61. [PMID: 33466560 PMCID: PMC7824951 DOI: 10.3390/biom11010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/05/2023] Open
Abstract
Mutations in the GJB2 gene encoding transmembrane protein connexin 26 (Cx26) are the most common cause for hearing loss worldwide. Cx26 plays a crucial role in the ionic and metabolic homeostasis in the inner ear, indispensable for normal hearing process. Different pathogenic mutations in the GJB2 gene can affect all stages of the Cx26 life cycle and result in nonsyndromic autosomal recessive (DFNB1) or dominant (DFNA3) deafness and syndromes associating hearing loss with skin disorders. This study aims to elucidate the functional consequences of a rare GJB2 variant c.516G>C (p.Trp172Cys) found with high frequency in deaf patients from indigenous populations of Southern Siberia (Russia). The substitution c.516G>C leads to the replacement of tryptophan at a conserved amino acid position 172 with cysteine (p.Trp172Cys) in the second extracellular loop of Cx26 protein. We analyzed the subcellular localization of mutant Cx26-p.Trp172Cys protein by immunocytochemistry and the hemichannels permeability by dye loading assay. The GJB2 knockout HeLa cell line has been generated using CRISPR/Cas9 genome editing tool. Subsequently, the HeLa transgenic cell lines stably expressing different GJB2 variants (wild type and mutations associated with hearing loss) were established based on knockout cells and used for comparative functional analysis. The impaired trafficking of mutant Cx26-p.Trp172Cys protein to the plasma membrane and reduced hemichannels permeability support the pathogenic effect of the c.516G>C (p.Trp172Cys) variant and its association with nonsyndromic hearing loss. Our data contribute to a better understanding of the role of mutations in the second extracellular loop of Cx26 protein in pathogenesis of deafness.
Collapse
Affiliation(s)
- Ekaterina A. Maslova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.A.M.); (K.E.O.)
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.A.M.); (K.E.O.)
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga L. Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.A.M.); (K.E.O.)
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Brink PR, Valiunas V, White TW. Lens Connexin Channels Show Differential Permeability to Signaling Molecules. Int J Mol Sci 2020; 21:ijms21186943. [PMID: 32971763 PMCID: PMC7555617 DOI: 10.3390/ijms21186943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
Gap junction channels mediate the direct intercellular passage of small ions as well as larger solutes such as second messengers. A family of proteins called connexins make up the subunits of gap junction channels in chordate animals. Each individual connexin forms channels that exhibit distinct permeability to molecules that influence cellular signaling, such as calcium ions, cyclic nucleotides, or inositol phosphates. In this review, we examine the permeability of connexin channels containing Cx43, Cx46, and Cx50 to signaling molecules and attempt to relate the observed differences in permeability to possible in vivo consequences that were revealed by studies of transgenic animals where these connexin genes have been manipulated. Taken together, these data suggest that differences in the permeability of individual connexin channels to larger solutes like 3',5'-cyclic adenosine monophosphate (cAMP) and inositol 1,4,5-trisphosphate (IP3) could play a role in regulating epithelial cell division, differentiation, and homeostasis in organs like the ocular lens.
Collapse
|
8
|
Hamadah I, Haider M, Chisti M. A novel homozygous mutation of GJB2-A new variant of keratitis-ichthyosis-deafness syndrome? JAAD Case Rep 2019; 5:283-287. [PMID: 30891482 PMCID: PMC6403109 DOI: 10.1016/j.jdcr.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Issam Hamadah
- Dermatology Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mansoor Haider
- Dermatology Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Muzamil Chisti
- Dermatology Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front Oncol 2018; 8:646. [PMID: 30622930 PMCID: PMC6308394 DOI: 10.3389/fonc.2018.00646] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Despite concerted clinical and research efforts, cancer is a leading cause of death worldwide. Surgery, radiation, and chemotherapy have remained the most common standard-of-care strategies against cancer for decades. However, the side effects of these therapies demonstrate the need to investigate adjuvant novel treatment modalities that minimize the harm caused to healthy cells and tissues. Normal and cancerous cells require communication amongst themselves and with their surroundings to proliferate and drive tumor growth. It is vital to understand how intercellular and external communication impacts tumor cell malignancy. To survive and grow, tumor cells, and their normal counterparts utilize cell junction molecules including gap junctions (GJs), tight junctions, and adherens junctions to provide contact points between neighboring cells and the extracellular matrix. GJs are specialized structures composed of a family of connexin proteins that allow the free diffusion of small molecules and ions directly from the cytoplasm of adjacent cells, without encountering the extracellular milieu, which enables rapid, and coordinated cellular responses to internal and external stimuli. Importantly, connexins perform three main cellular functions. They enable direct gap junction intercellular communication (GJIC) between cells, form hemichannels to allow cell communication with the extracellular environment, and serve as a site for protein-protein interactions to regulate signaling pathways. Connexins themselves have been found to promote tumor cell growth and invasiveness, contributing to the overall tumorigenicity and have emerged as attractive anti-tumor targets due to their functional diversity. However, connexins can also serve as tumor suppressors, and therefore, a complete understanding of the roles of the connexins and GJs in physiological and pathophysiological conditions is needed before connexin targeting strategies are applied. Here, we discuss how the three aspects of connexin function, namely GJIC, hemichannel formation, and connexin-protein interactions, function in normal cells, and contribute to tumor cell growth, proliferation, and death. Finally, we discuss the current state of anti-connexin therapies and speculate which role may be most amenable for the development of targeting strategies.
