1
|
Massimo G, Dyson N, Olotu F, Khambata RS, Ahluwalia A. Potential Opportunities for Pharmacogenetic-Based Therapeutic Exploitation of Xanthine Dehydrogenase in Cardiovascular Disease. Antioxidants (Basel) 2024; 13:1439. [PMID: 39765766 PMCID: PMC11672463 DOI: 10.3390/antiox13121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
The majority of naturally occurring mutations of the human gene XDH, are associated with reduced or completely absent xanthine oxidoreductase (XOR) activity, leading to a disease known as classical xanthinuria, which is due to the accumulation and excretion of xanthine in urine. Three types of classical xanthinuria have been identified: type I, characterised by XOR deficiency, type II, caused by XOR and aldehyde oxidase (AO) deficiency, and type III due to XOR, AO, and sulphite oxidase (SO) deficiency. Type I and II are considered rare autosomal recessive disorders, a condition where two copies of the mutated gene must be present to develop the disease or trait. In most cases, xanthinuria type I and II result to be asymptomatic, and only occasionally lead to renal failure due to urolithiasis caused by xanthine deposition. However, in the last 10-15 years, new observations have been made about the link between naturally occurring mutations and pathological phenotypes particularly pertinent to cardiovascular diseases (CVD). These links have been attributed to a genetically driven increase of XOR expression and activity that is responsible for what is thought to be damaging uric acid (UA) and reactive oxygen species (ROS) accumulation, nitric oxide (·NO) depletion and endothelial dysfunction. In this review, we discuss the importance of genetics for interindividual variability of XOR expression and activity while focusing mainly on those variants thought to be relevant for CVD. In addition, we discuss the potential exploitation of the genetically driven increase of XOR activity to deliver more beneficial bioavailable ·NO. Finally, we examine the effect that non-synonymous mutations have on the tertiary structure of the protein and consequently on its capacity to interact with glycosaminoglycans (GAGs) localised on the outer surface of endothelial cells.
Collapse
Affiliation(s)
| | | | | | | | - Amrita Ahluwalia
- Barts & The London Faculty of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (G.M.); (N.D.); (F.O.); (R.S.K.)
| |
Collapse
|
2
|
Janakiraman V, Sudhan M, Ahmad SF, Attia SM, Emran TB, Ahmed SSSJ. Molecular Docking, Quantum Mechanics and Molecular Dynamics Simulation of Anti-CAD Drugs Against High-Risk Xanthine Dehydrogenase Variants Associated with Oxidative Stress Pathways. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2024; 23:1109-1128. [DOI: 10.1142/s2737416524500315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Xanthine dehydrogenase (XDH) contributes significantly to generating reactive oxygen species in coronary artery disease (CAD). XDH has been proposed as a therapeutic target, but its genetic variants could affect protein structure and drug response. We aimed to assess protein structure modification occur due to genetic variants and to screen 215 CAD drugs for their utility in personalized CAD treatment against the XDH variants. A series of computational methods were implemented to identify pathogenic variants that cause XDH structure instability localized at the con served regions contributing to functional significance. Then, the XDH structures with the pathogenic variants were modeled using two different approaches to select the best models for docking with the CAD drugs. Finally, the stability of the docked complexes and their ability to transfer electrons were evaluated using molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculation. Among 751 variants examined; R149C and Q919R showed high pathogenicity, localized in conserved regions could alter protein structure and function. Further, docking of CAD drugs against XDH (native, R149C and Q919R) showed vericiguat with higher affinity, ranging from −7.95 kcal/mol to −10.41 kcal/mol, than the well-known XDH inhibitor (febuxostat, −5.73 kcal/mol to −8.35 kcal/mol). This indicates that vericiguat will be effective in CAD treatment, regardless of the XDH variants. Additionally, MD simulation and QM/MM confirmed vericiguat stability and electron transfer ability to form hydrogen bonds with the XDH protein. In conclusion, vericiguat will be beneficial for the personalized treatment of CAD by inhibiting XDH variants. Additional clinical studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- V. Janakiraman
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - M. Sudhan
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
3
|
Selleghin-Veiga G, Magpali L, Picorelli A, Silva FA, Ramos E, Nery MF. Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds. J Mol Evol 2024; 92:300-316. [PMID: 38735005 DOI: 10.1007/s00239-024-10170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.
Collapse
Affiliation(s)
- Giovanna Selleghin-Veiga
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| | - Letícia Magpali
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Agnello Picorelli
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Felipe A Silva
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Elisa Ramos
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Mariana F Nery
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
4
|
Pritchard EC, Haase B, Wall MJ, O’Brien CR, Gowan R, Mizzi K, Kicinski A, Podadera J, Boland LA. Xanthinuria in a familial group of Munchkin cats and an unrelated domestic shorthair cat. J Feline Med Surg 2024; 26:1098612X241241408. [PMID: 38717789 PMCID: PMC11156243 DOI: 10.1177/1098612x241241408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
CASE SERIES SUMMARY Four confirmed cases of xanthinuria in cats, and one suspected case based on pedigree analysis, were identified. Clinical presentations varied and included haematuria, pollakiuria, dysuria, and urethral and ureteral obstruction. All cats had upper urinary tract uroliths. Diagnosis was obtained through infrared mass spectrometry of uroliths or urine. Clinical signs commenced at 3-8 months of age and reduced in all cats in the medium to long term after the introduction of a protein-restricted diet. Four cats were castrated males and one was a spayed female. Cases consisted of four Munchkin pedigree cats and one unrelated domestic shorthair cat. All four affected Munchkin pedigree cats were related, with three cases full siblings and the fourth case a half-sibling. No connection to the Munchkin pedigree could be established for the domestic shorthair cat. A candidate causative genetic variant (XDH p.A681V) proposed for this cat was excluded in the Munchkin family. RELEVANCE AND NOVEL INFORMATION All affected cats presented diagnostic challenges and routine urinalysis was insufficient to obtain a diagnosis. Cases of feline xanthinuria may be underdiagnosed due to situations where uroliths cannot be retrieved for analysis and there is an inability to make a diagnosis using crystal morphology alone on routine urinalysis. Metabolic screening of urine may provide an effective mechanism to confirm xanthinuria in suspected cases where uroliths are inaccessible or absent. In this case series, male cats were more common. Their anatomy may increase the risk of lower urinary tract signs and urethral obstruction developing secondary to xanthine urolithiasis. A protein-restricted diet appears to reduce clinical signs as part of long-term management. PLAIN LANGUAGE SUMMARY Four closely related Munchkin cats and one domestic shorthair cat were found with a suspected genetic disease causing high levels of xanthine in their urine. The case series looks at similarities and differences in their clinical signs, as well as difficulties experienced in obtaining a correct diagnosis. All cats had upper urinary tract stones and required metabolic testing of the stones or urine to diagnose. All cats were young when their clinical signs started and were on a high-protein diet. Four cats were desexed males and one was a desexed female. A genetic variant that may have caused the disease in the domestic shorthair cat was ruled out in the Munchkin family. Cases of high xanthine levels in feline urine may be underdiagnosed as the stones may not be accessed for testing. In this case series, male cats were more common. Their anatomy may increase the risk of lower urinary tract signs. A protein-restricted diet appears to reduce clinical signs as part of long-term management.
