1
|
Asadi R, Shadpour P, Nakhaei A. Non-dialyzable uremic toxins and renal tubular cell damage in CKD patients: a systems biology approach. Eur J Med Res 2024; 29:412. [PMID: 39123228 PMCID: PMC11311939 DOI: 10.1186/s40001-024-01951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease presents global health challenges, with hemodialysis as a common treatment. However, non-dialyzable uremic toxins demand further investigation for new therapeutic approaches. Renal tubular cells require scrutiny due to their vulnerability to uremic toxins. METHODS In this study, a systems biology approach utilized transcriptomics data from healthy renal tubular cells exposed to healthy and post-dialysis uremic plasma. RESULTS Differential gene expression analysis identified 983 up-regulated genes, including 70 essential proteins in the protein-protein interaction network. Modularity-based clustering revealed six clusters of essential proteins associated with 11 pathological pathways activated in response to non-dialyzable uremic toxins. CONCLUSIONS Notably, WNT1/11, AGT, FGF4/17/22, LMX1B, GATA4, and CXCL12 emerged as promising targets for further exploration in renal tubular pathology related to non-dialyzable uremic toxins. Understanding the molecular players and pathways linked to renal tubular dysfunction opens avenues for novel therapeutic interventions and improved clinical management of chronic kidney disease and its complications.
Collapse
Affiliation(s)
- Roya Asadi
- Industrial Engineering Department, Faculty of Technical and Engineering, University of Science and Culture (USC), Tehran, Iran
| | - Pejman Shadpour
- Hospital Management Research Center (HMRC), Hasheminejad Kidney Center (HKC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Akram Nakhaei
- Computer Engineering Department, Mazandaran University of Science and Technology (MUST), Babol, Iran.
| |
Collapse
|
2
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
3
|
Liu W, Luo Z, Zhang L, Wang Y, Yang J, You D, Cao X, Yang W. hsa-mir-(4328, 4422, 548z and -628-5p) in diabetic retinopathy: diagnosis, prediction and linking a new therapeutic target. Acta Diabetol 2023; 60:929-942. [PMID: 37002321 DOI: 10.1007/s00592-023-02077-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
AIMS Growing evidence suggests that microRNAs (miRNAs) are crucial in controlling how diabetic retinopathy (DR) develops. We intend to mine miRNAs with diagnostic and predictive value for DR and to investigate new drug therapeutic targets. METHODS After performing a differential analysis on the miRNA and mRNA datasets for DR and neovascularization (NEO), miRNA-mRNA networks were created. Combine the results of enrichment analysis, Protein-Protein Interaction Networks (PPI), and Cytoscape to identify key miRNAs. DrugBank was used to find drugs that interacted with transcription factors (TF) predicted by TransmiR. Finally, whole blood and clinical data were collected from 58 patients with type 2 diabetes mellitus (T2DM), and RT-qPCR, logistic analysis, and ROC were used to verify the value of key miRNAs. RESULTS Differential analysis indicated the presence of genes and miRNAs that co-regulate DR and NEO. Enrichment analysis showed that key genes are inextricably linked to neovascularization. Combining the results of PPI and Cytoscape identified four key miRNAs, namely hsa-mir-(4328, 4422, 548z and -628-5p). RT-qPCR, logistic, and ROC results showed that decreased expression levels of hsa-mir-(4328, 4422, 548z and -628-5p) signal the risk of evolution to DR in T2DM patients. Finally, we constructed a TF-miRNA network to find the 15 TFs and the 35 drugs that interact with these TFs. CONCLUSION hsa-mir-(4328, 4422, 548z and -628-5p) in whole blood are protective factors for DR as novel biomarkers for diagnosis and prediction. In addition, our research provides new drug directions for the treatment of DR, such as Diosmin, Atorvastatin, and so on.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
- The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Wuhua Districte, Kunming, 650500, Yunnan, China
| | - Zhanqing Luo
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Lihuan Zhang
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yutao Wang
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiamei Yang
- School of Rehabilitation, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Dingyun You
- Department of Epidemiology, School of Public Health, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
4
|
Williams MJ, White SC, Joseph Z, Hruska KA. Updates in the chronic kidney disease-mineral bone disorder show the role of osteocytic proteins, a potential mechanism of the bone-Vascular paradox, a therapeutic target, and a biomarker. Front Physiol 2023; 14:1120308. [PMID: 36776982 PMCID: PMC9909112 DOI: 10.3389/fphys.2023.1120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The chronic kidney disease-mineral bone disorder (CKD-MBD) is a complex multi-component syndrome occurring during kidney disease and its progression. Here, we update progress in the components of the syndrome, and synthesize recent investigations, which suggest a potential mechanism of the bone-vascular paradox. The discovery that calcified arteries in chronic kidney disease inhibit bone remodeling lead to the identification of factors produced by the vasculature that inhibit the skeleton, thus providing a potential explanation for the bone-vascular paradox. Among the factors produced by calcifying arteries, sclerostin secretion is especially enlightening. Sclerostin is a potent inhibitor of bone remodeling and an osteocyte specific protein. Its production by the vasculature in chronic kidney disease identifies the key role of vascular cell osteoblastic/osteocytic transdifferentiation in vascular calcification and renal osteodystrophy. Subsequent studies showing that inhibition of sclerostin activity by a monoclonal antibody improved bone remodeling as expected, but stimulated vascular calcification, demonstrate that vascular sclerostin functions to brake the Wnt stimulation of the calcification milieu. Thus, the target of therapy in the chronic kidney disease-mineral bone disorder is not inhibition of sclerostin function, which would intensify vascular calcification. Rather, decreasing sclerostin production by decreasing the vascular osteoblastic/osteocytic transdifferentiation is the goal. This might decrease vascular calcification, decrease vascular stiffness, decrease cardiac hypertrophy, decrease sclerostin production, reduce serum sclerostin and improve skeletal remodeling. Thus, the therapeutic target of the chronic kidney disease-mineral bone disorder may be vascular osteoblastic transdifferentiation, and sclerostin levels may be a useful biomarker for the diagnosis of the chronic kidney disease-mineral bone disorder and the progress of its therapy.
Collapse
Affiliation(s)
- Matthew J. Williams
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Sarah C. White
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Zachary Joseph
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
| | - Keith A. Hruska
- Division of Pediatric Nephrology, Department of Pediatrics, Washington University, Saint Louis, MO, United States
- Departments of Medicine and Cell Biology, Washington University, Saint Louis, MO, United States
| |
Collapse
|
5
|
Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P. The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol 2022; 13:1089214. [PMID: 36618930 PMCID: PMC9810635 DOI: 10.3389/fphar.2022.1089214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
As an endocrine hormone, fibroblast growth factor 21 (FGF21) plays a crucial role in regulating lipid, glucose, and energy metabolism. Endogenous FGF21 is generated by multiple cell types but acts on restricted effector tissues, including the brain, adipose tissue, liver, heart, and skeletal muscle. Intervention with FGF21 in rodents or non-human primates has shown significant pharmacological effects on a range of metabolic dysfunctions, including weight loss and improvement of hyperglycemia, hyperlipidemia, insulin resistance, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). Due to the poor pharmacokinetic and biophysical characteristics of native FGF21, long-acting FGF21 analogs and FGF21 receptor agonists have been developed for the treatment of metabolic dysfunction. Clinical trials of several FGF21-based drugs have been performed and shown good safety, tolerance, and efficacy. Here we review the actions of FGF21 and summarize the associated clinical trials in obesity, type 2 diabetes mellitus (T2DM), and NAFLD, to help understand and promote the development of efficient treatment for metabolic diseases via targeting FGF21.
Collapse
Affiliation(s)
- Zhiwei Chen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| |
Collapse
|
6
|
Typiak M, Kulesza T, Rachubik P, Rogacka D, Audzeyenka I, Angielski S, Saleem MA, Piwkowska A. Role of Klotho in Hyperglycemia: Its Levels and Effects on Fibroblast Growth Factor Receptors, Glycolysis, and Glomerular Filtration. Int J Mol Sci 2021; 22:7867. [PMID: 34360633 PMCID: PMC8345972 DOI: 10.3390/ijms22157867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
Hyperglycemic conditions (HG), at early stages of diabetic nephropathy (DN), cause a decrease in podocyte numbers and an aberration of their function as key cells for glomerular plasma filtration. Klotho protein was shown to overcome some negative effects of hyperglycemia. Klotho is also a coreceptor for fibroblast growth factor receptors (FGFRs), the signaling of which, together with a proper rate of glycolysis in podocytes, is needed for a proper function of the glomerular filtration barrier. Therefore, we measured levels of Klotho in renal tissue, serum, and urine shortly after DN induction. We investigated whether it influences levels of FGFRs, rates of glycolysis in podocytes, and albumin permeability. During hyperglycemia, the level of membrane-bound Klotho in renal tissue decreased, with an increase in the shedding of soluble Klotho, its higher presence in serum, and lower urinary excretion. The addition of Klotho increased FGFR levels, especially FGFR1/FGFR2, after their HG-induced decrease. Klotho also increased levels of glycolytic parameters of podocytes, and decreased podocytic and glomerular albumin permeability in HG. Thus, we found that the decrease in the urinary excretion of Klotho might be an early biomarker of DN and that Klotho administration may have several beneficial effects on renal function in DN.
