1
|
Xu X, Manabe N, Ohno S, Komatsu S, Fujimura T, Yamaguchi Y. 3D structural insights into the effect of N-glycosylation in human chitotriosidase variant G102S. Biochim Biophys Acta Gen Subj 2025; 1869:130730. [PMID: 39521151 DOI: 10.1016/j.bbagen.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND N-glycosylation is a key post-translational modification critical for protein function and stability. Chitotriosidase-1 (CHIT1), belonging to glycoside hydrolase family 18, is clinically utilized as a biomarker of Gaucher disease. A G102S variant is common in some populations, but the implications of this missense mutation on CHIT1 function and in disease pathology are unknown. We have investigated the effects of the G102S mutation on the N-glycosylation, structure, and activity of CHIT1. METHODS Three recombinant CHIT1 proteins, wild-type (WT), G102S, and N100Q+G102S double mutants, were expressed, purified, and analyzed for glycosylation using SDS-PAGE, MALDI-MS, PNGase F treatment, and lectin blotting. NMR and LC-MS/MS were employed to characterize glycan structures. Enzymatic assays and molecular dynamics simulations were used to assess the effects of mutations on CHIT1 function and dynamics. RESULTS The G102S mutation introduced a new N-glycosylation site at N100, confirmed by SDS-PAGE and MALDI-MS, and the composition of the N-glycan structures was verified by lectin blotting, NMR, and MS. Both G102S and N100Q+G102S proteins exhibited reduced catalytic efficiency compared to WT. Molecular dynamics simulations suggested that G102S mutation induces significant structural changes and reduces stability, particularly without N-glycan, likely impairing substrate binding and enzymatic activity. CONCLUSION Our findings indicate that the common G102S mutation affects the structure and function of CHIT1, partially by introducing a new N-glycosylation site. They provide a foundation for further research on the impact of N-glycosylation on its hydrolase activity and structural dynamics, with potential implications for understanding the role of CHIT1 in Gaucher disease.
Collapse
Affiliation(s)
- Xiao Xu
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Sachiko Komatsu
- Division of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Tsutomu Fujimura
- Division of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan.
| |
Collapse
|
2
|
Cheung CK, Alexander S, Reich HN, Selvaskandan H, Zhang H, Barratt J. The pathogenesis of IgA nephropathy and implications for treatment. Nat Rev Nephrol 2025; 21:9-23. [PMID: 39232245 PMCID: PMC7616674 DOI: 10.1038/s41581-024-00885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region - probably derived from the mucosal immune system - is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | | | - Heather N Reich
- Department of Medicine, Division of Nephrology, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, P. R. China
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
3
|
Nihei Y, Kitamura D. Pathogenesis of IgA nephropathy as a tissue-specific autoimmune disease. Int Immunol 2024; 37:75-81. [PMID: 39066568 DOI: 10.1093/intimm/dxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024] Open
Abstract
Glomerulonephritis (GN) is a group of heterogeneous immune-mediated kidney diseases that causes inflammation within the glomerulus. Autoantibodies (auto-Abs) are considered to be central effectors in the pathogenesis of several types of GN. Immunoglobulin A nephropathy (IgAN) is the most common GN worldwide and is characterized by the deposition of IgA in the glomerular mesangium of the kidneys, which is thought to be mediated by immune complexes containing non-specific IgA. However, we recently reported that IgA auto-Abs specific to mesangial cells (anti-mesangium IgA) were found in the sera of gddY mice, a spontaneous IgAN model, and patients with IgAN. We identified two autoantigens (β2-spectrin and CBX3) that are selectively expressed on the mesangial cell surface and targeted by anti-mesangial IgA. Our findings redefined IgAN as a tissue-specific autoimmune disease. Regarding the mechanisms of production of anti-mesangium IgA, studies using gddY mice have revealed that the production of anti-CBX3 IgA is induced by particular strains of commensal bacteria in the oral cavity, possibly through their molecular mimicry to CBX3. Here, we discuss a new concept of IgAN pathogenesis from the perspective of this disease as autoimmune GN caused by tissue-specific auto-Abs.
Collapse
Affiliation(s)
- Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| |
Collapse
|
4
|
Tangon N, Kumfu S, Chattipakorn N, Chattipakorn SC. Links between oropharyngeal microbiota and IgA nephropathy: A paradigm shift from isolated microbe to microbiome. Microbiol Res 2024; 292:128005. [PMID: 39675141 DOI: 10.1016/j.micres.2024.128005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most prevalent form of primary glomerulonephritis globally, yet its pathogenesis remains incompletely understood. While much research has focused on the gut microbiome in the development of the disease, emerging evidence suggests that the oropharyngeal microbiota may also be a potential contributor. Studies have revealed significant alterations in oropharyngeal microbial diversity and specific bacterial taxa in IgAN patients, correlating with disease severity and progression. This review aims to comprehensively summarize and discuss the key findings from in vitro, in vivo, and clinical studies into the oropharyngeal bacteria and microbiome alterations in IgAN. Clinical studies have identified associations between certain oropharyngeal bacteria, particularly Cnm+Streptococcus mutans, Campylobacter rectus, and Porphyromonas gingivalis with IgAN patients and severe clinical outcomes with. In vitro and in vivo studies further establish a causal relationship between IgAN and oropharyngeal bacteria such as Streptococcus and Haemophilus. Microbiome analyses demonstrate dysbiotic patterns in IgAN patients and identify new potential bacterial genera that have yet to be explored experimentally but may potentially contribute to the disease's pathogenesis. Additionally, the use of these bacterial genera as diagnostic and prognostic biomarkers of IgAN has achieved promising performance. Overall, the evidence highlights the strong connection between oropharyngeal bacteria and IgAN through both causal and non-causal associations. Further investigation into these newly identified bacterial genera and integration of multi-omics data are necessary to uncover mechanisms, validate their role in IgAN, and potentially develop novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Narongsak Tangon
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
5
|
Cheung CK, Barratt J, Lafayette R, Liew A, Suzuki Y, Tesař V, Trimarchi H, Wong MG, Zhang H, Rizk DV. Targeting APRIL in the treatment of glomerular diseases. Kidney Int 2024; 106:806-818. [PMID: 39182759 DOI: 10.1016/j.kint.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
A proliferation-inducing ligand (APRIL) is a key member of the tumor necrosis factor superfamily of cytokines and plays a central role in B-cell survival, proliferation, and Ig class switching. Recently, there has been increasing interest in the role of APRIL and the related cytokine B-cell activating factor in several glomerular diseases, because of their importance in the above processes. The therapeutic inhibition of APRIL represents a potentially attractive immunomodulatory approach that may abrogate deleterious host immune responses in autoimmune diseases while leaving other important functions of humoral immunity intact, such as memory B-cell function and responses to vaccination, in contrast to B-cell-depleting strategies. In this review, we describe the physiological roles of APRIL in B-cell development and their relevance to glomerular diseases, and outline emerging clinical trial data studying APRIL inhibition, with a focus on IgA nephropathy where the clinical development of APRIL inhibitors is in its most advanced stage.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; John Walls Renal Unit, University Hospitals of Leicester National Health Service Trust, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; John Walls Renal Unit, University Hospitals of Leicester National Health Service Trust, Leicester, UK
| | - Richard Lafayette
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Adrian Liew
- The Kidney and Transplant Practice, Mount Elizabeth Novena Hospital, Singapore
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Vladimír Tesař
- Department of Nephrology, General University Hospital, Charles University, Prague, Czech Republic
| | - Hernán Trimarchi
- Nephrology Service and Kidney Transplant Unit, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, Australia; Department of Medicine, University of Sydney, Camperdown, Australia
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People's Republic of China
| | - Dana V Rizk
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
6
|
Kano T, Suzuki H, Makita Y, Nihei Y, Fukao Y, Nakayama M, Lee M, Aoki R, Yamada K, Muto M, Suzuki Y. Lessons from IgA Nephropathy Models. Int J Mol Sci 2024; 25:11484. [PMID: 39519036 PMCID: PMC11546737 DOI: 10.3390/ijms252111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
IgA nephropathy (IgAN) is the most common type of primary glomerulonephritis worldwide; however, the underlying mechanisms of this disease are not fully understood. This review explores several animal models that provide insights into IgAN pathogenesis, emphasizing the roles of aberrant IgA1 glycosylation and immune complex formation. It discusses spontaneous, immunization, and transgenic models illustrating unique aspects of IgAN development and progression. The animal models, represented by the grouped ddY (gddY) mouse, have provided guidance concerning the multi-hit pathogenesis of IgAN. In this paradigm, genetic and environmental factors, including the dysregulation of the mucosal immune system, lead to increased levels of aberrantly glycosylated IgA, nephritogenic immune complex formation, and subsequent glomerular deposition, followed by mesangial cell activation and injury. Additionally, this review considers the implications of clinical trials targeting molecular pathways influenced by IgAN (e.g., a proliferation-inducing ligand [APRIL]). Collectively, these animal models have expanded the understanding of IgAN pathogenesis while facilitating the development of therapeutic strategies that are currently under clinical investigation. Animal-model-based studies have the potential to facilitate the development of targeted therapies with reduced side effects for IgAN patients.