Collapse
Affiliation(s)
- Emily C Pritchard
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Bianca Haase
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Kim Mizzi
- Ringwood Veterinary Clinic, Melbourne, VIC, Australia
| | | | - Juan Podadera
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Lara A Boland
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Dissanayake LV, Kravtsova O, Lowe M, McCrorey MK, Van Beusecum JP, Palygin O, Staruschenko A. The presence of xanthine dehydrogenase is crucial for the maturation of the rat kidneys. Clin Sci (Lond) 2024; 138:269-288. [PMID: 38358003 DOI: 10.1042/cs20231144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
The development of the kidney involves essential cellular processes, such as cell proliferation and differentiation, which are led by interactions between multiple signaling pathways. Xanthine dehydrogenase (XDH) catalyzes the reaction producing uric acid in the purine catabolism, which plays a multifaceted role in cellular metabolism. Our previous study revealed that the genetic ablation of the Xdh gene in rats leads to smaller kidneys, kidney damage, decline of renal functions, and failure to thrive. Rats, unlike humans, continue their kidney development postnatally. Therefore, we explored whether XDH plays a critical role in kidney development using SS-/- rats during postnatal development phase. XDH expression was significantly increased from postnatal day 5 to 15 in wild-type but not homozygote rat kidneys. The transcriptomic profile of renal tissue revealed several dysregulated pathways due to the lack of Xdh expression with the remodeling in inflammasome, purinergic signaling, and redox homeostasis. Further analysis suggested that lack of Xdh affects kidney development, likely via dysregulation of epidermal growth factor and its downstream STAT3 signaling. The present study showed that Xdh is essential for kidney maturation. Our data, alongside the previous research, suggests that loss of Xdh function leads to developmental issues, rendering them vulnerable to kidney diseases in adulthood.
Collapse
Affiliation(s)
- Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Melissa Lowe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
| | - Marice K McCrorey
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Justin P Van Beusecum
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Ralph H. Johnson Veterans Affairs Healthcare System, Charleston, SC 29403, U.S.A
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida; Tampa, FL 33602, U.S.A
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL 33602, U.S.A
- James A. Haley Veterans' Hospital, Tampa, FL 33612, U.S.A
| |
Collapse
|
6
|
Lopez-Schenk R, Collins NL, Schenk NA, Beard DA. Integrated Functions of Cardiac Energetics, Mechanics, and Purine Nucleotide Metabolism. Compr Physiol 2023; 14:5345-5369. [PMID: 38158366 PMCID: PMC10956446 DOI: 10.1002/cphy.c230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Purine nucleotides play central roles in energy metabolism in the heart. Most fundamentally, the free energy of hydrolysis of the adenine nucleotide adenosine triphosphate (ATP) provides the thermodynamic driving force for numerous cellular processes including the actin-myosin crossbridge cycle. Perturbations to ATP supply and/or demand in the myocardium lead to changes in the homeostatic balance between purine nucleotide synthesis, degradation, and salvage, potentially affecting myocardial energetics and, consequently, myocardial mechanics. Indeed, both acute myocardial ischemia and decompensatory remodeling of the myocardium in heart failure are associated with depletion of myocardial adenine nucleotides and with impaired myocardial mechanical function. Yet there remain gaps in the understanding of mechanistic links between adenine nucleotide degradation and contractile dysfunction in heart disease. The scope of this article is to: (i) review current knowledge of the pathways of purine nucleotide depletion and salvage in acute ischemia and in chronic heart disease; (ii) review hypothesized mechanisms linking myocardial mechanics and energetics with myocardial adenine nucleotide regulation; and (iii) highlight potential targets for treating myocardial metabolic and mechanical dysfunction associated with these pathways. It is hypothesized that an imbalance in the degradation, salvage, and synthesis of adenine nucleotides leads to a net loss of adenine nucleotides in both acute ischemia and under chronic high-demand conditions associated with the development of heart failure. This reduction in adenine nucleotide levels results in reduced myocardial ATP and increased myocardial inorganic phosphate. Both of these changes have the potential to directly impact tension development and mechanical work at the cellular level. © 2024 American Physiological Society. Compr Physiol 14:5345-5369, 2024.
Collapse
Affiliation(s)
- Rachel Lopez-Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Collins
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah A Schenk
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel A Beard
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Association of Mutations Identified in Xanthinuria with the Function and Inhibition Mechanism of Xanthine Oxidoreductase. Biomedicines 2021; 9:biomedicines9111723. [PMID: 34829959 PMCID: PMC8615798 DOI: 10.3390/biomedicines9111723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is an enzyme that catalyzes the two-step reaction from hypoxanthine to xanthine and from xanthine to uric acid in purine metabolism. XOR generally carries dehydrogenase activity (XDH) but is converted into an oxidase (XO) under various pathophysiologic conditions. The complex structure and enzymatic function of XOR have been well investigated by mutagenesis studies of mammalian XOR and structural analysis of XOR-inhibitor interactions. Three XOR inhibitors are currently used as hyperuricemia and gout therapeutics but are also expected to have potential effects other than uric acid reduction, such as suppressing XO-generating reactive oxygen species. Isolated XOR deficiency, xanthinuria type I, is a good model of the metabolic effects of XOR inhibitors. It is characterized by hypouricemia, markedly decreased uric acid excretion, and increased serum and urinary xanthine concentrations, with no clinically significant symptoms. The pathogenesis and relationship between mutations and XOR activity in xanthinuria are useful for elucidating the biological role of XOR and the details of the XOR reaction process. In this review, we aim to contribute to the basic science and clinical aspects of XOR by linking the mutations in xanthinuria to structural studies, in order to understand the function and reaction mechanism of XOR in vivo.
Collapse
|
8
|
Classical Xanthinuria in Nine Israeli Families and Two Isolated Cases from Germany: Molecular, Biochemical and Population Genetics Aspects. Biomedicines 2021; 9:biomedicines9070788. [PMID: 34356852 PMCID: PMC8301430 DOI: 10.3390/biomedicines9070788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Classical xanthinuria is a rare autosomal recessive metabolic disorder caused by variants in the XDH (type I) or MOCOS (type II) genes. Thirteen Israeli kindred (five Jewish and eight Arab) and two isolated cases from Germany were studied between the years 1997 and 2013. Four and a branch of a fifth of these families were previously described. Here, we reported the demographic, clinical, molecular and biochemical characterizations of the remaining cases. Seven out of 20 affected individuals (35%) presented with xanthinuria-related symptoms of varied severity. Among the 10 distinct variants identified, six were novel: c.449G>T (p.(Cys150Phe)), c.1434G>A (p.(Trp478*)), c.1871C>G (p.(Ser624*)) and c.913del (p.(Leu305fs*1)) in the XDH gene and c.1046C>T (p.(Thr349Ileu)) and c.1771C>T (p.(Pro591Ser)) in the MOCOS gene. Heterologous protein expression studies revealed that the p.Cys150Phe variant within the Fe/S-I cluster-binding site impairs XDH biogenesis, the p.Thr349Ileu variant in the NifS-like domain of MOCOS affects protein stability and cysteine desulfurase activity, while the p.Pro591Ser and a previously described p.Arg776Cys variant in the C-terminal domain affect Molybdenum cofactor binding. Based on the results of haplotype analyses and historical genealogy findings, the potential dispersion of the identified variants is discussed. As far as we are aware, this is the largest cohort of xanthinuria cases described so far, substantially expanding the repertoire of pathogenic variants, characterizing structurally and functionally essential amino acid residues in the XDH and MOCOS proteins and addressing the population genetic aspects of classical xanthinuria.