Collapse
Affiliation(s)
- Maksim Sinyuk
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erin E. Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ofer Reizes
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
| | - Justin Lathia
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
10
|
Zhang Q, Wu S, Liu L, Hou X, Jiang J, Wei X, Hao W. Effects of bisphenol A on gap junctions in HaCaT cells as mediated by the estrogen receptor pathway. J Appl Toxicol 2018; 39:271-281. [DOI: 10.1002/jat.3717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Qi Zhang
- Department of Toxicology, School of Public Health; Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety; Beijing 100191 China
| | - Shuang Wu
- Department of Toxicology, School of Public Health; Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety; Beijing 100191 China
| | - Lu Liu
- Department of Genetics, School of Basic Medical Science; Peking University; Beijing 100191 China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health; Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety; Beijing 100191 China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health; Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety; Beijing 100191 China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health; Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety; Beijing 100191 China
| | - Weidong Hao
- Department of Toxicology, School of Public Health; Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety; Beijing 100191 China
| |
Collapse
|
11
|
Easton JA, Albuloushi AK, Kamps MAF, Brouns GHMR, Broers JLV, Coull BJ, Oji V, van Geel M, van Steensel MAM, Martin PE. A rare missense mutation in GJB3
(Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death. Exp Dermatol 2018; 28:1106-1113. [DOI: 10.1111/exd.13542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Jennifer A. Easton
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
| | - Ahmad K. Albuloushi
- Department of Life Sciences; School of Health and Life Sciences; Glasgow Caledonian University; Glasgow UK
| | - Miriam A. F. Kamps
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Department of Genetics and Cell Biology; Maastricht University; Maastricht The Netherlands
| | - Gladys H. M. R. Brouns
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
| | - Jos L. V. Broers
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Department of Genetics and Cell Biology; Maastricht University; Maastricht The Netherlands
| | - Barry J. Coull
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- Division of Biological Chemistry and Drug Discovery; College of Life Sciences; University of Dundee; Dundee UK
| | - Vincent Oji
- Department of Dermatology; University Hospital Münster; Münster Germany
| | - Michel van Geel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
| | - Maurice A. M. van Steensel
- Department of Dermatology; Maastricht University Medical Centre; Maastricht The Netherlands
- GROW School for Oncology and Developmental Biology; Maastricht University; Maastricht The Netherlands
- Skin Research Institute of Singapore; Institute of Medical Biology, Immunos; Singapore
| | - Patricia E. Martin
- Department of Life Sciences; School of Health and Life Sciences; Glasgow Caledonian University; Glasgow UK
| |
Collapse
|
12
|
Connexin 43 regulates the expression of wound healing-related genes in human gingival and skin fibroblasts. Exp Cell Res 2018; 367:150-161. [PMID: 29596891 DOI: 10.1016/j.yexcr.2018.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/21/2022]
Abstract
Fibroblasts are the most abundant connective tissue cells and play an important role in wound healing. It is possible that faster and scarless wound healing in oral mucosal gingiva relative to skin may relate to the distinct phenotype of the fibroblasts residing in these tissues. Connexin 43 (Cx43) is the most ubiquitous Cx in skin (SFBLs) and gingival fibroblasts (GFBLs), and assembles into hemichannels (HCs) and gap junctions (GJs) on the cell membrane. We hypothesized that SFBLs and GFBLs display distinct expression or function of Cx43, and that this may partly underlie the different wound healing outcomes in skin and gingiva. Here we show that Cx43 distinctly formed Cx43 GJs and HCs in human skin and gingiva in vivo. However, in SFBLs, in contrast to GFBLs, only a small proportion of total Cx43 assembled into HC plaques. Using an in vivo-like 3D culture model, we further show that the GJ, HC, and channel-independent functions of Cx43 distinctly regulated wound healing-related gene expression in GFBLs and SFBLs. Therefore, the distinct wound healing outcomes in skin and gingiva may partly relate to the inherently different assembly and function of Cx43 in the resident fibroblasts.
Collapse
|
13
|
Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 2018; 26:156-162. [PMID: 27492871 DOI: 10.1111/exd.13156] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/24/2022]
Abstract
Cold plasma has been successfully applied in several fields of medicine that require, for example, pathogen inactivation, implant functionalization or alteration of cellular activity. Previous studies have provided evidence that plasma supports the healing of wounds owing to its beneficial mixtures of reactive species and modulation of inflammation in cells and tissues. To investigate the wound healing activity of an atmospheric pressure plasma jet in vivo, we examined the cold plasma's efficacy on dermal regeneration in a murine model of dermal full-thickness ear wound. Over 14 days, female mice received daily plasma treatment. Quantitative analysis by transmitted light microscopy demonstrated a significantly accelerated wound re-epithelialization at days 3-9 in comparison with untreated controls. In vitro, cold plasma altered keratinocyte and fibroblast migration, while both cell types showed significant stimulation resulting in accelerated closure of gaps in scratch assays. This plasma effect correlated with the downregulation of the gap junctional protein connexin 43 which is thought to be important in the regulation of wound healing. In addition, plasma induced profound changes in adherence junctions and cytoskeletal dynamics as shown by downregulation of E-cadherin and several integrins as well as actin reorganization. Our results theorize cold plasma to be a beneficial treatment option supplementing existing wound therapies.
Collapse
Affiliation(s)
- Anke Schmidt
- Plasma Life Science, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Kristian Wende
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | - Thomas von Woedtke
- Plasma Life Science, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,Department of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Valiunas V, Cohen IS, Brink PR. Defining the factors that affect solute permeation of gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:96-101. [PMID: 28690048 PMCID: PMC5705451 DOI: 10.1016/j.bbamem.2017.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023]
Abstract
This review focuses on the biophysical properties and structure of the pore and vestibule of homotypic gap junction channels as they relate to channel permeability and selectivity. Gap junction channels are unique in their sole role to connect the cytoplasm of two adjacent cells. In general, these channels are considered to be poorly selective, possess open probabilities approximating unity, and exhibit mean open times ranging from milliseconds to seconds. These properties suggest that such channels can function as delivery pathways from cell to cell for solutes that are significantly larger than monovalent ions. We have taken quantitative data from published works concerning unitary conductance, ion flux, and permeability for homotypic connexin 43 (Cx43), Cx40, Cx26, Cx50, and Cx37, and performed a comparative analysis of conductance and/or ion/solute flux versus diffusion coefficient. The analysis of monovalent cation flux portrays the pore as equivalent to an aqueous space where hydrogen bonding and weak interactions with binding sites dominate. For larger solutes, size, shape and charge are also significant components in determining the permeation rate. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Virginijus Valiunas
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Ira S Cohen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Peter R Brink
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
15
|
Qin Y, Han L, Yang D, Wei H, Liu Y, Xu J, Autrup H, Deng F, Guo X. Silver nanoparticles increase connexin43-mediated gap junctional intercellular communication in HaCaT cells through activation of reactive oxygen species and mitogen-activated protein kinase signal pathway. J Appl Toxicol 2017; 38:564-574. [PMID: 29235124 DOI: 10.1002/jat.3563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 01/17/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in health and consumer products that routinely contact skin. However, the biological effects and possible mechanisms of AgNPs on skin remain unclear. Gap junctional intercellular communication (GJIC) plays a critical role in multicellular organisms to maintain tissue homeostasis. The aim of this study is to examine if non-coated AgNPs affect GJIC in human keratinocytes (HaCaT cells), and to identify the possible molecular mechanisms responsible for the effects. GJIC, connexin (Cx)43 protein and mRNA expression, and the effect of siRNA-mediated knockdown of Cx43 on GJIC were assessed. HaCaT cells exposed to non-coated AgNPs at different doses after a 24 hour exposure. To explore further the underlying mechanism, reactive oxygen species and mitogen-activated protein kinase pathway were evaluated after 2, 6, 12 and 24 hours. Our results revealed that non-coated AgNP exposure at subcytotoxic doses increase GJIC partially via Cx43 upregulation. Reactive oxygen species and extracellular signal-regulated kinase and activation of c-Jun N-terminal kinase were involved in the AgNP-induced upregulation of Cx43. This study provides new insight into the potential mechanism of AgNP biological activity.