Collapse
Affiliation(s)
- Toshiki Kano
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
| | - Yuko Makita
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Fukao
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Mingfeng Lee
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Ryosuke Aoki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Koshi Yamada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Masahiro Muto
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
7
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
8
|
Novak J, King RG, Yother J, Renfrow MB, Green TJ. O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy. Glycobiology 2024; 34:cwae060. [PMID: 39095059 PMCID: PMC11442006 DOI: 10.1093/glycob/cwae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally β1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases. Galactose-deficient IgA1 in the circulation of patients with IgA nephropathy is bound by IgG autoantibodies and the resultant immune complexes can contain additional proteins, such as complement C3. These complexes, if not removed from the circulation, can enter the glomerular mesangium, activate the resident mesangial cells, and induce glomerular injury. In this review, we briefly summarize clinical and pathological features of IgA nephropathy, review normal and aberrant IgA1 O-glycosylation pathways, and discuss the origins and potential significance of natural anti-glycan antibodies, namely those recognizing N-acetylgalactosamine. We also discuss the features of autoantibodies specific for galactose-deficient IgA1 and the characteristics of pathogenic immune complexes containing IgA1 and IgG. In IgA nephropathy, kidneys are injured by IgA1-containing immune complexes as innocent bystanders. Most patients with IgA nephropathy progress to kidney failure and require dialysis or transplantation. Moreover, most patients after transplantation experience a recurrent disease. Thus, a better understanding of the pathogenetic mechanisms is needed to develop new disease-specific treatments.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, United States
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| |
Collapse
|
9
|
Makita Y, Reich HN. Pathogenic Immunoglobulin A-Producing Cells in Immunoglobulin A Nephropathy. J Clin Med 2024; 13:5255. [PMID: 39274468 PMCID: PMC11396043 DOI: 10.3390/jcm13175255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most prevalent primary glomerular disease worldwide and it remains a leading cause of kidney failure. Clinical manifestations of IgA are exacerbated by infections, and emerging data suggest that aberrant mucosal immune responses are important contributors to the immunopathogenesis of this disease. However, the exact stimuli, location and mechanism of nephritis-inducing IgA production remains unclear. In this focused review we explore recent developments in our understanding of the contribution of the mucosal immune system and mucosal-derived IgA-producing cells to the development of IgAN.
Collapse
Affiliation(s)
- Yuko Makita
- Division of Nephrology, University Health Network, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada
| | - Heather N Reich
- Division of Nephrology, University Health Network, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
10
|
Novak J. Pathogenesis of IgA nephropathy: Omics data inform glycomedicine. Nephrology (Carlton) 2024; 29 Suppl 2:18-22. [PMID: 39327757 PMCID: PMC11441619 DOI: 10.1111/nep.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Nagasawa H, Ueda S, Suzuki H, Jenkinson C, Fukao Y, Nakayama M, Otsuka T, Okuma T, Clapper W, Liu K, Nguyen M, Komers R, Suzuki Y. Sparsentan is superior to losartan in the gddY mouse model of IgA nephropathy. Nephrol Dial Transplant 2024; 39:1494-1503. [PMID: 38271614 PMCID: PMC11361813 DOI: 10.1093/ndt/gfae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The mechanism leading to the development of immunoglobulin A nephropathy (IgAN) remains to be completely understood. Endothelin-1 (ET-1) as well as angiotensin II (AngII) promote glomerular injury, tubulointerstitial inflammation and fibrosis leading to chronic kidney disease. Sparsentan, a dual endothelin angiotensin receptor antagonist, recently received accelerated approval in the USA for the reduction of proteinuria in adults with IgAN at high risk of disease progression. To elucidate the mechanisms by which sparsentan is efficacious in IgAN, we examined the effect of treatment in gddY mice, a spontaneous IgAN mouse model, versus the monoselective angiotensin II type 1 receptor (AT1R) antagonist, losartan, on the development of renal injury at doses resulting in similar blood pressure lowering. METHODS Four-week-old gddY mice were given control chow, chow containing sparsentan or drinking water containing losartan until 12 or 20 weeks old. RESULTS Remarkably, the albumin:creatine ratio (ACR) was attenuated more rapidly and to a greater extent in mice treated with sparsentan than those treated with losartan. The decrease in ACR from baseline after 4 weeks of treatment correlated with beneficial effects of sparsentan on glomerulosclerosis and protection of podocytes and glycocalyx after 16 weeks of treatment across treatment groups; thus, sparsentan treatment delayed development of renal injury to a greater extent than losartan. Expression of mRNA for ET-1, endothelin type A receptor and AT1R and proinflammatory genes was upregulated in 12-week-old gddY mice and was prevented by sparsentan and losartan to a comparable extent. CONCLUSIONS The results of this study, and in light of the results of the phase 3 PROTECT trial, provide a novel perspective and understanding of the mechanisms by which sparsentan has a beneficial renoprotective effect against IgAN compared with AT1R antagonism alone.
