1
|
Kumar P, Banik SP, Ohia SE, Moriyama H, Chakraborty S, Wang CK, Song YS, Goel A, Bagchi M, Bagchi D. Current Insights on the Photoprotective Mechanism of the Macular Carotenoids, Lutein and Zeaxanthin: Safety, Efficacy and Bio-Delivery. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:505-518. [PMID: 38393321 DOI: 10.1080/27697061.2024.2319090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Ocular health has emerged as one of the major issues of global health concern with a decline in quality of life in an aging population, in particular and rise in the number of associated morbidities and mortalities. One of the chief reasons for vision impairment is oxidative damage inflicted to photoreceptors in rods and cone cells by blue light as well as UV radiation. The scenario has been aggravated by unprecedented rise in screen-time during the COVID and post-COVID era. Lutein and Zeaxanthin are oxygenated carotenoids with proven roles in augmentation of ocular health largely by virtue of their antioxidant properties and protective effects against photobleaching of retinal pigments, age-linked macular degeneration, cataract, and retinitis pigmentosa. These molecules are characterized by their characteristic yellow-orange colored pigmentation and are found in significant amounts in vegetables such as corn, spinach, broccoli, carrots as well as fish and eggs. Unique structural signatures including tetraterpenoid skeleton with extensive conjugation and the presence of hydroxyl groups at the end rings have made these molecules evolutionarily adapted to localize in the membrane of the photoreceptor cells and prevent their free radical induced peroxidation. Apart from the benefits imparted to ocular health, lutein and zeaxanthin are also known to improve cognitive function, cardiovascular physiology, and arrest the development of malignancy. Although abundant in many natural sources, bioavailability of these compounds is low owing to their long aliphatic backbones. Under the circumstances, there has been a concerted effort to develop vegetable oil-based carriers such as lipid nano-emulsions for therapeutic administration of carotenoids. This review presents a comprehensive update of the therapeutic potential of the carotenoids along with the challenges in achieving an optimized delivery tool for maximizing their effectiveness inside the body.
Collapse
Affiliation(s)
- Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Hiroyoshi Moriyama
- Department of Scientific Affairs, The Japanese Institute for Health Food Standards, Tokyo, Japan
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yong Sang Song
- Department of Obstetrics and Gynaecology, Seoul National University Hospital, Seoul, South Korea
| | - Apurva Goel
- Regulation Department, Chemical Resources (CHERESO), Panchkula, India
| | | | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
2
|
Tate DE, Tanprasertsuk J, Jones RB, Maughan H, Chakrabarti A, Khafipour E, Norton SA, Shmalberg J, Honaker RW. A Randomized Controlled Trial to Evaluate the Impact of a Novel Probiotic and Nutraceutical Supplement on Pruritic Dermatitis and the Gut Microbiota in Privately Owned Dogs. Animals (Basel) 2024; 14:453. [PMID: 38338095 PMCID: PMC10854619 DOI: 10.3390/ani14030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Pruritic dermatitis (PD) is a common presentation of canine allergic skin diseases, with diversity in severity and treatment response due to complex etiopathogenesis. Evidence suggests the gut microbiota (GM) may contribute to the development of canine allergies. A 10-week double-blind randomized controlled trial evaluated a novel probiotic and nutraceutical blend (PNB) on clinical signs of skin allergy, health measures, and the GM of privately owned self-reported pruritic dogs. A total of 105 dogs were enrolled, with 62 included in pruritus and health analysis and 50 in microbiome analysis. The PNB supported greater improvement of owner-assessed clinical signs of PD at week 2 than the placebo (PBO). More dogs that received the PNB shifted to normal pruritus (digital PVAS10-N: <2) by week 4, compared to week 7 for the PBO. While a placebo effect was identified, clinical differences were supported by changes in the GM. The PNB enriched three probiotic bacteria and reduced abundances of species associated with negative effects. The PBO group demonstrated increased abundances of pathogenic species and reduced abundances of several beneficial species. This trial supports the potential of the PNB as a supplemental intervention in the treatment of PD; however, further investigation is warranted, with stricter diagnostic criteria, disease biomarkers and direct veterinary examination.
Collapse
Affiliation(s)
- Devon E. Tate
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| | | | - Roshonda B. Jones
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| | | | | | - Ehsan Khafipour
- Cargill Inc., Wayzata, MN 55391, USA; (A.C.); (E.K.); (S.A.N.)
| | | | - Justin Shmalberg
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ryan W. Honaker
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| |
Collapse
|
3
|
Montero P, Villarroel MJ, Roger I, Morell A, Milara J, Cortijo J. Obacunone Photoprotective Effects against Solar-Simulated Radiation-Induced Molecular Modifications in Primary Keratinocytes and Full-Thickness Human Skin. Int J Mol Sci 2023; 24:11484. [PMID: 37511243 PMCID: PMC10380981 DOI: 10.3390/ijms241411484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Solar radiation can cause damage to the skin, leading to various adverse effects such as sunburn, reactive oxygen species production, inflammation, DNA damage, and photoaging. To study the potential of photoprotective agents, full-thickness skin models are increasingly being used as in vitro tools. One promising approach to photoprotection involves targeting the redox-sensitive transcription factor Nrf2, which is responsible for regulating various cellular defense mechanisms, including the antioxidant response, inflammatory signaling, and DNA repair. Obacunone, a natural triterpenoid, has been identified as a potent Nrf2 agonist. The present study aims to evaluate the relevance of full-thickness (FT) skin models in photoprotection studies and to explore the potential photoprotective effects of obacunone on those models and in human keratinocytes. Phenion® full-thickness skin models and keratinocytes were incubated with increasing concentrations of obacunone and irradiated with solar-simulated radiation (SSR). Various photodamage markers were evaluated, including histological integrity, oxidative stress, apoptosis, inflammation, photoaging-related dermal markers, and photocarcinogenesis markers. Increasing doses of SSR were found to modulate various biomarkers related to sun damage in the FT skin models. However, obacunone attenuated cytotoxicity, inflammation, oxidative stress, sunburn reaction, photoaging, and photocarcinogenesis in both keratinocytes and full thickness skin models exposed to SSR. These results suggest that obacunone may have potential as a photoprotective agent for preventing the harmful effects of solar radiation on the skin.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46185 Valencia, Spain
| | - Maria José Villarroel
- Department of Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, 46010 Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, 46185 Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| | - Anselm Morell
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 50005 Hradec Králové, Czech Republic
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium, 46014 Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Jebali A, Sanchez MR, Hanschen ER, Starkenburg SR, Corcoran AA. Trait drift in microalgae and applications for strain improvement. Biotechnol Adv 2022; 60:108034. [PMID: 36089253 DOI: 10.1016/j.biotechadv.2022.108034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Microalgae are increasingly used to generate a wide range of commercial products, and there is growing evidence that microalgae-based products can be produced sustainably. However, industrial production of microalgal biomass is not as developed as other biomanufacturing platform technologies. In addition, results of bench-scale research often fail to translate to large-scale or mass production systems. This disconnect may result from trait drift and evolution occurring, through time, in response to unique drivers in each environment, such as cultivation regimes, weather, and pests. Moreover, outdoor and indoor cultivation of microalgae has the potential to impose negative selection pressures, which makes the maintenance of desired traits a challenge. In this context, this review sheds the light on our current understanding of trait drift and evolution in microalgae. We delineate the basics of phenotype plasticity and evolution, with a focus on how microalgae respond under various conditions. In addition, we review techniques that exploit phenotypic plasticity and evolution for strain improvement in view of industrial commercial applications, highlighting associated advantages and shortcomings. Finally, we suggest future research directions and recommendations to overcome unwanted trait drift and evolution in microalgae cultivation.