Collapse
Affiliation(s)
- Yu Qin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Limin Han
- Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Hongying Wei
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yue Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Herman Autrup
- Department of Environmental and Occupational Medicine, Aarhus University Institute of Public Health, Aarhus, Denmark
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| |
Collapse
|
16
|
Pohin M, Veaute C, Garnier J, Barrault C, Cronier L, Huguier V, Favot L, Mcheik J, Bernard FX, Lecron JC, Morel F, Jégou JF. Development of a new model of reconstituted mouse epidermis and characterization of its response to proinflammatory cytokines. J Tissue Eng Regen Med 2017; 12:e1098-e1107. [PMID: 28477582 DOI: 10.1002/term.2442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 04/07/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
The development of three-dimensional models of reconstituted mouse epidermis (RME) has been hampered by the difficulty to maintain murine primary keratinocyte cultures and to achieve a complete epidermal stratification. In this study, a new protocol is proposed for the rapid and convenient generation of RME, which reproduces accurately the architecture of a normal mouse epidermis. During RME morphogenesis, the expression of differentiation markers such as keratins, loricrin, filaggrin, E-cadherin and connexins was followed, showing that RME structure at day 5 was similar to those of a normal mouse epidermis, with the acquisition of the natural barrier function. It was also demonstrated that RME responded to skin-relevant proinflammatory cytokines by increasing the expression of antimicrobial peptides and chemokines, and inhibiting epidermal differentiation markers, as in the human system. This new model of RME is therefore suitable to investigate mouse epidermis physiology further and opens new perspectives to generate reconstituted epidermis from transgenic mice.
Collapse
Affiliation(s)
- Mathilde Pohin
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France
| | - Carolina Veaute
- Laboratorio de Inmunología Básica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | | | - Laurent Cronier
- STIM, CNRS ERL 7368, Université de Poitiers, Poitiers, France
| | - Vincent Huguier
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France.,CHU de Poitiers, France
| | - Laure Favot
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France
| | - Jiad Mcheik
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France.,CHU de Poitiers, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France.,Bioalternatives, Gençay, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France.,CHU de Poitiers, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France
| | - Jean-François Jégou
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), EA 4331, Université de Poitiers, France
| |
Collapse
|
17
|
Gudmundsson S, Wilbe M, Ekvall S, Ameur A, Cahill N, Alexandrov LB, Virtanen M, Hellström Pigg M, Vahlquist A, Törmä H, Bondeson ML. Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26. Hum Mol Genet 2017; 26:1070-1077. [PMID: 28158657 PMCID: PMC5409067 DOI: 10.1093/hmg/ddx017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/30/2016] [Indexed: 01/21/2023] Open
Abstract
Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G > A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.
Collapse
Affiliation(s)
- Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicola Cahill
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ludmil B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA and
| | - Marie Virtanen
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Maritta Hellström Pigg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Vahlquist
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Hans Törmä
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Srinivas M, Verselis VK, White TW. Human diseases associated with connexin mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:192-201. [PMID: 28457858 DOI: 10.1016/j.bbamem.2017.04.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/11/2023]
Abstract
Gap junctions and hemichannels comprised of connexins impact many cellular processes. Significant advances in our understanding of the functional role of these channels have been made by the identification of a host of genetic diseases caused by connexin mutations. Prominent features of connexin disorders are the inability of other connexins expressed in the same cell type to compensate for the mutated one, and the ability of connexin mutants to dominantly influence the activity of other wild-type connexins. Functional studies have begun to identify some of the underlying mechanisms whereby connexin channel mutation contributes to the disease state. Detailed mechanistic understanding of these functional differences will help to facilitate new pathophysiology driven therapies for the diverse array of connexin genetic disorders. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Miduturu Srinivas
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
19
|
Wong P, Tan T, Chan C, Laxton V, Chan YWF, Liu T, Wong WT, Tse G. The Role of Connexins in Wound Healing and Repair: Novel Therapeutic Approaches. Front Physiol 2016; 7:596. [PMID: 27999549 PMCID: PMC5138227 DOI: 10.3389/fphys.2016.00596] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/16/2016] [Indexed: 12/26/2022] Open
Abstract
Gap junctions are intercellular proteins responsible for mediating both electrical and biochemical coupling through the exchange of ions, second messengers and small metabolites. They consist of two connexons, with (one) connexon supplied by each cell. A connexon is a hexamer of connexins and currently more than 20 connexin isoforms have been described in the literature thus far. Connexins have a short half-life, and therefore gap junction remodeling constantly occurs with a high turnover rate. Post-translational modification, such as phosphorylation, can modify their channel activities. In this article, the roles of connexins in wound healing and repair are reviewed. Novel strategies for modulating the function or expression of connexins, such as the use of antisense technology, synthetic mimetic peptides and bioactive materials for the treatment of skin wounds, diabetic and pressure ulcers as well as cornea wounds, are considered.
Collapse
Affiliation(s)
- Pui Wong
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong Kong Hong Kong, Hong Kong
| | - Teresa Tan
- Department of Surgery, Faculty of Medicine, Chinese University of Hong Kong Hong Kong, Hong Kong
| | - Catherine Chan
- Department of Surgery, Faculty of Medicine, Chinese University of Hong Kong Hong Kong, Hong Kong
| | - Victoria Laxton
- Intensive Care Department, Royal Brompton and Harefield NHS Foundation Trust London, UK
| | - Yin Wah Fiona Chan
- Department of Psychology, School of Biological Sciences, University of Cambridge Cambridge, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University Tianjin, China
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong Hong Kong, Hong Kong
| | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong KongHong Kong, Hong Kong; Faculty of Medicine, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
20
|
Connexin26 Mutations Causing Palmoplantar Keratoderma and Deafness Interact with Connexin43, Modifying Gap Junction and Hemichannel Properties. J Invest Dermatol 2016; 136:225-235. [PMID: 26763442 PMCID: PMC4731051 DOI: 10.1038/jid.2015.389] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
Mutations in GJB2 (Cx26) cause either deafness, or deafness associated with skin diseases. That different disorders can be caused by distinct mutations within the same gene suggests that unique channel activities are influenced by each class of mutation. We have examined the functional characteristics of two human mutations, Cx26-H73R and Cx26-S183F, causing palmoplantar keratoderma (PPK) and deafness. Both failed to form gap junction channels or hemichannels when expressed alone. Co-expression of the mutants with wild-type Cx43 showed a trans-dominant inhibition of Cx43 gap junction channels, without reductions in Cx43 protein synthesis. In addition, the presence of mutant Cx26 shifted Cx43 channel gating and kinetics towards a more Cx26-like behavior. Co-immunoprecipitation showed Cx43 being pulled down more efficiently with mutant Cx26, than wild-type, confirming the enhanced formation of heteromeric connexons. Finally, the formation of heteromeric connexons resulted in significantly increased Cx43 hemichannel activity in the presence of Cx26 mutants. These findings suggest a common mechanism whereby Cx26 mutations causing PPK and deafness trans-dominantly influence multiple functions of wild-type Cx43. They also implicate a role for aberrant hemichannel activity in the pathogenesis of PPK, and further highlight an emerging role for Cx43 in genetic skin diseases.