Collapse
Affiliation(s)
- Hajime Nagasawa
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Seiji Ueda
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Kidney Health and Aging, Center for Integrated Kidney Research Advance, Shimane University Faculty of Medicine, Izumo, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba, Japan
| | | | - Yusuke Fukao
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomoyuki Otsuka
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Teruyuki Okuma
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | - Kai Liu
- Travere Therapeutics, Inc., San Diego, CA, USA
| | - Mai Nguyen
- Travere Therapeutics, Inc., San Diego, CA, USA
| | | | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Kinashi Y, Tanaka K, Kimura S, Hirota M, Komiyama S, Shindo T, Hashiguchi A, Takahashi D, Shibata S, Karaki SI, Ohno H, Hase K. Intestinal epithelium dysfunctions cause IgA deposition in the kidney glomeruli of intestine-specific Ap1m2-deficient mice. EBioMedicine 2024; 106:105256. [PMID: 39059316 PMCID: PMC11338063 DOI: 10.1016/j.ebiom.2024.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Intestinal epithelial cells (IECs) serve as robust barriers against potentially hostile luminal antigens and commensal microbiota. Epithelial barrier dysfunction enhances intestinal permeability, leading to leaky gut syndrome (LGS) associated with autoimmune and chronic inflammatory disorders. However, a causal relationship between LGS and systemic disorders remains unclear. Ap1m2 encodes clathrin adaptor protein complex 1 subunit mu 2, which facilitates polarized protein trafficking toward the basolateral membrane and contributes to the establishment of epithelial barrier functions. METHODS We generated IEC-specific Ap1m2-deficient (Ap1m2ΔIEC) mice with low intestinal barrier integrity as an LSG model and examined the systemic impact. FINDINGS Ap1m2ΔIEC mice spontaneously developed IgA nephropathy (IgAN)-like features characterized by the deposition of IgA-IgG immune complexes and complement factors in the kidney glomeruli. Ap1m2 deficiency markedly enhanced aberrantly glycosylated IgA in the serum owing to downregulation and mis-sorting of polymeric immunoglobulin receptors in IECs. Furthermore, Ap1m2 deficiency caused intestinal dysbiosis by attenuating IL-22-STAT3 signaling. Intestinal dysbiosis contributed to the pathogenesis of IgAN because antibiotic treatment reduced aberrantly glycosylated IgA production and renal IgA deposition in Ap1m2ΔIEC mice. INTERPRETATION IEC barrier dysfunction and subsequent dysbiosis by AP-1B deficiency provoke IgA deposition in the mouse kidney. Our findings provide experimental evidence of a pathological link between LGS and IgAN. FUNDING AMED, AMED-CREST, JSPS Grants-in-Aid for Scientific Research, JST CREST, Fuji Foundation for Protein Research, and Keio University Program for the Advancement of Next Generation Research Projects.
Collapse
Affiliation(s)
- Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Keisuke Tanaka
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan.
| | - Masato Hirota
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Seiga Komiyama
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Akinori Hashiguchi
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan; Depatment of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shin-Ichiro Karaki
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Laboratory for Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan; Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
| |
Collapse
|
13
|
Hu YC, Yang YH, Chiang BL. Immunoglobulin A vasculitis: The clinical features and pathophysiology. Kaohsiung J Med Sci 2024; 40:612-620. [PMID: 38828518 DOI: 10.1002/kjm2.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Palpable purpura, gastrointestinal symptoms, joint involvement, and renal disease characterize immunoglobulin A vasculitis (IgAV). Renal involvement ranging from mild proteinuria to severe nephritic or nephrotic syndrome highlights the importance of monitoring kidney function in patients with IgAV. Recognizing these key features is crucial for early diagnosis and appropriate management to prevent long-term complications related to kidney disease. However, the pathogenesis of IgAV remains unclear. Disease mechanisms involve various factors, including the interplay of aberrantly glycosylated IgA, anti-endothelial cell antibodies, and neutrophils following infection triggers, which are the main pathogenic mechanisms of IgAV. Insights from cases of IgAV related to Coronavirus disease 2019 have offered additional understanding of the connection between infection and IgAV pathogenesis. This review provides a valuable resource for healthcare professionals and rheumatology researchers seeking a better understanding of the clinical features and pathophysiology of IgAV.
Collapse
Affiliation(s)
- Ya-Chiao Hu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
- Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Nakayama T, Kaneko H, Okada A, Suzuki Y, Fujiu K, Takeda N, Morita H, Takeda N, Fukui A, Yokoo T, Yasunaga H, Nangaku M, Hayashi K. Association of Inflammatory Bowel Disease with Incident IgA Nephropathy. Clin J Am Soc Nephrol 2024; 19:704-711. [PMID: 38600627 PMCID: PMC11168824 DOI: 10.2215/cjn.0000000000000457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Key Points We analyzed a nationwide epidemiologic cohort including approximately 4,000,000 individuals. We found a potential association of inflammatory bowel disease with a greater risk of developing IgA nephropathy. Background There have been scarce epidemiologic data on the relationship between inflammatory bowel disease and the incidence of IgA nephropathy. In this study, we assessed whether inflammatory bowel disease was associated with a higher risk of developing IgA nephropathy using a large-scale epidemiologic cohort. Methods We retrospectively analyzed 4,311,393 adults enrolled in the JMDC Claims Database (previously known as the Japan Medical Data Center database), a nationwide epidemiologic database in Japan. The definitions of IgA nephropathy and inflammatory bowel disease (ulcerative colitis or Crohn disease) were based on International Classification of Diseases, 10th Revision codes. Individuals who had a history of IgA nephropathy were excluded. Study participants were categorized into two groups according to the presence of inflammatory bowel disease. Clinical outcomes were collected between January 2005 and May 2022. The primary outcome was incident IgA nephropathy. Results Median (interquartile range) age was 44 (36–53) years, and 2,497,313 (58%) were men. Inflammatory bowel disease was observed in 18,623 individuals (0.4%). Over a median follow-up of 1089 (532–1797) days, there were 2631 incidences of IgA nephropathy and 22 incidences in individuals without and with inflammatory bowel disease, yielding incident ratios with 95% confidence intervals of 1.74 (1.68–1.81) and 3.43 (2.26–5.21), respectively. Kaplan–Meier curves and the log-rank test showed that a cumulative incidence of IgA was higher in individuals with inflammatory bowel disease compared with those without (log-rank P = 0.0028). Multivariable Cox regression analysis demonstrated that individuals with inflammatory bowel disease were at higher risk of incident IgA nephropathy (hazard ratio, 1.96; 95% confidence interval, 1.29 to 2.99). Conclusions We demonstrated the potential association of inflammatory bowel disease with higher risk of developing IgA nephropathy in a general population.
Collapse
Affiliation(s)
- Takashin Nakayama
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidehiro Kaneko
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Department of Advanced Cardiology, The University of Tokyo, Tokyo, Japan
| | - Akira Okada
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Suzuki
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Center for Outcomes Research and Economic Evaluation for Health, National Institute of Public Health, Saitama, Japan
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
- Department of Advanced Cardiology, The University of Tokyo, Tokyo, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Fukui
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Girndt M. [Immunoglobulin A nephropathy-New treatment possibilities]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:407-413. [PMID: 38294502 DOI: 10.1007/s00108-024-01665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Immunoglobulin A (IgA) nephropathy is the most frequent glomerulonephritis in adults in Central Europe. It is characterized by microhematuria and occasionally macrohematuria, proteinuria and a chronic loss of kidney function. The diagnosis is made based on a kidney biopsy. The progressive kidney damage must always be slowed down by normalizing blood pressure, using angiotensin inhibitors and consistently avoiding additional toxic substances. In many cases this is not sufficient and then sodium-glucose transporter 2 (SGLT-2) inhibitors and immunomodulators are used. In particular, the SGLT-2 inhibitors show a very significant reduction in proteinuria and slow down the deterioration of the estimated glomerular filtration rate (eGFR). While systemic corticosteroids are now only indicated in rare cases, a special budesonide formulation shows good effects. Further pathophysiologically based pharmacotherapies are currently being tested in clinical studies. These include, among others, the dual endothelin type A receptor and angiotensin II receptor antagonist sparsentan, which has already been shown to reduce proteinuria as well as inhibitors of complement activation, which is important for kidney damage. Initial findings for these as well as for the B‑lymphocyte proliferation inhibitor sibeprenlimab, suggest that they could enrich the armamentarium for the treatment of IgA nephropathy in the future.