Collapse
|
9
|
Peretz H, Korostishevsky M, Steinberg DM, Kabha M, Usher S, Krause I, Shalev H, Landau D, Levartovsky D. An ancestral variant causing type I xanthinuria in Turkmen and Arab families is predicted to prevail in the Afro-Asian stone-forming belt. JIMD Rep 2020; 51:45-52. [PMID: 32071838 PMCID: PMC7012738 DOI: 10.1002/jmd2.12077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/26/2022] Open
Abstract
Classical xanthinuria is a rare autosomal recessive metabolic disorder characterized by lack of xanthine dehydrogenase activity that often manifests as xanthine urolithiasis and risk of drug toxicity. Variants in the XDH or HMCS gene underlie classical xanthinuria type I and type II, respectively. Here we present two Israeli Arab families affected by type I xanthinuria in whom a c.2164A>T (Lys722Ter) variant in the XDH gene, previously reported in a Turkish family of Turkmen origin, was identified. Analysis of polymorphic markers surrounding the variant site revealed common haplotypes spanning 0.6 Mbp shared by all three, and 1.7 Mbp shared by two of the studied families. By applying Bayesian methods to a simple model of crossover events through generations in the chromosomes carrying the variant, the most recent common ancestor of these families was found to be 179 (95% credible limit 70) generations old. The estimated antiquity of the variant, the historical genealogy of the affected families and the history and present day dispersion of their people strongly suggest prevalence of this variant in the Afro-Asian stone-forming belt. As far as we are aware, this is a first report of an ancient variant causing xanthinuria with potential wide geographical dispersion.
Collapse
Affiliation(s)
- Hava Peretz
- Clinical Biochemistry LaboratorySourasky Medical CenterTel AvivIsrael
- Human Molecular Genetics and Biochemistry, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Michael Korostishevsky
- Department of Anatomy and Anthropology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - David M. Steinberg
- Department of Statistics and Operations ResearchTel Aviv UniversityTel AvivIsrael
| | - Mustafa Kabha
- Department of History, Philosophy and Judaic StudiesThe Open University of IsraelRananaIsrael
| | - Sali Usher
- Clinical Biochemistry LaboratorySourasky Medical CenterTel AvivIsrael
| | - Irit Krause
- Department of Pediatrics C, Schneider Children's Medical Center, Petach Tikva, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Hannah Shalev
- Department of Pediatrics, Soroka Medical CenterBen Gurion University of the NegevBeer ShevaIsrael
| | - Daniel Landau
- Department of Pediatrics B, Schneider Children's Medical Center, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - David Levartovsky
- Department of Rheumatology, Tel Aviv Sourasky Medical CenterSackler School of Medicine, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
10
|
Aksoy GK, Koyun M, Ichida K, Comak E, Akman S. Renal stone and chronic kidney failure associated with hypouricemia: Answers. Pediatr Nephrol 2019; 34:1225-1227. [PMID: 30569312 DOI: 10.1007/s00467-018-4170-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Gulsah Kaya Aksoy
- Department of Pediatric Nephrology, School of Medicine, Akdeniz University, 07059, Antalya, Turkey.
| | - Mustafa Koyun
- Department of Pediatric Nephrology, School of Medicine, Akdeniz University, 07059, Antalya, Turkey
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Elif Comak
- Department of Pediatric Nephrology, School of Medicine, Akdeniz University, 07059, Antalya, Turkey
| | - Sema Akman
- Department of Pediatric Nephrology, School of Medicine, Akdeniz University, 07059, Antalya, Turkey
| |
Collapse
|
11
|
Hashem SG, Elsaady MM, Afify HG, Omer WE, Youssef AO, El-Kemary M, Attia MS. Determination of uric acid in serum using an optical sensor based on binuclear Pd(II) 2-pyrazinecarboxamide-bipyridine doped in a sol gel matrix. Talanta 2019; 199:89-96. [PMID: 30952321 DOI: 10.1016/j.talanta.2019.02.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/23/2023]
Abstract
A new highly green luminescent binuclear palladium 2-pyrazinecarboxamide-bipyridine complex [Pd(pyc)(bpy)] was prepared and characterized. The binuclear Pd(pyc)(bpy) complex doped in sol-gel matrix has a strong luminescence intensity at 547 nm with λex = 330 nm in water The method depends on the quenching of the luminescence intensity of the binuclear Pd(pyc)(bpy) complex at 547 nm by different concentrations of uric acid. The remarkable quenching of the luminescence intensity of the binuclear Pd(pyc)(bpy) complex, doped in a sol-gel matrix, by uric acid was successfully used for the determination of uric acid in serum samples of patients with hypouricemia disease. The calibration plot was achieved over the concentration 3.9 × 10-9 to 1.2 × 10-4 mol L-1uric acid with a correlation coefficient of 0.9 and a detection limit of 1.8 × 10-10 mol L-1. The method was used satisfactorily for the assessment of the uric acid in a number of serum samples collected from various patients with Hypouricemia disease.
Collapse
Affiliation(s)
- S G Hashem
- Ain Shams University, Department of chemistry, Faculty of Science, Abbassia, 11566 Cairo, Egypt
| | - M M Elsaady
- Ain Shams University, Department of chemistry, Faculty of Science, Abbassia, 11566 Cairo, Egypt
| | - H G Afify
- Ain Shams University, Department of chemistry, Faculty of Science, Abbassia, 11566 Cairo, Egypt
| | - W E Omer
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Egypt
| | - A O Youssef
- Ain Shams University, Department of chemistry, Faculty of Science, Abbassia, 11566 Cairo, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Egypt
| | - M S Attia
- Ain Shams University, Department of chemistry, Faculty of Science, Abbassia, 11566 Cairo, Egypt.
| |
Collapse
|
12
|
Benn CL, Dua P, Gurrell R, Loudon P, Pike A, Storer RI, Vangjeli C. Physiology of Hyperuricemia and Urate-Lowering Treatments. Front Med (Lausanne) 2018; 5:160. [PMID: 29904633 PMCID: PMC5990632 DOI: 10.3389/fmed.2018.00160] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022] Open
Abstract
Gout is the most common form of inflammatory arthritis and is a multifactorial disease typically characterized by hyperuricemia and monosodium urate crystal deposition predominantly in, but not limited to, the joints and the urinary tract. The prevalence of gout and hyperuricemia has increased in developed countries over the past two decades and research into the area has become progressively more active. We review the current field of knowledge with emphasis on active areas of hyperuricemia research including the underlying physiology, genetics and epidemiology, with a focus on studies which suggest association of hyperuricemia with common comorbidities including cardiovascular disease, renal insufficiency, metabolic syndrome and diabetes. Finally, we discuss current therapies and emerging drug discovery efforts aimed at delivering an optimized clinical treatment strategy.