Collapse
|
21
|
Connexin channels in congenital skin disorders. Semin Cell Dev Biol 2016; 50:4-12. [PMID: 26775130 DOI: 10.1016/j.semcdb.2015.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022]
Abstract
Gap junctions and hemichannels comprised of connexins influence epidermal proliferation and differentiation. Significant advances in our understanding of the functional role of connexins in the skin have been made by studying the diseases caused by connexin mutations. Eleven clinically defined cutaneous disorders with an overlapping spectrum of phenotypes are caused by mutations in five different connexin genes, highlighting that disease presentation must be deciphered with an understanding of how connexin functions are affected. Increasing evidence suggests that the skin diseases produced by connexin mutations result from dominant gains of function. In palmoplantar keratoderma with deafness, the connexin 26 mutations transdominantly alter the function of wild-type connexin 43 and create leaky heteromeric hemichannels. In keratitis-ichthyosis-deafness syndrome, different connexin 26 mutations can either form dominant hemichannels with altered calcium regulation or increased calcium permeability, leading to clinical subtypes of this syndrome. It is only with detailed understanding of these subtle functional differences that we can hope to create successful pathophysiology driven therapies for the connexin skin disorders.
Collapse
|
22
|
Abstract
Connexin mutations underlie numerous human genetic diseases. Several connexin genes have been linked to skin diseases, and mechanistic studies have indicated that a gain of abnormal channel function may be responsible for pathology. The topical accessibility of the epidermal connexins, the existence of several mouse models of human skin disease, and the ongoing identification of pharmacological inhibitors targeting connexins provide an opportunity to test new therapeutic approaches.
Collapse
Affiliation(s)
- Noah A Levit
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
23
|
Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43. J Invest Dermatol 2015; 135:1338-1347. [PMID: 25625422 PMCID: PMC4801018 DOI: 10.1038/jid.2015.20] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/09/2022]
Abstract
Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like the Keratitis-Ichthyosis-Deafness syndrome (KID). Because in the human skin connexin 26 (Cx26) is co-expressed with other connexins, like Cx43 and Cx30, and as the KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild-type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channel (GJC) functions remain unknown. In this study, we demonstrate that syndromic mutations, at the N terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) shows exacerbated hemichannel activity but nonfunctional GJCs; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca(2+) overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin.
Collapse
|
24
|
Abstract
Channels are integral membrane proteins that form a pore, allowing the passive movement of ions or molecules across a membrane (along a gradient), either between compartments within a cell, between intracellular and extracellular environments or between adjacent cells. The ability of cells to communicate with one another and with their environment is a crucial part of the normal physiology of a tissue that allows it to carry out its function. Cell communication is particularly important during keratinocyte differentiation and formation of the skin barrier. Keratinocytes in the skin epidermis undergo a programme of apoptosis-driven terminal differentiation, whereby proliferating keratinocytes in the basal (deepest) layer of the epidermis stop proliferating, exit the basal layer and move up through the spinous and granular layers of the epidermis to form the stratum corneum, the external barrier. Genes encoding different families of channel proteins have been found to harbour mutations linked to a variety of rare inherited monogenic skin diseases. In this Commentary, we discuss how human genetic findings in aquaporin (AQP) and transient receptor potential (TRP) channels reveal different mechanisms by which these channel proteins function to ensure the proper formation and maintenance of the skin barrier.
Collapse
Affiliation(s)
- Diana C Blaydon
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, E1 2AT, UK
| | - David P Kelsell
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, E1 2AT, UK
| |
Collapse
|
25
|
de Zwart-Storm EA, Martin PE, van Steensel MAM. Gap junction diseases of the skin: novel insights from new mutations. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Churko JM, Laird DW. Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda) 2013; 28:190-8. [PMID: 23636264 DOI: 10.1152/physiol.00058.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present review, we provide an overview of connexin expression during skin development and remodeling in wound healing, and reflect on how loss- or gain-of-function connexin mutations may change cellular phenotypes and lead to diseases of the skin. We also consider the therapeutic value of targeting connexins in wound healing.
Collapse
Affiliation(s)
- Jared M Churko
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
27
|
Volo T, Sathiyaseelan T, Astolfi L, Guaran V, Trevisi P, Emanuelli E, Martini A. Hair phenotype in non-syndromic deafness. Int J Pediatr Otorhinolaryngol 2013; 77:1280-5. [PMID: 23751281 DOI: 10.1016/j.ijporl.2013.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
The GJB2 gene is located on chromosome 13q12 and it encodes the connexin 26, a transmembrane protein involved in cell-cell attachment of almost all tissues. GJB2 mutations cause autosomal recessive (DFNB1) and sometimes dominant (DFNA3) non-syndromic sensorineural hearing loss. Moreover, it has been demonstrated that connexins are involved in regulation of growth and differentiation of epidermal tissues. Hence, mutations in GJB2 gene, which is responsible for non-syndromic deafness, may be associated with an abnormal skin and hair phenotype. We analyzed hair samples from 96 subjects: a study group of 42 patients with hearing impairments of genetic origin (38 with a non-syndromic form, 4 with a syndromic form), and a control group including 54 people, i.e. 43 patients with other, non-genetic hearing impairments and 11 healthy volunteers aged up to 10 years old. The surface structure of 49 hair samples was normal, whereas in 45 cases it was altered, with a damaged appearance. Two hair samples were considered unclassifiable: one from the patient heterozygotic for the pendrin mutation (Fig. 2C), the other from a patient from Ghana with a R134W mutation (Fig. 2D). Among the 43 altered hair samples, 31 belonged to patients with connexin mutations and the other 12 came from patients without connexin mutations.
Collapse
Affiliation(s)
- T Volo
- Otolaryngology and Otosurgery Unit, University Hospital of Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Scott CA, Tattersall D, O'Toole EA, Kelsell DP. Connexins in epidermal homeostasis and skin disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1952-61. [DOI: 10.1016/j.bbamem.2011.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
|
29
|
Zayed AE, Ahmed YA, El-Hafez EA, Steger K. Connexin 43 Expression and its Possible Role in Skin Development. JOURNAL OF MEDICAL SCIENCES 2012. [DOI: 10.3923/jms.2012.168.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Xu J, Nicholson BJ. The role of connexins in ear and skin physiology - functional insights from disease-associated mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:167-78. [PMID: 22796187 DOI: 10.1016/j.bbamem.2012.06.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/23/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022]
Abstract
Defects in several different connexins have been associated with several different diseases. The most common of these is deafness, where a few mutations in connexin (Cx) 26 have been found to contribute to over 50% of the incidence of non-syndromic deafness in different human populations. Other mutations in Cx26 or Cx30 have also been associated with various skin phenotypes linked to deafness (palmoplanta keratoderma, Bart-Pumphrey syndrome, Vohwinkel syndrome, keratitis-ichthyosis-deafness syndrome, etc.). The large array of disease mutants offers unique opportunities to gain insights into the underlying function of gap junction proteins and their channels in the normal and pathogenic physiologies of the cochlea and epidermis. This review focuses on those mutants where the impact on channel function has been assessed, and correlated with the disease phenotype, or organ function in knock-out mouse models. These approaches have provided evidence supporting a role of gap junctions and hemichannels in K(+) removal and recycling in the ear, as well as possible roles for nutrient passage, in the cochlea. In contrast, increases in hemichannel opening leading to increased cell death, were associated with several keratitis-ichthyosis-deafness syndrome skin disease/hearing mutants. In addition to providing clues for therapeutic strategies, these findings allow us to better understand the specific functions of connexin channels that are important for normal tissue function. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Ji Xu
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
31
|
Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B. Skin tissue generation by laser cell printing. Biotechnol Bioeng 2012; 109:1855-63. [DOI: 10.1002/bit.24455] [Citation(s) in RCA: 422] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/21/2011] [Accepted: 01/18/2012] [Indexed: 11/11/2022]
|
32
|
Abstract
Cx (connexin) proteins are components of gap junctions which are aqueous pores that allow intercellular exchange of ions and small molecules. Mutations in Cx genes are linked to a range of human disorders. In the present review we discuss mutations in β-Cx genes encoding Cx26, Cx30, Cx30.3 and Cx31 which lead to skin disease and deafness. Functional studies with Cx proteins have given insights into disease-associated mechanisms and non-gap junctional roles for Cx proteins.