Collapse
Affiliation(s)
- Matthias Girndt
- Klinik für Innere Medizin II, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Deutschland.
| |
Collapse
|
16
|
Gleeson PJ, Benech N, Chemouny J, Metallinou E, Berthelot L, da Silva J, Bex-Coudrat J, Boedec E, Canesi F, Bounaix C, Morelle W, Moya-Nilges M, Kenny J, O'Mahony L, Saveanu L, Arnulf B, Sannier A, Daugas E, Vrtovsnik F, Lepage P, Sokol H, Monteiro RC. The gut microbiota posttranslationally modifies IgA1 in autoimmune glomerulonephritis. Sci Transl Med 2024; 16:eadl6149. [PMID: 38536935 DOI: 10.1126/scitranslmed.adl6149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Mechanisms underlying the disruption of self-tolerance in acquired autoimmunity remain unclear. Immunoglobulin A (IgA) nephropathy is an acquired autoimmune disease where deglycosylated IgA1 (IgA subclass 1) auto-antigens are recognized by IgG auto-antibodies, forming immune complexes that are deposited in the kidneys, leading to glomerulonephritis. In the intestinal microbiota of patients with IgA nephropathy, there was increased relative abundance of mucin-degrading bacteria, including Akkermansia muciniphila. IgA1 was deglycosylated by A. muciniphila both in vitro and in the intestinal lumen of mice. This generated neo-epitopes that were recognized by autoreactive IgG from the sera of patients with IgA nephropathy. Mice expressing human IgA1 and the human Fc α receptor I (α1KI-CD89tg) that underwent intestinal colonization by A. muciniphila developed an aggravated IgA nephropathy phenotype. After deglycosylation of IgA1 by A. muciniphila in the mouse gut lumen, IgA1 crossed the intestinal epithelium into the circulation by retrotranscytosis and became deposited in the glomeruli of mouse kidneys. Human α-defensins-a risk locus for IgA nephropathy-inhibited growth of A. muciniphila in vitro. A negative correlation observed between stool concentration of α-defensin 6 and quantity of A. muciniphila in the guts of control participants was lost in patients with IgA nephropathy. This study demonstrates that gut microbiota dysbiosis contributes to generation of auto-antigens in patients with IgA nephropathy and in a mouse model of this disease.
Collapse
Affiliation(s)
- Patrick J Gleeson
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork T12 Y337 Ireland
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service de Néphrologie, Paris 75018, France
| | - Nicolas Benech
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris 75012, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris 75012, France
- Hospices Civils de Lyon, Claude Bernard Lyon 1 University, CRCL, 69003 Lyon, France
| | - Jonathan Chemouny
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Eleftheria Metallinou
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Laureline Berthelot
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Jennifer da Silva
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Julie Bex-Coudrat
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Erwan Boedec
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Fanny Canesi
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Carine Bounaix
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Willy Morelle
- Université Lille, Centre National de la Recherche Française, UMR 8576-Unité de Glycobiologie Structurale et Fonctionnelle-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Maryse Moya-Nilges
- Unité Technologie et Service Bioimagerie Ultrastructurale (UTechS UBI), Institut Pasteur, 28 Rue Du Docteur Roux, 75015 Paris, France
| | - John Kenny
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996 Ireland
- APC Microbiome Ireland, University College Cork, College Road, Cork, T12 YT20 Ireland
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork T12 Y337 Ireland
| | - Loredana Saveanu
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
| | - Bertrand Arnulf
- AP-HP, Nord/université de Paris, hôpital Saint Louis, Service d'Immuno-Hématologie, Myosotis 4, 75010 Paris, France
| | - Aurélie Sannier
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service d'Anatomie-Pathologique, 75018 Paris, France
| | - Eric Daugas
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service de Néphrologie, Paris 75018, France
| | - François Vrtovsnik
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service de Néphrologie, Paris 75018, France
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris 75012, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris 75012, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Renato C Monteiro
- Université Paris Cité, INSERM UMR1149 and CNRS EMR8252, Centre de Recherche sur l'Inflammation, Inflamex Laboratory of Excellence, Paris 75018, France
- AP-HP, Nord/université de Paris, hôpital Bichat-Claude Bernard, Service d'Immunologie, 75018 Paris, France
| |
Collapse
|
17
|
Stamellou E, Seikrit C, Tang SCW, Boor P, Tesař V, Floege J, Barratt J, Kramann R. IgA nephropathy. Nat Rev Dis Primers 2023; 9:67. [PMID: 38036542 DOI: 10.1038/s41572-023-00476-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
IgA nephropathy (IgAN), the most prevalent primary glomerulonephritis worldwide, carries a considerable lifetime risk of kidney failure. Clinical manifestations of IgAN vary from asymptomatic with microscopic or intermittent macroscopic haematuria and stable kidney function to rapidly progressive glomerulonephritis. IgAN has been proposed to develop through a 'four-hit' process, commencing with overproduction and increased systemic presence of poorly O-glycosylated galactose-deficient IgA1 (Gd-IgA1), followed by recognition of Gd-IgA1 by antiglycan autoantibodies, aggregation of Gd-IgA1 and formation of polymeric IgA1 immune complexes and, lastly, deposition of these immune complexes in the glomerular mesangium, leading to kidney inflammation and scarring. IgAN can only be diagnosed by kidney biopsy. Extensive, optimized supportive care is the mainstay of therapy for patients with IgAN. For those at high risk of disease progression, the 2021 KDIGO Clinical Practice Guideline suggests considering a 6-month course of systemic corticosteroid therapy; however, the efficacy of systemic steroid treatment is under debate and serious adverse effects are common. Advances in understanding the pathophysiology of IgAN have led to clinical trials of novel targeted therapies with acceptable safety profiles, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, as well as blockade of complement components.
Collapse
Affiliation(s)
- Eleni Stamellou
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Claudia Seikrit
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Peter Boor
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Vladimir Tesař
- Department of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
18
|
Rizk DV, Novak L, Hall SD, Moldoveanu Z, Julian BA, Novak J, Haas M. Colocalization of IgG and IgA Heavy Chains with Kappa and Lambda Light Chains in Glomerular Deposits of IgA Nephropathy Patients Using High-Resolution Confocal Microscopy and Correlation with Oxford MEST-C Scores. J Clin Med 2023; 12:7361. [PMID: 38068413 PMCID: PMC10707091 DOI: 10.3390/jcm12237361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Routine immunofluorescence microscopy of glomerular immunodeposits in IgA nephropathy shows IgA, C3, and lambda light chains, and sometimes IgG, IgM, and kappa light chains. However, a previous study using high-resolution confocal microscopy showed IgG in all IgA nephropathy cases, likely representing autoantibodies specific for galactose-deficient IgA1. Here, we used high-resolution confocal microscopy to examine the composition of glomerular immunodeposits and colocalization of kappa and lambda light chains with IgA or IgG heavy chains in kidney-biopsy samples from twenty patients with IgA nephropathy, seventeen without IgG, and nine with no or trace kappa light chains by routine immunofluorescence microscopy. IgG was detected in all biopsies by high-resolution confocal microscopy. Single-optical-plane images showed similar colocalization of IgG heavy chains with kappa and lambda light chains. Colocalization of IgA heavy chains was greater with lambda light chains than with kappa light chains. Colocalization of IgG heavy chain with kappa light chains was higher than with lambda light chains in biopsies with endocapillary hypercellularity and crescents, i.e., biopsies with active lesions. We confirmed the utility of high-resolution confocal microscopy to detect components of glomerular immunodeposits not apparent on routine immunofluorescence microscopy and for colocalization of different components, potentially clarifying the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- Dana V. Rizk
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (L.N.); (S.D.H.); (Z.M.); (J.N.)
| | - Stacy D. Hall
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (L.N.); (S.D.H.); (Z.M.); (J.N.)
