1
|
Basolo A, Salvetti G, Giannese D, Genzano SB, Ceccarini G, Giannini R, Sotgia G, Fierabracci P, Piaggi P, Santini F. Obesity, Hyperfiltration, and Early Kidney Damage: A New Formula for the Estimation of Creatinine Clearance. J Clin Endocrinol Metab 2023; 108:3280-3286. [PMID: 37296533 PMCID: PMC10655541 DOI: 10.1210/clinem/dgad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
CONTEXT Glomerular hyperfiltration may represent a direct pathogenetic link between obesity and kidney disease. The most widely used methods to estimate creatine clearance such as Cockroft-Gault (CG), Modification of Diet in Renal Disease (MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) have not been validated in subjects with obesity. OBJECTIVE The performance of prediction formulas was compared with measured creatinine clearance (mCrCl) in subjects with obesity. METHODS The study population included 342 patients with obesity (mean BMI 47.6 kg/m2) without primary kidney disease. A urine collection was performed over 24 hours for measurement of CrCl. RESULTS mCrCl increased with body weight. The CG formula showed an overestimation at high CrCl, whereas an underestimation resulted from CKD-EPI and MDRD. To improve the accuracy of estimated CrCl (eCrCl), a new CG-based formula was developed:53+0.7×(140-Age)×Weight/(96xSCr)×(0.85iffemale)A cut-off point for BMI of 32 kg/m2 was identified, at which the new formula may be applied to improve eCrCl. CONCLUSION In patients with obesity the glomerular filtration rate increases with body weight, and it is associated with the presence of albuminuria, suggesting an early kidney injury. We propose a novel formula that improves the accuracy of eCrCl to avoid missed diagnoses of hyperfiltration in patients with obesity.
Collapse
Affiliation(s)
- Alessio Basolo
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Guido Salvetti
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Domenico Giannese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56124, Italy
| | - Susanna Bechi Genzano
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Riccardo Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa 56124, Italy
| | - Gianluca Sotgia
- Consorzio Metis, University Hospital of Pisa, Pisa 56124, Italy
| | - Paola Fierabracci
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa 56100, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa 56124, Italy
| |
Collapse
|
2
|
Blunted natriuretic response to saline loading in sheep with hypertensive kidney disease following radiofrequency catheter-based renal denervation. Sci Rep 2021; 11:14795. [PMID: 34285286 PMCID: PMC8292431 DOI: 10.1038/s41598-021-94221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 12/05/2022] Open
Abstract
Renal sympathetic nerves contribute to renal excretory function during volume expansion. We hypothesized that intact renal innervation is required for excretion of a fluid/electrolyte load in hypertensive chronic kidney disease (CKD) and normotensive healthy settings. Blood pressure, kidney hemodynamic and excretory response to 180 min of isotonic saline loading (0.13 ml/kg/min) were examined in female normotensive (control) and hypertensive CKD sheep at 2 and 11 months after sham (control-intact, CKD-intact) or radiofrequency catheter-based RDN (control-RDN, CKD-RDN) procedure. Basal blood pressure was ~ 7 to 9 mmHg lower at 2, and 11 months in CKD-RDN compared with CKD-intact sheep. Saline loading did not alter glomerular filtration rate in any group. At 2 months, in response to saline loading, total urine and sodium excretion were ~ 40 to 50% less, in control-RDN and CKD-RDN than intact groups. At 11 months, the natriuretic and diuretic response to saline loading were similar between control-intact, control-RDN and CKD-intact groups but sodium excretion was ~ 42% less in CKD-RDN compared with CKD-intact at this time-point. These findings indicate that chronic withdrawal of basal renal sympathetic activity impairs fluid/electrolyte excretion during volume expansion. Clinically, a reduced ability to excrete a saline load following RDN may contribute to disturbances in body fluid balance in hypertensive CKD.
Collapse
|
3
|
Zhang J, Zhu J, Wei J, Jiang S, Xu L, Qu L, Yang K, Wang L, Buggs J, Cheng F, Tan X, Liu R. New Mechanism for the Sex Differences in Salt-Sensitive Hypertension: The Role of Macula Densa NOS1β-Mediated Tubuloglomerular Feedback. Hypertension 2020; 75:449-457. [PMID: 31865794 PMCID: PMC7015450 DOI: 10.1161/hypertensionaha.119.13822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Females are relatively resistant to salt-sensitive hypertension than males, but the mechanisms are not completely elucidated. We recently demonstrated a decisive role of macula densa neuronal NOS1β (nitric oxide synthase β)-mediated tubuloglomerular feedback (TGF) in the long-term control of glomerular filtration rate, sodium excretion, and blood pressure. In the present study, we hypothesized that the macula densa NOS1β-mediated TGF mechanism is different between male and female, thereby contributing to the sexual dimorphism of salt-sensitive hypertension. We used microperfusion, micropuncture, clearance of fluorescein isothiocyanate-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure after salt loading in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, a high-salt diet induced greater increases in macula densa NOS1β expression and phosphorylation at Ser 1417, greater nitric oxide generation by the macula densa, and more inhibition in TGF response in vitro and in vivo in females than in males. Additionally, the increases of glomerular filtration rate, urine flow rate, and sodium excretion in response to an acute volume expansion were significantly greater in females than in males. The blood pressure responses to angiotensin II plus a high-salt diet were significantly less in females than in males. In contrast, these sex differences in TGF, natriuretic response, and blood pressure were largely diminished in knockout mice. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jinxiu Zhu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, FL
| | - Larry Qu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Kun Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, FL
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL
| | - Xuerui Tan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
4
|
Zhang MZ, Wang S, Wang Y, Zhang Y, Ming Hao C, Harris RC. Renal Medullary Interstitial COX-2 (Cyclooxygenase-2) Is Essential in Preventing Salt-Sensitive Hypertension and Maintaining Renal Inner Medulla/Papilla Structural Integrity. Hypertension 2019; 72:1172-1179. [PMID: 30354807 DOI: 10.1161/hypertensionaha.118.11694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
COX (cyclooxygenase)-derived prostaglandins regulate renal hemodynamics and salt and water homeostasis. Inhibition of COX activity causes blood pressure elevation. In addition, chronic analgesic abuse can induce renal injury, including papillary necrosis. COX-2 is highly expressed in the kidney papilla in renal medullary interstitial cells (RMICs). However, its role in blood pressure and papillary integrity in vivo has not been definitively studied. In mice with selective, inducible RMIC COX-2 deletion, a high-salt diet led to an increase in blood pressure that peaked at 4 to 5 weeks and was associated with increased papillary expression of AQP2 (aquaporin 2) and ENac (epithelial sodium channel) and decreased expression of cystic fibrosis transmembrane conductance regulator. With continued high-salt feeding, the mice with RMIC COX-2 deletion had progressive decreases in blood pressure from its peak. After return to a normal-salt diet for 3 weeks, blood pressure remained low and was associated with a persistent urinary concentrating defect. Within 2 weeks of institution of a high-salt diet, increased apoptotic RMICs and collecting duct cells could be detected in papillae with RMIC deletion of COX-2, and by 9 weeks of high salt, there was a striking loss of the papillae. Therefore, RMIC COX-2 expression plays a crucial role in renal handling water and sodium homeostasis, preventing salt-sensitive hypertension and maintaining structural integrity of papilla.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.).,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., R.C.H.)
| | - Suwan Wang
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.).,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., R.C.H.)
| | - Yinqiu Wang
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.).,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., R.C.H.)
| | - Yahua Zhang
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.)
| | - Chuan Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China (C.M.H.)
| | - Raymond C Harris
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.).,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., R.C.H.).,Department of Veterans Affairs, Nashville, TN (R.C.H.)
| |
Collapse
|
5
|
Wang H, Romero CA, Masjoan Juncos JX, Monu SR, Peterson EL, Carretero OA. Effect of salt intake on afferent arteriolar dilatation: role of connecting tubule glomerular feedback (CTGF). Am J Physiol Renal Physiol 2017; 313:F1209-F1215. [PMID: 28835421 DOI: 10.1152/ajprenal.00320.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 01/13/2023] Open
Abstract
Afferent arteriole (Af-Art) resistance is modulated by two intrinsic nephron feedbacks: 1) the vasoconstrictor tubuloglomerular feedback (TGF) mediated by Na+-K+-2Cl- cotransporters (NKCC2) in the macula densa and blocked by furosemide and 2) the vasodilator connecting tubule glomerular feedback (CTGF), mediated by epithelial Na+ channels (ENaC) in the connecting tubule and blocked by benzamil. High salt intake reduces Af-Art vasoconstrictor ability in Dahl salt-sensitive rats (Dahl SS). Previously, we measured CTGF indirectly, by differences between TGF responses with and without CTGF inhibition. We recently developed a new method to measure CTGF more directly by simultaneously inhibiting NKCC2 and the Na+/H+ exchanger (NHE). We hypothesize that in vivo during simultaneous inhibition of NKCC2 and NHE, CTGF causes an Af-Art dilatation revealed by an increase in stop-flow pressure (PSF) in Dahl SS and that is enhanced with a high salt intake. In the presence of furosemide alone, increasing nephron perfusion did not change the PSF in either Dahl salt-resistant rats (Dahl SR) or Dahl SS. When furosemide and an NHE inhibitor, dimethylamiloride, were perfused simultaneously, an increase in tubular flow caused Af-Art dilatation that was demonstrated by an increase in PSF. This increase was greater in Dahl SS [4.5 ± 0.4 (SE) mmHg] than in Dahl SR (2.5 ± 0.3 mmHg; P < 0.01). We confirmed that CTGF causes this vasodilation, since benzamil completely blocked this effect. However, a high salt intake did not augment the Af-Art dilatation. We conclude that during simultaneous inhibition of NKCC2 and NHE in the nephron, CTGF induces Af-Art dilatation and a high salt intake failed to enhance this effect.