Collapse
|
33
|
Muramatsu T, Uekusa T, Masaoka T, Saitoh M, Hashimoto S, Abiko Y, Jung HS, Shimono M. Differential expression and localization of connexins 26 and 43 in the rat gingival epithelium. ACTA ACUST UNITED AC 2009; 71:147-54. [PMID: 19194037 DOI: 10.1679/aohc.71.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the expression and localization of connexins (CX) 26 and 43 in the rat gingival epithelium. RT-PCR analysis revealed CX26 gene expression in both the upper and lower layers of the gingival epithelium and in the total epithelial layer, whereas CX43 gene expression was limited to the lower layer and the total epithelial layer. Immunoreactivity for CX43 was observed in the membranes of adjacent cells from the basal layer to the middle of the prickle cell layer, while immunoreactivity for CX26 was observed in the granular cell layer and lower part of the squamous cell layer. Merged images revealed the co-localization of CX26 and CX43 in the middle of the prickle cell layer. By immuno-electron microscopy, gap junctions appeared curved, hemi-circular, or annular within the cytoplasm, and gold particles indicating the presence of CX43 were localized at the outer edges of these cytoplasmic formations. These results suggest that CX43 is associated with the regulation of cell proliferation and that increased CX26 expression is associated with differentiation of keratinocytes. Thus, degradation of CX43 is considered to play an essential role in differentiation of the rat gingival epithelium.
Collapse
Affiliation(s)
- Takashi Muramatsu
- Oral Health Science Center HRC7, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Martínez AD, Acuña R, Figueroa V, Maripillan J, Nicholson B. Gap-junction channels dysfunction in deafness and hearing loss. Antioxid Redox Signal 2009; 11:309-22. [PMID: 18837651 PMCID: PMC2673109 DOI: 10.1089/ars.2008.2138] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gap-junction channels connect the cytoplasm of adjacent cells, allowing the diffusion of ions and small metabolites. They are formed at the appositional plasma membranes by a family of related proteins named connexins. Mutations in connexins 26, 31, 30, 32, and 43 have been associated with nonsyndromic or syndromic deafness. The majority of these mutations are inherited in an autosomal recessive manner, but a few of them have been associated with dominantly inherited hearing loss. Mutations in the connexin26 gene (GJB2) are the most common cause of genetic deafness. This review summarizes the most relevant and recent information about different mutations in connexin genes found in human patients, with emphasis on GJB2. The possible effects of the mutations on channel expression and function are discussed, in addition to their possible physiologic consequences for inner ear physiology. Finally, we propose that connexin channels (gap junctions and hemichannels) may be targets for age-related hearing loss induced by oxidative damage.
Collapse
Affiliation(s)
- Agustín D Martínez
- Centro de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | | | | | | | | |
Collapse
|
35
|
Araya J, Cambier S, Markovics JA, Wolters P, Jablons D, Hill A, Finkbeiner W, Jones K, Broaddus VC, Sheppard D, Barzcak A, Xiao Y, Erle DJ, Nishimura SL. Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients. J Clin Invest 2008; 117:3551-62. [PMID: 17965775 DOI: 10.1172/jci32526] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 08/29/2007] [Indexed: 11/17/2022] Open
Abstract
Squamous metaplasia (SM) is common in smokers and is associated with airway obstruction in chronic obstructive pulmonary disease (COPD). A major mechanism of airway obstruction in COPD is thickening of the small airway walls. We asked whether SM actively contributes to airway wall thickening through alteration of epithelial-mesenchymal interactions in COPD. Using immunohistochemical staining, airway morphometry, and fibroblast culture of lung samples from COPD patients; genome-wide analysis of an in vitro model of SM; and in vitro modeling of human airway epithelial-mesenchymal interactions, we provide evidence that SM, through the increased secretion of IL-1beta, induces a fibrotic response in adjacent airway fibroblasts. We identify a pivotal role for integrin-mediated TGF-beta activation in amplifying SM and driving IL-1beta-dependent profibrotic mesenchymal responses. Finally, we show that SM correlates with increased severity of COPD and that fibroblast expression of the integrin alpha(v)beta(8), which is the major mediator of airway fibroblast TGF-beta activation, correlated with disease severity and small airway wall thickening in COPD. Our findings have identified TGF-beta as a potential therapeutic target for COPD.
Collapse
Affiliation(s)
- Jun Araya
- Department of Pathology, Lung Biology Center, UCSF, San Francisco, California 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jeong JH, Chun YS, Lee SH, Jeong HS, Kim JC. Ocular Manifestations and Histologic Characteristics of Keratitis-Ichthyosis-Deafness (KID) Syndrome. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2008. [DOI: 10.3341/jkos.2008.49.9.1532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jae Hoon Jeong
- Department of Ophthalmology, Chung-Ang University Yongsan Hospital, Seoul, Korea
| | - Yeoun Sook Chun
- Department of Ophthalmology, Chung-Ang University Yongsan Hospital, Seoul, Korea
| | | | | | - Jae Chan Kim
- Department of Ophthalmology, Chung-Ang University Yongsan Hospital, Seoul, Korea
| |
Collapse
|
37
|
Abstract
Gap junctions allow the exchange of ions, second messengers, and small metabolites between adjacent cells and are formed by two unrelated protein families, the pannexins and connexins. Mutations in connexin genes cause a variety of genetic disorders, implicating a critical role in tissue homeostasis. Association of congenital skin disorders to mutations in different connexins has underscored the importance of gap junctional communication in the skin and its appendages. Here, we discuss the basic structure of gap junction channels and the function of connexin genes that have been associated with human disorders to explore the physiology of intercellular communication in skin.