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (L.N.); (S.D.H.); (Z.M.); (J.N.)
| | - Bruce A. Julian
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (L.N.); (S.D.H.); (Z.M.); (J.N.)
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (L.N.); (S.D.H.); (Z.M.); (J.N.)
| | - Mark Haas
- Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
19
|
Rajasekaran A, Green TJ, Renfrow MB, Julian BA, Novak J, Rizk DV. Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy. Drugs 2023; 83:1475-1499. [PMID: 37747686 PMCID: PMC10807511 DOI: 10.1007/s40265-023-01940-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and a frequent cause of kidney failure. Currently, the diagnosis necessitates a kidney biopsy, with routine immunofluorescence microscopy revealing IgA as the dominant or co-dominant immunoglobulin in the glomerular immuno-deposits, often with IgG and sometimes IgM or both. Complement protein C3 is observed in most cases. IgAN leads to kidney failure in 20-40% of patients within 20 years of diagnosis and reduces average life expectancy by about 10 years. There is increasing clinical, biochemical, and genetic evidence that the complement system plays a paramount role in the pathogenesis of IgAN. The presence of C3 in the kidney immuno-deposits differentiates the diagnosis of IgAN from subclinical glomerular mesangial IgA deposition. Markers of complement activation via the lectin and alternative pathways in kidney-biopsy specimens are associated with disease activity and are predictive of poor outcome. Levels of select complement proteins in the circulation have also been assessed in patients with IgAN and found to be of prognostic value. Ongoing genetic studies have identified at least 30 loci associated with IgAN. Genes within some of these loci encode complement-system regulating proteins that can interact with immune complexes. The growing appreciation for the central role of complement components in IgAN pathogenesis highlighted these pathways as potential treatment targets and sparked great interest in pharmacological agents targeting the complement cascade for the treatment of IgAN, as evidenced by the plethora of ongoing clinical trials.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd J Green
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Clerc F, Reiding KR, de Haan N, Koeleman CAM, Hipgrave Ederveen AL, Manetti N, Dotz V, Annese V, Wuhrer M. Immunoglobulin A Glycosylation Differs between Crohn's Disease and Ulcerative Colitis. J Proteome Res 2023; 22:3213-3224. [PMID: 37641533 PMCID: PMC10563165 DOI: 10.1021/acs.jproteome.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 08/31/2023]
Abstract
Inflammatory bowel diseases (IBD), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic and relapsing inflammations of the digestive tract with increasing prevalence, yet they have unknown origins or cure. CD and UC have similar symptoms but respond differently to surgery and medication. Current diagnostic tools often involve invasive procedures, while laboratory markers for patient stratification are lacking. Large glycomic studies of immunoglobulin G and total plasma glycosylation have shown biomarker potential in IBD and could help determine disease mechanisms and therapeutic treatment choice. Hitherto, the glycosylation signatures of plasma immunoglobulin A, an important immunoglobulin secreted into the intestinal mucin, have remained undetermined in the context of IBD. Our study investigated the associations of immunoglobulin A1 and A2 glycosylation with IBD in 442 IBD cases (188 CD and 254 UC) and 120 healthy controls by reversed-phase liquid chromatography electrospray-ionization mass spectrometry of tryptic glycopeptides. Differences of IgA O- and N-glycosylation (including galactosylation, bisection, sialylation, and antennarity) between patient groups were associated with the diseases, and these findings led to the construction of a statistical model to predict the disease group of the patients without the need of invasive procedures. This study expands the current knowledge about CD and UC and could help in the development of noninvasive biomarkers and better patient care.
Collapse
Affiliation(s)
- Florent Clerc
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center (LUMC), Postbus 9600, Leiden 2300 RC, The Netherlands
| | - Karli R. Reiding
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center (LUMC), Postbus 9600, Leiden 2300 RC, The Netherlands
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet
Center for Biomolecular Research and Utrecht Institute for Pharmaceutical
Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, Utrecht 3584 CH, The Netherlands
| | - Noortje de Haan
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center (LUMC), Postbus 9600, Leiden 2300 RC, The Netherlands
| | - Carolien A. M. Koeleman
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center (LUMC), Postbus 9600, Leiden 2300 RC, The Netherlands
| | - Agnes L. Hipgrave Ederveen
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center (LUMC), Postbus 9600, Leiden 2300 RC, The Netherlands
| | - Natalia Manetti
- Unit
of Gastroenterology SOD2 (Strutture Organizzative Dipartimentali), Azienda Ospedaliero Universitaria (AOU) Careggi, Florence 50134, Italy
- Gastroenterology
Unit, San Jacopo Hospital, Pistoia 51100, Italy
| | - IBD-BIOM Consortium
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center (LUMC), Postbus 9600, Leiden 2300 RC, The Netherlands
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet
Center for Biomolecular Research and Utrecht Institute for Pharmaceutical
Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, Utrecht 3584 CH, The Netherlands
- Unit
of Gastroenterology SOD2 (Strutture Organizzative Dipartimentali), Azienda Ospedaliero Universitaria (AOU) Careggi, Florence 50134, Italy
- Gastroenterology
Unit, San Jacopo Hospital, Pistoia 51100, Italy
- Unit of Gastroenterology, IRCCS
(Istituto di Ricovero e Cura a Carattere Scientifico−Casa
Sollievo della Sofferenza) Hospital, San Giovanni Rotondo 71013, Italy
- Vita-Salute
San Raffaele University Faculty of Medicine and Surgery, Milano 20132, Italy
- IRCCS
Policlinico San Danato, San Donato
Milanese 20097, Italy
| | - Viktoria Dotz
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center (LUMC), Postbus 9600, Leiden 2300 RC, The Netherlands
| | - Vito Annese
- Unit
of Gastroenterology SOD2 (Strutture Organizzative Dipartimentali), Azienda Ospedaliero Universitaria (AOU) Careggi, Florence 50134, Italy
- Unit of Gastroenterology, IRCCS
(Istituto di Ricovero e Cura a Carattere Scientifico−Casa
Sollievo della Sofferenza) Hospital, San Giovanni Rotondo 71013, Italy
- Vita-Salute
San Raffaele University Faculty of Medicine and Surgery, Milano 20132, Italy
- IRCCS
Policlinico San Danato, San Donato
Milanese 20097, Italy
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center (LUMC), Postbus 9600, Leiden 2300 RC, The Netherlands
| |
Collapse
|
21
|
Lin T, Chen Z, Luo M, Zhao Y, Zeng W, Zheng S, Su T, Zhong Y, Wang S, Jin Y, Hu L, Zhao W, Li J, Wang X, Wu C, Li D, Liu F, Li G, Yang H, Zhang Y. Characterization of site-specific N-glycosylation signatures of isolated uromodulin from human urine. Analyst 2023; 148:5041-5049. [PMID: 37667671 DOI: 10.1039/d3an01018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Uromodulin (Umod, Tamm-Horsfall protein) is the most abundant urinary N-glycoprotein produced exclusively by the kidney. It can form filaments to antagonize the adhesion of uropathogens. However, the site-specific N-glycosylation signatures of Umod in healthy individuals and patients with IgA nephropathy (IgAN) remain poorly understood due to the lack of suitable isolation and analytical methods. In this study, we first presented a simple and fast method based on diatomaceous earth adsorption to isolate Umod. These isolated glycoproteins were digested by trypsin and/or Glu-C. Intact N-glycopeptides with or without HILIC enrichment were analyzed using our developed EThcD-sceHCD-MS/MS. Based on the optimized workflow, we identified a total of 780 unique intact N-glycopeptides (7 N-glycosites and 152 N-glycan compositions) from healthy individuals. As anticipated, these glycosites exhibited glycoform heterogeneity. Almost all N-glycosites were modified completely by the complex type, except for one N-glycosite (N275), which was nearly entirely occupied by the high-mannose type for mediating Umod's antiadhesive activity. Then, we compared the N-glycosylation of Umod between healthy controls (n = 9) and IgAN patients (n = 9). The N-glycosylation of Umod in IgAN patients will drastically decrease and be lost. Finally, we profiled the most comprehensive site-specific N-glycosylation map of Umod and revealed its alterations in IgAN patients. Our method provides a high-throughput workflow for characterizing the N-glycosylation of Umod, which can aid in understanding its roles in physiology and pathology, as well as serving as a potential diagnostic tool for evolution of renal tubular function.