Collapse
Affiliation(s)
- Ahlem Jebali
- New Mexico Consortium, 4200 W. Jemez Road, Los Alamos, NM 87544, USA.
| | - Monica R Sanchez
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | - Erik R Hanschen
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | | | - Alina A Corcoran
- New Mexico Consortium, 4200 W. Jemez Road, Los Alamos, NM 87544, USA
| |
Collapse
|
5
|
Picone S, Ritieni A, Graziani G, Paolillo P, D'Adamo E, Botondi V, Panichi D, Torresi S, David D, di Ludovico A, Chiarelli F, Gazzolo D. Lutein levels in arterial cord blood correlate with neurotrophic calcium binding S100B protein in healthy preterm and term newborns. Ital J Pediatr 2022; 48:80. [PMID: 35643585 PMCID: PMC9148452 DOI: 10.1186/s13052-022-01276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND S100B is an established biomarker of brain development and damage. Lutein (LT) is a naturally occurring xanthophyll carotenoid mainly concentrated in the central nervous system (CNS), but its neurotrophic role is still debated. We investigated whether LT cord blood concentrations correlate with S100B in a cohort of preterm and term healthy newborns. METHODS We conducted a prospective study on the distribution of LT and S100B in arterial cord blood of healthy preterm (n = 50) and term (n = 50) newborns. RESULTS S100B and LT showed a pattern of concentration characterized by higher levels (P < 0.01, for all) at 33-36 weeks gestation (GA) followed by a progressive decrease (P < 0.01, for all) from 37 onwards with a dip at term. Both S100B and LT were gender-dependent with significantly (P < 0.01, for all) higher levels in females in preterm and term groups. S100B (R = 0.68; P < 0.001) and LT (R = 0.40; P = 0.005) correlated with GA at sampling. A positive significant correlation (R = 0.87; P < 0.001) between S100B and LT was found. CONCLUSIONS The present data showing a correlation between S100B and LT supports the notion of a LT trophic role in the CNS. Further investigations in high-risk infants are needed to elucidate LT involvement in the pathophysiological cascade of events leading to CNS development and damage.
Collapse
Affiliation(s)
- Simonetta Picone
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino General Hospital, Rome, Italy
| | - Alberto Ritieni
- Department of Pharmacy, Federico II Naples University, Naples, Italy
| | - Giulia Graziani
- Department of Pharmacy, Federico II Naples University, Naples, Italy
| | - Piermichele Paolillo
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino General Hospital, Rome, Italy
| | - Ebe D'Adamo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Valentina Botondi
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Daniele Panichi
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Sara Torresi
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Daniela David
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy.
| |
Collapse
|
6
|
Patel AK, Vadrale AP, Tseng YS, Chen CW, Dong CD, Singhania RR. Bioprospecting of marine microalgae from Kaohsiung Seacoast for lutein and lipid production. BIORESOURCE TECHNOLOGY 2022; 351:126928. [PMID: 35257880 DOI: 10.1016/j.biortech.2022.126928] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
A bioprospecting study was conducted from Seawater samples collected at Kaohsiung Seacoast, Taiwan. The current research was aimed to isolate potential lutein-producing strain, evaluate and optimize the best cultivation mode, lutein accumulation stage, lutein-extraction method, and condition to recover maximum lutein (main product) and lipid (byproduct). Biorefinery is the latest approach worldwide to extract multi-products for cost-effectiveness. Selected isolate among several isolates, identified as Chlorella sorokiniana Kh12 and exploited under biorefinery concept for lutein and lipid extraction. Kh12 cultivated under mixotrophy: 2X-(HT)-9k yielded maximum biomass (3.46 g L-1) and lutein (13.69 mg g-1) which is among the higher yields reported so far. Among various tested solvents, methanol was the best extractor. Bead milling was most effective to disrupt algal cell walls, seven minutes of milling was best for maximum lutein (7.56 mg g-1) extraction. Kh12 could be a promising candidate for commercial lutein and lipid co-production based on the outcome.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yi-Sheng Tseng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| |
Collapse
|
7
|
|
8
|
Ahn YJ, Kim H. Lutein as a Modulator of Oxidative Stress-Mediated Inflammatory Diseases. Antioxidants (Basel) 2021; 10:antiox10091448. [PMID: 34573081 PMCID: PMC8470349 DOI: 10.3390/antiox10091448] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023] Open
Abstract
Lutein is a xanthophyll carotenoid obtained from various foods, such as dark green leafy vegetables and egg yolk. Lutein has antioxidant activity and scavenges reactive oxygen species such as singlet oxygen and lipid peroxy radicals. Oxidative stress activates inflammatory mediators, leading to the development of metabolic and inflammatory diseases. Thus, recent basic and clinical studies have investigated the anti-inflammatory effects of lutein based on its antioxidant activity and modulation of oxidant-sensitive inflammatory signaling pathways. Lutein suppresses activation of nuclear factor-kB and signal transducer and activator of transcription 3, and induction of inflammatory cytokines (interleukin-1β, interleukin-6, monocyte chemoattratant protein-1, tumor necrosis factor-α) and inflammatory enzymes (cyclooxygenase-2, inducible nitric oxide synthase). It also maintains the content of endogenous antioxidant (glutathione) and activates nuclear factor erythroid 2–related factor 2 (Nrf2) and Nrf2 signaling-related antioxidant enzymes (hemeoxygenase-1, NAD(P)H: quinone oxidoreductase 1, glutathione-s-transferase, glutathione peroxidase, superoxide dismutase, catalase). In this review, we have discussed the current knowledge regarding the anti-inflammatory function of lutein against inflammatory diseases in various organs, including neurodegenerative disorders, eye diseases, diabetic retinopathy, osteoporosis, cardiovascular diseases, skin diseases, liver injury, obesity, and colon diseases.
Collapse
Affiliation(s)
| | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
9
|
J T ML, T PJ, D MP, T S K, G D. A critical look into different salt removal treatments for the production of high value pigments and fatty acids from marine microalgae Chlorella vulgaris (NIOT-74). BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00627. [PMID: 34036053 PMCID: PMC8138460 DOI: 10.1016/j.btre.2021.e00627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/23/2020] [Accepted: 05/05/2021] [Indexed: 10/26/2022]
Abstract
The prime challenge in seawater culture of microalgae for high value biomolecules production is presence of salt. Hence, twelve different salt removal treatments were evaluated for their impact on the lutein, total carotenoid, chlorophyll yields and fatty acid profile of marine microalgae Chlorella vulgaris (NIOT-74). The effectiveness of different treatments on salt removal was also visualized with the aid of Scanning Electron Microscope (SEM). Among the tested treatments, washing the algal biomass with 0.5 % HCl augmented the lutein (11.56 mg/g) and total carotenoid yield (60.88 mg/g) 1.82 and 1.86 fold respectively, in comparison to untreated control. Highest chlorophyll content (30.64 mg/g) was noticed in the distilled water wash treatment. Different salt removal treatments also impacted the fatty acid profile and degree of unsaturation of the fatty acids significantly. This study thus, signified the importance of salt removal treatments for the commercial production of biomolecules from marine microalgae cultured in natural seawater.
Collapse
Affiliation(s)
- Mary Leema J T
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| | - Persia Jothy T
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| | - Magesh Peter D
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| | - Kumar T S
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| | - Dharani G
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| |
Collapse
|
10
|
Pereira AG, Otero P, Echave J, Carreira-Casais A, Chamorro F, Collazo N, Jaboui A, Lourenço-Lopes C, Simal-Gandara J, Prieto MA. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar Drugs 2021; 19:md19040188. [PMID: 33801636 PMCID: PMC8067268 DOI: 10.3390/md19040188] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and β-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll’s bioavailability.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Anxo Carreira-Casais
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Nicolas Collazo
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Amira Jaboui
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
11
|
Dietary lutein supplementation protects against ultraviolet-radiation-induced erythema: Results of a randomized double-blind placebo-controlled study. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
12
|
Demmig-Adams B, López-Pozo M, Stewart JJ, Adams WW. Zeaxanthin and Lutein: Photoprotectors, Anti-Inflammatories, and Brain Food. Molecules 2020; 25:molecules25163607. [PMID: 32784397 PMCID: PMC7464891 DOI: 10.3390/molecules25163607] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
This review compares and contrasts the role of carotenoids across the taxa of life—with a focus on the xanthophyll zeaxanthin (and its structural isomer lutein) in plants and humans. Xanthophylls’ multiple protective roles are summarized, with attention to the similarities and differences in the roles of zeaxanthin and lutein in plants versus animals, as well as the role of meso-zeaxanthin in humans. Detail is provided on the unique control of zeaxanthin function in photosynthesis, that results in its limited availability in leafy vegetables and the human diet. The question of an optimal dietary antioxidant supply is evaluated in the context of the dual roles of both oxidants and antioxidants, in all vital functions of living organisms, and the profound impact of individual and environmental context.