Collapse
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Moin A. Saleem
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK;
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
7
|
Yoo KH, Yim HE, Bae ES, Hong YS. Angiotensin inhibition in the developing kidney; tubulointerstitial effect. Pediatr Res 2019; 85:724-730. [PMID: 30700837 DOI: 10.1038/s41390-019-0288-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Renin-angiotensin system (RAS) blockade during nephrogenesis causes a broad range of renal mal-development. Here, we hypothesized that disruption of renal lymphangiogenesis may contribute to tubulointerstitial alterations after RAS blockade during kidney maturation. METHODS Newborn rat pups were treated with enalapril (30 mg/kg/day) or vehicle for 7 days after birth. Lymphangiogenesis was assessed via immunostaining and/or immunoblots for vascular endothelial growth factor (VEGF)-C, VEGF receptor (VEGFR)-3, Podoplanin, and Ki-67. The intrarenal expression of fibroblast growth factor (FGF)-1, FGF-2, FGF receptor (R)-1, α-smooth muscle actin (α-SMA), and fibroblast-specific protein (FSP)-1 was also determined. Sirius Red staining was performed to evaluate interstitial collagen deposition. RESULTS On postnatal day 8, renal lymphangiogenesis was disrupted by neonatal enalapril treatment. The expression of podoplanin and Ki-67 decreased in enalapril-treated kidneys. While the expression of VEGF-C was decreased, the levels of VEGFR-3 receptor increased following enalapril treatment. Enalapril treatment also reduced the renal expression of FGF-1, FGF-2, and FGFR-1. Enalapril-treated kidneys exhibited profibrogenic properties with increased expression of α-SMA and FSP-1 and enhanced deposition of interstitial collagen. CONCLUSION Enalapril treatment during postnatal renal maturation can disrupt renal lymphangiogenesis along with tubulointerstitial changes, which may result in a pro-fibrotic environment in the developing rat kidney.
Collapse
Affiliation(s)
- Kee Hwan Yoo
- Department of Pediatrics, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyung Eun Yim
- Department of Pediatrics, College of Medicine, Korea University, Seoul, 02841, Korea.
| | - Eun Soo Bae
- Department of Pediatrics, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Young Sook Hong
- Department of Pediatrics, College of Medicine, Korea University, Seoul, 02841, Korea
| |
Collapse
|
8
|
Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 2019; 37:303-313. [PMID: 30833775 DOI: 10.1038/s41587-019-0048-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/23/2019] [Indexed: 01/10/2023]
Abstract
Adult stem cell-derived organoids are three-dimensional epithelial structures that recapitulate fundamental aspects of their organ of origin. We describe conditions for the long-term growth of primary kidney tubular epithelial organoids, or 'tubuloids'. The cultures are established from human and mouse kidney tissue and can be expanded for at least 20 passages (>6 months) while retaining a normal number of chromosomes. In addition, cultures can be established from human urine. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. We apply tubuloids to model infectious, malignant and hereditary kidney diseases in a personalized fashion. BK virus infection of tubuloids recapitulates in vivo phenomena. Tubuloids are established from Wilms tumors. Kidney tubuloids derived from the urine of a subject with cystic fibrosis allow ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function.
Collapse
|
9
|
Morris AP, Le TH, Wu H, Akbarov A, van der Most PJ, Hemani G, Smith GD, Mahajan A, Gaulton KJ, Nadkarni GN, Valladares-Salgado A, Wacher-Rodarte N, Mychaleckyj JC, Dueker ND, Guo X, Hai Y, Haessler J, Kamatani Y, Stilp AM, Zhu G, Cook JP, Ärnlöv J, Blanton SH, de Borst MH, Bottinger EP, Buchanan TA, Cechova S, Charchar FJ, Chu PL, Damman J, Eales J, Gharavi AG, Giedraitis V, Heath AC, Ipp E, Kiryluk K, Kramer HJ, Kubo M, Larsson A, Lindgren CM, Lu Y, Madden PAF, Montgomery GW, Papanicolaou GJ, Raffel LJ, Sacco RL, Sanchez E, Stark H, Sundstrom J, Taylor KD, Xiang AH, Zivkovic A, Lind L, Ingelsson E, Martin NG, Whitfield JB, Cai J, Laurie CC, Okada Y, Matsuda K, Kooperberg C, Chen YDI, Rundek T, Rich SS, Loos RJF, Parra EJ, Cruz M, Rotter JI, Snieder H, Tomaszewski M, Humphreys BD, Franceschini N. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat Commun 2019; 10:29. [PMID: 30604766 PMCID: PMC6318312 DOI: 10.1038/s41467-018-07867-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence variants driving eGFR associations and highlights putative causal genes with cell-type specific expression in glomerulus, and in proximal and distal nephron. Mendelian randomisation supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure and hypertension. These results define novel molecular mechanisms and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development. Estimated glomerular filtration rate (eGFR) is a measure of kidney function used to define chronic kidney disease. Here, Morris et al. perform trans-ethnic genome-wide meta-analyses for eGFR in 312,468 individuals and identify novel loci and downstream putative causal genes.
Collapse
Affiliation(s)
- Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GL, UK. .,Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| | - Thu H Le
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Haojia Wu
- Division of Nephrology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, San Diego, CA, 92161, USA
| | - Girish N Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Division of Nephrology and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adan Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Niels Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiologia Clinica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nicole D Dueker
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33124, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Yang Hai
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Gu Zhu
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, L69 3GL, UK
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, Karolinska Institutet, Huddinge, 141 83, Sweden.,School of Health and Social Studies, Dalarna University, Falun, 791 88, Sweden
| | - Susan H Blanton
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33124, USA.,Dr John T Macdonald Department of Human Genetics, University of Miami, Miami, FL, 33124, USA
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, Netherlands
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas A Buchanan
- Department of Medicine, Division of Endocrinology and Diabetes, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Sylvia Cechova
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Fadi J Charchar
- School of Health and Life Sciences, Federation University Australia, Ballarat, VIC, 3350, Australia.,Department of Cardiovascular Sciences, University of Leicester, Leicester, LE1 7RH, UK.,Department of Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pei-Lun Chu
- Department of Internal Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Jeffrey Damman
- Department of Pathology, Erasmus Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | - James Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ali G Gharavi
- Department of Medicine, Division of Nephrology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala, 751 85, Sweden
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Eli Ipp
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90024, USA.,Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, Torrance, CA, 90502, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Holly J Kramer
- Department of Medicine and Nephrology, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Anders Larsson
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, 751 85, Sweden
| | - Cecilia M Lindgren
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,Broad Institute of Harvard and MIT, Boston, MA, 02142, USA
| | - Yingchang Lu
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela A F Madden
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Grant W Montgomery
- Brisbane Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - George J Papanicolaou
- Epidemiology Branch, Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Leslie J Raffel
- Department of Pediatrics, Division of Genetic and Genomic Medicine, University of California, Irvine Orange, CA, 92868, USA
| | - Ralph L Sacco
- Departments of Neurology and Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Evelyn F McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Jackson Memorial Hospital, University of Miami, Miami, FL, 33136-1096, USA
| | - Elena Sanchez
- Department of Medicine, Division of Nephrology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Johan Sundstrom
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, 751 85, Sweden
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Anny H Xiang
- Department of Research and Education, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, 751 85, Sweden
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94309, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94309, USA.,Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA.,Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, 751 85, Sweden
| | - Nicholas G Martin
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - John B Whitfield
- Genetic Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jianwen Cai
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7420, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Suita, 565-0871, Japan
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Tatjana Rundek
- Departments of Neurology and Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Evelyn F McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, Netherlands
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK.,Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Benjamin D Humphreys
- Division of Nephrology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27516-8050, USA.
| |
Collapse
|
10
|
Han X, Ross J, Kolumam G, Pi M, Sonoda J, King G, Quarles LD. Cardiovascular Effects of Renal Distal Tubule Deletion of the FGF Receptor 1 Gene. J Am Soc Nephrol 2018; 29:69-80. [PMID: 28993502 PMCID: PMC5748915 DOI: 10.1681/asn.2017040412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/03/2017] [Indexed: 01/11/2023] Open
Abstract
The bone-derived hormone fibroblast growth factor-23 (FGF-23) activates complexes composed of FGF receptors (FGFRs), including FGFR1, and α-Klotho in the kidney distal tubule (DT), leading to increased sodium retention and hypertension. However, the role of FGFR1 in regulating renal processes linked to hypertension is unclear. Here, we investigated the effects of selective FGFR1 loss in the DT. Conditional knockout (cKO) of FGFR1 in the DT (FGFR1DT-cKO mice) resulted in left ventricular hypertrophy (LVH) and decreased kidney expression of α-Klotho in association with enhanced BP, decreased expression of angiotensin converting enzyme 2, and increased expression of the Na+-K+-2Cl- cotransporter. Notably, recombinant FGF-23 administration similarly decreased the kidney expression of α-Klotho and induced LVH in mice. Pharmacologic activation of FGFR1 with a monoclonal anti-FGFR1 antibody (R1MAb1) normalized BP and significantly attenuated LVH in the Hyp mouse model of excess FGF-23, but did not induce a response in FGFR1DT-cKO mice. The hearts of FGFR1DT-cKO mice showed increased expression of the transient receptor potential cation channel, subfamily C, member 6 (TRPC6), consistent with cardiac effects of soluble Klotho deficiency. Moreover, administration of recombinant soluble Klotho lowered BP in the Hyp mice. Thus, FGFR1 in the DT regulates systemic hemodynamic responses opposite to those predicted by the actions of FGF-23. These cardiovascular effects appear to be mediated by paracrine FGF control of kidney FGFR1 and subsequent regulation of soluble Klotho and TRPC6. FGFR1 in the kidney may provide a new molecular target for treating hypertension.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Monoclonal/pharmacology
- Blood Pressure/drug effects
- Blood Pressure/genetics
- Female
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/pharmacology
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Hypertension/genetics
- Hypertrophy, Left Ventricular/genetics
- Immunologic Factors/pharmacology
- Kidney Tubules, Distal
- Klotho Proteins
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/metabolism
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/immunology
- Recombinant Proteins/pharmacology
- Sodium-Potassium-Chloride Symporters/genetics
- Sodium-Potassium-Chloride Symporters/metabolism
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- TRPC6 Cation Channel
Collapse
Affiliation(s)
- Xiaobin Han
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jed Ross
- Department of Molecular Biology and Biomedical Imaging, Genentech, South San Francisco, California; and
| | - Ganesh Kolumam
- Department of Molecular Biology and Biomedical Imaging, Genentech, South San Francisco, California; and
| | - Min Pi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Junichiro Sonoda
- Department of Molecular Biology and Biomedical Imaging, Genentech, South San Francisco, California; and
| | - Gwendalyn King
- Department of Neurobiology, University of Alabama in Birmingham, Birmingham, Alabama
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee;
| |
Collapse
|
11
|
Yu JG, Guo J, Zhu KY, Tao W, Chen Y, Liu P, Hua Y, Tang Y, Duan JA. How impaired efficacy happened between Gancao and Yuanhua: Compounds, targets and pathways. Sci Rep 2017. [PMID: 28630457 PMCID: PMC5476574 DOI: 10.1038/s41598-017-03201-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
As recorded in Traditional Chinese Medicine (TCM) theory, Gancao (Glycyrrhizae Radix et Rhizoma) could weaken the pharmacological effect or increase the toxicity of Yuanhua (Genkwa Flos). However, the theory has been suspected due to lack of evidence. Here, we investigate whether Gancao could weaken Yuanhua’s diuretic effect, if so, which chemicals and which targets may be involved. Results showed that Yuanhua exerted diuretic effect through down-regulating renal AQP 2, without electrolyte disturbances such as K+ loss which has been observed as side-effect of most diuretics. Gancao had no diuretic effect, but could impair Yuanhua’s diuretic effect through up-regulating renal AQP 2. Glycyrrhetinic acid (GRA) in Gancao could up-regulate AQP 2 and counteract the AQP 2 regulation effect of Yuanhuacine (YHC) and Ginkwanin (GKW) in Yuanhua. Network pharmacology method suggested that YHC, GKW and GRA could bind to MEK1/FGFR1 protein and influence ERK-MAPK pathway, which was verified by Western blotting. This study supports TCM theory and reminds that more attention should be paid to the safety and efficacy problems induced by improper combination between herbs. Moreover, we suggested that promising diuretics with less side effects can be developed from Chinese Medicines such as Yuanhua.