Collapse
Affiliation(s)
- Hong Wang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - J X Masjoan Juncos
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - Sumit R Monu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; and
| |
Collapse
|
6
|
Wang L, Song J, Wang S, Buggs J, Chen R, Zhang J, Wang L, Rong S, Li W, Wei J, Liu R. Cross-sex transplantation alters gene expression and enhances inflammatory response in the transplanted kidneys. Am J Physiol Renal Physiol 2017; 313:F326-F338. [PMID: 28515172 DOI: 10.1152/ajprenal.00039.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 02/03/2023] Open
Abstract
Kidney transplantation (KTX) is a life-saving procedure for patients with end-stage renal disease. Expression levels of many genes in the kidney vary between males and females, which may play an essential role in the sex differences in graft function. However, whether these differences are affected after cross-sex-KTX is unknown. In the present study, we assessed postoperative changes in genotype, function, and inflammatory responses of the grafts in same-sex- and cross-sex-KTX. Single kidney transplants were performed between same and different sex C57BL/6 mice paired into four combination groups: female donor/female recipient (F/F); male donor/male recipient (M/M); female donor/male recipient (F/M); and male donor/female recipient (M/F). The remnant native kidney was removed 4 days posttransplant. Expression levels of genes related to the contractility of the afferent arteriole and tubular sodium reabsorption were assessed. Same-sex-KTX did not significantly alter the magnitude or sex difference pattern of gene expression in male or female grafts. Cross-sex-KTX showed an attenuated sex difference in gene expressions. The measurements of endothelin 1, endothelin ETA receptor, Na+-K--2Cl cotransporter 2 (NKCC2), and epithelial Na+ channels (ENaC) subunits exhibited decreases in M/F compared with M/M and increases in F/M compared with F/F. There were no significant differences in hemodynamics or sodium excretion in response to acute volume expansion for any sex combinations. Cross-sex-KTX stimulated more robust inflammatory responses than same-sex-KTX. IL-6 and KC mRNA levels elevated 5- to 20-fold in cross-sex-KTX compared with same-sex-KTX. In conclusion, cross-sex-KTX alters gene expression levels and induces inflammatory responses, which might play an important role in long-term graft function.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida;
| | - Jiangping Song
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida.,State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Xi Cheng District, Beijing, China
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | | | - Rongjun Chen
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Liqing Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Xi Cheng District, Beijing, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Wenbin Li
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
7
|
Monu SR, Ren Y, Masjoan-Juncos JX, Kutskill K, Wang H, Kumar N, Peterson EL, Carretero OA. Connecting tubule glomerular feedback mediates tubuloglomerular feedback resetting after unilateral nephrectomy. Am J Physiol Renal Physiol 2017; 315:F806-F811. [PMID: 28424211 DOI: 10.1152/ajprenal.00619.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unilaterally nephrectomized rats (UNx) have higher glomerular capillary pressure (PGC) that can cause significant glomerular injury in the remnant kidney. PGC is controlled by the ratio of afferent (Af-Art) and efferent arteriole resistance. Af-Art resistance in turn is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to increased NaCl in the macula densa; and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation in response to an increase in NaCl transport in the connecting tubule via the epithelial sodium channel (ENaC). Resetting of TGF post-UNx can allow systemic pressure to be transmitted to the glomerulus and cause renal damage, but the mechanism behind this resetting is unclear. Since CTGF is an Af-Art dilatory mechanism, we hypothesized that CTGF is increased after UNx and contributes to TGF resetting. To test this hypothesis, we performed UNx in Sprague-Dawley (8) rats. Twenty-four hours after surgery, we performed micropuncture of individual nephrons and measured stop-flow pressure (PSF). PSF is an indirect measurement of PGC. Maximal TGF response at 40 nl/min was 8.9 ± 1.24 mmHg in sham-UNx rats and 1.39 ± 1.02 mmHg in UNx rats, indicating TGF resetting after UNx. When CTGF was inhibited with the ENaC blocker benzamil (1 μM/l), the TGF response was 12.29 ± 2.01 mmHg in UNx rats and 13.03 ± 1.25 mmHg in sham-UNx rats, indicating restoration of the TGF responses in UNx. We conclude that enhanced CTGF contributes to TGF resetting after UNx.
Collapse
Affiliation(s)
- Sumit R Monu
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Yilin Ren
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - J X Masjoan-Juncos
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Kristopher Kutskill
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Hong Wang
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Nitin Kumar
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital , Detroit, Michigan
| | - Oscar A Carretero
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
8
|
Wang L, Shen C, Liu H, Wang S, Chen X, Roman RJ, Juncos LA, Lu Y, Wei J, Zhang J, Yip KP, Liu R. Shear stress blunts tubuloglomerular feedback partially mediated by primary cilia and nitric oxide at the macula densa. Am J Physiol Regul Integr Comp Physiol 2015; 309:R757-66. [PMID: 26269519 PMCID: PMC4666931 DOI: 10.1152/ajpregu.00173.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/05/2015] [Indexed: 02/04/2023]
Abstract
The present study tested whether primary cilia on macula densa serve as a flow sensor to enhance nitric oxide synthase 1 (NOS1) activity and inhibit tubuloglomerular feedback (TGF). Isolated perfused macula densa was loaded with calcein red and 4,5-diaminofluorescein diacetate to monitor cell volume and nitric oxide (NO) generation. An increase in tubular flow rate from 0 to 40 nl/min enhanced NO production by 40.0 ± 1.2%. The flow-induced NO generation was blocked by an inhibitor of NOS1 but not by inhibition of the Na/K/2Cl cotransporter or the removal of electrolytes from the perfusate. NO generation increased from 174.8 ± 21 to 276.1 ± 24 units/min in cultured MMDD1 cells when shear stress was increased from 0.5 to 5.0 dynes/cm(2). The shear stress-induced NO generation was abolished in MMDD1 cells in which the cilia were disrupted using a siRNA to ift88. Increasing the NaCl concentration of the tubular perfusate from 10 to 80 mM NaCl in the isolated perfused juxtaglomerular preparation reduced the diameter of the afferent arteriole by 3.8 ± 0.1 μm. This response was significantly blunted to 2.5 ± 0.2 μm when dextran was added to the perfusate to increase the viscosity and shear stress. Inhibition of NOS1 blocked the effect of dextran on TGF response. In vitro, the effects of raising perfusate viscosity with dextran on tubular hydraulic pressure were minimized by reducing the outflow resistance to avoid stretching of tubular cells. These results suggest that shear stress stimulates primary cilia on the macula densa to enhance NO generation and inhibit TGF responsiveness.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Chunyu Shen
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Forensic Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Haifeng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Xinshan Chen
- Department of Forensic Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Richard J Roman
- Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Luis A Juncos
- Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Yan Lu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Department of Physiology/Pharmacology, University of Mississippi Medical Center, Jackson Mississippi
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida;
| |
Collapse
|
9
|
Wang H, D'Ambrosio MA, Ren Y, Monu SR, Leung P, Kutskill K, Garvin JL, Janic B, Peterson EL, Carretero OA. Tubuloglomerular and connecting tubuloglomerular feedback during inhibition of various Na transporters in the nephron. Am J Physiol Renal Physiol 2015; 308:F1026-31. [PMID: 25715987 DOI: 10.1152/ajprenal.00605.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/23/2015] [Indexed: 11/22/2022] Open
Abstract
Afferent (Af-Art) and efferent arterioles resistance regulate glomerular capillary pressure. The nephron regulates Af-Art resistance via: 1) vasoconstrictor tubuloglomerular feedback (TGF), initiated in the macula densa via Na-K-2Cl cotransporters (NKCC2) and 2) vasodilator connecting tubuloglomerular feedback (CTGF), initiated in connecting tubules via epithelial Na channels (ENaC). Furosemide inhibits NKCC2 and TGF. Benzamil inhibits ENaC and CTGF. In vitro, CTGF dilates preconstricted Af-Arts. In vivo, benzamil decreases stop-flow pressure (PSF), suggesting that CTGF antagonizes TGF; however, even when TGF is blocked, CTGF does not increase PSF, suggesting there is another mechanism antagonizing CTGF. We hypothesize that in addition to NKCC2, activation of Na/H exchanger (NHE) antagonizes CTGF, and when both are blocked CTGF dilates Af-Arts and this effect is blocked by a CTGF inhibitor benzamil. Using micropuncture, we studied the effects of transport inhibitors on TGF responses by measuring PSF while increasing nephron perfusion from 0 to 40 nl/min. Control TGF response (-7.9 ± 0.2 mmHg) was blocked by furosemide (-0.4 ± 0.2 mmHg; P < 0.001). Benzamil restored TGF in the presence of furosemide (furosemide: -0.2 ± 0.1 vs. furosemide+benzamil: -4.3 ± 0.3 mmHg; P < 0.001). With furosemide and NHE inhibitor, dimethylamiloride (DMA), increase in tubular flow increased PSF (furosemide+DMA: 2.7 ± 0.5 mmHg, n = 6), and benzamil blocked this (furosemide+DMA+benzamil: -1.1 ± 0.2 mmHg; P < 0.01, n = 6). We conclude that NHE in the nephron decreases PSF (Af-Art constriction) when NKCC2 and ENaC are inhibited, suggesting that in the absence of NKCC2, NHE causes a TGF response and that CTGF dilates the Af-Art when TGF is blocked with NKCC2 and NHE inhibitors.
Collapse
Affiliation(s)
- Hong Wang
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Martin A D'Ambrosio
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - YiLin Ren
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Sumit R Monu
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Pablo Leung
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Kristopher Kutskill
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jeffrey L Garvin
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and
| | - Branislava Janic
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan
| | - Oscar A Carretero
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan;
| |
Collapse
|
10
|
Moss R, Layton AT. Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: a mathematical model. Am J Physiol Renal Physiol 2014; 306:F952-69. [PMID: 24553433 DOI: 10.1152/ajprenal.00500.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have developed a whole kidney model of the urine concentrating mechanism and renal autoregulation. The model represents the tubuloglomerular feedback (TGF) and myogenic mechanisms, which together affect the resistance of the afferent arteriole and thus glomerular filtration rate. TGF is activated by fluctuations in macula densa [Cl(-)] and the myogefnic mechanism by changes in hydrostatic pressure. The model was used to investigate the relative contributions of medullary blood flow autoregulation and inhibition of transport in the proximal convoluted tubule to pressure natriuresis in both diuresis and antidiuresis. The model predicts that medullary blood flow autoregulation, which only affects the interstitial solute composition in the model, has negligible influence on the rate of NaCl excretion. However, it exerts a significant effect on urine flow, particularly in the antidiuretic kidney. This suggests that interstitial washout has significant implications for the maintenance of hydration status but little direct bearing on salt excretion, and that medullary blood flow may only play a signaling role for stimulating a pressure-natriuresis response. Inhibited reabsorption in the model proximal convoluted tubule is capable of driving pressure natriuresis when the known actions of vasopressin on the collecting duct epithelium are taken into account.