Collapse
|
13
|
Aziz E, Batool R, Akhtar W, Rehman S, Shahzad T, Malik A, Shariati MA, Laishevtcev A, Plygun S, Heydari M, Rauf A, Ahmed Arif S. Xanthophyll: Health benefits and therapeutic insights. Life Sci 2019; 240:117104. [PMID: 31783054 DOI: 10.1016/j.lfs.2019.117104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 01/29/2023]
Abstract
Xanthophylls constitute a major part of carotenoids in nature. They are an oxidized version of carotenoid. Xanthophyll has widely drawn scientists' attentions in terms of its functionality, bioavailability and diversity. An assortment of xanthophyll varieties includes lutein, zeaxanthin, β-cryptoxanthin, capsanthin, astaxanthin, and fucoxanthin. Chemically, lutein and zeaxanthin are dipolar carotenoids with hydroxyl groups at both ends of their molecules that bestow hydrophilic properties to them. Hydrophilic affinity in lutein and zeaxanthin makes better bioavailability in reaction with singlet oxygen in water phase, whereas non-polar carotenoids have shown to have less efficiency in scavenging free radicals. Xanthophylls have been studied for their effects in a wide variety of diseases including neurologic, ophthalmologic, oral, allergic and immune diseases. This review highlights pharmaco-pharmaceutical applications of xanthophylls as well asits drug interactions with beta-carotene. Different types of xanthophylls have been shown to have neuroprotective effects. Fucoxanthin demonstrated potent antiplasmodial activity. Lutein and zeaxanthin prevent the progression of age related macular degeneration. They have also demonstrated promising effects on uveitis, retinitis pigmentosa, scleritis, cataracts, glaucoma, retinal ischemia and choroideremia. Astaxanthin showed to have skin protecting effects against ultraviolet light injury. Astaxanthin have anti-allergic activity against the contact dermatitis especially to treat the patients having adverse reactions induced by steroids. Astaxanthin has been reported to exert beneficial effects in preventing oral lichen planus and early stage cancers. β-cryptoxanthin has been considered a good candidate for prevention of bone loss via osteoblastic bone formation and inhibiting osteoclastic bone resorption. There is also some concern that higher dose of xanthophylls may be linked to increased risk of skin cancer and gastric adenocarcinoma. However this increased risk was not statistically significant when adjusted for confounding factors. Further researches including clinical studies are needed to better evaluate the efficacy and safety of xanthophylls in prevention and treatment of different diseases.
Collapse
Affiliation(s)
- Ejaz Aziz
- Department of Botany, GDC Khanpur, Haripur, Pakistan.
| | - Riffat Batool
- University Institute of Biochemistry and Biotechnology, PMAS-UAAR, Rawalpindi, Pakistan.
| | - Wasim Akhtar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shazia Rehman
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Tasmeena Shahzad
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Ayesha Malik
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026 Orel, Russia
| | - Alexey Laishevtcev
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026 Orel, Russia; Federal Research Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow 109428, Russia
| | - Sergey Plygun
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, 302026 Orel, Russia; European Society of Clinical Microbiology and Infectious Diseases, Basel 4051, Switzerland; All Russian Research Institute of Phytopathology, Moscow Region 143050, Russia
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, KPK, Pakistan.
| | - Shaheer Ahmed Arif
- Bioproducts Sciences and Engineering Laboratory, Washington State University Tricities, 2710, Crimson way, Richland, WA 99354, USA
| |
Collapse
|
14
|
Murillo AG, Hu S, Fernandez ML. Zeaxanthin: Metabolism, Properties, and Antioxidant Protection of Eyes, Heart, Liver, and Skin. Antioxidants (Basel) 2019; 8:E390. [PMID: 31514298 PMCID: PMC6770730 DOI: 10.3390/antiox8090390] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022] Open
Abstract
Zeaxanthin, a non-provitamin A carotenoid that belongs to the xanthophyll family, has been less studied than its isomer lutein. However, zeaxanthin has also been shown to have a number of beneficial effects for human health due to its ability to quench free radicals, exert antioxidant effects, as well as decrease inflammation. It is the purpose of this review to discuss the metabolism of zeaxanthin, including digestion, absorption, transport, and uptake by tissues, as well as the dietary or other factors which affect zeaxanthin bioavailability. In addition, this review also focuses on specific effects of this carotenoid on eye, skin, liver, and cardiovascular health. Data derived from human interventions, animal models of research, and in vitro and cell studies are discussed in this review.
Collapse
Affiliation(s)
- Ana Gabriela Murillo
- Biochemistry Department, University of Costa Rica, San Pedro de Montes de Oca 2060, Costa Rica.
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Balić A, Mokos M. Do We Utilize Our Knowledge of the Skin Protective Effects of Carotenoids Enough? Antioxidants (Basel) 2019; 8:E259. [PMID: 31370257 PMCID: PMC6719967 DOI: 10.3390/antiox8080259] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Due to their potential health-promoting effects, carotenoids have drawn both scientific and public attention in recent years. The primary source of carotenoids in the human skin is diet, mainly fruits, vegetables, and marine product, but they may originate from supplementation and topical application, too. In the skin, they accumulate mostly in the epidermis and act as a protective barrier to various environmental influences. Namely, the skin is exposed to numerous environmental factors, including ultraviolet radiation (UVR), air pollution, and smoking, that cause oxidative stress within the skin with consequent premature (extrinsic) aging. UVR, as the most prominent environmental factor, may cause additional detrimental skin effects, such as sunburn, DNA damage, and skin cancer. Therefore, photoprotection is the first line intervention in the prevention of premature aging and skin cancer. Numerous studies have demonstrated that carotenoids, particularly β-carotene, lycopene, lutein, and astaxanthin, have photoprotective effects, not only through direct light-absorbing properties, but also through their antioxidant effects (scavenging reactive oxygen species), as well as by regulation of UV light-induced gene expression, modulation of stress-dependent signaling, and/or suppression of cellular and tissue responses like inflammation. Interventional studies in humans with carotenoid-rich diet have shown its photoprotective effects on the skin (mostly by decreasing the sensitivity to UVR-induced erythema) and its beneficial effects in prevention and improvement of skin aging (improved skin elasticity and hydration, skin texture, wrinkles, and age spots). Furthermore, carotenoids may be helpful in the prevention and treatment of some photodermatoses, including erythropoietic protoporphyria (EPP), porphyria cutanea tarda (PCT) and polymorphous light eruption (PMLE). Although UVR is recognized as the main etiopathogenetic factor in the development of non-melanoma skin cancer (NMSC) and melanoma, and the photoprotective effects of carotenoids are certain, available studies still could not undoubtedly confirm the protective role of carotenoids in skin photocarcinogenesis.
Collapse
Affiliation(s)
- Anamaria Balić
- University Hospital Centre Zagreb, Department of Dermatology and Venereology, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia.
| | - Mislav Mokos
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
16
|
Parrado C, Philips N, Gilaberte Y, Juarranz A, González S. Oral Photoprotection: Effective Agents and Potential Candidates. Front Med (Lausanne) 2018; 5:188. [PMID: 29998107 PMCID: PMC6028556 DOI: 10.3389/fmed.2018.00188] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Electromagnetic radiation in the ultraviolet, visible, and infrared ranges produces biologic effects in humans. Where some of these effects are beneficial, others are harmful to the skin, particularly those stemming from ultraviolet radiation (UVR). Pharmacological photoprotection can be topical or systemic. Systemic photoprotection is often administered orally, complementing topical protection. New and classic oral agents (e.g., essential micronutrients as vitamins, minerals, polyphenols, carotenoids) are endowed with photoprotective and anti-photocarcinogenic properties. These substances bear the potential to increase systemic protection against the effects of electromagnetic radiation in the UV, visible, and infrared ranges. Protective mechanisms vary and include anti-oxidant, anti-inflammatory, and immunomodulatory effects. As such, they provide protection against UVR and prevent photo-induced carcinogenesis and aging. In this review, we present state of the art approaches regarding the photoprotective effects of vitamins and vitamin derivatives, dietary botanical, and non-botanical agents. A growing body of data supports the beneficial effects of oral photoprotection on the health of the skin. More studies will likely confirm and expand the positive impact of oral dietary botanicals as complementary measures for photoprotection.