Collapse
Affiliation(s)
- Jin-Gao Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China. .,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kevin Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China. .,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongqing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu Province, China. .,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
12
|
Liu F, Zhuang S. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis. Int J Mol Sci 2016; 17:ijms17060972. [PMID: 27331812 PMCID: PMC4926504 DOI: 10.3390/ijms17060972] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs) regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs) have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|
13
|
Leclerc K, Costantini F. Mosaic analysis of cell rearrangements during ureteric bud branching in dissociated/reaggregated kidney cultures and in vivo. Dev Dyn 2016; 245:483-96. [PMID: 26813041 PMCID: PMC4803602 DOI: 10.1002/dvdy.24387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Cell rearrangements mediated by GDNF/Ret signaling underlie the formation of the ureteric bud (UB) tip domain during kidney development. Whether FGF signaling also influences these rearrangements is unknown. Chimeric embryos are a powerful tool for examining the genetic controls of cellular behaviors, but generating chimeras by traditional methods is expensive and laborious. Dissociated fetal kidney cells can reorganize to form complex structures including branching UB tubules, providing an easier method to generate renal chimeras. RESULTS Cell behaviors in normal or chimeric kidney cultures were investigated using time-lapse imaging. In Spry1(-/-) ↔ wild-type chimeras, cells lacking Spry1 (a negative regulator of Ret and FGF receptor signaling) preferentially occupied the UB tips, as previously observed in traditional chimeras, thus validating this experimental system. In Fgfr2(UB-/-) ↔ wild-type chimeras, the wild-type cells preferentially occupied the tips. Independent evidence for a role of Fgfr2 in UB tip formation was obtained using Mosaic mutant Analysis with Spatial and Temporal control of Recombination (MASTR). CONCLUSIONS Dissociation and reaggregation of fetal kidney cells of different genotypes, with suitable fluorescent markers, provides an efficient way to analyze cell behaviors in chimeric cultures. FGF/Fgfr2 signaling promotes UB cell rearrangements that form the tip domain, similarly to GDNF/Ret signaling.
Collapse
Affiliation(s)
- Kevin Leclerc
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168 Street, New York, NY 10032
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168 Street, New York, NY 10032
| |
Collapse
|
14
|
Han X, Yang J, Li L, Huang J, King G, Quarles LD. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport. PLoS One 2016; 11:e0147845. [PMID: 26839958 PMCID: PMC4739706 DOI: 10.1371/journal.pone.0147845] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/08/2016] [Indexed: 01/10/2023] Open
Abstract
A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKOand Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis.
Collapse
Affiliation(s)
- Xiaobin Han
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jiancheng Yang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Linqiang Li
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jinsong Huang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Gwendalyn King
- University of Alabama in Birmingham, Birmingham, Alabama, United States of America
| | - L. Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
15
|
Kim HW, Lee JE, Cha JJ, Hyun YY, Kim JE, Lee MH, Song HK, Nam DH, Han JY, Han SY, Han KH, Kang YS, Cha DR. Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology 2013; 154:3366-76. [PMID: 23825123 DOI: 10.1210/en.2012-2276] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite the emerging importance of fibroblast growth factor 21 (FGF21) as a metabolic hormone regulating energy balance, its direct effects on renal function remain unexplored. FGF21 was injected ip daily for 12 weeks into db/db mice. Compared with control vehicle injection, FGF21 treatment significantly improved lipid profiles and insulin resistance and resulted in significantly higher serum adiponectin levels. In contrast, serum insulin and 8-isoprostane levels were significantly decreased. Interestingly, FGF21 and its receptor components in the kidneys were found to be significantly up-regulated in db/db mice, which suggests an FGF21-resistant state. FGF21 treatment significantly down-regulated FGF21 receptor components and activated ERK phosphorylation. FGF21 administration also markedly decreased urinary albumin excretion and mesangial expansion and suppressed profibrotic molecule synthesis. Furthermore, FGF21 improved renal lipid metabolism and oxidative stress injury. In cultured renal cells, FGF21 was mainly expressed in mesangial cells, and knockdown of FGF21 expression by stealth small interfering RNA further aggravated high-glucose-induced profibrotic cytokine synthesis in mesangial cells. Our results suggest that FGF21 improves insulin resistance and protects against renal injury through both improvement of systemic metabolic alterations and antifibrotic effects in type 2 diabetic nephropathy. Targeting FGF21 could therefore provide a potential candidate approach for a therapeutic strategy in type 2 diabetic nephropathy.
Collapse
MESH Headings
- Adiponectin/blood
- Adiponectin/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Crosses, Genetic
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Retinopathy/prevention & control
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/pharmacology
- Fibroblast Growth Factors/therapeutic use
- Gene Expression Regulation/drug effects
- Hyperlipidemias/complications
- Hyperlipidemias/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/metabolism
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Kidney/cytology
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Lipid Peroxidation/drug effects
- MAP Kinase Signaling System/drug effects
- Male
- Mesangial Cells/cytology
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Mesangial Cells/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Oxidative Stress/drug effects
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- H W Kim
- Department of Internal Medicine, Wonkwang University, Gunpo 570–479, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yanochko GM, Vitsky A, Heyen JR, Hirakawa B, Lam JL, May J, Nichols T, Sace F, Trajkovic D, Blasi E. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction. Toxicol Sci 2013; 135:451-64. [PMID: 23872713 DOI: 10.1093/toxsci/kft161] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.
Collapse
|
17
|
Kirov A, Duarte M, Guay J, Karolak M, Yan C, Oxburgh L, Prudovsky I. Transgenic expression of nonclassically secreted FGF suppresses kidney repair. PLoS One 2012; 7:e36485. [PMID: 22606265 PMCID: PMC3351418 DOI: 10.1371/journal.pone.0036485] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/06/2012] [Indexed: 11/22/2022] Open
Abstract
FGF1 is a signal peptide-less nonclassically released growth factor that is involved in angiogenesis, tissue repair, inflammation, and carcinogenesis. The effects of nonclassical FGF export in vivo are not sufficiently studied. We produced transgenic mice expressing FGF1 in endothelial cells (EC), which allowed the detection of FGF1 export to the vasculature, and studied the efficiency of postischemic kidney repair in these animals. Although FGF1 transgenic mice had a normal phenotype with unperturbed kidney structure, they showed a severely inhibited kidney repair after unilateral ischemia/reperfusion. This was manifested by a strong decrease of postischemic kidney size and weight, whereas the undamaged contralateral kidney exhibited an enhanced compensatory size increase. In addition, the postischemic kidneys of transgenic mice were characterized by hyperplasia of interstitial cells, paucity of epithelial tubular structures, increase of the areas occupied by connective tissue, and neutrophil and macrophage infiltration. The continuous treatment of transgenic mice with the cell membrane stabilizer, taurine, inhibited nonclassical FGF1 export and significantly rescued postischemic kidney repair. It was also found that similar to EC, the transgenic expression of FGF1 in monocytes and macrophages suppresses kidney repair. We suggest that nonclassical export may be used as a target for the treatment of pathologies involving signal peptide-less FGFs.