Collapse
Affiliation(s)
- Tianhai Lin
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuo Chen
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengqi Luo
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Wenjuan Zeng
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Shanshan Zheng
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tao Su
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Zhong
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Shisheng Wang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Youmei Jin
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Liqiang Hu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wanjun Zhao
- Division of Thyroid Surgery, Department of General Surgery of Nursing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaxu Li
- School of Nursing, Chengde Medical University, Chengde, Hebei 067000, China
| | - Xuanyi Wang
- Mingde College, Zhangjiakou University, Zhangjiakou, Hebei 075000, China
| | - Changwei Wu
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Dapeng Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Hao Yang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Liu Y, Gong Y, Xu G. The role of mononuclear phagocyte system in IgA nephropathy: pathogenesis and prognosis. Front Immunol 2023; 14:1192941. [PMID: 37529043 PMCID: PMC10390225 DOI: 10.3389/fimmu.2023.1192941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Although the "multiple hits" theory is a widely accepted pathogenesis in IgA nephropathy (IgAN), increasing evidence suggests that the mononuclear/macrophage system plays important roles in the progression of IgAN; however, the exact mechanism is unclear. In the present study, we explored 1,067 patients in 15 studies and found that the number of macrophages per glomerulus was positively related with the degree of hematuria, and the macrophages in the glomeruli were mainly related to mesangial proliferation (M) in renal biopsy. In the tubulointerstitium, macrophages were significantly paralleled to tubulointerstitial α-SMA and NF-kB expression, tubulointerstitial lesion, tubule atrophy/interstitial fibrosis (T), and segmental glomerulosclerosis (S). In the glomeruli and tubulointerstitium, M1 accounted for 85.41% in the M classification according to the Oxford MEST-C, while in the blood, M1 accounted for 100%, and the patients with low CD89+ monocyte mean fluorescence intensity displayed more severe pathological characteristics (S1 and T1-2) and clinical symptoms. M1 (CD80+) macrophages were associated with proinflammation in the acute phase; however, M2 (CD163+) macrophages participated in tissue repair and remodeling, which correlated with chronic inflammation. In the glomeruli, M2 macrophages activated glomerular matrix expansion by secreting cytokines such as IL-10 and tumor necrosis factor-β (TGF-β), and M0 (CD68+) macrophages stimulated glomerular hypercellularity. In the tubulointerstitium, M2 macrophages played pivotal roles in renal fibrosis and sclerosis. It is assumed that macrophages acted as antigen-presenting cells to activate T cells and released diverse cytokines to stimulate an inflammatory response. Macrophages infiltrating glomeruli destroy the integrity of podocytes through the mesangio-podocytic-tubular crosstalk as well as the injury of the tubule.
Collapse
Affiliation(s)
- Yiwen Liu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Mestecky J, Julian BA, Raska M. IgA Nephropathy: Pleiotropic impact of Epstein-Barr virus infection on immunopathogenesis and racial incidence of the disease. Front Immunol 2023; 14:1085922. [PMID: 36865536 PMCID: PMC9973316 DOI: 10.3389/fimmu.2023.1085922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
IgA nephropathy (IgAN) is an autoimmune disease in which poorly galactosylated IgA1 is the antigen recognized by naturally occurring anti-glycan antibodies, leading to formation of nephritogenic circulating immune complexes. Incidence of IgAN displays geographical and racial disparity: common in Europe, North America, Australia, and east Asia, uncommon in African Americans, many Asian and South American countries, Australian Aborigines, and rare in central Africa. In analyses of sera and cells from White IgAN patients, healthy controls, and African Americans, IgAN patients exhibited substantial enrichment for IgA-expressing B cells infected with Epstein-Barr virus (EBV), leading to enhanced production of poorly galactosylated IgA1. Disparities in incidence of IgAN may reflect a previously disregarded difference in the maturation of the IgA system as related to the timing of EBV infection. Compared with populations with higher incidences of IgAN, African Americans, African Blacks, and Australian Aborigines are more frequently infected with EBV during the first 1-2 years of life at the time of naturally occurring IgA deficiency when IgA cells are less numerous than in late childhood or adolescence. Therefore, in very young children EBV enters "non-IgA" cells. Ensuing immune responses prevent infection of IgA B cells during later exposure to EBV at older ages. Our data implicate EBV-infected cells as the source of poorly galactosylated IgA1 in circulating immune complexes and glomerular deposits in patients with IgAN. Thus, temporal differences in EBV primo-infection as related to naturally delayed maturation of the IgA system may contribute to geographic and racial variations in incidence of IgAN.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Laboratory of Cellular and Molecular Immunology Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bruce A. Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| |
Collapse
|
24
|
Si M, Li L, Fang M, Ye Z, Zhang XC, Yang W, Nie L, Yu X. Anomalous kinetics of galactose-deficient IgA incurring nephropathy revealed by cross-scale optical imaging. Kidney Int 2023; 103:320-330. [PMID: 36341730 DOI: 10.1016/j.kint.2022.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022]
Abstract
IgA nephropathy (IgAN) is the most common glomerulonephritis, characterized by the presence of predominant IgA deposits in the mesangium. Deposition of pathogenic IgA in kidney tissue is a fundamental initiating process that has not been fully studied. Here, we employed optical imaging to directly visualize kidney deposition of IgA with optimized spatial and temporal resolution in BALB/c nude mice. Real-time fluorescence imaging revealed that IgA isolated from patients with IgAN preferentially accumulated in the kidneys, compared with IgA purified from healthy individuals. There was no difference in the distribution of either IgA preparation by the liver. Photoacoustic computed tomography dynamically demonstrated and quantified the enhanced retention of pathological IgA in the kidney cortex. Photoacoustic microscopy tracked IgA deposition in the glomeruli with a resolution down to three microns in a mouse model. Notably, longitudinal fluorescent imaging revealed that galactose-deficient IgA (Gd-IgA), which was elevated in the circulation of patients with IgAN, persisted in the kidney for longer than two weeks, and stable deposition of Gd-IgA induced kidney impairment, including albuminuria and mesangial proliferation. Thus, our study highlights that the aberrant kidney depositional kinetics of Gd-IgA is involved in the pathogenesis of IgAN. Hence, cross-scale optical imaging has potential applications in assessing immune-mediated kidney diseases and uncovering underlying mechanisms of disease.