Collapse
Affiliation(s)
- Concepción Parrado
- Department of Histology and Pathology, University of Málaga, Málaga, Spain
| | - Neena Philips
- School of Natural Sciences, Fairleigh Dickinson University, Teaneck, NJ, United States
| | - Yolanda Gilaberte
- Dermatology Service, Hospital Miguel Servet, Zaragoza, Spain.,Dermatology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Angeles Juarranz
- Biology Department, Instituto Ramón y Cajal de Investigación Sanitaria, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador González
- Medicine and Medical Specialties Department, Instituto Ramón y Cajal de Investigación Sanitaria, Alcalá University Madrid, Madrid, Spain
| |
Collapse
|
17
|
Nishino A, Sugimoto K, Sambe H, Ichihara T, Takaha T, Kuriki T. Effects of Dietary Paprika Xanthophylls on Ultraviolet Light-Induced Skin Damage: A Double-Blind Placebo-Controlled Study. J Oleo Sci 2018; 67:863-869. [DOI: 10.5650/jos.ess17265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Haruyo Sambe
- Institute of Health Sciences, Ezaki Glico Co., Ltd
| | | | | | | |
Collapse
|
18
|
Rojo de la Vega M, Krajisnik A, Zhang DD, Wondrak GT. Targeting NRF2 for Improved Skin Barrier Function and Photoprotection: Focus on the Achiote-Derived Apocarotenoid Bixin. Nutrients 2017; 9:nu9121371. [PMID: 29258247 PMCID: PMC5748821 DOI: 10.3390/nu9121371] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/10/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
The transcription factor NRF2 (nuclear factor-E2-related factor 2) orchestrates major cellular defense mechanisms including phase-II detoxification, inflammatory signaling, DNA repair, and antioxidant response. Recent studies strongly suggest a protective role of NRF2-mediated gene expression in the suppression of cutaneous photodamage induced by solar UV (ultraviolet) radiation. The apocarotenoid bixin, a Food and Drug Administration (FDA)-approved natural food colorant (referred to as ‘annatto’) originates from the seeds of the achiote tree native to tropical America, consumed by humans since ancient times. Use of achiote preparations for skin protection against environmental insult and for enhanced wound healing has long been documented. We have recently reported that (i) bixin is a potent canonical activator of the NRF2-dependent cytoprotective response in human skin keratinocytes; that (ii) systemic administration of bixin activates NRF2 with protective effects against solar UV-induced skin damage; and that (iii) bixin-induced suppression of photodamage is observable in Nrf2+/+ but not in Nrf2−/− SKH-1 mice confirming the NRF2-dependence of bixin-induced antioxidant and anti-inflammatory effects. In addition, bixin displays molecular activities as sacrificial antioxidant, excited state quencher, PPAR (peroxisome proliferator-activated receptor) α/γ agonist, and TLR (Toll-like receptor) 4/NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) antagonist, all of which might be relevant to the enhancement of skin barrier function and environmental stress protection. Potential skin photoprotection and photochemoprevention benefits provided by topical application or dietary consumption of this ethno-pharmacologically validated phytochemical originating from the Americas deserves further preclinical and clinical examination.
Collapse
Affiliation(s)
- Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Andrea Krajisnik
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
19
|
Picone S, Ritieni A, Fabiano A, Graziani G, Paolillo P, Livolti G, Galvano F, Gazzolo D. Lutein levels in arterial cord blood correlate with neuroprotein activin A in healthy preterm and term newborns: A trophic role for lutein? Clin Biochem 2017; 52:80-84. [PMID: 29195833 DOI: 10.1016/j.clinbiochem.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Lutein (LT) is a naturally occurring xanthophyll carotenoid most predominant in the central nervous system (CNS), but its neurotrophic role is still debated. We therefore investigated whether cord blood concentrations correlated with a well-established neurobiomarker, namely activin A. METHODS We conducted a prospective study on the distribution of LT and activin A in arterial cord blood of healthy preterm (n=50) and term (n=82) newborns according to weeks of gestational age (wGA) and gender. RESULTS LT and activin A showed a pattern of concentration characterized by higher levels (P<0.01, for all) at 33-36 wGA followed by a progressive decrease (P<0.01, for all) from 37 onwards with a dip at term. Both LT and activin A were gender-dependent with significantly (P<0.01, for all) higher levels in all recruited females and after sub-grouping for preterm and term births. LT (R=0.33; P<0.001) correlated with wGA at sampling. There were significant positive correlations between lutein and activin A in male (R=0.93; P<0.001) and female (R=0.89; P<0.001) groups. CONCLUSIONS The present data showing a correlation between LT and activin A support the notion of a neurotrophic role gender-dependent for LT and open the way to further investigations correlating LT with well-established biochemical markers of CNS development/damage.
Collapse
Affiliation(s)
| | | | - Adele Fabiano
- Neonatal Intensive Care Unit, Policlinico Casilino, Rome, Italy
| | | | | | | | | | - Diego Gazzolo
- Dept. of Maternal, Fetal and Neonatal Medicine, C. Arrigo Children's Hospital, Alessandria, Italy; Neonatal Intensive Care Unit G. d'Annunzio University, Chieti, Italy.
| |
Collapse
|
20
|
Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 2017; 174:1290-1324. [PMID: 27638711 PMCID: PMC5429337 DOI: 10.1111/bph.13625] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/21/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | | | - Sepideh Shahbazi
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| | - Azam Bolhassani
- Department of Hepatitis and AIDSPasteur Institute of IranTehranIran
| |
Collapse
|
21
|
da Costa JP. A current look at nutraceuticals – Key concepts and future prospects. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Juturu V, Bowman JP, Deshpande J. Overall skin tone and skin-lightening-improving effects with oral supplementation of lutein and zeaxanthin isomers: a double-blind, placebo-controlled clinical trial. Clin Cosmet Investig Dermatol 2016; 9:325-332. [PMID: 27785083 PMCID: PMC5063591 DOI: 10.2147/ccid.s115519] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purpose Carotenoids, especially lutein and zeaxanthin isomers (L/Zi), filter blue light and protect skin from environmental factors including high-energy sources. These carotenoids may be able to block the formation of melanin pathways, decrease cytokines, and increase antioxidants. Subjects and methods This is a randomized, double-blind, placebo-controlled clinical trial over a 12-week supplementation period. Fifty healthy people (50 healthy subjects were recruited and 46 subjects completed the study) (males and females, age: 18–45 years) with mild-to-moderate dry skin were included in this study. Skin type of the subjects was classified as Fitzpatrick skin type II–IV scale. Subjects were administered with either an oral dietary supplement containing 10 mg lutein (L) and 2 mg zeaxanthin isomers (Zi) (L/Zi: RR-zeaxanthin and RS (meso)-zeaxanthin) or a placebo daily for 12 weeks. The minimal erythemal dose and skin lightening (L*) were measured via the Chromameter®. The individual typological angle was calculated. Subjective assessments were also recorded. Results Overall skin tone was significantly improved in the L/Zi group compared to placebo (P<0.0237), and luminance (L*) values were significantly increased in the L/Zi group. Mean minimal erythemal dose was increased with L/Zi supplementation after 12 weeks of supplementation. L/Zi supplementation significantly increased the individual typological angle. Conclusion L/Zi supplementation lightens and improves skin conditions.