Collapse
Affiliation(s)
- Robert Moss
- Dept. of Mathematics, Duke Univ., Box 90320, Durham, NC 27708-0320.
| | | |
Collapse
|
11
|
Lankadeva YR, Singh RR, Tare M, Moritz KM, Denton KM. Loss of a kidney during fetal life: long-term consequences and lessons learned. Am J Physiol Renal Physiol 2014; 306:F791-800. [PMID: 24500691 DOI: 10.1152/ajprenal.00666.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemiological studies reveal that children born with a solitary functioning kidney (SFK) have a greater predisposition to develop renal insufficiency and hypertension in early adulthood. A congenital SFK is present in patients with unilateral renal agenesis or unilateral multicystic kidney dysplasia, leading to both structural and functional adaptations in the remaining kidney, which act to mitigate the reductions in glomerular filtration rate and sodium excretion that would otherwise ensue. To understand the mechanisms underlying the early development of renal insufficiency in children born with a SFK, we established a model of fetal uninephrectomy (uni-x) in sheep, a species that similar to humans complete nephrogenesis before birth. This model results in a 30% reduction in nephron number rather than 50%, due to compensatory nephrogenesis in the remaining kidney. Similar to children with a congenital SFK, uni-x sheep demonstrate a progressive increase in arterial pressure and a loss of renal function with aging. This review summarizes the compensatory changes in renal hemodynamics and tubular sodium handling that drive impairments in renal function and highlights the existence of sex differences in the functional adaptations following the loss of a kidney during fetal life.
Collapse
|
12
|
Lankadeva YR, Singh RR, Hilliard LM, Moritz KM, Denton KM. Impaired ability to modulate glomerular filtration rate in aged female sheep following fetal uninephrectomy. Physiol Rep 2014; 2:e00208. [PMID: 24744887 PMCID: PMC3967691 DOI: 10.1002/phy2.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/05/2014] [Accepted: 01/07/2014] [Indexed: 02/05/2023] Open
Abstract
Fetal uninephrectomy (uni-x) results in hypertension at a later age in female than male sheep. We hypothesized that dysregulation of tubular sodium handling contributes to the reduced ability to regulate extracellular fluid (ECF) homeostasis in older females born with a congenital nephron deficit. Following renal excretory balance studies, the response to inhibition of the Na(+)K(+)2Cl(-) cotransporter with furosemide (0.5 mg/kg bolus + 1 mg/kg per hour, i.v) or vehicle treatment was examined in conscious 5-year-old female uni-x (n = 7) and sham (n = 7) sheep. Balance studies in meal-fed sheep demonstrated that while average 24 h sodium excretion over 6 days was not different between the groups, the daily variation in sodium excretion was significantly greater in uni-x compared to sham sheep (31 ± 4% vs. 12 ± 2%; P < 0.001). Basal plasma renin activity (PRA) and renal cortical cyclooxygenase-2 (COX-2) gene expression were lower in uni-x sheep (both, P < 0.01). The increases in glomerular filtration rate (GFR) and renal blood flow observed in sham sheep in response to furosemide were significantly attenuated in uni-x sheep (both P GROUP×TREAT < 0.05). However, fractional sodium excretion increased by a greater extent in the uni-x (4.4 ± 1.0%) as compared to the sham sheep (2.0 ± 0.4%; P GROUP×TIME < 0.05) in response to furosemide. In conclusion, fetal uni-x was associated with altered renal sodium handling and hypertension in aged females. The impaired ability to modulate PRA and GFR in the adults with a congenital nephron deficit may reduce the capacity of the kidney to respond to gains or losses in ECF to maintain a stable internal environment.
Collapse
Affiliation(s)
| | - Reetu R Singh
- Department of Physiology, Monash University, Victoria, Australia ; School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | | | - Karen M Moritz
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Victoria, Australia
| |
Collapse
|
13
|
Abstract
Techniques to evaluate renal function at the single nephron level have been instrumental and indispensible in furthering our understanding of the mammalian kidney. Techniques that were first introduce in the 1920s, and later refined in the 1950s and 1960s, permit sophisticated interrogation of glomerular filtration and hemodynamics, and tubular epithelial transport activity. Much of what we know about the physiology and pathophysiology of the kidney has been produced or, to some degree, confirmed by renal micropuncture. While micropuncture is perhaps not as widely employed as before, it remains an essential tool for comprehensive evaluation of kidney function, particularly in this age of genetically pliable experimental models. This review aims to provide a introduction to common methodologies and approaches used to conduct micropuncture experiments. Topics covered include instrumentation and equipment, pipet fabrication techniques, animal preparation, and experimental procedures for evaluating single nephron hemodynamics and tubular function.
Collapse
Affiliation(s)
- John N Lorenz
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
14
|
Hyndman KA, Xue J, MacDonell A, Speed JS, Jin C, Pollock JS. Distinct regulation of inner medullary collecting duct nitric oxide production from mice and rats. Clin Exp Pharmacol Physiol 2013; 40:233-9. [PMID: 23331097 DOI: 10.1111/1440-1681.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 01/13/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) and NO synthase 1 (NOS1) maintain sodium and water homeostasis. The NOS1α and NOS1β splice variants are expressed in the rat inner medulla, but only NOS1β is expressed in the mouse. Collecting duct NOS1 is necessary for blood pressure control. We hypothesized that NOS1 splice variant expression and NO production in the inner medullary collecting duct (IMCD) are regulated differently in mice and rats by high dietary sodium. Male C57blk/J6 mice and Sprague-Dawley rats were fed a 0.4% (normal salt; NS), or 4% (high salt; HS) NaCl diet for 2 or 7 days. Mean arterial pressure was not altered by HS, whereas urinary sodium excretion in mice and rats was increased significantly. Urinary excretion of nitrate/nitrite (NO(x)) and IMCD nitrite production were significantly greater in mice compared with rats on the HS diet. Western blotting indicated that only NOS1β and NOS3 were expressed in the mouse IMCD and that expression was unaffected by the HS diet at either time point. In contrast, NOS1α was detected in the IMCD of rats, in addition to NOS1β and NOS3. Feeding of the HS diet for 2 days increased NOS1α and NOS1β expression in the rat IMCD and 7 day feeding of the HS diet further increased NOS1β expression. Expression of NOS3 was unchanged by the HS diet at either time point. In conclusion, IMCD NO production in mice and rats is distinctly regulated under both NS and HS conditions, including expression of NOS1 splice variants.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Section of Experimental Medicine, Department of Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
15
|
Braam B, Cupples WA, Joles JA, Gaillard C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail Rev 2013; 17:161-75. [PMID: 21553212 DOI: 10.1007/s10741-011-9246-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heart and kidney interactions are fascinating, in the sense that failure of the one organ strongly affects the function of the other. In this review paper, we analyze how principal driving forces for glomerular filtration and renal blood flow are changed in heart failure. Moreover, renal autoregulation and modulation of neurohumoral factors, which can both have repercussions on renal function, are analyzed. Two paradigms seem to apply. One is that the renin-angiotensin system (RAS), the sympathetic nervous system (SNS), and extracellular volume control are the three main determinants of renal function in heart failure. The other is that the classical paradigm to analyze renal dysfunction that is widely applied in nephrology also applies to the pathophysiology of heart failure: pre-renal, intra-renal, and post-renal alterations together determine glomerular filtration. At variance with the classical paradigm is that the most important post-renal factor in heart failure seems renal venous hypertension that, by increasing renal tubular pressure, decreases GFR. When different pharmacological strategies to inhibit the RAS and SNS and to assist renal volume control are considered, there is a painful lack in knowledge about how widely applied drugs affect primary driving forces for ultrafiltration, renal autoregulation, and neurohumoral control. We call for more clinical physiological studies.
Collapse
Affiliation(s)
- Branko Braam
- Department of Medicine/Division of Nephrology and Immunology, University of Alberta Hospital, 11-132 CSB Clinical Sciences Building, Edmonton, AB T6G 2G3, Canada.
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- A. Perlewitz
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin; Germany
| | - A. E. Persson
- Department of Medical Cell Physiology; Uppsala University; Uppsala; Sweden
| | - A. Patzak
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin; Germany
| |
Collapse
|
17
|
Bernardi S, Toffoli B, Zennaro C, Tikellis C, Monticone S, Losurdo P, Bellini G, Thomas MC, Fallo F, Veglio F, Johnston CI, Fabris B. High-salt diet increases glomerular ACE/ACE2 ratio leading to oxidative stress and kidney damage. Nephrol Dial Transplant 2011; 27:1793-800. [PMID: 22036945 DOI: 10.1093/ndt/gfr600] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Angiotensin II (AngII) contributes to salt-driven kidney damage. In this study, we aimed at investigating whether and how the renal damage associated with a high-salt diet could result from changes in the ratio between angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2). METHODS Forty-eight rats randomly allocated to three different dietary contents of salt were studied for 4 weeks after undergoing a left uninephrectomy. We focussed on kidney functional, structural and molecular changes. At the same time, we studied kidney molecular changes in 20 weeks old Ace2-knockout mice (Ace2KO), with and without ACE inhibition. RESULTS A high salt content diet significantly increased the glomerular ACE/ACE2 ratio. This was associated with increased oxidative stress. To assess whether these events were related, we measured renal oxidative stress in Ace2KO, and found that the absence of ACE2 promoted oxidative stress, which could be prevented by ACE inhibition. CONCLUSION One of the mechanisms by which a high-salt diet leads to renal damage seems to be the modulation of the ACE/ACE2 ratio which in turn is critical for the cause of oxidative stress, through AngII.
Collapse
Affiliation(s)
- Stella Bernardi
- Department of Morphology and Embriology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Drummond HA, Grifoni SC, Abu-Zaid A, Gousset M, Chiposi R, Barnard JM, Murphey B, Stec DE. Renal inflammation and elevated blood pressure in a mouse model of reduced {beta}-ENaC. Am J Physiol Renal Physiol 2011; 301:F443-9. [PMID: 21543417 PMCID: PMC3154591 DOI: 10.1152/ajprenal.00694.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/27/2011] [Indexed: 11/22/2022] Open
Abstract
Previous studies suggest β-epithelial Na(+) channel protein (β-ENaC) may mediate myogenic constriction, a mechanism of blood flow autoregulation. A recent study demonstrated that mice with reduced levels of β-ENaC (β-ENaC m/m) have delayed correction of whole kidney blood flow responses, suggesting defective myogenic autoregulatory capacity. Reduced renal autoregulatory capacity is linked to renal inflammation, injury, and hypertension. However, it is unknown whether β-ENaC m/m mice have any complications associated with reductions in autoregulatory capacity such as renal inflammation, injury, or hypertension. To determine whether the previously observed altered autoregulatory control was associated with indicators of renal injury, we evaluated β-ENaC m/m mice for signs of renal inflammation and tissue remodeling using marker expression. We found that inflammatory and remodeling markers, such as IL-1β, IL-6, TNF-α, collagen III and transforming growth factor-β, were significantly upregulated in β-ENaC m/m mice. To determine whether renal changes were associated with changes in long-term control of blood pressure, we used radiotelemetry and found that 5-day mean arterial blood pressure (MAP) was significantly elevated in β-ENaC m/m (120 ± 3 vs. 105 ± 2 mmHg, P = 0.016). Our findings suggest loss of β-ENaC is associated with early signs of renal injury and increased MAP.