Collapse
Affiliation(s)
| | - Pinky Dua
- Pfizer Ltd., Cambridge, United Kingdom
| | | | | | - Andrew Pike
- DMPK, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - R Ian Storer
- IMED Biotech Unit, Medicinal Chemistry, Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | | |
Collapse
|
13
|
Niedzialkowska E, Mrugała B, Rugor A, Czub MP, Skotnicka A, Cotelesage JJH, George GN, Szaleniec M, Minor W, Lewiński K. Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization. Protein Expr Purif 2017; 134:47-62. [PMID: 28343996 DOI: 10.1016/j.pep.2017.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022]
Abstract
Molybdenum is an essential nutrient for metabolism in plant, bacteria, and animals. Molybdoenzymes are involved in nitrogen assimilation and oxidoreductive detoxification, and bioconversion reactions of environmental, industrial, and pharmaceutical interest. Molybdoenzymes contain a molybdenum cofactor (Moco), which is a pyranopterin heterocyclic compound that binds a molybdenum atom via a dithiolene group. Because Moco is a large and complex compound deeply buried within the protein, molybdoenzymes are accompanied by private chaperone proteins responsible for the cofactor's insertion into the enzyme and the enzyme's maturation. An efficient recombinant expression and purification of both Moco-free and Moco-containing molybdoenzymes and their chaperones is of paramount importance for fundamental and applied research related to molybdoenzymes. In this work, we focused on a D1 protein annotated as a chaperone of steroid C25 dehydrogenase (S25DH) from Sterolibacterium denitrificans Chol-1S. The D1 protein is presumably involved in the maturation of S25DH engaged in oxygen-independent oxidation of sterols. As this chaperone is thought to be a crucial element that ensures the insertion of Moco into the enzyme and consequently, proper folding of S25DH optimization of the chaperon's expression is the first step toward the development of recombinant expression and purification methods for S25DH. We have identified common E. coli strains and conditions for both expression and purification that allow us to selectively produce Moco-containing and Moco-free chaperones. We have also characterized the Moco-containing chaperone by EXAFS and HPLC analysis and identified conditions that stabilize both forms of the protein. The protocols presented here are efficient and result in protein quantities sufficient for biochemical studies.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland.
| | - Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Agnieszka Rugor
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Mateusz P Czub
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow 30060, Poland; Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Anna Skotnicka
- Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicza 21, 31120 Krakow, Poland
| | - Julien J H Cotelesage
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Krzysztof Lewiński
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow 30060, Poland
| |
Collapse
|
14
|
Zennaro C, Tonon F, Zarattini P, Clai M, Corbelli A, Carraro M, Marchetti M, Ronda L, Paredi G, Rastaldi MP, Percudani R. The renal phenotype of allopurinol-treated HPRT-deficient mouse. PLoS One 2017; 12:e0173512. [PMID: 28282408 PMCID: PMC5345830 DOI: 10.1371/journal.pone.0173512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/21/2017] [Indexed: 12/02/2022] Open
Abstract
Excess of uric acid is mainly treated with xanthine oxidase (XO) inhibitors, also called uricostatics because they block the conversion of hypoxanthine and xanthine into urate. Normally, accumulation of upstream metabolites is prevented by the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme. The recycling pathway, however, is impaired in the presence of HPRT deficiency, as observed in Lesch-Nyhan disease. To gain insights into the consequences of purine accumulation with HPRT deficiency, we investigated the effects of the XO inhibitor allopurinol in Hprt-lacking (HPRT-/-) mice. Allopurinol was administered in the drinking water of E12-E14 pregnant mothers at dosages of 150 or 75 μg/ml, and mice sacrificed after weaning. The drug was well tolerated by wild-type animals and heterozygous HPRT+/- mice. Instead, a profound alteration of the renal function was observed in the HPRT-/- model. Increased hypoxanthine and xanthine concentrations were found in the blood. The kidneys showed a yellowish appearance, diffuse interstitial nephritis, with dilated tubules, inflammatory and fibrotic changes of the interstitium. There were numerous xanthine tubular crystals, as determined by HPLC analysis. Oil red O staining demonstrated lipid accumulation in the same location of xanthine deposits. mRNA analysis showed increased expression of adipogenesis-related molecules as well as profibrotic and proinflammatory pathways. Immunostaining showed numerous monocyte-macrophages and overexpression of alpha-smooth muscle actin in the tubulointerstitium. In vitro, addition of xanthine to tubular cells caused diffuse oil red O positivity and modification of the cell phenotype, with loss of epithelial features and appearance of mesenchymal characteristics, similarly to what was observed in vivo. Our results indicate that in the absence of HPRT, blockade of XO by allopurinol causes rapidly developing renal failure due to xanthine deposition within the mouse kidney. Xanthine seems to be directly involved in promoting lipid accumulation and subsequent phenotype changes of tubular cells, with activation of inflammation and fibrosis.
Collapse
Affiliation(s)
- Cristina Zennaro
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Federica Tonon
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Paola Zarattini
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Trieste, Italy
| | - Milan Clai
- Department of Pathology and Legal Medicine, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Alessandro Corbelli
- Unit of Bio-imaging, Department of Cardiovascular Research, IRCCS Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Michele Carraro
- Department of Medical, Surgery and Health Sciences, Università degli Studi di Trieste, Trieste, Italy
| | | | - Luca Ronda
- Department of Neurosciences, University of Parma, Parma, Italy
| | - Gianluca Paredi
- Department of Pharmacy and SITEIA, PARMA Interdepartmental Center, University of Parma, Parma, Italy
| | - Maria Pia Rastaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | |
Collapse
|
15
|
Tzou DT, Taguchi K, Chi T, Stoller ML. Animal models of urinary stone disease. Int J Surg 2016; 36:596-606. [PMID: 27840313 DOI: 10.1016/j.ijsu.2016.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/29/2023]
Abstract
The etiology of stone disease remains unknown despite the major technological advances in the treatment of urinary calculi. Clinically, urologists have relied on 24-h urine collections for the last 30-40 years to help direct medical therapy in hopes of reducing stone recurrence; yet little progress has been made in preventing stone disease. As such, there is an urgent need to develop reliable animal models to study the pathogenesis of stone formation and to assess novel interventions. A variety of vertebrate and invertebrate models have been used to help understand stone pathogenesis. Genetic knockout and exogenous induction models are described. Surrogates for an endpoint of stone formation have been urinary crystals on histologic examination and/or urinalyses. Other models are able to actually develop true stones. It is through these animal models that real breakthroughs in the management of urinary stone disease will become a reality.