Collapse
Affiliation(s)
- Vijaya Juturu
- Department of Scientific and Clinical Affairs, OmniActive Health Technologies Inc., Morristown, NJ
| | | | - Jayant Deshpande
- Department of Scientific and Clinical Affairs, OmniActive Health Technologies Inc., Morristown, NJ
| |
Collapse
|
23
|
Huebbe P, Lange J, Lietz G, Rimbach G. Dietary beta-carotene and lutein metabolism is modulated by the APOE genotype. Biofactors 2016; 42:388-96. [PMID: 27040933 DOI: 10.1002/biof.1284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
The human apolipoprotein E (APOE) genotype has been suggested to interact with nutrient metabolism particularly with lipid soluble vitamins. Plasma carotenoid levels are determined by numerous dietary and genetic factors with high inter-individual variation; however, the APOE genotype has not been systematically examined so far. Our aim was to investigate the effect of the APOE genotype on dietary carotenoid metabolism with special regard to transcriptional regulation of carotenoid absorption, cleavage and adipocyte fat storage. We supplemented targeted replacement mice expressing human APOE3 and APOE4 isoforms with dietary beta-carotene (BC) and lutein (LUT) for 8 weeks. Plasma BC and adipose tissue BC and LUT levels were in trend lower in APOE4 than APOE3 mice, while hepatic expression of the beta-carotene oxygenases BCO1 and BCO2 was significantly higher. In contrast to the liver, mRNA levels of proteins involved in carotenoid absorption and cleavage in the small intestinal mucosa as well as of adipogenic markers in the adipose tissue were not different between APOE3 and APOE4 mice. Our data suggest that the hepatic carotenoid cleavage activity is higher in APOE4 mice partially reducing the circulation and extra-hepatic accumulation of intact carotenoids as compared to APOE3. Therefore we suggest considering the APOE genotype as modulator of carotenoid status in the future. © 2016 BioFactors, 42(4):388-396, 2016.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| | - Jennifer Lange
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| | - Georg Lietz
- School of Agriculture, Food and Rural Development, Human Nutrition Research Centre, University of Newcastle, Newcastle upon Tyne, NE1 7RU, U.K
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, 24118, Germany
| |
Collapse
|
24
|
Welling MT, Liu L, Rose TJ, Waters DLE, Benkendorff K. Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:552-62. [PMID: 26499392 DOI: 10.1111/plb.12408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/20/2015] [Indexed: 05/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are a diverse group of soil-dwelling fungi that form symbiotic associations with land plants. AMF-plant associations promote the accumulation of plant terpenoids beneficial to human health, although how AMF mediate terpenoid accumulation is not fully understood. A critical assessment and discussion of the literature relating to mechanisms by which AMF influence plant terpenoid accumulation, and whether this symbiosis can be harnessed in horticultural ecosystems was performed. Modification of plant morphology, phosphorus availability and gene transcription involved with terpenoid biosynthetic pathways were identified as key mechanisms associated with terpenoid accumulation in AMF-colonised plants. In order to exploit AMF-plant symbioses in horticultural ecosystems it is important to consider the specificity of the AMF-plant association, the predominant factor affecting terpenoid accumulation, as well as the end use application of the harvested plant material. Future research should focus on resolving the relationship between ecologically matched AMF genotypes and terpenoid accumulation in plants to establish if these associations are effective in promoting mechanisms favourable for plant terpenoid accumulation.
Collapse
Affiliation(s)
- M T Welling
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - L Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - T J Rose
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW, Australia
| | - D L E Waters
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - K Benkendorff
- School of Environment, Science & Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
25
|
Choo YM, Ahmad Kamar A, Tengku Kamalden TAF, Looi ML, Tan K, Lai NM. Lutein and zeaxanthin for reducing morbidity and mortality in preterm infants. Hippokratia 2016. [DOI: 10.1002/14651858.cd012178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yao Mun Choo
- University of Malaya; Department of Paediatrics; Kuala Lumpur Malaysia
| | | | | | - Mee Lee Looi
- Taylors University; School of Biosciences; Subang Jay Malaysia
| | - Kenneth Tan
- Monash University; Department of Paediatrics; 246 Clayton Road Clayton Melbourne Victoria Australia VIC 3168
- Monash Children's Hospital; Monash Newborn; 246 Clayton Road Melbourne Australia
| | - Nai Ming Lai
- Taylor's University; School of Medicine; Subang Jaya Malaysia
- Monash University; School of Pharmacy; Subang Jaya Malaysia
| |
Collapse
|
26
|
Sato E, Muto J, Zhang LJ, Adase CA, Sanford JA, Takahashi T, Nakatsuji T, Usdin TB, Gallo RL. The Parathyroid Hormone Second Receptor PTH2R and its Ligand Tuberoinfundibular Peptide of 39 Residues TIP39 Regulate Intracellular Calcium and Influence Keratinocyte Differentiation. J Invest Dermatol 2016; 136:1449-1459. [PMID: 27000502 DOI: 10.1016/j.jid.2016.02.814] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 01/02/2023]
Abstract
Genes related to the parathyroid hormone (PTH) influence cutaneous immune defense and development, but the full functions of the PTH family in cutaneous biology remain incompletely understood. In this study, we examined the expression and potential functions of the PTH second receptor (PTH2R) and its ligand, the tuberoinfundibular peptide of 39 residues (TIP39), in the skin. TIP39 and PTH2R mRNA and protein were detectable in both human and mouse skin, and in cultured keratinocytes and adipocytes. TIP39 was observed in the basal layer of human skin, whereas PTH2R was detected in the spinous to granular layer. The subcellular localization of TIP39 in keratinocytes changed during calcium-induced differentiation and shifted to colocalize with PTH2R at the membrane. The addition of recombinant TIP39 to normal human keratinocytes in culture induced an increase in intercellular calcium and triggered aspects of terminal differentiation including decreased keratin-14 and increased involucrin expression. Consistent with these observations, PTH2R(-/-) mice were observed to have increased epidermal thickness. In summary, identification of TIP39 and its receptor in the epidermis reveals an additional PTH family member that is expressed in the skin and may influence keratinocyte function.
Collapse
Affiliation(s)
- Emi Sato
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Jun Muto
- Department of Dermatology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ling-Juan Zhang
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Christopher A Adase
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - James A Sanford
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Toshiya Takahashi
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| | - Ted B Usdin
- Section on Fundamental Neuroscience, NIMH National Institute of Mental Health, Bethesda, Maryland, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
27
|
Tao S, Park SL, Rojo de la Vega M, Zhang DD, Wondrak GT. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2. Free Radic Biol Med 2015; 89:690-700. [PMID: 26456052 PMCID: PMC4684723 DOI: 10.1016/j.freeradbiomed.2015.08.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photodamage and carcinogenesis, and an urgent need exists for improved molecular photoprotective strategies different from (or synergistic with) photon absorption. Recent studies suggest a photoprotective role of cutaneous gene expression orchestrated by the transcription factor NRF2 (nuclear factor-E2-related factor 2). Here we have explored the molecular mechanism underlying carotenoid-based systemic skin photoprotection in SKH-1 mice and provide genetic evidence that photoprotection achieved by the FDA-approved apocarotenoid and food additive bixin depends on NRF2 activation. Bixin activates NRF2 through the critical Cys-151 sensor residue in KEAP1, orchestrating a broad cytoprotective response in cultured human keratinocytes as revealed by antioxidant gene expression array analysis. Following dose optimization studies for cutaneous NRF2 activation by systemic administration of bixin, feasibility of bixin-based suppression of acute cutaneous photodamage from solar UV exposure was investigated in Nrf2(+/+) versus Nrf2(-/-) SKH-1 mice. Systemic administration of bixin suppressed skin photodamage, attenuating epidermal oxidative DNA damage and inflammatory responses in Nrf2(+/+) but not in Nrf2(-/-) mice, confirming the NRF2-dependence of bixin-based cytoprotection. Taken together, these data demonstrate feasibility of achieving NRF2-dependent cutaneous photoprotection by systemic administration of the apocarotenoid bixin, a natural food additive consumed worldwide.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
28
|
Kopec RE, Schick J, Tober KL, Riedl KM, Francis DM, Young GS, Schwartz SJ, Oberyszyn TM. Sex differences in skin carotenoid deposition and acute UVB-induced skin damage in SKH-1 hairless mice after consumption of tangerine tomatoes. Mol Nutr Food Res 2015; 59:2491-501. [PMID: 26394800 DOI: 10.1002/mnfr.201500317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 11/06/2022]
Abstract
SCOPE UVB exposure, a major factor in the development of skin cancer, has differential sex effects. Tomato product consumption reduces the intensity of UVB-induced erythema in humans, but the mechanisms are unknown. METHODS AND RESULTS Four-week-old SKH-1 hairless mice (40 females, 40 males) were divided into two feeding groups (control or with 10% tangerine tomatoes naturally rich in UV-absorbing phytoene and phytofluene) and two UV exposure groups (with or without UV). After 10 weeks of feeding, the UV group was exposed to a single UV dose and sacrificed 48 h later. Blood and dorsal skin samples were taken for carotenoid analysis. Dorsal skin was harvested to assess sex and UV effects on carotenoid deposition, inflammation (skinfold thickness, myeloperoxidase levels), and DNA damage (cyclobutane pyrimidine dimers, p53). Females had significantly higher levels of both skin and blood carotenoids relative to males. UV exposure significantly reduced skin carotenoid levels in females but not males. Tomato consumption attenuated acute UV-induced increases in CPD in both sexes, and reduced myeloperoxidase activity and percent p53 positive epidermal cells in males. CONCLUSION Tangerine tomatoes mediate acute UV-induced skin damage in SKH-1 mice via reduced DNA damage in both sexes, and through reduced inflammation in males.