Collapse
Affiliation(s)
- Heather A Drummond
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, Jackson, 39216-4505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang H, Garvin JL, D'Ambrosio MA, Falck JR, Leung P, Liu R, Ren Y, Carretero OA. Heme oxygenase metabolites inhibit tubuloglomerular feedback in vivo. Am J Physiol Heart Circ Physiol 2011; 300:H1320-6. [PMID: 21239629 DOI: 10.1152/ajpheart.01118.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tubuloglomerular feedback (TGF) is a renal autoregulatory mechanism that constricts the afferent arteriole in response to increases in distal NaCl. Heme oxygenases (HO-1 and HO-2) release carbon monoxide (CO) and biliverdin, which may help control renal function. We showed in vitro that HO products inhibit TGF; however, we do not know whether this also occurs in vivo or the mechanism(s) involved. We hypothesized that in vivo HO-1 and HO-2 in the nephron inhibit TGF via release of CO and biliverdin. We first performed laser capture microdissection followed by real-time PCR and found that both HO-1 and HO-2 are expressed in the macula densa. We next performed micropuncture experiments in vivo on individual rat nephrons, adding different compounds to the perfusate, and found that an HO inhibitor, stannous mesoporphyrin (SnMP), potentiated TGF (P < 0.05, SnMP vs. control). The CO-releasing molecule (CORM)-3 partially inhibited TGF at 50 μmol/l (P < 0.01, CORM-3 vs. control) and blocked it completely at higher doses. A soluble guanylyl cyclase (sGC) inhibitor, LY83583, blocked the inhibitory effect of CORM-3 on TGF. Biliverdin also partially inhibited TGF (P < 0.01, biliverdin vs. control), most likely attributable to decreased superoxide (O(2)(-)) because biliverdin was rendered ineffective by tempol, a O(2)(-) dismutase mimetic. We concluded that HO-1 and HO-2 in the nephron inhibit TGF by releasing CO and biliverdin. The inhibitory effect of CO on TGF is mediated by the sGC/cGMP signaling pathway, whereas biliverdin probably acts by reducing O(2)(-).
Collapse
Affiliation(s)
- Hong Wang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang M, Sui H, Li W, Wang J, Liu Y, Gu L, Wang WH, Gu R. Stimulation of A(₂a) adenosine receptor abolishes the inhibitory effect of arachidonic acid on the basolateral 50-pS K channel in the thick ascending limb. Am J Physiol Renal Physiol 2011; 300:F906-13. [PMID: 21209003 DOI: 10.1152/ajprenal.00617.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basolateral 50-pS K channels are stimulated by a cAMP-dependent pathway and inhibited by cytochrome P-450-omega-hydroxylase-dependent metabolism of arachidonic acid (AA) in the rat thick ascending limb (TAL). We now used the patch-clamp technique to examine whether stimulation of adenosine A(₂a) receptor modulates the inhibitory effect of AA on the basolateral 50-pS K channels in the medullary TAL. Stimulation of adenosine A(₂a) receptor with CGS-21680 or inhibition of phospholipase A₂ (PLA₂) with AACOCF3 increased the 50-pS K channel activity in the TAL. Western blot demonstrated that application of CGS-21680 decreased the phosphorylation of PLA(2) at serine residue 505, an indication of inhibiting PLA₂ activity. In the presence of CGS-21680, inhibition of PLA₂ had no further effect on the basolateral 50-pS K channels. The possibility that CGS-21680-induced stimulation of the basolateral 50-pS K channels was partially achieved by inhibition of PLA₂ in the TAL was also supported by the observation that CGS-21680 had no additional effect in the presence of AACOCF3. Moreover, stimulation of adenosine A(₂a) receptor with CGS-21680 also abolished the inhibitory effect of AA and 20-hydroxyeicosatetraenoic acid (20-HETE) on the 50-pS K channels. The effect of CGS-21680 on AA and 20-HETE-mediated inhibition of the 50-pS K channels was mediated by cAMP because application of membrane-permeable cAMP analog, dibutyryl-cAMP, not only increased the 50-pS K channel activity but also abolished the inhibitory effect of AA and 20-HETE. We conclude that stimulation of adenosine A(₂a) receptor increased the 50-pS K channel activity in the TAL, an effect that is achieved by suppression of PLA₂ activity and 20-HETE-induced inhibition.
Collapse
Affiliation(s)
- Mingxiao Wang
- Dept. of Pharmacology, Harbin Med. Univ., Harbin 150086, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Musselman TM, Zhang Z, Masilamani SME. Differential regulation of the bumetanide-sensitive cotransporter (NKCC2) by ovarian hormones. Steroids 2010; 75:760-5. [PMID: 20580730 PMCID: PMC2920368 DOI: 10.1016/j.steroids.2010.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/20/2010] [Accepted: 05/16/2010] [Indexed: 11/28/2022]
Abstract
The Na-K-2Cl cotransporter (NKCC2) regulates sodium transport along the thick ascending limb of Henle's loop and is important in control of sodium balance, renal concentrating ability and renin release. To determine if there are sex differences in NKCC2 abundance and/or distribution, and to evaluate the contribution of ovarian hormones to any such differences, we performed semiquantitative immunoblotting and immunoperoxidase immunohistochemistry for NKCC2 in the kidney of Sprague Dawley male, female and ovariectomized (OVX) rats with and without 17-beta estradiol or progesterone supplementation. Intact females demonstrated greater NKCC2 protein in homogenates of whole kidney (334+/-29%), cortex (219+/-20%) and outer medulla (133+/-9%) compared to males. Ovarian hormone supplementation to OVX rats regulated NKCC2 in the outer medulla only, with NKCC2 protein abundance decreasing slightly in response to progesterone but increasing in response to 17-beta estradiol. Immunohistochemistry demonstrated prominent NKCC2 labeling in the apical membrane of thick ascending limb cells. Kidney section NKCC2 labeling confirmed regionalized regulation of NKCC2 by ovarian hormones. Localized regulation of NKCC2 by ovarian hormones may have importance in controlling sodium and water balance over the lifetime of women as the milieu of sex hormones varies.
Collapse
Affiliation(s)
- Teddy M Musselman
- Division of Nephrology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States
| | | | | |
Collapse
|
22
|
Tanaka M, Asada M, Higashi AY, Nakamura J, Oguchi A, Tomita M, Yamada S, Asada N, Takase M, Okuda T, Kawachi H, Economides AN, Robertson E, Takahashi S, Sakurai T, Goldschmeding R, Muso E, Fukatsu A, Kita T, Yanagita M. Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome. J Clin Invest 2010; 120:768-77. [PMID: 20197625 DOI: 10.1172/jci39569] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The glomerular basement membrane (GBM) is a key component of the filtering unit in the kidney. Mutations involving any of the collagen IV genes (COL4A3, COL4A4, and COL4A5) affect GBM assembly and cause Alport syndrome, a progressive hereditary kidney disease with no definitive therapy. Previously, we have demonstrated that the bone morphogenetic protein (BMP) antagonist uterine sensitization-associated gene-1 (USAG-1) negatively regulates the renoprotective action of BMP-7 in a mouse model of tubular injury during acute renal failure. Here, we investigated the role of USAG-1 in renal function in Col4a3-/- mice, which model Alport syndrome. Ablation of Usag1 in Col4a3-/- mice led to substantial attenuation of disease progression, normalization of GBM ultrastructure, preservation of renal function, and extension of life span. Immunohistochemical analysis revealed that USAG-1 and BMP-7 colocalized in the macula densa in the distal tubules, lying in direct contact with glomerular mesangial cells. Furthermore, in cultured mesangial cells, BMP-7 attenuated and USAG-1 enhanced the expression of MMP-12, a protease that may contribute to GBM degradation. These data suggest that the pathogenetic role of USAG-1 in Col4a3-/- mice might involve crosstalk between kidney tubules and the glomerulus and that inhibition of USAG-1 may be a promising therapeutic approach for the treatment of Alport syndrome.
Collapse
Affiliation(s)
- Mari Tanaka
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Grifoni SC, Chiposi R, McKey SE, Ryan MJ, Drummond HA. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC. Am J Physiol Renal Physiol 2010; 298:F285-92. [PMID: 19889952 PMCID: PMC2822522 DOI: 10.1152/ajprenal.00496.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 11/03/2009] [Indexed: 12/26/2022] Open
Abstract
Renal blood flow (RBF) autoregulation is mediated by at least two mechanisms, the fast acting myogenic response (approximately 5 s) and slow acting tubuloglomerular feedback (TGF; approximately 25 s). Previous studies suggest epithelial Na(+) channel (ENaC) family proteins, beta-ENaC in particular, mediate myogenic constriction in isolated renal interlobar arteries. However, it is unknown whether beta-ENaC-mediated myogenic constriction contributes to RBF autoregulation in vivo. Therefore, the goal of this investigation was to determine whether the myogenic mediated RBF autoregulation is inhibited in a mouse model of reduced beta-ENaC (m/m). To address this goal, we evaluated the temporal response of RBF and renal vascular resistance (RVR) to a 2-min step increase in mean arterial pressure (MAP). Pressure-induced changes in RBF and RVR at 0-5, 6-25, and 110-120 s after step increase in MAP were used to assess the contribution of myogenic and TGF mechanisms and steady-state autoregulation, respectively. The rate of the initial increase in RVR, attributed to the myogenic mechanism, was reduced by approximately 50% in m/m mice, indicating the speed of the myogenic response was inhibited. Steady-state autoregulation was similar between beta-ENaC +/+ and m/m mice. Although the rate of the secondary increase in RVR, attributed to TGF, was similar in beta-ENaC +/+ and m/m mice, however, it occurred over a longer period (+10 s), which may have allowed TGF to compensate for a loss in myogenic autoregulation. Our findings suggest beta-ENaC is an important mediator of renal myogenic constriction-mediated RBF autoregulation in vivo.