Collapse
|
38
|
A murine living skin equivalent amenable to live-cell imaging: analysis of the roles of connexins in the epidermis. J Invest Dermatol 2007; 128:1039-49. [PMID: 17960178 DOI: 10.1038/sj.jid.5701125] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Three-dimensional (3D) organotypic models are increasingly used to study the aspects of epidermal organisation and cutaneous wound-healing events. However, these are largely dependent on laborious histological analysis and immunohistochemical approaches. Despite the large resource of transgenic and knockout mice harboring mutations relevant to skin disorders, few organotypic mouse skin models are available. We have developed a versatile in vitro 3D organotypic mouse skin equivalent that reflects epidermal organisation in vivo. The system is optically transparent and ideally suited to real-time analysis using a variety of integrated in situ imaging techniques. As a paradigm for coordination of cellular events, the epidermal gap junction network was investigated and the model displayed predominant connexin 43 (Cx43) expression in basal proliferating cells and Cx26 and Cx30 expression in differentiated keratinocytes. We show that attenuation of Cx43-mediated communication by a Cx mimetic peptide enhanced wound closure rates in keratinocyte monocultures and in the living skin equivalent system, emphasising the utility of the model to systematically unravel the molecular mechanisms underlying epidermal morphogenesis, assess promising therapeutic strategies, and reduce animal experimentation. Furthermore, we visualise epidermal regeneration following injury in real time, thereby facilitating avenues to explore distinctive modes of wound re-epithelialisation in a non-invasive manner.
Collapse
|
39
|
Thomas T, Shao Q, Laird DW. Differentiation of Organotypic Epidermis in the Presence of Skin Disease-Linked Dominant-Negative Cx26 Mutants and Knockdown Cx26. J Membr Biol 2007; 217:93-104. [PMID: 17638039 DOI: 10.1007/s00232-007-9036-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
In this study, we chose a differentiation-competent rat epidermal keratinocyte (REK) cell line to examine the role of Cx26 and disease-linked Cx26 mutants in organotypic epidermal differentiation. First, we generated stable REK cell lines expressing three skin disease-linked mutants (G59A, D66H and R75W). Second, we used an RNAi approach to knock down the expression of Cx26 in REKs. Interestingly, the three-dimensional (3D) architecture of the organotypic epidermis altered the intracellular spatial distribution of the mutants in comparison to 2D cultured REKs, highlighting the importance of using organotypic cultures. Unexpectedly, the presence of disease-linked mutants or the overexpression of wild-type Cx26 had little effect on the differentiation of the organotypic epidermis as determined by the architecture of the epidermis, expression of molecular markers indicative of epidermis differentiation (keratin 10, keratin 14, involucrin, loricrin) and stratification/cornification of the epidermis. Likewise, organotypic epidermis continued to differentiate normally upon Cx26 knockdown. While Cx26 has been reported to be upregulated during wound healing, no reduction in wound closure was observed in 2D REK cultures that expressed loss-of-function, dominant Cx26 mutants. In conclusion, we demonstrate that gain or loss of Cx26 function does not disrupt organotypic epidermal differentiation and offer insights into why patients harboring Cx26 mutations do not frequently present with more severe disease that encompasses thin skin.
Collapse
Affiliation(s)
- Tamsin Thomas
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
40
|
Man YS, Trolove C, Tattersall D, Thomas AC, Papakonstantinopoulou A, Patel D, Scott C, Chong J, Jagger DJ, O’Toole EA, Navsaria H, Curtis MA, Kelsell DP. A deafness-associated mutant human connexin 26 improves the epithelial barrier in vitro. J Membr Biol 2007; 218:29-37. [PMID: 17581693 PMCID: PMC2845879 DOI: 10.1007/s00232-007-9025-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/04/2007] [Indexed: 01/21/2023]
Abstract
A large proportion of recessive nonsyndromic hearing loss is due to mutations in the GJB2 gene encoding connexin 26 (Cx26), a component of a gap junction. Within different ethnic groups there are specific common recessive mutations, each with a relatively high carrier frequency, suggesting the possibility of heterozygous advantage. Carriers of the R143W GJB2 allele, the most prevalent in the African population, present with a thicker epidermis than noncarriers. In this study, we show that (R143W)Cx26-expressing keratinocytes form a significantly thicker epidermis in an organotypic coculture skin model. In addition, we show increased migration of cells expressing (R143W)Cx26 compared to (WT)Cx26-overexpressing cells. We also demonstrate that cells expressing (R143W)Cx26 are significantly less susceptible to cellular invasion by the enteric pathogen Shigella flexneri than (WT)Cx26-expressing cells. These in vitro studies suggest an advantageous effect of (R143W)Cx26 in epithelial cells.
Collapse
Affiliation(s)
- Y.K. Stella Man
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - Caroline Trolove
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - Daniel Tattersall
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - Anna C. Thomas
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - Annie Papakonstantinopoulou
- Centre for Infectious Diseases, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - Drashnika Patel
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - Claire Scott
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - Jiehan Chong
- Centre for Auditory Research, UCL Ear Institute, University College London, London, WC1X 8EE
| | - Daniel J. Jagger
- Centre for Auditory Research, UCL Ear Institute, University College London, London, WC1X 8EE
| | - Edel A. O’Toole
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - Harshad Navsaria
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - Michael A. Curtis
- Centre for Infectious Diseases, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| | - David P. Kelsell
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Queen Mary, University of London, Whitechapel, London, E1 2AT
| |
Collapse
|
41
|
Maher AC, Thomas T, Riley JL, Veitch G, Shao Q, Laird DW. Rat epidermal keratinocytes as an organotypic model for examining the role of Cx43 and Cx26 in skin differentiation. ACTA ACUST UNITED AC 2007; 12:219-30. [PMID: 16531317 DOI: 10.1080/15419060500511818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to characterize connexin expression and regulation in the epidermis, we have characterized a rat epidermal keratinocyte (REK) cell line that is phenotypically similar to basal keratinocytes in that they have the ability to differentiate into organotypic epidermis consisting of a basal cell layer, 2-3 suprabasal cell layers, and a cornified layer. RT-PCR revealed that REK cells express mRNA for Cx26, Cx31, Cx31.1, Cx37, and Cx43, which mimics the reported connexin profile for rat tissue. In addition, we report the expression of Cx30, Cx30.3, Cx40, and Cx45 in rat keratinocytes, highlighting the complexity of the connexin complement in rat epidermis. Furthermore, 3-dimensional analysis of organotypic skin revealed that Cx26 and Cx43 are exquisitely regulated during the differentiation process. The life-cycle of these connexins including their expression, transport, assembly into gap junctions, internalization, and degradation are elegantly depicted in organotypic epidermis as keratinocytes proceed from differentiation to programmed cell death.
Collapse
Affiliation(s)
- Amy C Maher
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Evaluation of the human genome suggests that all members of the connexin family of gap-junction proteins have now been successfully identified. This large and diverse family of proteins facilitates a number of vital cellular functions coupled with their roles, which range from the intercellular propagation of electrical signals to the selective intercellular passage of small regulatory molecules. Importantly, the extent of gap-junctional intercellular communication is under the direct control of regulatory events associated with channel assembly and turnover, as the vast majority of connexins have remarkably short half-lives of only a few hours. Since most cell types express multiple members of the connexin family, compensatory mechanisms exist to salvage tissue function in cases when one connexin is mutated or lost. However, numerous studies of the last decade have revealed that mutations in connexin genes can also lead to severe and debilitating diseases. In many cases, single point mutations lead to dramatic effects on connexin trafficking, assembly and channel function. This review will assess the current understanding of wild-type and selected disease-linked mutant connexin transport through the secretory pathway, gap-junction assembly at the cell surface, internalization and degradation.