Collapse
Affiliation(s)
- Aleksandr Kirov
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Maria Duarte
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Justin Guay
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Michele Karolak
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Cong Yan
- Department of Pathology, University of Indiana, Indianapolis, Indiana, United States of America
| | - Leif Oxburgh
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Calcium (Ca(2+)) and phosphate (PO(4)(3-)) homeostasis are coordinated by systemic and local factors that regulate intestinal absorption, influx and efflux from bone, and kidney excretion and reabsorption of these ions through a complex hormonal network. Traditionally, the parathyroid hormone (PTH)/vitamin D axis provided the conceptual framework to understand mineral metabolism. PTH secreted by the parathyroid gland in response to hypocalcemia functions to maintain serum Ca(2+) levels by increasing Ca(2+) reabsorption and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] production by the kidney, enhancing Ca(2+) and PO(4)(3-) intestinal absorption and increasing Ca(2+) and PO(4)(3-) efflux from bone, while maintaining neutral phosphate balance through phosphaturic effects. FGF23 is a recently discovered hormone, predominately produced by osteoblasts/osteocytes, whose major functions are to inhibit renal tubular phosphate reabsorption and suppress circulating 1,25(OH)(2)D levels by decreasing Cyp27b1-mediated formation and stimulating Cyp24-mediated catabolism of 1,25(OH)(2)D. FGF23 participates in a new bone/kidney axis that protects the organism from excess vitamin D and coordinates renal PO(4)(3-) handling with bone mineralization/turnover. Abnormalities of FGF23 production underlie many inherited and acquired disorders of phosphate homeostasis. This review discusses the known and emerging functions of FGF23, its regulation in response to systemic and local signals, as well as the implications of FGF23 in different pathological and physiological contexts.
Collapse
Affiliation(s)
- Aline Martin
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | |
Collapse
|
19
|
Yan G, Zhang G, Fang X, Zhang Y, Li C, Ling F, Cooper DN, Li Q, Li Y, van Gool AJ, Du H, Chen J, Chen R, Zhang P, Huang Z, Thompson JR, Meng Y, Bai Y, Wang J, Zhuo M, Wang T, Huang Y, Wei L, Li J, Wang Z, Hu H, Yang P, Le L, Stenson PD, Li B, Liu X, Ball EV, An N, Huang Q, Zhang Y, Fan W, Zhang X, Li Y, Wang W, Katze MG, Su B, Nielsen R, Yang H, Wang J, Wang X, Wang J. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. Nat Biotechnol 2011; 29:1019-23. [PMID: 22002653 DOI: 10.1038/nbt.1992] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/31/2011] [Indexed: 11/09/2022]
Abstract
The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus macaque. Comparison with the previously sequenced Indian rhesus macaque reveals that all three macaques maintain abundant genetic heterogeneity, including millions of single-nucleotide substitutions and many insertions, deletions and gross chromosomal rearrangements. By assessing genetic regions with reduced variability, we identify genes in each macaque species that may have experienced positive selection. Genetic divergence patterns suggest that the cynomolgus macaque genome has been shaped by introgression after hybridization with the Chinese rhesus macaque. Macaque genes display a high degree of sequence similarity with human disease gene orthologs and drug targets. However, we identify several putatively dysfunctional genetic differences between the three macaque species, which may explain functional differences between them previously observed in clinical studies.
Collapse
Affiliation(s)
- Guangmei Yan
- The South China Center for Innovative Pharmaceuticals, Guangzhou, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li H, Martin A, David V, Quarles LD. Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. Am J Physiol Endocrinol Metab 2011; 300:E508-17. [PMID: 21139072 PMCID: PMC3064005 DOI: 10.1152/ajpendo.00499.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/03/2010] [Indexed: 01/09/2023]
Abstract
Uncertainty exists regarding the physiologically relevant fibroblast growth factor (FGF) receptor (FGFR) for FGF23 in the kidney and the precise tubular segments that are targeted by FGF23. Current data suggest that FGF23 targets the FGFR1c-Klotho complex to coordinately regulate phosphate transport and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] production in the proximal tubule. In studies using the Hyp mouse model, which displays FGF23-mediated hypophosphatemia and aberrant vitamin D, deletion of Fgfr3 or Fgfr4 alone failed to correct the Hyp phenotype. To determine whether FGFR1 is sufficient to mediate the renal effects of FGF23, we deleted Fgfr3 and Fgfr4 in Hyp mice, leaving intact the FGFR1 pathway by transferring compound Fgfr3/Fgfr4-null mice on the Hyp background to create wild-type (WT), Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice. We found that deletion of Fgfr3 and Fgfr4 in Fgfr3(-/-)/Fgfr4(-/-) and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice induced an increase in 1,25(OH)(2)D. In Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, it partially corrected the hypophosphatemia (P(i) = 9.4 ± 0.9, 6.1 ± 0.2, 9.1 ± 0.4, and 8.0 ± 0.5 mg/dl in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), increased Na-phosphate cotransporter Napi2a and Napi2c and Klotho mRNA expression in the kidney, and markedly increased serum FGF23 levels (107 ± 20, 3,680 ± 284, 167 ± 22, and 18,492 ± 1,547 pg/ml in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), consistent with a compensatory response to the induction of end-organ resistance. Fgfr1 expression was unchanged in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice and was not sufficient to transduce the full effects of FGF23 in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice. These studies suggest that FGFR1, FGFR3, and FGFR4 act in concert to mediate FGF23 effects on the kidney and that loss of FGFR function leads to feedback stimulation of Fgf23 expression in bone.
Collapse
MESH Headings
- Absorptiometry, Photon
- Animals
- Bone and Bones/metabolism
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/pharmacology
- Gene Deletion
- Homozygote
- Hypophosphatemia/genetics
- Hypophosphatemia/metabolism
- Immunohistochemistry
- Kidney/physiology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Obese
- Phenotype
- Phosphates/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/physiology
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Tomography, X-Ray Computed
- Vitamin D/metabolism
Collapse
Affiliation(s)
- Hua Li
- University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Bone mineralization is possible via complex interactions among fibroblast growth factor 23 (FGF23), phosphate-regulating gene with homologies to endopeptidases on the X-chromosome (PHEX), and matrix extracellular phosphoglycoprotein. A loss-of-function mutation in PHEX disrupts this interaction leading to hypophosphatemic rickets. X-linked hypophosphatemic (XLH) rickets is the most common form of metabolic rickets, and there have been reports linking XLH rickets to craniosynostosis. A clinical report of a patient with XLH rickets and craniosynostosis is presented with a review of literature. A review of physiology of bone mineralization reveals that, at high levels, there is cross-binding of FGF23 with FGF receptors 2 and 3 at the cranial sutures. This may be the reason for the common association of craniosynostosis and XLH rickets. There are complex interactions of proteins required for mineralization, proteins inhibiting mineralization, bone remodeling, and bone-renal phosphate homeostasis. Clarification of this pathway and reproducibility in a mouse model may pave the way for medical prevention of craniosynostosis in rickets.
Collapse
|
22
|
Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 2009; 297:F282-91. [PMID: 19515808 PMCID: PMC2724258 DOI: 10.1152/ajprenal.90742.2008] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 06/04/2009] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor-23 (FGF23) is a phosphaturic hormone that contributes to several hypophosphatemic disorders by reducing the expression of the type II sodium-phosphate cotransporters (NaPi-2a and NaPi-2c) in the kidney proximal tubule and by reducing serum 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] levels. The FGF receptor(s) mediating the hypophosphatemic action of FGF23 in vivo have remained elusive. In this study, we show that proximal tubules express FGFR1, -3, and -4 but not FGFR2 mRNA. To determine which of these three FGFRs mediates FGF23's hypophosphatemic actions, we characterized phosphate homeostasis in FGFR3(-/-) and FGFR4(-/-) null mice, and in conditional FGFR1(-/-) mice, with targeted deletion of FGFR1 expression in the metanephric mesenchyme. Basal serum phosphorus levels and renal cortical brush-border membrane (BBM) NaPi-2a and NaPi-2c expression were comparable between FGFR1(-/-), FGFR3(-/-), and FGFR4(-/-) mice and their wild-type counterparts. Administration of FGF23 to FGFR3(-/-) mice induced hypophosphatemia in these mice (8.0 +/- 0.4 vs. 5.4 +/- 0.3 mg/dl; p < or = 0.001) and a decrease in renal BBM NaPi-2a and NaPi-2c protein expression. Similarly, in FGFR4(-/-) mice, administration of FGF23 caused a small but significant decrease in serum phosphorus levels (8.7 +/- 0.3 vs. 7.6 +/- 0.4 mg/dl; p < or = 0.001) and in renal BBM NaPi-2a and NaPi-2c protein abundance. In contrast, injection of FGF23 into FGFR1(-/-) mice had no effects on serum phosphorus levels (5.6 +/- 0.3 vs. 5.2 +/- 0.5 mg/dl) or BBM NaPi-2a and NaPi-2c expression. These data show that FGFR1 is the predominant receptor for the hypophosphatemic action of FGF23 in vivo, with FGFR4 likely playing a minor role.