Collapse
Affiliation(s)
- David T Tzou
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Suite Box 0738, San Francisco, CA 94143, USA.
| | - Kazumi Taguchi
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Suite Box 0738, San Francisco, CA 94143, USA; Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Japan.
| | - Thomas Chi
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Suite Box 0738, San Francisco, CA 94143, USA.
| | - Marshall L Stoller
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, Suite Box 0738, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Xanthine oxidase gene variants and their association with blood pressure and incident hypertension. J Hypertens 2016; 34:2147-54. [DOI: 10.1097/hjh.0000000000001077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Chen C, Lü JM, Yao Q. Hyperuricemia-Related Diseases and Xanthine Oxidoreductase (XOR) Inhibitors: An Overview. Med Sci Monit 2016; 22:2501-12. [PMID: 27423335 PMCID: PMC4961276 DOI: 10.12659/msm.899852] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uric acid is the final oxidation product of purine metabolism in humans. Xanthine oxidoreductase (XOR) catalyzes oxidative hydroxylation of hypoxanthine to xanthine to uric acid, accompanying the production of reactive oxygen species (ROS). Uric acid usually forms ions and salts known as urates and acid urates in serum. Clinically, overproduction or under-excretion of uric acid results in the elevated level of serum uric acid (SUA), termed hyperuricemia, which has long been established as the major etiologic factor in gout. Accordingly, urate-lowering drugs such as allopurinol, an XOR-inhibitor, are extensively used for the treatment of gout. In recent years, the prevalence of hyperuricemia has significantly increased and more clinical investigations have confirmed that hyperuricemia is an independent risk factor for cardiovascular disease, hypertension, diabetes, and many other diseases. Urate-lowering therapy may also play a critical role in the management of these diseases. However, current XOR-inhibitor drugs such as allopurinol and febuxostat may have significant adverse effects. Therefore, there has been great effort to develop new XOR-inhibitor drugs with less or no toxicity for the long-term treatment or prevention of these hyperuricemia-related diseases. In this review, we discuss the mechanism of uric acid homeostasis and alterations, updated prevalence, therapeutic outcomes, and molecular pathophysiology of hyperuricemia-related diseases. We also summarize current discoveries in the development of new XOR inhibitors.
Collapse
Affiliation(s)
- Changyi Chen
- Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jian-Ming Lü
- Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Qizhi Yao
- Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Torres M, Pastor J, Roura X, Tabar MD, Espada Y, Font A, Balasch J, Planellas M. Adverse urinary effects of allopurinol in dogs with leishmaniasis. J Small Anim Pract 2016; 57:299-304. [DOI: 10.1111/jsap.12484] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 12/23/2015] [Accepted: 02/18/2016] [Indexed: 01/07/2023]
Affiliation(s)
- M. Torres
- Servei d'Urgències i Medecina Interna, Hospital Veterinari Balmes; Carrer Balmes 81 08008 Barcelona Spain
| | - J. Pastor
- Hospital Clínic Veterinari and Animal Medicine and Surgery Department, Faculty of Veterinary Medicine; Universitat Autònoma de Barcelona; Campus de la UAB, Plaza Cívica 08193 Bellaterra Spain
| | - X. Roura
- Hospital Clínic Veterinari and Animal Medicine and Surgery Department, Faculty of Veterinary Medicine; Universitat Autònoma de Barcelona; Campus de la UAB, Plaza Cívica 08193 Bellaterra Spain
| | - M. D. Tabar
- Servicio de Medicina Interna, Centro Policlínico Veterinario Raspeig, Calle Veterinario Manuel Isidro Rodríguez Rodriguez; 17, 03690, San Vicente del Raspeig Alicante Spain
| | - Y. Espada
- Hospital Clínic Veterinari and Animal Medicine and Surgery Department, Faculty of Veterinary Medicine; Universitat Autònoma de Barcelona; Campus de la UAB, Plaza Cívica 08193 Bellaterra Spain
| | - A. Font
- Servei de Medecina Interna, Hospital Ars Veterinària; Carrer Cardedeu 3 08023 Barcelona Spain
| | - J. Balasch
- Servei d'Urgències i Medecina Interna, Hospital Veterinari Balmes; Carrer Balmes 81 08008 Barcelona Spain
| | - M. Planellas
- Hospital Clínic Veterinari and Animal Medicine and Surgery Department, Faculty of Veterinary Medicine; Universitat Autònoma de Barcelona; Campus de la UAB, Plaza Cívica 08193 Bellaterra Spain
| |
Collapse
|
19
|
An unusual cause of pink diapers in an infant: Questions and Answers. Pediatr Nephrol 2016; 31:575, 577-80. [PMID: 25823987 PMCID: PMC4591217 DOI: 10.1007/s00467-015-3072-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 10/23/2022]
|
20
|
Amin R, Eid L, Edvardsson VO, Fairbanks L, Moudgil A. An unusual cause of "pink diaper" in an infant: Answers. Pediatr Nephrol 2016; 31:577-80. [PMID: 25823988 PMCID: PMC4591240 DOI: 10.1007/s00467-015-3073-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Rasheda Amin
- Division of Pediatric Nephrology, Children's National Health System, 111 Michigan Avenue NW, Washington, DC, 20010, USA
| | - Loai Eid
- Division of Pediatrics, Latifa Hospital, Dubai, United Arab Emirates
| | - Vidar O Edvardsson
- Children's Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
- School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lynette Fairbanks
- Purine Research Laboratory, Viapath, St Thomas' Hospital, London, UK
| | - Asha Moudgil
- Division of Pediatric Nephrology, Children's National Health System, 111 Michigan Avenue NW, Washington, DC, 20010, USA.
| |
Collapse
|
21
|
A case of xanthinuria type I with a novel mutation in xanthine dehydrogenase. CEN Case Rep 2016; 5:158-162. [PMID: 28508967 DOI: 10.1007/s13730-016-0216-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022] Open
Abstract
Hereditary hypouricemia is generally caused by renal hypouricemia, an autosomal recessive disorder that is characterized by impaired renal tubular uric acid transport, or by xanthinuria, a rare autosomal recessive disorder caused by a deficiency of xanthine dehydrogenase (XDH; xanthinuria type I) or by a deficiency of both XDH and aldehyde oxidase (xanthinuria type II). In contrast to renal hypouricemia, which sometimes leads to exercise-induced acute kidney injury (EIAKI), xanthinuria has not been associated with this disorder. We report here a case of xanthinuria type I due to a compound heterozygous mutation. A 46-year-old woman was found to have undetectable plasma and urinary levels of uric acid. She had no symptoms and no history of EIAKI. Xanthinuria type I was diagnosed following the allopurinol loading test. Mutation analysis revealed a compound heterozygous mutation [c.305A>G (p.Gln102Arg) and c.2567delC (p.Thr856Lysfs*73)] in the XDH gene. Of these two mutations, the former is novel. The patient did not exhibit EIAKI. However, because xanthinuria is a rare disease, the identification of additional cases is necessary to determine whether this disease is complicated with EIAKI.
Collapse
|
22
|
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6:524-551. [PMID: 26484802 PMCID: PMC4625011 DOI: 10.1016/j.redox.2015.08.020] [Citation(s) in RCA: 1011] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022] Open
Abstract
Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. Reperfusion injury is implicated in a variety of human diseases and disorders. Evidence implicating ROS in reperfusion injury continues to grow. Several enzymes are candidate sources of ROS in post-ischemic tissue. Inter-enzymatic ROS-dependent signaling enhances the oxidative stress caused by I/R. .
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.
| | - Peter R Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Jacinto AML, Mellanby RJ, Chandler M, Bommer NX, Carruthers H, Fairbanks LD, Gow AG. Urine concentrations of xanthine, hypoxanthine and uric acid in UK Cavalier King Charles spaniels. J Small Anim Pract 2013; 54:395-8. [PMID: 23859747 DOI: 10.1111/jsap.12106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Xanthine urolithiasis and asymptomatic xanthinuria have been diagnosed in Cavalier King Charles spaniel dogs suggesting that primary xanthinuria may be a breed-related disorder, although its prevalence remains unclear. The hypothesis of this study was that asymptomatic xanthinuria is common in Cavalier King Charles spaniel dogs. METHODS Free catch urine samples were collected from 35 client-owned Cavalier King Charles spaniel dogs and from 24 dogs of other breeds. The purine metabolites were measured by high-performance liquid chromatography. The urine ratios of xanthine/creatinine and hypoxanthine/creatinine were calculated and compared between the two groups of dogs. RESULTS The urine concentrations of purine metabolites were not significantly different between the two groups and were very low in both. The urine concentrations of xanthine in all 35 Cavalier King Charles spaniel were markedly lower than in the previously reported case of xanthine urolithiasis in a UK Cavalier King Charles spaniel dog. CLINICAL SIGNIFICANCE Asymptomatic xanthinuria was not detected in this UK Cavalier King Charles spaniel population. This data may be used as a reference for urinary purine metabolite concentrations in the dog.