Collapse
Affiliation(s)
- Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
43
|
Yoo S, Simzar S, Han K, Takahashi S, Cotliar R. Erythrokeratoderma variabilis successfully treated with topical tazarotene. Pediatr Dermatol 2006; 23:382-5. [PMID: 16918639 DOI: 10.1111/j.1525-1470.2006.00252.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Erythrokeratoderma variabilis, also known as Mendes da Costa syndrome, is a genodermatosis belonging to the group of diseases known as the erythrokeratodermias. Erythrokeratoderma variabilis is characterized by two distinctive manifestations: well-demarcated, variable, transient, figurate patches of erythema, and localized or generalized hyperkeratotic plaques. Treatments include topical retinoic acid, salicylic acid, and alpha-hydroxy acid in petrolatum, but all have been reported to have limited, variable success rates. We report a child with erythrokeratoderma variabilis with no family history of this entity, successfully treated with topical tazarotene.
Collapse
Affiliation(s)
- Stephen Yoo
- Department of Dermatology, University of Texas Southwestern, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
44
|
Haass NK, Wladykowski E, Kief S, Moll I, Brandner JM. Differential induction of connexins 26 and 30 in skin tumors and their adjacent epidermis. J Histochem Cytochem 2005; 54:171-82. [PMID: 16046668 DOI: 10.1369/jhc.5a6719.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junctions (GJs) have been shown to play a role in tumor progression including a variety of keratinocyte-derived and non-keratinocyte-derived skin tumors. Here we show that the synthesis of the GJ proteins connexin 26 and connexin 30 (Cx26 and Cx30) is induced in keratinocyte-derived epithelial skin tumors whereas there is either no change or a downregulation of Cx43. Cx26, Cx30, and Cx43 are absent in non-epithelial skin tumors. Further, Cx26 and Cx30 are induced in the epidermis adjacent to malignant melanoma but absent in the epidermis adjacent to benign non-epithelial skin lesions (melanocytic nevi and angioma). The keratinocyte-derived skin tumors are very heterogeneous regarding the Cx26/Cx30 pattern in the epidermis at the periphery of the tumors. We did not observe any difference in the localization of the very similar proteins Cx26 and Cx30 but a variation in intensity of immunoreactivity. As the staining patterns of Cx26 and Cx30 antibodies are not identical to those of CK6, a marker for hyperproliferation, and CK17, a marker for trauma, we discuss that the induction of these gap junctional proteins exceeds a reflection of reactive hyperproliferative or traumatized epidermis. We further discuss the putative roles of these gap junctional proteins in tumor progression.
Collapse
Affiliation(s)
- Nikolas K Haass
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
45
|
Déglise S, Martin D, Probst H, Saucy F, Hayoz D, Waeber G, Nicod P, Ris HB, Corpataux JM, Haefliger JA. Increased connexin43 expression in human saphenous veins in culture is associated with intimal hyperplasia. J Vasc Surg 2005; 41:1043-52. [PMID: 15944608 DOI: 10.1016/j.jvs.2005.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Intimal hyperplasia is a vascular remodelling process that occurs after a vascular injury. The mechanisms involved in intimal hyperplasia are proliferation, dedifferentiation, and migration of medial smooth muscle cells towards the subintimal space. We postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, might participate in the development of intimal hyperplasia. Connexin43 (Cx43) expression levels may be altered in intimal hyperplasia, and we therefore evaluated the regulated expression of Cx43 in human saphenous veins in culture in the presence or not of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. METHODS Segments of harvested human saphenous veins, obtained at the time of bypass graft, were opened longitudinally with the luminal surface uppermost and maintained in culture for 14 days. Vein fragments were then processed for histologic examination, neointimal thickness measurements, immunocytochemistry, RNA, and proteins analysis. RESULTS Of the four connexins (Cx37, 40, 43, and 45), we focused on Cx43 and Cx40, which we found by real-time polymerase chain reaction to be expressed in the saphenous vein because they are the predominant connexins expressed by smooth muscle cells and endothelial cells. After 14 days of culture, histomorphometric analysis showed a significant increase in the intimal thickness as observed during the process of intimal hyperplasia. A time-course analysis revealed a progressive upregulation of Cx43 to reach a maximal increase of sixfold to eightfold at both transcript and protein levels after 14 days in culture. In contrast, the expression of Cx40, abundantly expressed in the endothelial cells, was not altered. Immunofluorescence showed a large increase in Cx43 within smooth muscle cell membranes of the media layer. The development of intimal hyperplasia in vitro was decreased in presence of fluvastatin and was associated with reduced Cx43 expression. CONCLUSIONS These data show that Cx43 is increased in vitro during the process of intimal hyperplasia and that fluvastatin could prevent this induction, supporting a critical role for Cx43-mediated gap-junctional communication in the human vein during the development of intimal hyperplasia. CLINICAL RELEVANCE Stenosis due to intimal hyperplasia is the most common cause of failure of venous bypass grafts. To better understand the development of intimal hyperplasia, we used an ex vivo organ culture model to study saphenous veins harvested from patients undergoing a lower limb bypass surgery. In this model, the morphologic and functional integrity of the vessel wall is maintained and significant intimal hyperplasia development occurs after 14 days in culture. We have postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, may participate in the development of intimal hyperplasia. Indeed, intimal hyperplasia consists of proliferation and migration of smooth muscle cells into the subendothelial space. Intercellular communication is responsible for the direct transfer of ions and small molecules from one cell to the other through gap-junction channels found at cell-cell appositions. No study to date has evaluated whether gap junctional communication is involved in the process of intimal hyperplasia in humans. This assertion was investigated by using the aforementioned organ culture model of intimal hyperplasia in human saphenous veins, and our data support a critical role for Cx43-mediated gap junctional communication in human vein during the development of intimal hyperplasia.