Collapse
Affiliation(s)
- Rachel E Kopec
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA.,Department of Human Nutrition, The Ohio State University, Columbus, OH, USA
| | - Jonathan Schick
- Flow Cytometry Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen L Tober
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Ken M Riedl
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - David M Francis
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, USA
| | - Gregory S Young
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Steven J Schwartz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA.,Department of Human Nutrition, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
29
|
Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer. Mar Drugs 2015; 13:6152-209. [PMID: 26437418 PMCID: PMC4626684 DOI: 10.3390/md13106152] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/09/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Sofía García-Mauriño
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville 41012, Spain.
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Antonio Alcaide
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain.
| |
Collapse
|
30
|
Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain. PLoS One 2015; 10:e0136904. [PMID: 26317757 PMCID: PMC4552625 DOI: 10.1371/journal.pone.0136904] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/09/2015] [Indexed: 11/19/2022] Open
Abstract
Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.
Collapse
|
31
|
Li R, Turner SD, Brautigan DL. Xanthophylls lutein and zeaxanthin modify gene expression and induce synthesis of hyaluronan in keratinocyte model of human skin. Biochem Biophys Rep 2015; 4:52-58. [PMID: 29124187 PMCID: PMC5668877 DOI: 10.1016/j.bbrep.2015.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022] Open
Abstract
Background Clinical trials report benefits of the xanthophylls lutein and zeaxanthin for skin health. Here a keratinocyte culture was used to investigate the effects of in vitro xanthophyll treatment on gene expression and biochemical pathways. Methods We employed the EpiDerm tissue model, Affymetrix Human Genome Array U113, bioinformatics analyses, qPCR validation and biochemical assays for glycosaminoglycans. Results We discovered 176 genes were significantly (p<0.05) down-regulated (log 2FC>2) and 47 genes were significantly up-regulated. Among the down-regulated genes we validated by qPCR marked reduction in expression of peptidase inhibitors. Bioinformatic analysis of the up-regulated genes implicated biosynthetic pathways for glycosaminoglycans. We assayed but found no increase in production of sulfated glycosaminoglycans, however there was a significant increase in biosynthesis of hyaluronic acid, a non-sulfated glycan. Conclusions The pattern of xanthophyll-regulated genes and the resulting biochemical responses can be linked with the responses observed in clinic trials. General significance Skin health benefits from xanthophyll supplementation and this study reveals molecular mechanisms for some of the effects.
Collapse
Affiliation(s)
- Rasia Li
- Center for Cell Signaling, Department of Microbiology, Immunology & Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Stephen D Turner
- Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - David L Brautigan
- Center for Cell Signaling, Department of Microbiology, Immunology & Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
32
|
Bennett DC, Leung G, Wang E, Ma S, Lo BKK, McElwee KJ, Cheng KM. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation. Poult Sci 2015. [PMID: 26217022 DOI: 10.3382/ps/pev204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.
Collapse
Affiliation(s)
| | - Gigi Leung
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada Vancouver Coastal Health Research Institute, Vancouver, British Columbia V5Z 1M9, Canada
| | - Eddy Wang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada Vancouver Coastal Health Research Institute, Vancouver, British Columbia V5Z 1M9, Canada
| | - Sam Ma
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Blanche K K Lo
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada Vancouver Coastal Health Research Institute, Vancouver, British Columbia V5Z 1M9, Canada
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada Vancouver Coastal Health Research Institute, Vancouver, British Columbia V5Z 1M9, Canada
| | | |
Collapse
|
33
|
Sun Z, Li T, Zhou ZG, Jiang Y. Microalgae as a Source of Lutein: Chemistry, Biosynthesis, and Carotenogenesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 153:37-58. [DOI: 10.1007/10_2015_331] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Analysis of (all- E )-lutein and its ( Z )-isomers during illumination in a model system. J Pharm Biomed Anal 2014; 100:33-39. [DOI: 10.1016/j.jpba.2014.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 11/23/2022]
|
35
|
Zhang J, Sun Z, Sun P, Chen T, Chen F. Microalgal carotenoids: beneficial effects and potential in human health. Food Funct 2014; 5:413-25. [PMID: 24480814 DOI: 10.1039/c3fo60607d] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microalgae are huge natural sources of high-value compounds with health-promoting properties. The carotenoids derived from microalgae have significant antioxidant and anti-inflammatory effects, which allow them to provide health benefits. In this article, the bioactivities of microalgal carotenoids are reviewed. Emphasis is placed on astaxanthin, a ketocarotenoid with extraordinary potential for protecting against a wide range of diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China.
| | | | | | | | | |
Collapse
|
36
|
Lutein, a Nonprovitamin A, Activates the Retinoic Acid Receptor to Induce HAS3-Dependent Hyaluronan Synthesis in Keratinocytes. Biosci Biotechnol Biochem 2014; 77:1282-6. [DOI: 10.1271/bbb.130124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Michaels CJ, Antwis RE, Preziosi RF. Impacts of UVB provision and dietary calcium content on serum vitamin D3
, growth rates, skeletal structure and coloration in captive oriental fire-bellied toads (Bombina orientalis
). J Anim Physiol Anim Nutr (Berl) 2014; 99:391-403. [DOI: 10.1111/jpn.12203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
- C. J. Michaels
- Faculty of Life Sciences; University of Manchester; Manchester UK
| | - R. E. Antwis
- Faculty of Life Sciences; University of Manchester; Manchester UK
| | - R. F. Preziosi
- Faculty of Life Sciences; University of Manchester; Manchester UK
| |
Collapse
|
38
|
Lorencini M, Brohem CA, Dieamant GC, Zanchin NI, Maibach HI. Active ingredients against human epidermal aging. Ageing Res Rev 2014; 15:100-15. [PMID: 24675046 DOI: 10.1016/j.arr.2014.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
The decisive role of the epidermis in maintaining body homeostasis prompted studies to evaluate the changes in epidermal structure and functionality over the lifetime. This development, along with the identification of molecular mechanisms of epidermal signaling, maintenance, and differentiation, points to a need for new therapeutic alternatives to treat and prevent skin aging. In addition to recovering age- and sun-compromised functions, proper treatment of the epidermis has important esthetic implications. This study reviews active ingredients capable of counteracting symptoms of epidermal aging, organized according to the regulation of specific age-affected epidermal functions: (1) several compounds, other than retinoids and derivatives, act on the proliferation and differentiation of keratinocytes, supporting the protective barrier against mechanical and chemical insults; (2) natural lipidic compounds, as well as glycerol and urea, are described as agents for maintaining water-ion balance; (3) regulation of immunological pathogen defense can be reinforced by natural extracts and compounds, such as resveratrol; and (4) antioxidant exogenous sources enriched with flavonoids and vitamin C, for example, improve solar radiation protection and epidermal antioxidant activity. The main objective is to provide a functional classification of active ingredients as regulatory elements of epidermal homeostasis, with potential cosmetic and/or dermatological applications.