Collapse
MESH Headings
- Animals
- Calcitriol/blood
- Down-Regulation
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/administration & dosage
- Fibroblast Growth Factors/metabolism
- Humans
- Hypophosphatemia/blood
- Injections, Intraperitoneal
- Kidney Tubules, Proximal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microvilli/metabolism
- Parathyroid Hormone/blood
- Phosphorus/blood
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/deficiency
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Recombinant Proteins/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism
Collapse
Affiliation(s)
- Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9063, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVE To determine precisely the role of parathyroid hormone (PTH) and of phosphatonins in the genesis of posthepatectomy hypophosphatemia. BACKGROUND Posthepatectomy hypophosphatemia has recently been related to increased renal fractional excretion of phosphate (FE P). To address the cause of hypophosphatemia, we measured serum concentrations of PTH, various phosphatonins, and the number of removed hepatic segment in patients with this disorder. METHODS Serum phosphate (PO4), ionized calcium (Ca++), HCO3-, pH and FE P, intact PTH (I-PTH), carboxyl-terminal fibroblast growth factor 23 (C-FGF-23) and intact fibroblast growth factor 23 (I-FGF-23), FGF-7, and secreted frizzled related-protein-4 (sFRP-4) were measured before and on postoperative (po) days 1, 2, 3, 5, and 7, in 18 patients undergoing liver resection. The number of removed hepatic segments was also assessed. RESULTS Serum PO4 concentrations decreased within 24 hours, were lowest (0.66 +/- 0.03 mmol/L; P < 0.001) at 48 hours, and returned to normal within 5 days of the procedure. FE P peaked at 25.07% +/- 2.26% on po day 1 (P < 0.05). Decreased ionized calcium concentrations (1.10 +/- 0.01 mmol/L; P < 0.01) were observed on po day 1 and were negatively correlated with increased I-PTH concentrations (8.8 +/- 0.9 pmol/L; P < 0.01; correlation: r = -0.062, P = 0.016). FE P was positively related to I-PTH levels on po day 1 (r = 0.52, P = 0.047) and negatively related to PO4 concentrations (r = -0.56, P = 0.024). Severe hypophosphatemia and increased urinary phosphate excretion persisted for 72 hours even when I-PTH concentrations had returned to normal. I-FGF-23 decreased to its nadir of 7.8 +/- 6.9 pg/mL (P < 0.001) on po day 3 and was correlated with PO4 levels on po days 0, 3, 5, and 7 (P < 0.001). C-FGF-23, FGF-7 and sFRP-4 levels could not be related to either PO4 concentrations or FE P. CONCLUSION Posthepatectomy hypophosphatemia is associated with increased FE P unrelated to I-FGF-23 or C-FGF-23, FGF-7, or sFRP-4. I-PTH contributes to excessive FE P partially on po day 1 but not thereafter. Other yet defined factors should explain post hepatectomy hypophosphatemia.
Collapse
|
24
|
Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD. FGFR3 and FGFR4 do not mediate renal effects of FGF23. J Am Soc Nephrol 2008; 19:2342-50. [PMID: 18753255 DOI: 10.1681/asn.2007121301] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphaturic factor that suppresses both sodium-dependent phosphate transport and production of 1,25-dihydroxyvitamin D [1,25(OH)(2)D] in the proximal tubule. In vitro studies suggest that FGFR3 is the physiologically relevant receptor for FGF23 in the kidney, but this has not been established in vivo. Here, immunohistochemical analysis of the mouse kidney revealed that the proximal tubule expresses FGF receptor 3 (FGFR3) but not FGFR1, FGFR2, or FGFR4. Compared with wild-type mice, Hyp mice, which have elevated circulating levels of FGF23, exhibited low levels of serum phosphate and 1,25(OH)(2)D, reduced expression of the sodium-dependent phosphate transporter NPT2a in the proximal tubules, and low bone mineral density as a result of osteomalacia. In contrast, neither the serum phosphate nor 1,25(OH)(2)D levels were altered in FGFR3-null mice. For examination of the role of FGFR3 in mediating the effects of FGF23, Hyp mice were crossed with FGFR3-null mice; interestingly, this failed to correct the aforementioned metabolic abnormalities of Hyp mice. Ablation of FGFR4 also failed to correct hypophosphatemia in Hyp mice. Because the ablation of neither FGFR3 nor FGFR4 inhibited the renal effects of excess FGF23, the kidney localization of FGFR1 was investigated. FGFR1 co-localized with Klotho, the co-factor required for FGF23-dependent FGFR activation, in the distal tubule. In summary, neither FGFR3 nor FGFR4 is the principal mediator of FGF23 effects in the proximal tubule, and co-localization of FGFR1 and Klotho suggests that the distal tubule may be an effector site of FGF23.
Collapse
Affiliation(s)
- Shiguang Liu
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | |
Collapse
|
25
|
Akita M, Fujita K. DNA Micro-Array Gene Expression Profiling of Angiogenesis in Collagen Gel Culture. Clin Med Cardiol 2008. [DOI: 10.4137/cmc.s532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Masumi Akita
- Division of Morphological Science, Biomedical Research Center, Saitama Medical University, 38 Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | - Keiko Fujita
- Department of Anatomy, Saitama Medical University, 38 Moroyama, Iruma-gun, Saitama 350-0495, Japan
| |
Collapse
|
26
|
Efthimiadou A, Pagonopoulou O, Lambropoulou M, Papadopoulos N, Nikolettos NK. ERYTHROPOIETIN ENHANCES ANGIOGENESIS IN AN EXPERIMENTAL CYCLOSPORINE A-INDUCED NEPHROTOXICITY MODEL IN THE RAT. Clin Exp Pharmacol Physiol 2007; 34:866-9. [PMID: 17645631 DOI: 10.1111/j.1440-1681.2007.04670.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. Erythropoietin (EPO) is a hormone regulating the proliferation and differentiation of erythroid precursor cells. The hypothesis that haematopoietic and endothelial cells share a common haemanglioblast progenitor among others is based on the finding that both cell lineages express cell surface antigens, such as CD31 and CD34. 2. In the present study, we investigated the angiogenic potential of recombinant human erythropoietin on cyclosporine A (CsA)-induced nephrotoxicity in the rat kidney and compared it with the effect of basic fibroblast growth factor (bFGF), a well-known angiogenic factor. 3. Rats were divided into five groups: A (control), B (EPO treated), C (CsA treated), D (CsA + EPO treated) and E (CsA + bFGF treated). Mouse anti-human CD31 and CD34 antibodies were used to evaluate the kidney vessels present in histological preparations. 4. Glomerular and peritubular capillaries in Group B (EPO) were increased compared with the control (Group A; P < 0.05). Reduction of the same kidney vessels (glomerular and peritubular capillaries) in Group C (CsA; P < 0.05) compared with controls was observed, whereas in Groups D (CsA + EPO treated) and E (CsA + bFGF treated), capillaries were increased compared with Group C (CsA; P < 0.05). 5. Erythropoietin has a significant angiogenic effect in rat kidney with CsA-induced nephrotoxicity, similar to the effect of the other angiogenic factor bFGF.
Collapse
Affiliation(s)
- Anna Efthimiadou
- Department of Physiology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece.
| | | | | | | | | |
Collapse
|
27
|
Berndt TJ, Craig TA, McCormick DJ, Lanske B, Sitara D, Razzaque MS, Pragnell M, Bowe AE, O’Brien SP, Schiavi SC, Kumar R. Biological activity of FGF-23 fragments. Pflugers Arch 2007; 454:615-23. [PMID: 17333246 PMCID: PMC3818792 DOI: 10.1007/s00424-007-0231-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 02/06/2007] [Indexed: 12/14/2022]
Abstract
The phosphaturic activity of intact, full-length, fibroblast growth factor-23 (FGF-23) is well documented. FGF-23 circulates as the intact protein and as fragments generated as the result of proteolysis of the full-length protein. To assess whether short fragments of FGF-23 are phosphaturic, we compared the effect of acute, equimolar infusions of full-length FGF-23 and various FGF-23 fragments carboxyl-terminal to amino acid 176. In rats, intravenous infusions of full-length FGF-23 and FGF-23 176-251 significantly and equivalently increased fractional phosphate excretion (FE Pi) from 14 +/- 3 to 32 +/- 5% and 15 +/- 2 to 33 +/- 2% (p < 0.001), respectively. Chronic administration of FGF-23 176-251 reduced serum Pi and serum concentrations of 1alpha,25-dihydroxyvitamin D. Shorter forms of FGF-23 (FGF-23 180-251 and FGF-23 184-251) retained phosphaturic activity. Further shortening of the FGF-23 carboxyl-terminal domain, however, abolished phosphaturic activity, as infusion of FGF-23 206-251 did not increase urinary phosphate excretion. Infusion of a short fragment of the FGF-23 molecule, FGF-23 180-205, significantly increased FE Pi in rats and reduced serum Pi in hyperphosphatemic Fgf-23 ( -/- ) knockout mice. The activity of FGF-23 180-251 was confirmed in opossum kidney cells in which the peptide reduced Na(+)-dependent Pi uptake and enhanced internalization of the Na(+)-Pi IIa co-transporter. We conclude that carboxyl terminal fragments of FGF-23 are phosphaturic and that a short, 26-amino acid fragment of FGF-23 retains significant phosphaturic activity.
Collapse
Affiliation(s)
- Theresa J. Berndt
- Department of Internal Medicine, Mayo Clinic College of Medicine, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Theodore A. Craig
- Department of Internal Medicine, Mayo Clinic College of Medicine, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel J. McCormick
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | - Beate Lanske
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA 02115
| | - Despina Sitara
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA 02115
| | - Mohammed S. Razzaque
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA 02115
| | - Marlon Pragnell
- Receptor Ligand Therapeutics, Endocrine and Renal Sciences, Genzyme Corp., 1 Mountain Rd, Framingham, Massachusetts 01701, USA
| | - Ann E. Bowe
- Receptor Ligand Therapeutics, Endocrine and Renal Sciences, Genzyme Corp., 1 Mountain Rd, Framingham, Massachusetts 01701, USA
| | - Stephen P. O’Brien
- Receptor Ligand Therapeutics, Endocrine and Renal Sciences, Genzyme Corp., 1 Mountain Rd, Framingham, Massachusetts 01701, USA
| | - Susan C. Schiavi
- Receptor Ligand Therapeutics, Endocrine and Renal Sciences, Genzyme Corp., 1 Mountain Rd, Framingham, Massachusetts 01701, USA
| | - Rajiv Kumar
- Department of Internal Medicine, Mayo Clinic College of Medicine, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
28
|
Abstract
The ureteric bud (UB) is an outgrowth of the Wolffian duct, which undergoes a complex process of growth, branching, and remodeling, to eventually give rise to the entire urinary collecting system during kidney development. Understanding the mechanisms that control this process is a fascinating problem in basic developmental biology, and also has considerable medical significance. Over the past decade, there has been significant progress in our understanding of renal branching morphogenesis and its regulation, and this review focuses on several areas in which there have been recent advances. The first section deals with the normal process of UB branching morphogenesis, and methods that have been developed to better observe and describe it. The next section discusses a number of experimental methodologies, both established and novel, that make kidney development in the mouse a powerful and attractive experimental system. The third section discusses some of the cellular processes that are likely to underlie UB branching morphogenesis, as well as recent data on cell lineages within the growing UB. The fourth section summarizes our understanding of the roles of two groups of growth factors that appear to be particularly important for the regulation of UB outgrowth and branching: GDNF and FGFs, which stimulate this process via tyrosine kinase receptors, and members of the TGFbeta family, including BMP4 and Activin A, which generally inhibit UB formation and branching.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168th St. New York, NY 10032, USA.