Collapse
Affiliation(s)
- Samira C Grifoni
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | | | | | |
Collapse
|
24
|
Inscho EW. ATP, P2 receptors and the renal microcirculation. Purinergic Signal 2009; 5:447-60. [PMID: 19294530 PMCID: PMC2776135 DOI: 10.1007/s11302-009-9147-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 05/16/2008] [Indexed: 01/22/2023] Open
Abstract
Purinoceptors are rapidly becoming recognised as important regulators of tissue and organ function. Renal expression of P2 receptors is broad and diverse, as reflected by the fact that P2 receptors have been identified in virtually every major tubular/vascular element. While P2 receptor expression by these renal structures is recognised, the physiological functions that they serve remains to be clarified. Renal vascular P2 receptor expression is complex and poorly understood. Evidence suggests that different complements of P2 receptors are expressed by individual renal vascular segments. This unique distribution has given rise to the postulate that P2 receptors are important for renal vascular function, including regulation of preglomerular resistance and autoregulatory behaviour. More recent studies have also uncovered evidence that hypertension reduces renal vascular reactivity to P2 receptor stimulation in concert with compromised autoregulatory capability. This review will consolidate findings related to the role of P2 receptors in regulating renal microvascular function and will present areas of controversy related to the respective roles of ATP and adenosine in autoregulatory resistance adjustments.
Collapse
Affiliation(s)
- Edward W Inscho
- Department of Physiology, Medical College of Georgia, Augusta, Georgia,
| |
Collapse
|
25
|
Siu KL, Ahn JM, Chon KH. Electrohydraulic pump-driven closed-loop blood pressure-regulatory system. Am J Physiol Renal Physiol 2009; 296:F1530-6. [PMID: 19357178 DOI: 10.1152/ajprenal.90756.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this paper, we describe our design for a new electrohydraulic (EH) pump-driven renal perfusion pressure (RPP)-regulatory system capable of implementing precise and rapid RPP regulation in experimental animals. Without this automated system, RPP is manually controlled via a blood pressure clamp, and the imprecision in this method leads to compromised RPP data. This motivated us to develop an EH pump-driven closed-loop blood pressure regulatory system based on flow-mediated occlusion using the vascular occlusive cuff technique. A closed-loop servo-controller system based on a proportional plus integral (PI) controller was designed using the dynamic feedback RPP signal from animals. In vivo performance was evaluated via flow-mediated RPP occlusion, maintenance, and release responses during baseline and ANG II-infused conditions. A step change of -30 mmHg, referenced to normal RPP, was applied to Sprague-Dawley rats with the proposed system to assess the performance of the PI controller. The PI's performance was compared against manual control of blood pressure clamp to regulate RPP. Rapid RPP occlusion (within 3 s) and a release time of approximately 0.3 s were obtained for the PI controller for both baseline and ANG II infusion conditions, in which the former condition was significantly better than manual control. We concluded that the proposed EH RPP-regulatory system could fulfill in vivo needs to study various pressure-flow relationships in diverse fields of physiology, in particular, studying the dynamics of the renal autoregulatory mechanisms.
Collapse
Affiliation(s)
- K L Siu
- Department of Biomedical Engineering, HSC T18, Rm. 030, SUNY Stony Brook, Stony Brook, NY 11794-8181, USA
| | | | | |
Collapse
|
26
|
Zhang MZ, Yao B, Fang X, Wang S, Smith JP, Harris RC. Intrarenal dopaminergic system regulates renin expression. Hypertension 2009; 53:564-70. [PMID: 19139376 DOI: 10.1161/hypertensionaha.108.127035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dopamine is a major regulator of proximal tubule salt reabsorption and is a modulator of renin release. Dopamine has been reported to stimulate renin release in vitro through activation of D1-like receptors. However, previous studies investigating dopamine regulation of renin release in vivo have provided contradictory results, indicating stimulation, inhibition, or no effect. We have reported previously that macula densa cyclooxygenase-2 (COX-2) is suppressed by dopamine. Because macula densa COX-2 stimulates renal renin expression, our current studies investigated dopamine regulation of renal renin release and synthesis in vivo. Acute treatment with a D1-like receptor agonist, fenoldopam, significantly inhibited renin release, as did acute inhibition of proximal tubule salt reabsorption with acetazolamide. In catechol-O-methyl transferase knockout (COMT(-/-)) mice, which have increased kidney dopamine levels because of deletion of the major intrarenal dopamine metabolizing enzyme, there was attenuation in response to a low-salt diet of the increases of renal cortical COX-2 and renin expression and renin release. A high-salt diet led to significant decreases in renal renin expression but much less significant decreases in COMT(-/-) mice than wild type mice, resulting in higher renal renin expression in COMT(-/-) mice. In high salt-treated wild-type mice or COX-2 knockout mice on a normal salt diet, fenoldopam stimulated renal renin expression. These results suggest that dopamine predominantly inhibits renal renin expression and release by inhibiting macula densa COX-2, but suppression of renal cortical COX-2 activity reveals a contrasting effect of dopamine to stimulate renal renin expression through activation of D1-like receptors.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
27
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Moritz KM, Singh RR, Probyn ME, Denton KM. Developmental programming of a reduced nephron endowment: more than just a baby's birth weight. Am J Physiol Renal Physiol 2008; 296:F1-9. [PMID: 18653482 DOI: 10.1152/ajprenal.00049.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The risk of developing many adult-onset diseases, including hypertension, type 2 diabetes, and renal disease, is increased in low-birth-weight individuals. A potential underlying mechanism contributing to the onset of these diseases is the formation of a low nephron endowment during development. Evidence from the human, as well as many experimental animal models, has shown a strong association between low birth weight and a reduced nephron endowment. However, other animal models, particularly those in which the mother is exposed to elevated glucocorticoids for a short period, have shown a 20-40% reduction in nephron endowment without discernible changes in the birth weight of offspring. Such findings emphasize that a low birth weight is one, but certainly not the only, predictor of nephron endowment and suggests reduced nephron endowment and risk of developing adult-onset disease, even among normal-birth-weight individuals. Recognition of the dissociation between birth weight and nephron endowment is important for future studies aimed at elucidating the role of a reduced nephron endowment in the developmental programming of adult disease.
Collapse
Affiliation(s)
- Karen M Moritz
- School of Biomedical Sciences, Univ. of Queensland, 4072, Australia.
| | | | | | | |
Collapse
|
29
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
30
|
Abstract
The kidney displays highly efficient autoregulation so that under steady-state conditions renal blood flow (RBF) is independent of blood pressure over a wide range of pressure. Autoregulation occurs in the preglomerular microcirculation and is mediated by two, perhaps three, mechanisms. The faster myogenic mechanism and the slower tubuloglomerular feedback contribute both directly and interactively to autoregulation of RBF and of glomerular capillary pressure. Multiple experiments have been used to study autoregulation and can be considered as variants of two basic designs. The first measures RBF after multiple stepwise changes in renal perfusion pressure to assess how a biological condition or experimental maneuver affects the overall pressure-flow relationship. The second uses time-series analysis to better understand the operation of multiple controllers operating in parallel on the same vascular smooth muscle. There are conceptual and experimental limitations to all current experimental designs so that no one design adequately describes autoregulation. In particular, it is clear that the efficiency of autoregulation varies with time and that most current techniques do not adequately address this issue. Also, the time-varying and nonadditive interaction between the myogenic mechanism and tubuloglomerular feedback underscores the difficulty of dissecting their contributions to autoregulation. We consider the modulation of autoregulation by nitric oxide and use it to illustrate the necessity for multiple experimental designs, often applied iteratively.
Collapse
Affiliation(s)
- William A Cupples
- Centre for Biomedical Research and Dept. of Biology, Univ. of Victoria, PO Box 3020, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|
31
|
Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1-17. [PMID: 16990493 DOI: 10.1152/ajpregu.00332.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autoregulation of renal blood flow (RBF) is caused by the myogenic response (MR), tubuloglomerular feedback (TGF), and a third regulatory mechanism that is independent of TGF but slower than MR. The underlying cause of the third regulatory mechanism remains unclear; possibilities include ATP, ANG II, or a slow component of MR. Other mechanisms, which, however, exert their action through modulation of MR and TGF are pressure-dependent change of proximal tubular reabsorption, resetting of RBF and TGF, as well as modulating influences of ANG II and nitric oxide (NO). MR requires < 10 s for completion in the kidney and normally follows first-order kinetics without rate-sensitive components. TGF takes 30-60 s and shows spontaneous oscillations at 0.025-0.033 Hz. The third regulatory component requires 30-60 s; changes in proximal tubular reabsorption develop over 5 min and more slowly for up to 30 min, while RBF and TGF resetting stretch out over 20-60 min. Due to these kinetic differences, the relative contribution of the autoregulatory mechanisms determines the amount and spectrum of pressure fluctuations reaching glomerular and postglomerular capillaries and thereby potentially impinge on filtration, reabsorption, medullary perfusion, and hypertensive renal damage. Under resting conditions, MR contributes approximately 50% to overall RBF autoregulation, TGF 35-50%, and the third mechanism < 15%. NO attenuates the strength, speed, and contribution of MR, whereas ANG II does not modify the balance of the autoregulatory mechanisms.
Collapse
Affiliation(s)
- Armin Just
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| |
Collapse
|
32
|
Bell TD, DiBona GF, Wang Y, Brands MW. Mechanisms for Renal Blood Flow Control Early in Diabetes as Revealed by Chronic Flow Measurement and Transfer Function Analysis. J Am Soc Nephrol 2006; 17:2184-92. [PMID: 16807404 DOI: 10.1681/asn.2006030216] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The purpose of this study was to establish the roles of the myogenic response and the TGF mechanism in renal blood flow (RBF) control at the very earliest stages of diabetes. Mean arterial pressure (MAP) and RBF were measured continuously, 18 h/d, in uninephrectomized control and diabetic rats, and transfer function analysis was used to determine the dynamic autoregulatory efficiency of the renal vasculature. During the control period, MAP averaged 91 +/- 0.5 and 89 +/- 0.4 mmHg, and RBF averaged 8.0 +/- 0.1 and 7.8 +/- 0.1 ml/min in the control and diabetic groups, respectively. Induction of diabetes with streptozotocin caused a marked and progressive increase in RBF in the diabetic rats, averaging 10 +/- 6% above control on day 1 of diabetes and 22 +/- 3 and 34 +/- 1% above control by the end of diabetes weeks 1 and 2. MAP increased approximately 9 mmHg during the 2 wk in the diabetic rats, and renal vascular resistance decreased. Transfer function analysis revealed significant increases in gain to positive values over the frequency ranges of both the TGF and myogenic mechanisms, beginning on day 1 of diabetes and continuing through day 14. These very rapid increases in RBF and transfer function gain suggest that autoregulation is impaired at the very onset of hyperglycemia in streptozotocin-induced type 1 diabetes and may play an important role in the increase in RBF and GFR in diabetes. Together with previous reports of decreases in chronically measured cardiac output and hindquarter blood flow, this suggests that there may be differential effects of diabetes on RBF versus nonrenal BF control.