Collapse
|
39
|
Sun B, Chen C, Wang W, Ma J, Xie Q, Gao Y, Chen F, Zhang X, Bi Y. Effects of lycopene supplementation in both maternal and offspring diets on growth performance, antioxidant capacity and biochemical parameters in chicks. J Anim Physiol Anim Nutr (Berl) 2014; 99:42-49. [DOI: 10.1111/jpn.12196] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/26/2014] [Indexed: 11/29/2022]
Affiliation(s)
- B. Sun
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - C. Chen
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - W. Wang
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - J. Ma
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - Q. Xie
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - Y. Gao
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - F. Chen
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - X. Zhang
- College of Animal Science; South China Agricultural University; Guangzhou China
| | - Y. Bi
- College of Animal Science; South China Agricultural University; Guangzhou China
- State Key Laboratory of Biocontrol; College of Life Sciences; Sun Yat-Sen University; Guangzhou China
| |
Collapse
|
40
|
Murata M, Satoh T, Wakabayashi H, Yamauchi K, Abe F, Nomura Y. Oral administration of bovine lactoferrin attenuates ultraviolet B-induced skin photodamage in hairless mice. J Dairy Sci 2013; 97:651-8. [PMID: 24359814 DOI: 10.3168/jds.2013-7153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/03/2013] [Indexed: 11/19/2022]
Abstract
Lactoferrin (LF) is recognized as a host defensive glycoprotein, especially for newborn infants. The aim of this study was to investigate whether orally administered LF had protective activity against UV-induced skin damage in hairless mice. Transepidermal water loss and skin hydration were evaluated in nonirradiated mice, UVB-irradiated mice, and UVB-irradiated and LF-administered mice. Supplementation with LF (1,600 mg/kg per day) effectively suppressed the increase in transepidermal water loss, reduction in skin hydration, aberrant epidermal hyperplasia, and cell apoptosis induced by UV irradiation. Although no significant changes in superoxide dismutase-like activity or malondialdehyde levels were observed in the skin with both UV irradiation and LF administration, UV-stimulated IL-1β levels in the skin were significantly suppressed by the administration of LF. Oral supplementation with LF has the potential to reduce IL-1β levels and prevent UV-induced skin damage. Further studies are needed to elucidate the relationships between the antiinflammatory effects and skin protective function of LF.
Collapse
Affiliation(s)
- M Murata
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd., Zama-City, Kanagawa 252-8583, Japan; Applied Protein Chemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-City, Tokyo 183-8509, Japan.
| | - T Satoh
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd., Zama-City, Kanagawa 252-8583, Japan
| | - H Wakabayashi
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd., Zama-City, Kanagawa 252-8583, Japan
| | - K Yamauchi
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd., Zama-City, Kanagawa 252-8583, Japan
| | - F Abe
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd., Zama-City, Kanagawa 252-8583, Japan
| | - Y Nomura
- Applied Protein Chemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-City, Tokyo 183-8509, Japan
| |
Collapse
|
41
|
Brizio P, Benedetto A, Righetti M, Prearo M, Gasco L, Squadrone S, Abete MC. Astaxanthin and canthaxanthin (xanthophyll) as supplements in rainbow trout diet: in vivo assessment of residual levels and contributions to human health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10954-10959. [PMID: 24156372 DOI: 10.1021/jf4012664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many studies have demonstrated that xanthophylls, such as astaxanthin, have beneficial effects in human health, and their use in food supplements is thus encouraged. Moreover, such nutrients are frequently used in aquaculture to meet consumer demand for salmonoid flesh pigmentation. In this study different xanthophyll administration protocols were tested to verify pigmentation properties and safety of such mixtures of additives in trout diet. Residues of xanthophylls in muscle samples were determined by HPLC-MS/MS, reaching levels of 3.70 ± 0.04 mg/kg (astaxanthin) and 1.21 ± 0.06 mg/kg (canthaxanthin) during a 56 day administration period. On the basis of the average fish consumption in the human diet, the highest astaxanthin and canthaxanthin concentrations detected in trout fillets could result in weekly intakes of 1.63 and 0.53 mg, respectively, in humans; these values are not sufficient to achieve the positive effects described by many authors, but their residues could still represent an important source of carotenoids, alternative to the use of synthetic dietary supplements.
Collapse
Affiliation(s)
- Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta , Via Bologna 148, 10154 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Bhattacharyya TK, Barch BE, Vargas M, Thomas JR. Cutaneous injury following acute UV-B radiation in a mouse model: a pilot histological study. J Histotechnol 2013. [DOI: 10.1179/2046023613y.0000000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Radical scavenging activity-based and AP-1-targeted anti-inflammatory effects of lutein in macrophage-like and skin keratinocytic cells. Mediators Inflamm 2013; 2013:787042. [PMID: 23533312 PMCID: PMC3606807 DOI: 10.1155/2013/787042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/10/2013] [Indexed: 01/08/2023] Open
Abstract
Lutein is a naturally occurring carotenoid with antioxidative, antitumorigenic, antiangiogenic, photoprotective, hepatoprotective, and neuroprotective properties. Although the anti-inflammatory effects of lutein have previously been described, the mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, in the present study, we aimed to investigate the regulatory activity of lutein in the inflammatory responses of skin-derived keratinocytes or macrophages and to elucidate the mechanism of its inhibitory action. Lutein significantly reduced several skin inflammatory responses, including increased expression of interleukin-(IL-) 6 from LPS-treated macrophages, upregulation of cyclooxygenase-(COX-) 2 from interferon-γ/tumor necrosis-factor-(TNF-) α-treated HaCaT cells, and the enhancement of matrix-metallopeptidase-(MMP-) 9 level in UV-irradiated keratinocytes. By evaluating the intracellular signaling pathway and the nuclear transcription factor levels, we determined that lutein inhibited the activation of redox-sensitive AP-1 pathway by suppressing the activation of p38 and c-Jun-N-terminal kinase (JNK). Evaluation of the radical and ROS scavenging activities further revealed that lutein was able to act as a strong anti-oxidant. Taken together, our findings strongly suggest that lutein-mediated AP-1 suppression and anti-inflammatory activity are the result of its strong antioxidative and p38/JNK inhibitory activities. These findings can be applied for the preparation of anti-inflammatory and cosmetic remedies for inflammatory diseases of the skin.
Collapse
|
44
|
Abstract
The effectiveness of carotenoids in helping protect the skin from damage caused by environmental exposure has been a subject of research for more than 3 decades. It has only been within the last decade that lutein and zeaxanthin, 2 unique carotenoid molecules, have been evaluated for skin health benefits. This article summarizes the most recent research on the efficacy of lutein and zeaxanthin in skin health.
Collapse
|
45
|
Use of lutein and zeaxanthin alone or combined with Brilliant Blue to identify intraocular structures intraoperatively. Retina 2012; 32:1328-36. [PMID: 22450514 DOI: 10.1097/iae.0b013e318239e2b6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine whether a natural dye solution based on lutein and zeaxanthin alone or combined with Brilliant Blue stains and facilitates peeling of intraocular membranes in human eyes. METHODS In this study of 60 cadaveric eyes, open-sky vitrectomy including posterior hyaloid detachment was performed. Different lutein and zeaxanthin concentrations (0.01-20%) were tested alone or combined with different Brilliant Blue concentrations (0.0125-0.025%) in the corneal endothelium, corneal epithelium, anterior and posterior capsule, vitreous cavity through the macula including the posterior hyaloid, and internal limiting membrane. The various dye solutions were in contact with the intraocular membranes for <1 minute and then were removed by mechanical aspiration or membrane peeling initiated and completed with intraocular forceps. The specimens were examined by light and electron transmission microscopy. RESULTS Contact between lutein and zeaxanthin and the retinal, lens, and vitreous surface resulted in orange and greenish staining of the intraocular membranes, which facilitated surgical steps in all eyes. Lutein and zeaxanthin alone was useful for vitreous identification and lutein and zeaxanthin combined with Brilliant Blue had strong affinity for internal limiting membrane and anterior capsule. Light microscopy confirmed internal limiting membrane removal in all eyes tested. No dye solutions remained in the eyes after the membrane removal. CONCLUSION A natural dye solution based on lutein and zeaxanthin alone or combined with Brilliant Blue efficiently stained the anterior capsule, vitreous, and internal limiting membrane in human cadaveric eyes and may be a useful tool for vitreoretinal or cataract surgery.