| |
Collapse
|
29
|
White KE, Larsson TE, Econs MJ. The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr Rev 2006; 27:221-41. [PMID: 16467171 DOI: 10.1210/er.2005-0019] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Normal serum phosphate (Pi) concentrations are relatively tightly controlled by endocrine mediators of Pi balance. Recent data involving several disorders of Pi homeostasis have shed new light on the regulation of serum Pi balance. It has been hypothesized that circulating phosphaturic factors, or phosphatonins, exist that, when present at high serum concentrations, directly act on the kidney to induce renal Pi wasting. This review will focus upon recently discovered factors that are overexpressed in tumors associated with tumor-induced osteomalacia and have reported activity consistent with effecting Pi balance in vivo. Currently, the best-characterized group of phosphatonin-like polypeptides includes secreted frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor-23. Our understanding of these factors will, in the short term, aid us in understanding normal Pi balance and, in the future, help to design novel therapeutic strategies for disorders of Pi handling.
Collapse
Affiliation(s)
- Kenneth E White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
30
|
Rossini M, Cheunsuchon B, Donnert E, Ma LJ, Thomas JW, Neilson EG, Fogo AB. Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease. Kidney Int 2006; 68:2621-8. [PMID: 16316338 DOI: 10.1111/j.1523-1755.2005.00734.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The fibroblast growth factor (FGF) family has functions in development, cell proliferation, migration, and differentiation. While FGF-2 induces fibrosis, the role of FGF-1 in inflammation and fibrosis is less defined. We examined the expression of FGF-1 and FGF receptor (FGFR-1) to determine if renal diseases with varying etiologies of inflammation, including lupus nephritis (LN), acute interstitial nephritis (AIN) and acute rejection superimposed on chronic allograft nephropathy (CAN), showed varying patterns of expression. We also examined the expression of fibroblast-specific protein-1 (FSP-1), which has been linked to epithelial-mesenchymal transition (EMT) and fibrosis, to determine whether it was linked to potential profibrotic and inflammatory FGF-1 mechanisms. METHODS Proliferative LN (PLN) (N= 12), nonproliferative lupus nephritis (NPLN) (N= 5), AIN (N= 6), CAN (N= 4), and normal kidneys (N= 3) were studied. FGF, FGFR-1, and FSP-1 were localized by immunohistochemistry, and intensity scored on a 0 to 3+ scale. Double staining with CD68 and separate immunohistochemical staining for CD4 and CD8 with serial sections analysis were done to identify if T lymphocytes or macrophages showed staining for FGF-1 and FGFR-1 or FSP-1. RESULTS In normal kidneys, FGF-1 was expressed in mesangial cells (0.67 +/- 0.58), glomerular endothelial (0.67 +/- 0.58), visceral, and parietal epithelial cells (1.67 +/- 0.58). FGFR-1 showed a similar pattern of staining but also was expressed in tubular epithelium, and arterial endothelium and smooth muscle. Expression of FGF-1 was increased over normal in glomerular parenchymal cells only in CAN in podocytes (2.30 +/- 0.58 vs. 3.00 +/- 0.00) (P < 0.05) and parietal epithelial cells (1.67 +/- 0.58 vs. 2.25 +/- 0.50) (P < 0.05). Infiltrating glomerular and interstitial inflammatory cells in diseased glomeruli also expressed FGF-1 and FGFR-1. Tubular cells expressed slightly increased FGFR-1 in renal diseases vs. normal, whereas tubules remained negative for FGF-1 in diseased kidneys. FSP-1 expression was prominent in the interstitium in all kidneys with interstitial inflammation, and most prominent in CAN. Interstitial FSP-1+ cells were consistent with a myofibroblast-type morphology, and did not stain with CD-68. FSP-1 expression was closely associated with inflammatory cells expressing FGF-1 and FGFR-1. FSP-1 also showed positivity within crescents and occasional podocytes in PLN. CONCLUSION The expression of FGF-1 and FGFR-1 in infiltrating lymphocytes and macrophages, and of FGFR-1 in tubules, is supportive, but does not prove causality, of the possibility that FGF-1 might have both autocrine and paracrine functions in renal inflammation. However, the initial stimulus for renal inflammation, whether immune complex, hypersensitivity or rejection, did not alter expression patterns of FGF-1 or its receptor. The colocalization of inflammatory infiltrates with interstitial fibrosis supports the possibility of a contribution of FGF-1 for chemotaxis and associated fibrosis, further supported by interstitial FSP-1 expression closely associated with these inflammatory cells expressing FGF-1 and FGFR-1.
Collapse
Affiliation(s)
- Michele Rossini
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Fibroblast growth factor 23 (FGF23) is a circulating factor that plays critical roles in phosphate and vitamin D metabolism, as evidenced by the fact that FGF23 missense mutations cause autosomal dominant hypophosphatemic rickets (ADHR). Autosomal dominant hypophosphatemic rickets is characterized by hypophosphatemia with inappropriately normal 1,25-dihydroxyvitamin D concentrations, as well as bone pain, fracture and rickets. This phenotype parallels that of patients with tumor induced osteomalacia (TIO), X-linked hypophosphatemic rickets (XLH), and fibrous dysplasia (FD), in whom elevated serum FGF23 levels are often observed. The fibroblast growth factor receptors (FGFR1-4) play key roles in skeletal development, as well as in normal metabolic processes. Several FGFR isoforms that potentially mediate the activity of FGF23 have been implicated. In the short term, these findings will lead to further understanding of FGF23 function, and potentially in the long term, to targeted therapies in disorders of hypo- and hyperphosphatemia that involve FGF23.
Collapse
Affiliation(s)
- Xijie Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
32
|
Cotton L, Gibbs GM, Sanchez-Partida LG, Morrison JR, de Kretser DM, O'Bryan MK. FGFR-1 [corrected] signaling is involved in spermiogenesis and sperm capacitation. J Cell Sci 2005; 119:75-84. [PMID: 16352663 DOI: 10.1242/jcs.02704] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cloning of the fibroblast growth factor receptor (FGFR) adaptor Snt-2 cDNA and the identification of FGFR-1 protein in association with sperm tails, suggested that FGFR-1 signaling was involved in either sperm tail development or function. This hypothesis was tested by the creation of transgenic mice that specifically expressed a dominant-negative variant of FGFR-1 in male haploid germ cells. Mating of transgenic mice showed a significant reduction in pups per litter compared with wild-type littermates. Further analysis demonstrated that this subfertility was driven by a combination of reduced daily sperm output and a severely compromised ability of those sperm that were produced to undergo capacitation prior to fertilization. An analysis of key signal transduction proteins indicated that FGFR-1 is functional on wild-type sperm and probably signals via the phosphatidylinositol 3-kinase pathway. FGFR-1 activation also resulted in the downstream suppression of mitogen activated protein kinase signaling. These data demonstrate the FGFR-1 is required for quantitatively and qualitatively normal spermatogenesis and has a key role in the regulation of the global tyrosine phosphorylation events associated with sperm capacitation.
Collapse
Affiliation(s)
- Leanne Cotton
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Fujita K, Komatsu K, Tanaka K, Ohshima S, Asami Y, Murata E, Akita M. An in vitro model for studying vascular injury after laser microdissection. Histochem Cell Biol 2005; 125:509-14. [PMID: 16292658 DOI: 10.1007/s00418-005-0106-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2005] [Indexed: 11/25/2022]
Abstract
We have developed an in vitro model for studying vascular injury. After 7-10 days in a three-dimensional collagen gel culture, capillary-like tubes were formed in the collagen gels. We injured these capillary-like tubes with a laser microdissection system or a scrape method with razors and then examined the collagen gel culture by phase contrast and electron microscopy. After laser injury, profuse necrotic cells were observed around the injured capillary-like tubes and within the tubular lumen compared to the razor injury. We then isolated total RNA from these cultures and prepared cDNA for investigations by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Quantitative real time RT-PCR revealed the up-regulation of transcription factor early growth response-1 (Egr-1) after both laser and razor injury, accompanied by the up-regulation of fibroblast growth factor-2 (FGF-2), a proangiogenic factor downstream of Egr-1. The effective laser energy is concentrated on the minute focal spot only. These methods provide a useful in vitro model for studying vascular injury.