Collapse
Affiliation(s)
- A M L Jacinto
- Royal Dick School of Veterinary Studies, Division of Veterinary Clinical Studies, The University of Edinburgh, Hospital for Small Animals, Easter Bush Veterinary Centre, Roslin, Midlothian, Scotland, EH25 9RG
| | | | | | | | | | | | | |
Collapse
|
24
|
Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int J Mol Sci 2012. [PMID: 23203137 PMCID: PMC3509653 DOI: 10.3390/ijms131115475] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Xanthine oxidoreductase (XOR) catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR deficiency due to genetic defect of XOR, whereas type II xanthinuria involves dual deficiency of XOR and aldehyde oxidase (AO, a molybdoflavo enzyme similar to XOR) due to genetic defect in the molybdenum cofactor sulfurase. Molybdenum cofactor deficiency is associated with triple deficiency of XOR, AO and sulfite oxidase, due to defective synthesis of molybdopterin, which is a precursor of molybdenum cofactor for all three enzymes. The present review focuses on mutation or chemical modification studies of mammalian XOR, as well as on XOR mutations identified in humans, aimed at understanding the reaction mechanism of XOR and the relevance of mutated XORs as models to estimate the possible side effects of clinical application of XOR inhibitors.
Collapse
|
25
|
Piret SE, Esapa CT, Gorvin CM, Head R, Loh NY, Devuyst O, Thomas G, Brown SDM, Brown M, Croucher P, Cox R, Thakker RV. A mouse model of early-onset renal failure due to a xanthine dehydrogenase nonsense mutation. PLoS One 2012; 7:e45217. [PMID: 23024809 PMCID: PMC3443222 DOI: 10.1371/journal.pone.0045217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/14/2012] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by renal fibrosis that can lead to end-stage renal failure, and studies have supported a strong genetic influence on the risk of developing CKD. However, investigations of the underlying molecular mechanisms are hampered by the lack of suitable hereditary models in animals. We therefore sought to establish hereditary mouse models for CKD and renal fibrosis by investigating mice treated with the chemical mutagen N-ethyl-N-nitrosourea, and identified a mouse with autosomal recessive renal failure, designated RENF. Three-week old RENF mice were smaller than their littermates, whereas at birth they had been of similar size. RENF mice, at 4-weeks of age, had elevated concentrations of plasma urea and creatinine, indicating renal failure, which was associated with small and irregularly shaped kidneys. Genetic studies using DNA from 10 affected mice and 91 single nucleotide polymorphisms mapped the Renf locus to a 5.8 Mbp region on chromosome 17E1.3. DNA sequencing of the xanthine dehydrogenase (Xdh) gene revealed a nonsense mutation at codon 26 that co-segregated with affected RENF mice. The Xdh mutation resulted in loss of hepatic XDH and renal Cyclooxygenase-2 (COX-2) expression. XDH mutations in man cause xanthinuria with undetectable plasma uric acid levels and three RENF mice had plasma uric acid levels below the limit of detection. Histological analysis of RENF kidney sections revealed abnormal arrangement of glomeruli, intratubular casts, cellular infiltration in the interstitial space, and interstitial fibrosis. TUNEL analysis of RENF kidney sections showed extensive apoptosis predominantly affecting the tubules. Thus, we have established a mouse model for autosomal recessive early-onset renal failure due to a nonsense mutation in Xdh that is a model for xanthinuria in man. This mouse model could help to increase our understanding of the molecular mechanisms associated with renal fibrosis and the specific roles of XDH and uric acid.
Collapse
Affiliation(s)
- Sian E. Piret
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Christopher T. Esapa
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Caroline M. Gorvin
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Rosie Head
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Nellie Y. Loh
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Gethin Thomas
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Steve D. M. Brown
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Matthew Brown
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Peter Croucher
- Garvan Institute for Medical Research, Sydney, Australia
| | - Roger Cox
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, United Kingdom
| | - Rajesh V. Thakker
- Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Stiburkova B, Krijt J, Vyletal P, Bartl J, Gerhatova E, Korinek M, Sebesta I. Novel mutations in xanthine dehydrogenase/oxidase cause severe hypouricemia: biochemical and molecular genetic analysis in two Czech families with xanthinuria type I. Clin Chim Acta 2011; 413:93-9. [PMID: 21963464 DOI: 10.1016/j.cca.2011.08.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND The article describes the clinical, biochemical, enzymological and molecular genetics findings in two patients from two families with xanthinuria type I. METHODS Biochemical analysis using high performance liquid chromatography, allopurinol loading test and analysis of xanthine oxidase activity in plasma and of uromodulin excretion in urine were performed. Sequencing analysis of the xanthine dehydrogenase gene and the haplotype and statistical analyses of consanguinity were performed. RESULTS Probands showed extremely low concentrations of uric acid, on seven occasions under the limit of detection. The concentration of uric acid in 38-year-old female was 15 μmol/L in serum and 0.04 mmol/L in urine. Excretion of xanthine in urine was 170 mmol/mol creatinine. The concentration of uric acid in 25-year-old male was 0.03 mmol/L in urine. Excretion of xanthine in urine was 141 mmol/mol creatinine. The allopurinol loading test confirmed xanthinuria type I. The xanthine oxidase activities in patients were 0 and 0.4 pmol/h/mL of plasma. We found three nonsense changes: p.P214QfsX4 and unpublished p.R825X and p.R881X. CONCLUSIONS We found two nonconsanguineous compound heterozygotes with xanthinuria type I caused by three nonsense changes. The methods used did not confirm consanguinity in the probands, thus there might be an unconfirmed biological relationship or mutational hotspot.
Collapse
Affiliation(s)
- Blanka Stiburkova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gow AG, Fairbanks LD, Simpson JW, Jacinto AML, Ridyard AE. Xanthine urolithiasis in a Cavalier King Charles spaniel. Vet Rec 2011; 169:209. [PMID: 21742684 DOI: 10.1136/vr.d3932] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- A G Gow
- Division of Veterinary Clinical Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG.
| | | | | | | | | |
Collapse
|
28
|
Kudo M, Sasaki T, Ishikawa M, Hirasawa N, Hiratsuka M. Functional characterization of genetic polymorphisms identified in the promoter region of the xanthine oxidase gene. Drug Metab Pharmacokinet 2010; 25:599-604. [PMID: 20930425 DOI: 10.2133/dmpk.dmpk-10-nt-054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xanthine oxidase (XO) catalyzes the oxidation of endogenous and exogenous purines and pyrimidines. In the present study, we investigated polymorphisms in the promoter region of the XO gene. Sequence variations in the 5'-flanking region were screened using denaturing high-performance liquid chromatography (DHPLC) on DNA samples from 196 unrelated Japanese individuals. Thirteen polymorphisms were identified and 13 haplotypes were classified by haplotype analysis. The promoter activities of these polymorphisms were measured by luciferase assay in the human hepatoma cell lines HepG2 and Huh-7. Transcriptional activity was significantly lower in cell lines transfected with the reporter construct containing 5-kb upstream fragments with -1756T than in those with wild-type -1756C. Our results indicate that genetic variation in the promoter region of XO may determine interindividual differences in XO gene expression.