Collapse
Affiliation(s)
- Meijun Si
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lanqing Li
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengting Fang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu-Chao Zhang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Yang
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liming Nie
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Xueqing Yu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
25
|
Nihei Y, Suzuki H, Suzuki Y. Current understanding of IgA antibodies in the pathogenesis of IgA nephropathy. Front Immunol 2023; 14:1165394. [PMID: 37114051 PMCID: PMC10126238 DOI: 10.3389/fimmu.2023.1165394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Immunoglobulin A (IgA) is the most abundant isotype of antibodies, provides a first line of defense at mucosal surfaces against pathogens, and thereby contributes to mucosal homeostasis. IgA is generally considered as a non-inflammatory antibody because of its main function, neutralizing pathogenic virus or bacteria. Meanwhile, IgA can induce IgA-mediated diseases, such as IgA nephropathy (IgAN) and IgA vasculitis. IgAN is characterized by the deposition of IgA and complement C3, often with IgG and/or IgM, in the glomerular mesangial region, followed by mesangial cell proliferation and excessive synthesis of extracellular matrix in glomeruli. Almost half a century has passed since the first report of patients with IgAN; it remains debatable about the mechanism how IgA antibodies selectively bind to mesangial region-a hallmark of IgAN-and cause glomerular injuries in IgAN. Previous lectin- and mass-spectrometry-based analysis have revealed that IgAN patients showed elevated serum level of undergalactosylated IgA1 in O-linked glycans of its hinge region, called galactose-deficient IgA1 (Gd-IgA1). Thereafter, numerous studies have confirmed that the glomerular IgA from IgAN patients are enriched with Gd-IgA1; thus, the first hit of the current pathogenesis of IgAN has been considered to increase circulating levels of Gd-IgA1. Recent studies, however, demonstrated that this aberrant glycosylation alone is not sufficient to disease onset and progression, suggesting that several additional factors are required for the selective deposition of IgA in the mesangial region and induce nephritis. Herein, we discuss the current understanding of the characteristics of pathogenic IgA and its mechanism of inducing inflammation in IgAN.
Collapse
Affiliation(s)
- Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba, Japan
- *Correspondence: Yusuke Suzuki, ; Hitoshi Suzuki,
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- *Correspondence: Yusuke Suzuki, ; Hitoshi Suzuki,
| |
Collapse
|
26
|
Habas E, Ali E, Farfar K, Errayes M, Alfitori J, Habas E, Ghazouani H, Akbar R, Khan F, Al Dab A, Elzouki AN. IgA nephropathy pathogenesis and therapy: Review & updates. Medicine (Baltimore) 2022; 101:e31219. [PMID: 36482575 PMCID: PMC9726424 DOI: 10.1097/md.0000000000031219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most frequent type of primary glomerulonephritis since the first type was described more than four decades ago. It is the prevalent cause of primary glomerular disease that causes end-stage renal disease. In most patients with IgAN, hematuria is the most common reported symptom, particularly in those with a preceding upper respiratory tract infection. Although the pathogenesis of IgAN is usually multifactorial, autoimmune complex formation and inflammatory processes are the most widely recognized pathogenic mechanisms. Multiple approaches have been trialed as a therapy for IgAN, including tonsillectomy, steroids, other immune-suppressive therapy in different regimens, and kidney transplantation. AIM AND METHOD PubMed, Google, Google Scholar, Scopus, and EMBASE were searched by the authors using different texts, keywords, and phrases. A non-systemic clinical review is intended to review the available data and clinical updates about the possible mechanism(s) of IgAN pathogenesis and treatments. CONCLUSION IgAN has a heterogeneous pattern worldwide, making it difficult to understand its pathogenesis and treatment. Proteinuria is the best guide to follow up on the IgAN progression and treatment response. Steroids are the cornerstone of IgAN therapy; however, other immune-suppressive and immune-modulative agents are used with a variable response rate. Kidney transplantation is highly advisable for IgAN patients, although the recurrence rate is high. Finally, IgAN management requires collaborative work between patients and their treating physicians for safe long-term outcomes.
Collapse
Affiliation(s)
- Elmukhtar Habas
- Hamad General Medicine, Doha, Qatar
- *Correspondence: Elmukhtar Habas, Internal Medicine, Hamad Medical Corporation, AL-Rayyan Road, PO Box 3050, Doha, Qatar (e-mail: )
| | - Elrazi Ali
- Hamad General Hospital, Medicine Department, Doha, Qatar
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Development of an enrichment-free one-pot sample preparation and ultra-high performance liquid chromatography-tandem mass spectrometry method to identify Immunoglobulin A1 hinge region O-glycoforms for Immunoglobulin A nephropathy. J Chromatogr A 2022; 1685:463589. [DOI: 10.1016/j.chroma.2022.463589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/24/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
|
28
|
Mucosal Immune System Dysregulation in the Pathogenesis of IgA Nephropathy. Biomedicines 2022; 10:biomedicines10123027. [PMID: 36551783 PMCID: PMC9775168 DOI: 10.3390/biomedicines10123027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The mucosal immune system, via a dynamic immune network, serves as the first line of defense against exogenous antigens. Mucosal immune system dysregulation is closely associated with the pathogenesis of immunoglobulin A nephropathy (IgAN), as illustrated by IgAN having the clinical feature of gross hematuria, often concurrent with mucosal infections. Notably, previous studies have demonstrated the efficacy of tonsillectomy and found that a targeted-release formulation of budesonide reduced proteinuria in patients with IgAN. However, it remains unclear how exogenous antigens interact with the mucosal immune system to induce or exacerbate IgAN. Thus, in this review, we focus on the dysregulation of mucosal immune response in the pathogenesis of IgAN.
Collapse
|
29
|
Luvizotto MJ, Menezes-Silva L, Woronik V, Monteiro RC, Câmara NOS. Gut-kidney axis in IgA nephropathy: Role on mesangial cell metabolism and inflammation. Front Cell Dev Biol 2022; 10:993716. [PMID: 36467425 PMCID: PMC9715425 DOI: 10.3389/fcell.2022.993716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2023] Open
Abstract
IgA Nephropathy (IgAN) is the commonest primary glomerular disease around the world and represents a significant cause of end-stage renal disease. IgAN is characterized by mesangial deposition of IgA-immune complexes and mesangial expansion. The pathophysiological process includes an abnormally glycosylated IgA1, which is an antigenic target. Autoantibodies specifically recognize galactose-deficient IgA1 forming immune complexes that are amplified in size by the soluble IgA Fc receptor CD89 leading to deposition in the mesangium through interaction with non-classical IgA receptors. The local production of cytokines promotes local inflammation and complement system activation, besides the stimulation of mesangial proliferation. The spectrum of clinical manifestations is quite variable from asymptomatic microscopic hematuria to rapidly progressive glomerulonephritis. Despite all the advances, the pathophysiology of the disease is still not fully elucidated. The mucosal immune system is quoted to be a factor in triggering IgAN and a "gut-kidney axis" is proposed in its development. Furthermore, many recent studies have demonstrated that food intake interferes directly with disease prognosis. In this review, we will discuss how mucosal immunity, microbiota, and nutritional status could be interfering directly with the activation of intrinsic pathways of the mesangial cells, directly resulting in changes in their function, inflammation and development of IgAN.