Collapse
Affiliation(s)
- Keiko Fujita
- Department of Anatomy, Saitama Medical School, 38 Moroyama, Iruma-gun, 350-0495, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Yu X, Ibrahimi OA, Goetz R, Zhang F, Davis SI, Garringer HJ, Linhardt RJ, Ornitz DM, Mohammadi M, White KE. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology 2005; 146:4647-56. [PMID: 16081635 PMCID: PMC4140631 DOI: 10.1210/en.2005-0670] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fibroblast growth factor (FGF)-23 has emerged as an endocrine regulator of phosphate and of vitamin D metabolism. It is produced in bone and, unlike other FGFs, circulates in the bloodstream to ultimately regulate phosphate handling and vitamin D production in the kidney. Presently, it is unknown which of the seven principal FGF receptors (FGFRs) transmits FGF23 biological activity. Furthermore, the molecular basis for the endocrine mode of FGF23 action is unclear. Herein, we performed surface plasmon resonance and mitogenesis experiments to comprehensively characterize receptor binding specificity. Our data demonstrate that FGF23 binds and activates the c splice isoforms of FGFR1-3, as well as FGFR4, but not the b splice isoforms of FGFR1-3. Interestingly, highly sulfated and longer glycosaminoglycan (GAG) species were capable of promoting FGF23 mitogenic activity. We also show that FGF23 induces tyrosine phosphorylation and inhibits sodium-phosphate cotransporter Npt2a mRNA expression using opossum kidney cells, a model kidney proximal tubule cell line. Removal of cell surface GAGs abolishes the effects of FGF23, and exogenous highly sulfated GAG is capable of restoring FGF23 activity, suggesting that proximal tubule cells naturally express GAGs that are permissive for FGF23 action. We propose that FGF23 signals through multiple FGFRs and that the unique endocrine actions of FGF23 involve escape from FGF23-producing cells and circulation to the kidney, where highly sulfated GAGs most likely act as cofactors for FGF23 activity. Our biochemical findings provide important insights into the molecular mechanisms by which dysregulated FGF23 signaling leads to disorders of hyper- and hypophosphatemia.
Collapse
Affiliation(s)
- Xijie Yu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yan X, Yokote H, Jing X, Yao L, Sawada T, Zhang Y, Liang S, Sakaguchi K. Fibroblast growth factor 23 reduces expression of type IIa Na+/Pi co-transporter by signaling through a receptor functionally distinct from the known FGFRs in opossum kidney cells. Genes Cells 2005; 10:489-502. [PMID: 15836777 DOI: 10.1111/j.1365-2443.2005.00853.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibroblast growth factor (FGF) 23 is an important phosphaturic factor that inhibits inorganic phosphate (Pi) reabsorption from the renal proximal tubule. Its overproduction and proteolysis-resistant mutation such as R179Q cause tumor-induced osteomalacia and autosomal dominant hypophosphatemic rickets, respectively. To clarify the signaling mechanisms of FGF23 that mediate the reduction of Pi reabsorption, we inhibited the function of the known FGFRs in opossum kidney (OK-E) cells by expressing a dominant-negative (DN) form of FGFR. OK-E cells, which represent the renal proximal tubular cells, expressed all four known FGFRs. FGF23(R179Q) bound to and activated FGFR2, a prominent FGFR expressed in OK-E cells. The activated receptor transmitted a signal to increase the expression of type IIa Na(+)/Pi co-transporter and the Pi uptake. Expression of FGFR2(DN), which suppresses the major FGFR-mediated signal through the FRS2alpha-ERK pathway, reversed the function of FGF23(R179Q). When FGF23(R179Q) was applied to the basolateral side of polarized OK-E cells, regardless of the FGFR2(DN) expression, the apical Pi uptake decreased significantly. The apical application of FGF23(R179Q) in the polarized cells did not show such decrease but increase. The exogenously expressed FGFR2 was detectable only at the apical membrane. These results suggest that an FGF23 receptor, which is functionally distinct from the known FGFRs, is expressed at the basolateral membrane of OK-E cells.
Collapse
Affiliation(s)
- Xiaomei Yan
- Department of Molecular Cell Biology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fukagawa M, Nii-Kono T, Kazama JJ. Role of fibroblast growth factor 23 in health and in chronic kidney disease. Curr Opin Nephrol Hypertens 2005; 14:325-9. [PMID: 15930999 DOI: 10.1097/01.mnh.0000172717.49476.80] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the molecular properties and biological roles of a new phosphaturic factor, fibroblast growth factor 23 (FGF23). Significant roles of FGF23 are discussed, especially in terms of its effects on the kidney, the main target organ. RECENT FINDINGS FGF 23 is a recently discovered phosphaturic factor. Several animal experiments including overexpression or ablation of the FGF23 gene have recently revealed the significant effects of this factor on phosphate excretion and on vitamin D synthesis in the kidney. Although FGF23 was originally identified as a factor responsible for several hypophosphatemic disorders, recent data indicate its role in the physiological regulation of phosphate homeostasis. In chronic kidney disease, FGF23 plays a crucial role in the pathogenesis of secondary hyperparathyroidism. Effects of FGF23 on other organs including bone and intestine remain to be elucidated. SUMMARY FGF23 is a physiological regulator of phosphate homeostasis. Excessive activity of FGF23 with normal renal function results in hypophosphatemia, low 1,25-dihydroxyvitamin D levels, and rickets/osteomalacia. By contrast, excessive FGF23 activity suppresses 1,25-dihydroxyvitamin D synthesis, but may not be sufficient to excrete the phosphate load appropriately with deteriorating renal function, both of which contribute to the development of hyperparathyroidism.
Collapse
Affiliation(s)
- Masafumi Fukagawa
- Division of Nephrology & Dialysis Center, Kobe University School of Medicine, Kobe, Japan.
| | | | | |
Collapse
|
37
|
Li S, Li Y, Du W, Zhang L, Yu S, Dai Y, Zhao C, Li N. Aberrant Gene Expression in Organs of Bovine Clones That Die Within Two Days after Birth1. Biol Reprod 2005; 72:258-65. [PMID: 15240423 DOI: 10.1095/biolreprod.104.029462] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cloning by somatic nuclear transfer is an inefficient process in which some of the cloned animals die shortly after birth and display organ abnormalities. In an effort to determine the possible genetic causes of neonatal death and organ abnormalities, we used real-time quantitative reverse transcription-polymerase chain reaction to examine expression patterns of eight developmentally important genes (PCAF, Xist, FGFR2, PDGFRa, FGF10, BMP4, Hsp70.1, and VEGF) in six organs (heart, liver, spleen, lung, kidney, and brain) of both cloned bovines that died soon after birth (n=9) and normal control calves produced by artificial insemination. In somatic cloning of cattle, fibroblasts have often been used for doner nuclei, and the effect of the age of the fibroblast donor cells on gene expression profiles was investigated. Aberrant expressions of seven genes were found in these clones. The majority of aberrantly expressed genes were common in clones derived from adult fibroblast (AF) and in clones derived from fetal fibroblast (FF) compared to controls, whereas some genes were dysregulated either in AF cell-derived or in FF cell-derived clones. For the studied genes, kidney was the organ least affected by gene dysregulation, and heart was the organ most affected, in which five genes were aberrant. Most dysregulations (12 of 19) were up-regulation, but PDGFRa only showed down-regulation. VEGF, BMP-4, PCAF, and Hsp70.1 were extremely dysregulated, whereas the other four genes had a low level of gene dysregulation. Our results suggest that the aberrant gene expression occurred in most tissues of cloned bovines that died soon after birth. For each specific gene, aberrant expression resulting from nuclear transfer was tissue-specific. Because these genes play important roles in embryo development and organogenesis, the aberrant transcription patterns detected in these clones may contribute to the defects of organs reported in neonatal death of clones.
Collapse
Affiliation(s)
- Shijie Li
- The State Key Laboratory for Agrobiotechnology in Livestock and Poultry, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fujita Y, Maruyama S, Kogo H, Matsuo S, Fujimoto T. Caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Kidney Int 2004; 66:1794-804. [PMID: 15496150 DOI: 10.1111/j.1523-1755.2004.00954.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Caveolin is a principal component of caveolae and regulates signaling in caveolae. Mesangial cells contain many caveolae, and thus manipulation of caveolin-1 expression level might be useful to control mesangial cell proliferation, which is an important aggravating factor in many renal diseases. METHODS In the present study, we transfected caveolin-1 cDNA to rat primary mesangial cells and MES13 cells, and examined the effects on Raf-extracellular signal-regulated protein kinase (ERK) kinase (MEK)-mitogen-activated protein (MAP) kinase pathway and cell proliferation stimulated by basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF). Activity of the kinases was analyzed by immunofluorescence labeling and Western blot analysis. RESULTS The overexpression of caveolin-1 inhibited the activation of Raf-1, MEK-1/2, and MAP kinase induced by either bFGF or PDGF. Furthermore, it suppressed the cell proliferation caused by the cytokines. The effect was specific to the Raf-MEK-MAP kinase pathway, because it did not influence activation of Smad2 induced by transforming growth factor-beta (TGF-beta). On the contrary, expression of a dominant-negative caveolin mutant, DGV-caveolin, augmented activation of MAP kinase. CONCLUSION The result showed that overexpression of caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Because bFGF and PDGF are two major cytokines involved in the mesangioproliferative nephritis, the result implies that introduction of caveolin-1 expression vector is a potential therapeutic tool for the disease.
Collapse
Affiliation(s)
- Yutaka Fujita
- Division of Clinical Immunology, Department of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
39
|
Strewler GJ. Phos, phex and FGF: Mysteries of phosphate homeostasis revealed – or still hidden. ACTA ACUST UNITED AC 2004. [DOI: 10.1138/20040134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Xiong S, Zhao Q, Rong Z, Huang G, Huang Y, Chen P, Zhang S, Liu L, Chang Z. hSef inhibits PC-12 cell differentiation by interfering with Ras-mitogen-activated protein kinase MAPK signaling. J Biol Chem 2003; 278:50273-82. [PMID: 12958313 DOI: 10.1074/jbc.m306936200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factor signaling by receptor tyrosine kinases regulates several cell fates, such as proliferation and differentiation. Sef was genetically identified as a negative regulator of fibroblast growth factor (FGF) signaling. Using bioinformatic methods and rapid amplification of cDNA ends-PCR, we isolated both the mouse and the human Sef genes, which encoded the Sef protein and Sef-S isoform that was generated through alternative splicing. We provide evidence that the Sef gene products were located mainly on the cell membrane. Co-immunoprecipitation and immunostaining experiments indicate that hSef interacts with FGFR1 and FGFR2 but not FGFR3. Our results demonstrated that stably expressed hSef strongly inhibits FGF2- or nerve growth factor-induced PC-12 cell differentiation. The intracellular domain of hSef is necessary for the inhibitory effect on FGF2-induced PC-12 cell differentiation. Furthermore, our data suggested Sef exerted the negative effect on FGF2-induced PC-12 cell differentiation through the prevention of Ras-mitogen-activated protein kinase signaling, possibly functioning upstream of the Ras molecule. These findings suggest that Sef may play an important role in the regulation of PC-12 cell differentiation.