Collapse
Affiliation(s)
- Mutsumi Kudo
- Department of Clinical Pharmacotherapeutics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | |
Collapse
|
29
|
Michel TM, Camara S, Tatschner T, Frangou S, Sheldrick AJ, Riederer P, Grünblatt E. Increased xanthine oxidase in the thalamus and putamen in depression. World J Biol Psychiatry 2010; 11:314-20. [PMID: 20218795 DOI: 10.3109/15622970802123695] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A growing body of literature suggests persistent and selective structural changes in the cortico-limbic-thalamic-striatal system in patients with recurrent depressive disorder (DD). Oxidative stress is thought to play a key role in these processes. So far, the main scientific focus has been on antioxidant enzymes in this context. For the first time, this proof of concept study examines the activity of the free radicals producing the enzyme, xanthine oxidase (XO), directly in the cortico-limbic-thalamic-striatal system of patients with recurrent depression. The activity of XO was ascertained in the cortico-limbic-thalamic-striatal regions in post-mortem brain tissue of patients with recurrent depressive episodes and individuals without any neurological or psychiatric history (7/7). We measured the XO activity in following brain areas: hippocampus, regio entorhinalis, thalamus, putamen and caudate nucleus. In this study, we report a significant increase of XO activity in the thalamus and the putamen of patients with depression. Our findings contribute to the growing body of evidence suggesting that oxidative stress plays a pivotal role in certain brain areas in recurrent depressive disorder.
Collapse
Affiliation(s)
- Tanja Maria Michel
- Neurochemistry Laboratory, Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Jungers P, Joly D, Blanchard A, Courbebaisse M, Knebelmann B, Daudon M. [Inherited monogenic kidney stone diseases: recent diagnostic and therapeutic advances]. Nephrol Ther 2008; 4:231-55. [PMID: 18499551 DOI: 10.1016/j.nephro.2007.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 12/20/2007] [Indexed: 11/24/2022]
Abstract
Hereditary monogenic kidney stone diseases are rare diseases, since they account for nearly 2% of nephrolithiasis cases in adults and 10% in children. Most of them are severe, because they frequently are associated with nephrocalcinosis and lead to progressive impairment of renal function unless an early and appropriate etiologic treatment is instituted. Unfortunately, treatment is often lacking or started too late since they are often misdiagnosed or overlooked. The present review reports the genotypic and phenotypic characteristics of monogenic nephrolithiases, with special emphasis on the recent advances in the field of diagnosis and therapeutics. Monogenic stone diseases will be classified into three groups according to their mechanism: (1) inborn errors of the metabolism of oxalate (primary hyperoxalurias), uric acid (hereditary hyperuricemias) or other purines (2,8-dihydroxyadeninuria), which, in addition to stone formation, result in crystal deposition in the renal parenchyma; (2) congenital tubulopathies affecting the convoluted proximal tubule (such as Dent's disease, Lowe syndrome or hypophosphatemic rickets), the thick ascending limb of Henlé's loop (such as familial hypomagnesemia and Bartter's syndromes) or the distal past of the nephron (congenital distal tubular acidosis with or without hearing loss), which are frequently associated with nephrocalcinosis, phosphatic stones and extensive tubulointerstitial fibrosis; (3) cystinuria, an isolated defect in tubular reabsorption of cystine and dibasic aminoacids, which results only in the formation of stones but requires a cumbersome treatment. Analysis of stones appears of crucial value for the early diagnosis of these diseases, as in several of them the morphology and composition of stones is specific. In other cases, especially if nephrocalcinosis, phosphatic stones or proteinuria are present, the evaluation of blood and urine chemistry, especially with regard to calcium, phosphate and magnesium, is the key of diagnosis. Search for mutations is now increasingly performed in as much as genetic counselling is important for the detection of heterozygotes in autosomic recessive diseases and of carrier women in X-linked diseases. In conclusion, better awareness to the rare monogenic forms of nephrolithiasis and/or nephrocalcinosis should allow early diagnosis and treatment which are needed to prevent or substantially delay progression of end-stage renal disease. Analysis of every first stone both in children and in adults should never be neglected, in order to early detect unusual forms of nephrolithiasis requiring laboratory evaluation and deep etiologic treatment.
Collapse
Affiliation(s)
- Paul Jungers
- Service de Néphrologie, Hôpital Necker, AP-HP, Paris Cedex, France
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
OBJECTIVE Xanthine oxidase (XO) catalyzes the oxidation of endogenous and exogenous purines and pyrimidines. In this study, we speculated that individual variations in XO activity are caused by genetic variations in the XO gene. METHODS To investigate the genetic variations in XO in 96 Japanese participants, denaturing high-performance liquid chromatography was used. To assess the effects of these variations on enzymatic activity, wild-type XO and 21 types of variant XO--including those in the database and those just discovered--were transiently expressed in COS-7 cells. RESULTS Three nonsynonymous single nucleotide polymorphisms, including 514G>A (Gly172Arg), 3326A>C (Asp1109Thr), and 3662A>G (His1221Arg) were identified in Japanese participants. Functional characterization of 21 XO variants showed a deficiency in enzyme activity in two variants (Arg149Cys and Thr910Lys); low activity (intrinsic clearance, CLint: 22-69% compared with the wild-type) in six variants (Pro555Ser, Arg607Gln, Thr623Ile, Asn909Lys, Pro1150Arg, and Cys1318Tyr); and high activity (CLint: approximately two-fold higher than that in the wild-type) in two variants (Ile703Val and His1221Arg). CONCLUSION These results suggest that several single nucleotide polymorphisms in the XO gene are involved in individual variations in XO activity. In addition, such findings will be useful to identify xanthinuria patients.
Collapse
|
32
|
Peretz H, Naamati MS, Levartovsky D, Lagziel A, Shani E, Horn I, Shalev H, Landau D. Identification and characterization of the first mutation (Arg776Cys) in the C-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS) associated with type II classical xanthinuria. Mol Genet Metab 2007; 91:23-9. [PMID: 17368066 DOI: 10.1016/j.ymgme.2007.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/06/2007] [Accepted: 02/06/2007] [Indexed: 11/28/2022]
Abstract
Classical xanthinuria type II is an autosomal recessive disorder characterized by deficiency of xanthine dehydrogenase and aldehyde oxidase activities due to lack of a common sulfido-olybdenum cofactor (MoCo). Two mutations, both in the N-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS), were reported in patients with type II xanthinuria. Whereas the N-terminal domain of HMCS was demonstrated to have cysteine desulfurase activity, the C-terminal domain hypothetically transfers the sulfur to the MoCo. We describe the first mutation in the C-terminal domain of HMCS identified in a Bedouin-Arab child presenting with urolithiasis and in an asymptomatic Jewish female. Patients were diagnosed with type II xanthinuria by homozygosity mapping and/or allopurinol loading test. The Bedouin-Arab child was homozygous for a c.2326C>T (p.Arg776Cys) mutation, while the female patient was compound heterozygous for this and a novel c.1034insA (p.Gln347fsStop379) mutation in the N-terminal domain of HMCS. Cosegregation of the homozygous mutant genotype with hypouricemia and hypouricosuria was demonstrated in the Bedouin family. Haplotype analysis indicated that p.Arg776Cys is a recurrent mutation. Arg776 together with six surrounding amino acid residues were found fully conserved and predicted to be buried in homologous eukaryotic MoCo sulfurases. Moreover, Arg776 is conserved in a diversity of eukaryotic and prokaryotic proteins that posses a domain homologous to the C-terminal domain of HMCS. Our findings suggest that Arg776 is essential for a core structure of the C-terminal domain of the HMCS and identification of a mutation at this site may contribute clarifying the mechanism of MoCo sulfuration.