Collapse
Affiliation(s)
- Tracy D Bell
- Department of Physiology, Medical College of Georgia, Augusta State University, Augusta, GA 30912-3000, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Contrast nephropathy is a common cause of iatrogenic acute renal failure. Its incidence rises with the growing use of intra-arterial contrast in diagnostic and interventional procedures. Aim of the present review is to summarize the knowledge about pathophysiology and prevention. Nephrotoxicity is related to osmolality, dose and route of the contrast and only occurs in synergy with other factors, such as previous renal impairment and cardiovascular disease. With an interplay of these factors, contrast nephropathy has an impact on morbidity and mortality. Pathophysiological mechanisms are intrarenal vasoconstriction, leading to medullary ischemia, direct cytotoxicity, oxidative tissue damage and apoptosis. Several measures are of proven benefit in patients at risk. Among them are discontinuation of potentially nephrotoxic drugs, hydration, preferably with isotonic sodium bicarbonate, use of low osmolal contrast, oral or intravenous N-acetylcysteine and intravenous theophylline. In patients with severe cardiac and renal dysfunction undergoing cardiac interventions, periprocedural hemofiltration may be considered.
Collapse
|
34
|
Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 2005; 85:319-71. [PMID: 15618483 PMCID: PMC2838721 DOI: 10.1152/physrev.00051.2003] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
K(+) channels are widely distributed in both plant and animal cells where they serve many distinct functions. K(+) channels set the membrane potential, generate electrical signals in excitable cells, and regulate cell volume and cell movement. In renal tubule epithelial cells, K(+) channels are not only involved in basic functions such as the generation of the cell-negative potential and the control of cell volume, but also play a uniquely important role in K(+) secretion. Moreover, K(+) channels participate in the regulation of vascular tone in the glomerular circulation, and they are involved in the mechanisms mediating tubuloglomerular feedback. Significant progress has been made in defining the properties of renal K(+) channels, including their location within tubule cells, their biophysical properties, regulation, and molecular structure. Such progress has been made possible by the application of single-channel analysis and the successful cloning of K(+) channels of renal origin.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA.
| | | | | | | |
Collapse
|
35
|
Palmer BF. Disturbances in Renal Autoregulation and the Susceptibility to Hypertension-Induced Chronic Kidney Disease. Am J Med Sci 2004; 328:330-43. [PMID: 15599329 DOI: 10.1016/s0002-9629(15)33943-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The risk of developing chronic kidney disease in the setting of hypertension varies among patient populations. Black hypertensive patients have an increased risk of developing hypertension-induced chronic kidney disease even after taking into account socioeconomic factors. There is evidence to suggest that the kidney is intrinsically more susceptible to the damaging effects of hypertension in black patients. This susceptibility can be traced to disturbances in the way the kidney autoregulates. Impaired renal autoregulation may be the renal manifestation of a more widespread abnormality in endothelial function. Other conditions that can impair renal autoregulation and add to the risk of chronic kidney disease include low birth weight, obesity, insulin resistance, hyperuricemia, and hypercholesterolemia. To minimize the risk of chronic kidney disease in patients with impaired renal autoregulatory capability, strict blood pressure control is required. There is indirect evidence that blocking the renin-angiotensin system may improve renal autoregulation.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8856, USA.
| |
Collapse
|
36
|
Aviv A, Hollenberg NK, Weder AB. Sodium glomerulopathy: tubuloglomerular feedback and renal injury in African Americans. Kidney Int 2004; 65:361-8. [PMID: 14717906 DOI: 10.1111/j.1523-1755.2004.00389.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
African Americans are prone to develop not only essential hypertension but also progressive renal injury. We present a simple model to explain salt-induced renal injury (sodium glomerulopathy) in African Americans, the central features of which are the tubuloglomerular feedback and the balance/imbalance between the vascular tones of the afferent and efferent glomerular arterioles. We propose that in African Americans, habitual consumption of high salt causes chronic intermittent tubular hyperperfusion of the macula densa, resulting in a rightward and upward resetting of the operating point for the tubuloglomerular feedback. The resetting of the operating point causes an imbalance between the vascular tones of the afferent/efferent arterioles, a rise in the glomerular capillary hydraulic pressure, and consequent hyperfiltration. Increased susceptibility to glomerular hyperfiltration of African Americans on a high salt intake may explain their proclivity to progressive renal injury associated with essential hypertension.
Collapse
Affiliation(s)
- Abraham Aviv
- Hypertension Research Center, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | | | |
Collapse
|
37
|
Liu R, Ren Y, Garvin JL, Carretero OA. Superoxide enhances tubuloglomerular feedback by constricting the afferent arteriole. Kidney Int 2004; 66:268-74. [PMID: 15200433 DOI: 10.1111/j.1523-1755.2004.00727.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Superoxide (O(2) (-)) has been shown to augment tubuloglomerular feedback (TGF) both in vivo and in vitro by scavenging nitric oxide (NO) in the macula densa (MD). We hypothesized that in addition to this mechanism O(2) (-) potentiates TGF by acting directly on the afferent arteriole (Af-Art). METHODS Microdissected Af-Arts and adherent tubular segments containing the MD were simultaneously microperfused in vitro, maintaining Af-Art pressure at 60 mm Hg. TGF response was determined by measuring changes in Af-Art diameter while increasing NaCl in the MD perfusate from 11/10 to 81/80 mmol/L Na/Cl. RESULTS To determine whether O(2) (-) acts at the MD in the absence of MD NO, we inhibited MD nNOS with 7-nitroindazole (7-NI) and added Tempol to the lumen. When 7-NI was added to the MD lumen, it increased TGF from 2.3 +/- 0.2 to 4.2 +/- 0.2 microm (P < 0.01). When Tempol was added to the MD lumen in the presence of 7-NI, it had no effect on TGF. To investigate whether O(2) (-) has any effect via the Af-Art in the absence of MD NO, we inhibited MD nNOS with 7-NI and added Tempol to the bath to scavenge O(2) (-) in the Af-Art. Adding Tempol to the bath with 7-NI in the MD lumen reduced TGF from 3.9 +/- 0.3 to 2.8 +/- 0.5 microm (P < 0.05 vs. 7-NI). To see if this effect was due to O(2) (-) scavenging NO production by the endothelium, we repeated the experiment in Af-Arts with damaged endothelium and found that adding Tempol to the bath lowered TGF from 3.4 +/- 0.9 to 1.2 +/- 0.6 microm (P < 0.01). When catalase was added to the bath together with Tempol, TGF response was not modified. CONCLUSION We concluded that it is O(2) (-) rather than H(2)O(2) that enhances TGF response, both directly by constricting the Af-Art and indirectly by scavenging NO in the MD.
Collapse
Affiliation(s)
- Ruisheng Liu
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Nitric oxide (NO) is a gaseous free radical that serves cell signaling, cellular energetics, host defense, and inflammatory functions in virtually all cells. In the kidney and vasculature, NO plays fundamental roles in the control of systemic and intrarenal hemodynamics, the tubuloglomerular feedback response, pressure natriuresis, release of sympathetic neurotransmitters and renin, and tubular solute and water transport. NO is synthesized from L-arginine by NO synthases (NOS). Because of its high chemical reactivity and high diffusibility, NO production by each of the 3 major NOS isoforms is regulated tightly at multiple levels from gene transcription to spatial proximity near intended targets to covalent modification and allosteric regulation of the enzyme itself. Many of these regulatory mechanisms have yet to be tested in renal cells. The NOS isoforms are distributed differentially and regulated in the kidney, and there remains some controversy over the specific expression of functional protein for the NOS isoforms in specific renal cell populations. Mice with targeted deletion of each of the NOS isoforms have been generated, and these each have unique phenotypes. Studies of the renal and vascular phenotypes of these mice have yielded important insights into certain vascular diseases, ischemic acute renal failure, the tubuloglomerular feedback response, and some mechanisms of tubular fluid and electrolyte transport, but thus far have been underexploited. This review explores the collective knowledge regarding the structure, regulation, and function of the NOS isoforms gleaned from various tissues, and highlights the progress and gaps in understanding in applying this information to renal and vascular physiology.
Collapse
Affiliation(s)
- Bruce C Kone
- University of Texas Health Sciences Center at Houston, 77030, USA.
| |
Collapse
|
39
|
Liu R, Persson AEG. Angiotensin II Stimulates Calcium and Nitric Oxide Release From Macula Densa Cells Through AT1Receptors. Hypertension 2004; 43:649-53. [PMID: 14744924 DOI: 10.1161/01.hyp.0000116222.57000.85] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fluorescent nitric oxide (NO) indicator, 4,5-diaminofluorescein diacetate, and the calcium indicator, indo-1, with 488 nm and 364 nm UV confocal laser scanning microscopy were used to detect NO and calcium concentration in rabbit macula densa (MD) cells challenged by angiotensin II (Ang II). Glomeruli with attached thick ascending limbs with the MD plaque were isolated and perfused. Ang II concentration from 10(-9) to 10(-5) progressively increased MD cell calcium and NO to peak values at 10(-6) and 10(-7), respectively. Ang II (10(-6) M) caused the cytosolic calcium concentration ([Ca(2+)](i)) to increase by 125.8+/-16.3 nM (n=17) from the bath and by 52.3+/-11.5 nM (n=18) from the lumen. AT(1) antagonist CV-11974 (10(-6) M) blocked the Ang II-induced calcium responses from bath and lumen, but AT(2) antagonist PD-123319 (10(-6) M) did not. AT(2) agonist CGP-42112A (10(-6) M) did not affect [Ca(2+)](i) in MD cells from either side. Ang II (10(-6) M) increased the NO production by 16%+/-3.4% (n=26) from the bath and by 18%+/-3.1% (n=24) from the lumen. CV-11974 (10(-6) M) blocked the NO responses from both sides, but PD-123319 (10(-6) M) did not on either side. CGP-42112A (10(-6) M) had no effect on NO in MD cells. In calcium-free experiments there was no difference from the result in normal calcium solutions. In conclusion, we found that Ang II increased [Ca(2+)](i) and stimulated NO production in MD cells from the basolateral and luminal sides through AT(1) receptors.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, S-75123 Uppsala, Sweden.