Collapse
|
46
|
Bian Q, Gao S, Zhou J, Qin J, Taylor A, Johnson EJ, Tang G, Sparrow JR, Gierhart D, Shang F. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic Biol Med 2012; 53:1298-307. [PMID: 22732187 PMCID: PMC3744865 DOI: 10.1016/j.freeradbiomed.2012.06.024] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/04/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Oxidative damage and inflammation are related to the pathogenesis of age-related macular degeneration (AMD). Epidemiologic studies suggest that insufficient dietary lutein and zeaxanthin intake or lower serum zeaxanthin levels are associated with increased risk for AMD. The objective of this work is to test the protective effects of lutein and zeaxanthin against photooxidative damage to retinal pigment epithelial cells (RPE) and oxidation-induced changes in expression of inflammation-related genes. To mimic lipofuscin-mediated photooxidation in vivo, we used ARPE-19 cells that accumulated A2E, a lipofuscin fluorophore and photosensitizer, as a model system to investigate the effects of lutein and zeaxanthin supplementation. The data show that supplementation with lutein or zeaxanthin in the medium resulted in accumulation of lutein or zeaxanthin in the RPE cells. The concentrations of lutein and zeaxanthin in the cells were 2- to 14-fold of that detected in the medium, indicating that ARPE-19 cells actively take up lutein or zeaxanthin. As compared with untreated cells, exposure of A2E-containing RPE to blue light resulted in a 40-60% decrease in proteasome activity, a 50-80% decrease in expression of CFH and MCP-1, and an~20-fold increase in expression of IL-8. The photooxidation-induced changes in expression of MCP-1, IL-8, and CFH were similar to those caused by chemical inhibition of the proteasome, suggesting that inactivation of the proteasome is involved in the photooxidation-induced alteration in expression of these inflammation-related genes. Incubation of the A2E-containing RPE with lutein or zeaxanthin prior to blue light exposure significantly attenuated the photooxidation-induced inactivation of the proteasome and photooxidation-induced changes in expression of MCP-1, IL-8, and CFH. Together, these data indicate that lutein or zeaxanthin modulates inflammatory responses in cultured RPE in response to photooxidation. Protecting the proteasome from oxidative inactivation appears to be one of the mechanisms by which lutein and zeaxanthin modulate the inflammatory response. Similar mechanisms may explain salutary effects of lutein and zeaxanthin in reducing the risk for AMD.
Collapse
Affiliation(s)
- Qingning Bian
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Shasha Gao
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Jilin Zhou
- Department of Ophthalmology, Columbia University, New York, NY 10032
| | - Jian Qin
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Elizabeth J. Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Guangwen Tang
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032
| | | | - Fu Shang
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| |
Collapse
|
47
|
Shegokar R, Mitri K. Carotenoid lutein: a promising candidate for pharmaceutical and nutraceutical applications. J Diet Suppl 2012; 9:183-210. [PMID: 22889143 DOI: 10.3109/19390211.2012.708716] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Carotenoids play a major role in scavenging singlet oxygen and peroxyl radicals in human. Several studies have shown that lutein and zeaxanthin help to protect the skin and eyes from photodamage and offer several other health benefits. The potential benefits of using lutein as nutritional or cosmetic ingredient are reviewed in this paper. Recent advances in health and cosmetic care provided by lutein are also discussed. This review also mentions various drug carrier systems that have been studied for the delivery of lutein.
Collapse
Affiliation(s)
- Ranjita Shegokar
- Freie Universität Berlin, Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics and NutriCosmetics, Kelchstrasse, Berlin, Germany.
| | | |
Collapse
|
48
|
Supplementation of xanthophylls increased antioxidant capacity and decreased lipid peroxidation in hens and chicks. Br J Nutr 2012; 109:977-83. [DOI: 10.1017/s0007114512002784] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study investigated the effects of xanthophyll supplementation on production performance, antioxidant capacity (measured by glutathione peroxidase, superoxide dismutase (SOD), catalase, total antioxidant capacity (T-AOC), and reduced glutathione:oxidised glutathione ratio (GSH:GSSG)) and lipid peroxidation (measured by malondialdehyde (MDA)) in breeding hens and chicks. In Expt 1, 432 hens were fed diets supplemented with 0 (control group), 20 or 40 mg xanthophyll/kg diet. Blood samples were taken at 7, 14, 21, 28 and 35 d of the trial. Liver and jejunal mucosa were sampled at 35 d. Both xanthophyll groups improved serum SOD at 21 and 28 d, serum T-AOC at 21 d and liver T-AOC, and serum GSH:GSSG at 21, 28 and 35 d and liver GSH:GSSG. Xanthophylls also decreased serum MDA at 21 d in hens. Expt 2 was a 2 × 2 factorial design. Male chicks hatched from 0 or 40 mg in ovo xanthophyll/kg diet of hens were fed a diet containing either 0 or 40 mg xanthophyll/kg diet. Liver samples were collected at 0, 7, 14 and 21 d after hatching. Blood samples were also collected at 21 d. In ovo-deposited xanthophylls increased antioxidant capacity and decreased MDA in the liver mainly within 1 week after hatching. Maternal effects gradually vanished during 1–2 weeks after hatching. Dietary xanthophylls increased antioxidant capacity and decreased MDA in the liver and serum mainly from 2 weeks onwards. Data suggested that xanthophyll supplementation enhanced antioxidant capacity and reduced lipid peroxidation in different tissues of hens and chicks.
Collapse
|
49
|
Bruzzone S, Basile G, Mannino E, Sturla L, Magnone M, Grozio A, Salis A, Fresia C, Vigliarolo T, Guida L, De Flora A, Tossi V, Cassia R, Lamattina L, Zocchi E. Autocrine abscisic acid mediates the UV-B-induced inflammatory response in human granulocytes and keratinocytes. J Cell Physiol 2012; 227:2502-10. [PMID: 21898394 DOI: 10.1002/jcp.22987] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
UV-B is an abiotic environmental stress in both plants and animals. Abscisic acid (ABA) is a phytohormone regulating fundamental physiological functions in plants, including response to abiotic stress. We previously demonstrated that ABA is an endogenous stress hormone also in animal cells. Here, we investigated whether autocrine ABA regulates the response to UV-B of human granulocytes and keratinocytes, the cells involved in UV-triggered skin inflammation. The intracellular ABA concentration increased in UV-B-exposed granulocytes and keratinocytes and ABA was released into the supernatant. The UV-B-induced production of NO and of reactive oxygen species (ROS), phagocytosis, and cell migration were strongly inhibited in granulocytes irradiated in the presence of a monoclonal antibody against ABA. Moreover, presence of the same antibody strongly inhibited release of NO, prostaglandin E2 (PGE(2)), and tumor necrosis factor-α (TNF-α) by UV-B irradiated keratinocytes. Lanthionine synthetase C-like protein 2 (LANCL2) is required for the activation of the ABA signaling pathway in human granulocytes. Silencing of LANCL2 in human keratinocytes by siRNA was accompanied by abrogation of the UV-B-triggered release of PGE(2), TNF-α, and NO and ROS production. These results indicate that UV-B irradiation induces ABA release from human granulocytes and keratinocytes and that autocrine ABA stimulates cell functions involved in skin inflammation.
Collapse
Affiliation(s)
- Santina Bruzzone
- Department of Experimental Medicine and CEBR, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ogilvy V, Preziosi RF. Can carotenoids mediate the potentially harmful effects of ultraviolet light inSilurana (Xenopus) tropicalislarvae? J Anim Physiol Anim Nutr (Berl) 2011; 96:693-9. [DOI: 10.1111/j.1439-0396.2011.01197.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|