Collapse
Affiliation(s)
- Sébastien Déglise
- Department of Thoracic and Vascular Surgery, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Messmer EM, Kenyon KR, Rittinger O, Janecke AR, Kampik A. Ocular manifestations of keratitis– ichthyosis–deafness (KID) syndrome. Ophthalmology 2005; 112:e1-6. [PMID: 15691545 DOI: 10.1016/j.ophtha.2004.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/20/2004] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE Keratitis-ichthyosis-deafness (KID) syndrome is a rare congenital ectodermal dysplasia characterized by the association of hyperkeratotic skin lesions, moderate to profound sensorineural hearing loss and vascularizing keratitis. Mutations in the GJB2 gene coding for connexin 26, a component of gap junctions in epithelial cells, have been observed in several KID patients. Variable ocular manifestations of the disease in 3 patients with molecular genetically confirmed KID syndrome are reported. DESIGN Retrospective case series. METHODS Clinical examination and molecular genetic analysis for mutations in the GJB2 gene were performed in 3 patients with KID syndrome ages 5, 13, and 41 years. RESULTS Visual acuity ranged from normal to severe visual loss. The ocular signs included loss of eyebrows and lashes, thickened and keratinized lids, trichiasis, recurrent corneal epithelial defects, superficial and deep corneal stromal vascularization with scarring, keratoconjunctivitis sicca, and, in one patient, presumed limbal insufficiency. Whereas ocular surface integrity could be maintained with artificial tears in one patient, and an epithelial defect healed under conservative treatment in the second patient, multiple surgical procedures including superficial keratectomies, limbal allograft transplantation with systemic immunosuppression, amniotic membrane transplantation, lateral tarsorrhaphies, and lamellar keratoplasty could not preserve useful vision in the third patient. CONCLUSIONS KID syndrome may affect the ocular adnexae and surface with variable severity independent of the age of the patient. Lid abnormalities, corneal surface instability, limbal stem cell deficiency with resulting corneal complications, and dry eye are the main ocular manifestations.
Collapse
Affiliation(s)
- E M Messmer
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
47
|
Talhouk RS, Elble RC, Bassam R, Daher M, Sfeir A, Mosleh LA, El-Khoury H, Hamoui S, Pauli BU, El-Sabban ME. Developmental expression patterns and regulation of connexins in the mouse mammary gland: expression of connexin30 in lactogenesis. Cell Tissue Res 2005; 319:49-59. [PMID: 15517403 DOI: 10.1007/s00441-004-0915-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 05/07/2004] [Indexed: 11/24/2022]
Abstract
The mammary gland reaches a fully differentiated phenotype at lactation, a stage characterized by the abundant expression of beta-casein. We have investigated the expression and regulation of gap junction proteins (connexins, Cx) during the various developmental stages of mouse mammary gland. Immunohistochemical analysis, with specific antibodies, reveals that Cx26 and Cx32 are expressed and confined to the cell borders of luminal epithelial cells in all developmental stages of the gland. Cx26 and Cx32 expression, at the mRNA and protein levels, increases in pregnancy and peaks in lactation. Whereas Cx43 mRNA decreases in pregnancy and lactation, the functional activity of Cx43 protein, which has been localized to myoepithelial cells, is regulated (through phosphorylation) during pregnancy and peaks during lactation. Cx30 mRNA and proteins have, for the first time, been detected in mammary gland epithelia. Using reverse transcription/polymerase chain reaction and sequencing techniques, we show that Cx30 is abundant in pregnant and lactating mammary gland. Cx30 protein levels have not been detected in the mammary gland prior to day 15 of pregnancy, whereas maximum expression occurs at the onset of lactation. In mouse mammary cells in culture, Cx30 is epithelial-cell-specific and is induced by lactogenic hormones. These data identify a novel player in mammary differentiation and suggest a potential role for Cx30 in the fully differentiated gland.
Collapse
Affiliation(s)
- Rabih S Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, PO Box 11-0236, Beirut, Lebanon.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
A major area of research in regenerative medicine is the potential application of stem cells in skin grafting and tissue engineering. This would require well defined and efficient protocols for directing the commitment and differentiation of stem cells into the keratinocyte lineage, together with their selective purification and proliferation in vitro. The development of such protocols would reduce the likelihood of spontaneous differentiation of stem cells into divergent lineages upon transplantation, as well as reduce the risk of teratoma formation in the case of embryonic stem cells. Additionally, such protocols could provide useful in vitro models for studying skin tissue biology, as well as facilitate the genetic manipulation of stem cells for therapeutic applications. The development of pharmacokinetic and cytotoxicity/genotoxicity screening tests for skin-related biomaterials and drugs could also utilize protocols developed for the commitment and differentiation of stem cells into the keratinocyte lineage. Hence, this review critically examines the various strategies that could be employed to direct the commitment and differentiation of stem cells into the keratinocyte lineage in vitro.
Collapse
Affiliation(s)
- Boon Chin Heng
- Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
49
|
Brandner JM, Houdek P, Hüsing B, Kaiser C, Moll I. Connexins 26, 30, and 43: Differences Among Spontaneous, Chronic, and Accelerated Human Wound Healing. J Invest Dermatol 2004; 122:1310-20. [PMID: 15140236 DOI: 10.1111/j.0022-202x.2004.22529.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gap junctions (GJ) are known to be involved in spontaneous wound healing in rodent skin. We analyzed the staining patterns of the GJ proteins Cx26, Cx30, and Cx43 in human cutaneous wound healing and compared ex vivo spontaneous wound healing to non-healing wounds (chronic leg ulcers) and to ex vivo accelerated wound healing after transplantation of cultured keratinocytes. We demonstrate a loss of Cx43 staining at the wound margins during initial wound healing and after transplantation of keratinocytes. In contrast, Cx43 remains present at the margins of most non-healing wounds. We show a subsequent induction of Cx26 and Cx30 near the wound margins in spontaneous wound healing and-even earlier-after the transplantation of keratinocytes. The cells at the wound margins remain negative until the commencement of epidermal regeneration. Cx26/30 are present at the wound margins of most non-healing wounds. Cx stainings are absent in the transplanted keratinocytes during early wound healing, but there is a subsequent induction. Our results suggest that the downregulation of Cx43 is an important event in human wound healing. We discuss the assumption that direct cell-cell communication via GJ contribute to the acceleration of wound healing after the transplantation of keratinocytes.
Collapse
Affiliation(s)
- Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
50
|
Thomas T, Telford D, Laird DW. Functional Domain Mapping and Selective Trans-dominant Effects Exhibited by Cx26 Disease-causing Mutations. J Biol Chem 2004; 279:19157-68. [PMID: 14978038 DOI: 10.1074/jbc.m314117200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in Cx26 are a major cause of autosomal dominant and recessive forms of sensorineural deafness. Some mutations in Cx26 are associated not only with deafness but also with skin disease. We examined the subcellular localization and function of two green fluorescent protein (GFP)-tagged Cx26 point mutants that exhibit both phenotypes, G59A-GFP and D66H-GFP. D66H-GFP was retained within the brefeldin A-insensitive trans-Golgi network, whereas a population of G59A-GFP was transported to the cell surface. Neither G59A nor D66H formed gap junctions that were permeable to small fluorescent dyes, suggesting they are loss-of-function mutations. When co-expressed with wild-type Cx26, both G59A and D66H exerted dominant-negative effects on Cx26 function. G59A also exerted a trans-dominant negative effect on co-expressed wild type Cx32 and Cx43, whereas D66H exerted a trans-dominant negative effect on Cx43 but not Cx32. We propose that the severity of the skin disease is dependent on the specific nature of the Cx26 mutation and the trans-dominant selectivity of the Cx26 mutants on co-expressed connexins. Additional systematic mutations at residue D66, in which the overall charge of this motif was altered, suggested that the first extracellular loop is critical for Cx26 transport to the cell surface as well as function of the resulting gap junction channels.
Collapse
Affiliation(s)
- Tamsin Thomas
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|