Collapse
Affiliation(s)
- Hava Peretz
- Clinical Biochemistry Laboratory, Sourasky Medical Center, Tel Aviv, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, Chen Z, Finkel T, Flier JS, Friedman JM. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab 2007; 5:115-28. [PMID: 17276354 DOI: 10.1016/j.cmet.2007.01.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/29/2006] [Accepted: 01/16/2007] [Indexed: 12/13/2022]
Abstract
In an effort to identify novel candidate regulators of adipogenesis, gene profiling of differentiating 3T3-L1 preadipocytes was analyzed using a novel algorithm. We report here the characterization of xanthine oxidoreductase (XOR) as a novel regulator of adipogenesis. XOR lies downstream of C/EBPbeta and upstream of PPARgamma, in the cascade of factors that control adipogenesis, and it regulates PPARgamma activity. In vitro, knockdown of XOR inhibits adipogenesis and PPARgamma activity while constitutive overexpression increases activity of the PPARgamma receptor in both adipocytes and preadipocytes. In vivo, XOR -/- mice demonstrate 50% reduction in adipose mass versus wild-type littermates while obese ob/ob mice exhibit increased concentrations of XOR mRNA and urate in the adipose tissue. We propose that XOR is a novel regulator of adipogenesis and of PPARgamma activity and essential for the regulation of fat accretion. Our results identify XOR as a potential therapeutic target for metabolic abnormalities beyond hyperuricemia.
Collapse
Affiliation(s)
- Kevin J Cheung
- Laboratory of Molecular Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Arikyants N, Sarkissian A, Hesse A, Eggermann T, Leumann E, Steinmann B. Xanthinuria type I: a rare cause of urolithiasis. Pediatr Nephrol 2007; 22:310-4. [PMID: 17115198 DOI: 10.1007/s00467-006-0267-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 10/23/2022]
Abstract
Xanthinuria type I is a rare disorder of purine metabolism caused by xanthine oxidoreductase or dehydrogenase (XDH) deficiency. We report a family with two affected children out of 335 pediatric stone patients studied since 1991 in Armenia. The propositus, a 13-month-old boy, presented with abdominal pain and urinary retention followed by stone passage (0.9x0.6 cm). Infrared spectroscopy in Yerevan revealed a pure xanthine stone. Family examination in the parents and brother was normal, but the propositus and his 8-year-old asymptomatic sister had hypouricemia, hypouricosuria, and high urinary excretion of hypoxanthine and xanthine. Ultrasonography in the index patient showed bilateral stones requiring pyelolithotomy. High fluid intake and purine restriction did not prevent further stone passages. The affected asymptomatic sister had a small pelvic stone (4 mm). Mutation analysis revealed a heterozygous novel base pair substitution in exon 25 of the XDH gene (c.2810C>T), resulting in an amino acid substitution (p.Thr910Met). The second mutation could not be detected. Despite this, the heterozygous mutation, the chemical findings, and the positive allopurinol test altogether prove xanthinuria type I, which may present wide clinical intrafamilial variation. Diagnosis is suspected usually from low serum uric acid. No specific therapy is available.
Collapse
Affiliation(s)
- Nina Arikyants
- Division of Nephrology, Arabkir Joint Medical Centre, 30 Mamikoniants Street, 375014, Yerevan, Armenia.
| | | | | | | | | | | |
Collapse
|
35
|
Pais VM, Lowe G, Lallas CD, Preminger GM, Assimos DG. Xanthine urolithiasis. Urology 2006; 67:1084.e9-11. [PMID: 16698380 DOI: 10.1016/j.urology.2005.10.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Revised: 10/04/2005] [Accepted: 11/01/2005] [Indexed: 11/25/2022]
Abstract
Xanthine calculi are uncommonly encountered stones. When they occur, they typically do so in association with inborn metabolic disorders such as hereditary xanthinuria or Lesch-Nyhan syndrome. They may also occur in association with states of profound hyperuricemia such as myeloproliferative disease after treatment with allopurinol. If the underlying disorder is not addressed, a high risk of stone recurrence exists. Therefore, to raise clinical awareness, we reviewed and report our experience in the treatment of patients with these stones, discussing the underlying pathophysiology and approach to treatment.
Collapse
Affiliation(s)
- Vernon M Pais
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
36
|
Leimkuhler S, Hodson R, George GN, Rajagopalan KV. Recombinant Rhodobacter capsulatus xanthine dehydrogenase, a useful model system for the characterization of protein variants leading to xanthinuria I in humans. J Biol Chem 2003; 278:20802-11. [PMID: 12670960 DOI: 10.1074/jbc.m303091200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodobacter capsulatus xanthine dehydrogenase (XDH) forms an (alphabeta)2 heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds. We have developed an efficient system for the recombinant expression of R. capsulatus XDH in Escherichia coli. The recombinant protein shows spectral features and a range of substrate specificities similar to bovine milk xanthine oxidase. However, R. capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. EPR spectra were obtained for the FeS centers of the enzyme showing an axial signal for FeSI, which is different from that reported for xanthine oxidase. X-ray absorption spectroscopy at the iron and molybdenum K-edge and the tungsten LIII-edge have been used to probe the different metal coordinations of variant forms of the enzyme. Based on a mutation identified in a patient suffering from xanthinuria I, the corresponding arginine 135 was substituted to a cysteine in R. capsulatus XDH, and the protein variant was purified and characterized. Two different forms of XDH-R135C were purified, an active (alphabeta)2 heterotetrameric form and an inactive (alphabeta) heterodimeric form. The active form contains a full complement of redox centers, whereas in the inactive form the FeSI center is likely to be missing.
Collapse
Affiliation(s)
- Silke Leimkuhler
- Department of Plant Biology, Technical University Braunschweig, 38023 Braunschweig, Germany.
| | | | | | | |
Collapse
|
37
|
Lagziel A, Levartovsky D, Sperling O, Ichida K, Peretz H. Polymorphic markers in the XDH gene as diagnostic tools for typing classical xanthinuria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 486:83-6. [PMID: 11783533 DOI: 10.1007/0-306-46843-3_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- A Lagziel
- Clinical Biochemistry Laboratory, Tel-Aviv Sourasky Medical Center, Rabin Medical Center, Tel-Aviv University, Israel
| | | | | | | | | |
Collapse
|