| | | |
Collapse
|
40
|
Turban S, Wang XY, Knepper MA. Regulation of NHE3, NKCC2, and NCC abundance in kidney during aldosterone escape phenomenon: role of NO. Am J Physiol Renal Physiol 2003; 285:F843-51. [PMID: 12837683 DOI: 10.1152/ajprenal.00110.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escape from aldosterone-induced renal NaCl retention is an important homeostatic mechanism in pathophysiological states in which plasma aldosterone levels are inappropriately elevated, e.g., in primary aldosteronism. Our previous studies demonstrated that the escape process occurs largely as a result of a marked suppression of the abundance of the thiazide-sensitive Na-Cl cotransporter (NCC) of the distal convoluted tubule but have also demonstrated a paradoxical increase in the protein abundance of the apical Na/H exchanger of the proximal tubule (NHE3). In the present study, we confirmed the increase in NHE3 and also showed that a similar increase in NHE3 protein abundance occurs in escape from ANG II-mediated NaCl retention. To investigate the potential role of nitric oxide (NO) in the observed upregulation of NHE3, we repeated the aldosterone escape experiment with a superimposed infusion of a NO synthase inhibitor, NG-nitro-l-arginine methyl ester (l-NAME). l-NAME infusion abolished the increase in NHE3 protein abundance. Furthermore, in a different experiment, NO synthase inhibition uncovered an associated decrease in the abundance of the Na-K-2Cl cotransporter (NKCC2) of the thick ascending limb, not seen with simple aldosterone escape. However, NO synthase inhibition did not block the decrease in NCC abundance normally seen with aldosterone escape. Furthermore, l-NAME infusion in aldosterone-treated rats markedly decreased both NHE3 and NKCC2 protein abundance, without changes in the corresponding mRNA levels. We conclude that NHE3 and NKCC2 protein abundances in kidney are positively regulated by NO and that the increase in NHE3 abundance seen in the aldosterone escape phenomenon is NO dependent.
Collapse
Affiliation(s)
- Sharon Turban
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Oldson DR, Moore LC, Layton HE. Effect of sustained flow perturbations on stability and compensation of tubuloglomerular feedback. Am J Physiol Renal Physiol 2003; 285:F972-89. [PMID: 12837687 DOI: 10.1152/ajprenal.00377.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A mathematical model previously formulated by us predicts that limit-cycle oscillations (LCO) in nephron flow are mediated by tubuloglomerular feedback (TGF) and that the LCO arise from a bifurcation that depends heavily on the feedback gain magnitude, gamma, and on its relationship to a theoretically determined critical value of gain, gammac. In this study, we used that model to show how sustained perturbations in proximal tubule flow, a common experimental maneuver, can initiate or terminate LCO by changing the values of gamma and gammac, thus changing the sign of gamma - gammac. This result may help explain experiments in which intratubular pressure oscillations were initiated by the sustained introduction or removal of fluid from the proximal tubule (Leyssac PP and Baumbach L. Acta Physiol Scand 117: 415-419, 1983). In addition, our model predicts that, for a range of TGF sensitivities, sustained perturbations that initiate or terminate LCO can yield substantial and abrupt changes in both distal NaCl delivery and NaCl delivery compensation, changes that may play an important role in the response to physiological challenge.
Collapse
Affiliation(s)
- Darren R Oldson
- Department of Mathematics, Duke University, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
42
|
Krug AW, Papavassiliou F, Hopfer U, Ullrich KJ, Gekle M. Aldosterone stimulates surface expression of NHE3 in renal proximal brush borders. Pflugers Arch 2003; 446:492-6. [PMID: 12684793 DOI: 10.1007/s00424-003-1033-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Revised: 01/13/2003] [Accepted: 02/10/2003] [Indexed: 10/26/2022]
Abstract
The mineralocorticoid aldosterone is one of the major regulators of extracellular volume and blood pressure. It acts by enhancing Na(+) reabsorption across tight epithelia such as renal collecting ducts and colon. In addition, it has been shown that aldosterone stimulates NaCl and volume reabsorption in renal proximal tubules by an unknown mechanism. To test the hypothesis that the application of aldosterone results in greater activity of the apical Na(+)/H(+) exchanger-3 (NHE3), we investigated the effect of aldosterone on amiloride-sensitive, proximal tubular volume reabsorption and proximal tubular NHE3 abundance in adrenalectomized rats. Aldosterone at physiological concentrations (dosage 36 microg/100 g b.w. per day) increased NHE3-dependent proximal tubular volume reabsorption and the abundance of NHE3 in brush borders without changing the total amount of NHE3 in cortical homogenates. These results indicate that renal proximal tubular NHE3 is a target for aldosterone-mediated regulation resulting in increased Na(+) reabsorption and thus extracellular volume and blood pressure. Further studies are required to determine the precise mechanism of action, especially whether the action of aldosterone on proximal tubular function is direct or indirect.
Collapse
Affiliation(s)
- Alexander W Krug
- Physiologisches Institut, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Abstract
Macula densa cells are renal sensor elements that detect changes in distal tubular fluid composition and transmit signals to the glomerular vascular elements. This tubuloglomerular feedback mechanism plays an important role in regulating glomerular filtration rate and blood flow. Macula densa cells detect changes in luminal sodium chloride concentration through a complex series of ion transport-related intracellular events. NaCl entry via a Na:K:2Cl cotransporter and Cl exit through a basolateral channel lead to cell depolarization and increases in cytosolic calcium. Na/H exchange (NHE2) results in cell alkalization, whereas intracellular [Na] is regulated by an apically located H(Na)-K ATPase and not by the traditional basolateral Na:K ATPase. Communication from macula densa cells to the glomerular vascular elements involves ATP release across the macula densa basolateral membrane through a maxi-anion channel. The adaptation of multi-photon microscopy is providing new insights into macula densa-glomerular signaling.
Collapse
Affiliation(s)
- P Darwin Bell
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
44
|
Yanagisawa H, Nodera M, Sato M, Moridaira K, Sato G, Wada O. Decreased expression of brain nitric oxide synthase in macula densa cells and glomerular epithelial cells of rats with mercury chloride-induced acute renal failure. Toxicol Appl Pharmacol 2002; 184:165-71. [PMID: 12460744 DOI: 10.1006/taap.2002.9510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the mechanisms responsible for the development of HgCl(2)-induced acute renal failure (ARF), we examined the expression of brain type (b) nitric oxide synthase (NOS), which is involved in the generation of the vasodilator nitric oxide (NO), in the renal cortex of rats at 20 h after exposure to 7.5 mg/kg HgCl(2). Both blood urea nitrogen and serum creatinine were significantly increased in rats exposed to HgCl(2) relative to control rats, indicating the induction of ARF resulting from HgCl(2) exposure. Histopathological analysis demonstrated that, in addition to necrosis of proximal tubule epithelial cells, necrosis of macula densa cells and swelling of glomerular epithelial cells were observed in the renal cortex of rats with HgCl(2)-induced ARF. Consequently, the number of pars maculata segments was decreased by 42% in rats with HgCl(2)-induced ARF compared to control rats. The primary sites of bNOS mRNA and protein expression were macula densa cells and glomerular epithelial cells in the renal cortex of control rats and rats with HgCl(2)-induced ARF. The abundance of the bNOS mRNA and protein was significantly decreased in rats with HgCl(2)-induced ARF relative to control rats. These observations suggest that the production of the vasodilator NO derived from bNOS is decreased at the glomerulus level in the HgCl(2)-induced ARF setting. Thus, the reduction in bNOS expression may in part contribute to the progression of HgCl(2)-induced ARF through the deterioration of glomerular hemodynamics. In addition, the decrease in bNOS expression may be primarily the result of cell injury caused by the cytotoxic effect of HgCl(2).
Collapse
Affiliation(s)
- Hiroyuki Yanagisawa
- Department of Hygiene and Preventive Medicine, Faculty of Medicine, Saitama Medical School, 38 Morohongo, Moroyama, Iruma-Gun, Saitama, 350-0495, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Mundy HR, Lee PJ. Glycogenosis type I and diabetes mellitus: a common mechanism for renal dysfunction? Med Hypotheses 2002; 59:110-4. [PMID: 12160694 DOI: 10.1016/s0306-9877(02)00199-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diabetes mellitus and glycogen storage disease type I (GSDI) may initially appear disparate in metabolic profile: one characterized by uncontrolled hyperglycaemia due to disturbed insulin function and the other by fasting hypoglycaemia caused by impaired gluconeogenesis and glycogenolysis. However, they share a remarkably similar pattern and progression of renal dysfunction. This may be, we suggest, due to a convergence of their metabolic sequelae in upregulation of flux through the pentose phosphate pathway. This pathway yields triose phosphate molecules, which are precursors of the lipid, diacylglycerol (DAG). DAG plays an important role in the intrarenal renin-angiotensin system via the protein kinase C pathway. GSDI may be an interesting model which helps to unravel further the contributions of the many, varied nephropathic influences in diabetes. Conversely patients with this rare disorders would have much to gain from the innovative and vastly greater body of research carried out in diabetes.
Collapse
Affiliation(s)
- H R Mundy
- Charles Dent Metabolic Unit, National Hospital for Neurology, London, UK.
| | | |
Collapse
|
46
|
Liu R, Bell PD, Peti-Peterdi J, Kovacs G, Johansson A, Persson AEG. Purinergic receptor signaling at the basolateral membrane of macula densa cells. J Am Soc Nephrol 2002; 13:1145-51. [PMID: 11961001 DOI: 10.1097/01.asn.0000014827.71910.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Purinergic receptors are important in the regulation of renal hemodynamics; therefore, this study sought to determine if such receptors influence macula densa cell function. Isolated glomeruli containing macula densa cells, with and without the cortical thick ascending limb, were loaded with the Ca(2+) sensitive indicators, Fura Red (confocal microscopy) or fura 2 (conventional video image analysis). Studies were performed on an inverted microscope in a chamber with a flow-through perfusion system. Changes in cytosolic calcium concentration ([Ca(2+)](i)) from exposed macula densa plaques were assessed upon addition of adenosine, ATP, UTP, ADP, or 2-methylthio-ATP (2- MeS-ATP) for 2 min added to the bathing solution. There was no change in [Ca(2+)](i) with addition of adenosine (10(-7) to 10(-3) M). UTP and ATP (10(-4) M) caused [Ca(2+)](i) to increase by 268 +/- 40 nM (n = 21) and 295 +/- 53 nM (n = 21), respectively, whereas in response to 2MesATP and ADP, [Ca(2+)](i) increased by only 67 +/- 13 nM (n = 8) and 93 +/- 36 nM (n = 14), respectively. Dose response curve for ATP (10(-7) to 10(-3) M) added in bath showed an EC(50) of 15 microM. No effect on macula densa [Ca(2+)](i) was seen when ATP was added from the lumen. ATP caused similar increases in macula densa [Ca(2+)](i) in the presence or absence of bath Ca(2+) and addition of 5 mM ethyleneglycotetraacetic acid (EGTA). Suramin (an antagonist of P2X and P2Y receptors) completely inhibited ATP-induced [Ca(2+)](i) dynamics. Also, ATP-Ca(2+) responsiveness was prevented by the phospholipase C inhibitor, U-73122, but not by its inactive analog, U-73343. These results suggest that macula densa cells possess P2Y(2) purinergic receptors on basolateral but not apical membranes and that activation of these receptors results in the mobilization of Ca(2+).