Collapse
Affiliation(s)
- Shiqin Xiong
- Tsinghua Institute of Genome Research, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084,China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
There is evidence for a hormone/enzyme/extracellular matrix protein cascade involving fibroblastic growth factor 23 (FGF23), a phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), and a matrix extracellular phosphoglycoprotein (MEPE) that regulates systemic phosphate homeostasis and mineralization. Genetic studies of autosomal dominant hypophosphatemic rickets (ADHR) and X-linked hypophosphatemia (XLH) identified the phosphaturic hormone FGF23 and the membrane metalloprotease PHEX, and investigations of tumor-induced osteomalacia (TIO) discovered the extracellular matrix protein MEPE. Similarities between ADHR, XLH, and TIO suggest a model to explain the common pathogenesis of renal phosphate wasting and defective mineralization in these disorders. In this model, increments in FGF23 and MEPE, respectively, cause renal phosphate wasting and intrinsic mineralization abnormalities. FGF23 elevations in ADHR are due to mutations of FGF23 that block its degradation, in XLH from indirect actions of inactivating mutations of PHEX to modify the expression and/or degradation of FGF23 and MEPE, and in TIO because of increased production of FGF23 and MEPE. Although this model is attractive, several aspects need to be validated. First, the enzymes responsible for metabolizing FGF23 and MEPE need to be established. Second, the physiologically relevant PHEX substrates and the mechanisms whereby PHEX controls FGF23 and MEPE metabolism need to be elucidated. Finally, additional studies are required to establish the molecular mechanisms of FGF23 and MEPE actions on kidney and bone, as well as to confirm the role of these and other potential "phosphatonins," such as frizzled related protein-4, in the pathogenesis of the renal and skeletal phenotypes in XLH and TIO. Unraveling the components of this hormone/enzyme/extracellular matrix pathway will not only lead to a better understanding of phosphate homeostasis and mineralization but may also improve the diagnosis and treatment of hypo- and hyperphosphatemic disorders.
Collapse
Affiliation(s)
- L Darryl Quarles
- Department of Medicine, Center for Bone and Mineral Disorders, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
42
|
Nagatoro T, Fujita K, Murata E, Akita M. Angiogenesis and fibroblast growth factors (FGFs) in a three-dimensional collagen gel culture. Okajimas Folia Anat Jpn 2003; 80:7-14. [PMID: 12858960 DOI: 10.2535/ofaj.80.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small pieces of mouse aorta were cultured in collagen gels, and the formation of capillary-like tubes from the aortic explant was observed under phase-contrast and transmission electron microscopes. Migration of fibroblastic cells from the aortic explant occurred in 2 days. After about 10 days of culture, capillary-like tubes from the aortic explant were formed in the collagen gels. An immunohistochemical study on the collagen gel culture revealed the expression of fibroblast growth factor 2 (FGF-2) near the aortic explant at the active initial stage, with random migration of fibroblastic cells expressing FGF-9. mRNA was isolated from these cultures, and reverse transcription-polymerase chain reaction (RT-PCR) of the cultures revealed the expressions of both FGF-2 and FGF-9. Based on our results, we propose that FGF-9 is also related to angiogenic events.
Collapse
Affiliation(s)
- Takashi Nagatoro
- Dept. of Anatomy, Biomedical Research Center, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495, Japan.
| | | | | | | |
Collapse
|
43
|
Asanuma K, Shirato I, Ishidoh K, Kominami E, Tomino Y. Selective modulation of the secretion of proteinases and their inhibitors by growth factors in cultured differentiated podocytes. Kidney Int 2002; 62:822-31. [PMID: 12164864 DOI: 10.1046/j.1523-1755.2002.00539.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED Selective modulation of the secretion of proteinases and their inhibitors by growth factors in cultured differentiated podocytes. BACKGROUND Podocyte damage is considered to be an important factor in the development of glomerulosclerosis. Morphological studies on experimental models of progressive glomerular disease have identified the detachment of podocytes from the glomerular basement membrane (GBM) as a critical step in the development and progression of glomerulosclerosis. Degradation of the GBM by proteinases also might be a potential mechanism of the detachment because the process impairs the connection between podocytes and the GBM. The present study examined the effects of basic fibroblast growth factor (bFGF), transforming growth factor-beta1 (TGF-beta1) and platelet-derived growth factor (PDGF) on the secretion of proteinases [cathepsin L and matrix metalloproteinases (MMPs)] and their inhibitors [cystatin C and tissue inhibitor of metalloproteinase-2 (TIMP-2)] from differentiated podocytes in culture. METHODS Expression of mRNAs for receptors of growth factors (bFGF, PDGF, TGF-beta1), the proteinases and their inhibitors in differentiated podocytes were shown by RT-PCR. The secretion of cathepsin L, cystatin C and TIMP-2 from differentiated podocytes were shown by immunoblot analysis. The activities of MMPs-2 and -9 from differentiated podocytes were shown by gelatin zymography. RESULTS Expression of mRNAs for receptors of the growth factors, the proteinases and their inhibitors were confirmed. bFGF increased the secretion of cathepsin L (5.04-fold at 20 ng/mL), but did not alter the secretion of its extracellular inhibitor, cystatin C. In contrast, TGF-beta1 increased the activities of MMPs-2 and -9 (3.23-fold at 10 ng/mL and 25.3-fold at 10 ng/mL, respectively) from differentiated podocytes, but did not enhance the secretion of its inhibitor, TIMP-2. In addition, bFGF enhanced the secretion of TIMP-2 (2.75-fold at 20 ng/mL) and TGF-beta1 enhanced the secretion of cystatin C (2.32-fold at 20 ng/mL). These results demonstrate the imbalance of the secretion of proteinases and their inhibitors after incubation of such growth factors. Of particular interest was the observation of differences in regulation of proteinases and their extracellular inhibitors in response to bFGF and TGF-beta1. PDGF only slightly increased the secretion of cathepsin L (2.54-fold at 20 ng/mL) but exerted no effect on the secretion of cystatin C, MMPs, and TIMP-2 from differentiated podocytes. CONCLUSION These results indicate, to our knowledge for the first time, that in differentiated podocytes, both cathepsin L and its inhibitor are independently regulated by different growth factors. It appears that increases in proteolytic activities may induce degradation of the glomerular basement membrane (GBM), which plays an important role in the progression of glomerulosclerosis.
Collapse
Affiliation(s)
- Katsuhiko Asanuma
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
44
|
Yamashita T, Konishi M, Miyake A, Inui KI, Itoh N. Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem 2002; 277:28265-70. [PMID: 12032146 DOI: 10.1074/jbc.m202527200] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The homeostasis of the plasma phosphate level is essential for many biological processes including skeletal mineralization. The reabsorption of phosphate in the kidney is a major determinant of the plasma levels of phosphate. Phosphatonin is a hormone-like factor that specifically inhibits phosphate uptake in renal proximal epithelial cells. Recent studies on tumor-induced osteomalacia suggested that phosphatonin was potentially identical to fibroblast growth factor (FGF)-23. However, as purified recombinant FGF-23 could not inhibit phosphate uptake in renal proximal epithelial cells, the mechanism of action of FGF-23 remains to be elucidated. Therefore, we examined the mechanism of action of FGF-23 in cultured renal proximal epithelial cells, opossum kidney cells. FGF-23 was found to require heparin-like molecules for its inhibitory activity on phosphate uptake. FGF-23 binds to the FGF receptor 3c, which is mainly expressed in opossum kidney cells, with high affinity. An inhibitor for tyrosine kinases of the FGF receptor, SU 5402, blocked the activity of FGF-23. FGF-23 activated the mitogen-activated protein kinase (MAPK) pathway, which is the major intracellular signaling pathway of FGF. Inhibitors of the MAPK pathway, PD98059 and SB203580, also blocked the activity of FGF-23. The present findings have revealed a novel MAPK-dependent mechanism of the regulation of phosphate uptake by FGF signaling.
Collapse
Affiliation(s)
- Tetsuo Yamashita
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
45
|
Abstract
Growth factors and cytokines play a crucial role in the progression of renal diseases. A growing body of evidence has been obtained from experimental studies, suggesting that manipulation of the activity of growth factors and cytokines is a potential form of therapy for renal diseases. To preserve the renal function structure in progressive renal diseases, this approach is achieved by inhibition of apoptosis of renal intrinsic cells and by decrease in the fibrotic signal. Inhibition of transforming growth factor beta, platelet-derived growth factor, interleukin-1 and tumor necrosis factor alpha, and supplementation of hepatocyte growth factor, vascular endothelial growth factor and bone morphogenic protein-7 may be beneficial. Recent progress in therapeutic implements including humanized antibodies, chimeric soluble receptors, aptamers, antisense oligonucleotides, and gene therapy allow us to target the causal molecules. Administration of a combination of growth factors and cytokines is a potential therapeutic approach. Targeting signal transduction molecules and their co-factors and regulators is another possibility because the signals from various growth factors use a common pathway. Thus, targeting growth factors and cytokines in renal diseases could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Enyu Imai
- Division of Nephrology, Department of Internal Medicine and Therapeutics, Osaka University School of Medicine, Osaka, Japan.
| | | |
Collapse
|