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Physiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND There is evidence that macula densa nitric oxide (NO) inhibits tubuloglomerular feedback (TGF). However, TGF response is not altered in mice deficient in neuronal nitric oxide synthase (nNOS) (-/-). Furthermore, nNOS expression in the macula densa is inversely related to salt intake, yet micropuncture studies have shown that NOS inhibition potentiates TGF in rats on high sodium intake but not in rats on a low-salt diet. These inconsistencies may be due to confounding systemic factors, such as changes in circulating renin. To further clarify the role of macula densa nNOS in TGF response, independent of systemic factors, we tested the hypothesis that (1) TGF response is inversely related to sodium intake, and (2) during low sodium intake, NO produced by macula densa nNOS tonically controls the basal diameter of the afferent arteriole (Af-Art). METHODS Af-Arts and attached macula densas were simultaneously microperfused in vitro. TGF response was determined by measuring Af-Art diameter before and after increasing NaCl in the macula densa perfusate. TGF response was studied in wild-type (+/+) and nNOS knockout mice (-/-), as well as in juxtaglomerular apparatuses (JGAs) from rabbits fed a low-, normal-, or high-NaCl diet. RESULTS TGF responses were similar in nNOS +/+ and -/- mice. However, in nNOS +/+ mice, 7-nitroindazole (7-NI) perfused into the macula densa significantly potentiated the TGF response (P = 0.001), while in nNOS -/- mice, this potentiation was absent. In rabbits on three different sodium diets, TGF responses were similar and were potentiated equally by 7-NI. However, in JGAs from rabbits on a low-NaCl diet, adding 7-NI to the macula densa while perfusing it with low-NaCl fluid caused Af-Art vasoconstriction, decreasing the diameter by 14% (from 21.7 +/- 1.3 to 18.6 +/- 1.5 microm; P < 0.001). This effect was not observed in JGAs from rabbits fed a normal- (19.0 +/- 0.5 vs. 19.3 +/- 0.8 microm after 7-NI) or high-NaCl diet (18.6 +/- 0.7 vs. 18.4 +/- 0.7 microm). CONCLUSIONS First, in this in vitro preparation, chronic changes in macula densa nNOS do not play a major role in the regulation of TGF. Compensatory mechanisms may develop during chronic alteration of nNOS that keep TGF relatively constant. Second, nNOS regulates TGF response acutely. Third, the results obtained in the +/+ and -/- mice also confirm that the effect of 7-NI is due to inhibition of macula densa nNOS. Finally, during low sodium intake (without induction of TGF), the regulation of basal Af-Art resistance by macula densa nNOS suggests that NO in the macula densa helps maintain renal blood flow during the high renin secretion caused by low sodium intake.
Collapse
Affiliation(s)
- Y L Ren
- Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
48
|
Wang H, Garvin JL, Carretero OA. Angiotensin II enhances tubuloglomerular feedback via luminal AT(1) receptors on the macula densa. Kidney Int 2001; 60:1851-7. [PMID: 11703603 DOI: 10.1046/j.1523-1755.2001.00999.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Recent studies have revealed angiotensin II subtype 1 (AT1) receptors on macula densa cells, raising the possibility that angiotensin II (Ang II) could enhance tubuloglomerular feedback (TGF) by affecting macula densa cell function. We hypothesized that Ang II enhances TGF via activation of AT1 receptors on the luminal membrane of the macula densa. METHODS Rabbit afferent arterioles and the attached macula densa were simultaneously microperfused in vitro, keeping pressure in the afferent arteriole at 60 mm Hg. RESULTS The afferent arteriole diameter was measured while the macula densa was perfused with low NaCl (Na+, 5 mmol/L; Cl-, 3 mmol/L) and then with high NaCl (Na+, 79 mmol/L; Cl-, 77 mmol/L) to induce a TGF response. When TGF was induced in the absence of Ang II, the afferent arteriole diameter decreased by 2.4 +/- 0.5 microm (from 17.3 +/- 1.0 to 14.9 +/- 1.2 microm). With Ang II (0.1 nmol/L) present in the lumen of the macula densa, the diameter decreased by 3.8 +/- 0.7 microm (from 17.3 +/- 1.0 to 13.5 +/- 1.2 microm, P < 0.05 vs. TGF with no Ang II, N = 8). To test whether Ang II enhances TGF via activation of AT1 receptors on the luminal membrane of the macula densa, Ang II plus losartan (1 micromol/L) was added to the lumen. Losartan itself did not alter TGF. When TGF was induced in the absence of Ang II and losartan, the afferent arteriole diameter decreased by 2.3 +/- 0.3 microm (from 15.9 +/- 1.0 to 13.6 +/- 1.2 microm). When Ang II and losartan were both present in the macula densa perfusate, the diameter decreased by 2.4 +/- 0.4 microm (from 15.8 +/- 0.9 to 13.4 +/- 0.7 microm, P> 0.8 vs. TGF with no Ang II and losartan, N = 7). We then examined whether AT2 receptors on the macula densa influence the effect of luminal Ang II on TGF. When TGF was induced in the absence of Ang II plus PD 0123319-0121B (1 micromol/L), the afferent arteriole diameter decreased by 2.4 +/- 0.2 microm (from 17.0 +/- 0.9 to 14.6 +/- 0.8 microm). When Ang II and PD 0123319-0121B were both present in the macula densa lumen, the diameter decreased by 3.9 +/- 0.2 microm (from 16.8 +/- 0.9 to 12.9 +/- 0.9 microm, P < 0.001 vs. TGF with no Ang II and PD 0123319-0121B, N = 8). PD 0123319-0121B itself had no effect on TGF. To assure that this effect of Ang II was not due to leakage into the bath, losartan was added to the bath. When TGF was induced in the absence of Ang II with losartan in the bath, the afferent arteriole diameter decreased by 2.8 +/- 0.5 microm (from 19.3 +/- 1.2 to 16.5 +/- 0.8 microm). After Ang II was added to the macula densa perfusate and losartan to the bath, the diameter decreased by 4.0 +/- 0.7 microm (from 18.9 +/- 1.1 to 14.9 +/- 0.5 microm, P < 0.01 vs. TGF with no Ang II in the lumen and losartan in the bath, N = 8). CONCLUSIONS These results demonstrate that Ang II enhances TGF via activation of AT1 receptors on the luminal membrane of the macula densa.
Collapse
Affiliation(s)
- H Wang
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | |
Collapse
|
49
|
Palmer BF. Impaired renal autoregulation: implications for the genesis of hypertension and hypertension-induced renal injury. Am J Med Sci 2001; 321:388-400. [PMID: 11417753 DOI: 10.1097/00000441-200106000-00005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In summary, autoregulation of the renal vasculature provides a mechanism by which renal function is maintained relatively constant despite variations in systemic blood pressure. This system also provides a means for changes in blood pressure to occur without causing inappropriate alterations in urinary NaCl excretion. Alterations in the autoregulatory response can have clinical consequences. Increased activity of the TGF mechanism may be causally related to the development of some forms of hypertension. Decreased activity of TGF or an impaired myogenic response may help explain the increased susceptibility that certain patient groups exhibit toward hypertension-induced renal injury. The aggressive treatment of hypertension in patients with impaired renal autoregulation may be associated with an increase in the serum creatinine concentration. As long as this increase is neither excessive nor progressive, physicians should not be dissuaded from trying to achieve newly established blood pressure goals.
Collapse
Affiliation(s)
- B F Palmer
- Department of Internal Medicine, University of Texas Southern Medical School, Dallas 75390, USA.
| |
Collapse
|
50
|
Romano G, Cavarape A, Favret G, Bortolotti N, Bartoli E. Systemic and intratubular effects of cyclosporin-A and tacrolimus on the rat kidney. Eur J Pharmacol 2000; 399:215-21. [PMID: 10884522 DOI: 10.1016/s0014-2999(00)00335-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclosporin-A and tacrolimus can cause hypertension and renal failure through endothelin receptors. The importance of tubular function was never investigated. The aim of this study was to compare the effects of intratubular injection of cyclosporin-A and tacrolimus with effects observed during systemic infusion. In 20 rats, either cyclosporin-A or tacrolimus was infused, 30 and 1 mg/kg i.v., respectively, in 30 min. Before and after administration, glomerular filtration rate, single nephron filtration rate, proximal and distal absolute reabsorption and percent reabsorption were measured by clearance and micropuncture techniques. In 22 other rats, single nephron filtration rate, absolute reabsorption, percent reabsorption, were measured at the last proximal and early distal tubules before and during intraluminal microinjection of either cyclosporin-A or tacrolimus. During cyclosporin-A and tacrolimus i.v. infusion, glomerular filtration rate fell from 536+/-43 to 448+/-37 microl/min (P<0.026) and from 408+/-33 to 284+/-81 microl/min (P<0. 02), single nephron filtration rate from 26.4+/-2.0 to 20.6+/-1.9 (P<0.002) and from 21.6+/-2.2 to 17.4+/-2.0 nl/min, respectively (P<0.02). The last proximal absolute reabsorption remained unchanged with cyclosporin-A (16.8+/-2.2 vs. 15.1+/-1.7 nl/min, P>0.444), but was slightly reduced by tacrolimus (14.4+/-1.7 vs. 11.3+/-1.7 nl/min, P<0.05). During microinjection, single nephron filtration rate was increased by cyclosporin-A (20+/-1 vs. 63+/-8 nl/min, P<0.0001), and tacrolimus (from 17+/-2 to 49+/-9 nl/min, P<0.0001), and so was reabsorption, independent of the sampling site. Cyclosporin-A and tacrolimus, indeed, raise single nephron filtration rate directly when injected intraluminally. Since this effect occurs in the direction opposite to that recorded during systemic infusion, it must be mediated through different pathways. The i.v. infusion of cyclosporin-A, but not tacrolimus, impairs glomerulo-tubular balance.
Collapse
Affiliation(s)
- G Romano
- DPMSC, Internal Medicine, University of Udine, Medical School, Udine, Italy.
| | | | | | | | | |
Collapse
|