Collapse
Affiliation(s)
- Mateus Justi Luvizotto
- Department of Nephrology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Luísa Menezes-Silva
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Viktoria Woronik
- Department of Nephrology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Renato C. Monteiro
- Centre de Recherche sur l’Inflammation, INSERM and CNRS, Université Paris Cité, Paris, France
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Fang Y, You XF, Wang QH, Li JH, Huang Y. High value of early secretory antigenic target-6 and culture filtrate protein-10 in diagnosis of IgA nephropathy with renal tuberculosis: a retrospective study. Am J Med Sci 2022; 364:638-645. [PMID: 35777424 DOI: 10.1016/j.amjms.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND This retrospective study aimed to evaluate the diagnostic value of early secretory antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) in immunoglobulin A nephropathy (IgAN) associated with renal tuberculosis (RT). METHODS Forty patients with IgAN (IgAN group), 32 patients with RT (RT group), and 52 patients with IgAN associated with RT (IgAN + RT group) were retrospectively selected for this study. A tuberculin skin test (TST) was conducted, and Mycobacterium tuberculosis (MTB) antibody levels were measured. Immunohistochemistry and western blotting were used to determine the expression of ESAT-6 and CFP-10 proteins in renal tissues. RESULTS The positive results of TST and levels of serum and urinary MTB antibodies were higher in the RT group than in the IgAN + RT group. The expression levels of ESAT-6 and CFP-10 proteins were the highest in the IgAN + RT group and lowest in the IgAN group. The receiver operating characteristic curves indicated that the area under curve (AUC) value of the ESAT-6 protein for the diagnosis of IgAN associated with RT was 0.907 and the cut-off value of the integral optical density (IOD) was 26.72. Diagnosis based on ESAT-6 protein levels showed 75% sensitivity and 94.2% specificity. The AUC value of the CFP-10 protein for the diagnosis of IgAN associated with RT was 0.8 and the cut-off value of IOD was 25.67. Detection based on CFP-10 protein levels showed 63.9% sensitivity and 84.6% specificity. CONCLUSIONS Our study provides evidence for the potential of ESAT-6 and CFP-10 proteins as candidate markers in the diagnosis of IgAN associated with RT.
Collapse
Affiliation(s)
- Yong Fang
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| | - Xiao-Fang You
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China.
| | - Qing-Hui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200438, P.R. China
| | - Jun-Hui Li
- Department of Nephrology, The Sixth People`s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P.R. China
| | - Yan Huang
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P.R. China
| |
Collapse
|
31
|
Argentova V, Aliev T, Dolgikh D, Pakanová Z, Katrlík J, Kirpichnikov M. Features, modulation and analysis of glycosylation patterns of therapeutic recombinant immunoglobulin A. Biotechnol Genet Eng Rev 2022; 38:247-269. [PMID: 35377278 DOI: 10.1080/02648725.2022.2060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increasing the production of recombinant antibodies while ensuring high and stable protein quality remains a challenge in mammalian cell culture. This review is devoted to advances in the field of obtaining stable and optimal glycosylation of therapeutic antibodies based on IgA, as well as the subsequent issues of glycosylation control of glycoproteins during their production. Current studies also demonstrate a general need for a more fundamental understanding of the use of CHO cell-based producer cell lines, through which the glycoprofile of therapeutic IgA antibodies is produced and the dependence of glycosylation on culture conditions could be controlled. Optimization of glycosylation improves the therapeutic efficacy and can expand the possibilities for the creation of highly effective glycoprotein therapeutic drugs. Current status and trends in glycan analysis of therapeutic IgA, dominantly based on mass spectrometry and lectin microarrays are herein summarised as well.
Collapse
Affiliation(s)
- Victoria Argentova
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Teimur Aliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Dolgikh
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mikhail Kirpichnikov
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| |
Collapse
|
32
|
Reily C, Rice T, Crossman DK, Rizk DV. Phosphatase control of cytokine-mediated overproduction of galactose-deficient IgA1, the main autoantigen in IgA nephropathy. J Autoimmun 2022; 132:102883. [PMID: 35987175 PMCID: PMC9675727 DOI: 10.1016/j.jaut.2022.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022]
Abstract
IgA nephropathy (IgAN) is an autoimmune disease characterized by the deposition of galactose-deficient IgA1 (Gd-IgA1)-containing immune complexes in the kidneys. Elevated serum levels of Gd-IgA1, the main autoantigen in IgAN, are associated with mucosal infections and poor renal outcome in IgAN patients, but little is known about the activation of IgA1-secreting cells overproducing this autoantigen. We found that in peripheral blood mononuclear cells (PBMCs), cytokine stimulation elevated Gd-IgA1 production in B cells from IgAN patients but not in those from healthy controls (p < 0.01). These results were replicated in immortalized B cells derived from PBMCs of IgAN patients and healthy controls. Using single-cell transcriptomics, we identified subsets of IgA1-secreting cells from IgAN patients, but not from healthy controls, with decreased expression of C1GALT1 in response to cytokine stimulation. The C1GALT1-encoded glycosyltransferase is responsible for addition of galactose to IgA1 O-glycans, and its reduced activity is associated with elevated serum levels of Gd-IgA1. These newly identified subsets of IgA1-secreting cells with reduced C1GALT1 expression exhibited reduced expression of several genes related to cytokine-mediated signaling, including those encoding phosphatases, such as SOCS1. siRNA knock-down of SOCS1, and the related SOCS3, increased Gd-IgA1 production in cells derived from PBMCs of healthy controls, indicating a role of these regulators in abnormal cytokine signaling and Gd-IgA1 overproduction. These results revealed that specific subsets of IgA1-secreting cells may be responsible for autoantigen production in IgAN due to abnormal regulation of cytokine-mediated signaling, a process that may occur in inflammatory responses in IgAN patients.
Collapse
Affiliation(s)
- Colin Reily
- Department of Medicine, Division of Nephrology, University of Alabama, Birmingham, USA; Department of Microbiology, University of Alabama at Birmingham, USA.
| | - Terri Rice
- Department of Medicine, Division of Nephrology, University of Alabama, Birmingham, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana V Rizk
- Department of Medicine, Division of Nephrology, University of Alabama, Birmingham, USA
| |
Collapse
|
33
|
Du W, Gao CY, You X, Li L, Zhao ZB, Fang M, Ye Z, Si M, Lian ZX, Yu X. Increased proportion of follicular helper T cells is associated with B cell activation and disease severity in IgA nephropathy. Front Immunol 2022; 13:901465. [PMID: 35983053 PMCID: PMC9381139 DOI: 10.3389/fimmu.2022.901465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis, characterized by glomerular deposition of IgA immune complexes, mainly produced by B cells under the regulation of CD4+T cells. However, the alterations of specific CD4+T cell subsets and the mechanism of B cells activation in IgAN remain unclear. Therefore, we aimed to investigate the landscape characteristics and role of CD4+T cells in the progression of IgAN. We identified that the proportion of Th2, Th17 and Tfh (follicular helper T) cells in patients with IgAN was significantly higher than that of healthy controls (P < 0.05). Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) showed that Th cells and B cells in patients with IgAN were more activated. Correspondingly, multiplex immunohistochemistry staining of renal biopsy showed increased infiltration of CD4+T and B cells in the kidneys of patients with IgAN. The degree of infiltration was positively correlated with the degree of renal damage. Interestingly, the proportion of Tfh cells in peripheral blood was positively correlated with the severity of proteinuria. Moreover, the proximity position of Tfh cells and B cells suggested that cell-cell interactions between Tfh and B cells were happening in situ. Intercellular communication analysis also showed enhanced interaction between Tfh cells and B cells in IgAN. Our findings suggested that Tfh cells of patients possibly contributed to the progression of IgAN by activating B cells via cell-cell interactions and TNFSF14-TNFRSF14 may be an underlying signaling pathway.
Collapse
Affiliation(s)
- Wanshan Du
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cai-Yue Gao
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xing You
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Liang Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Bin Zhao
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengting Fang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Meijun Si
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| | - Zhe-Xiong Lian
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xueqing Yu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
- *Correspondence: Xueqing Yu,
| |
Collapse
|
34
|
Suzuki H, Novak J. Special Issue: New Insights into the Pathogenesis and Therapies of IgA Nephropathy. J Clin Med 2022; 11:jcm11154378. [PMID: 35955995 PMCID: PMC9369139 DOI: 10.3390/jcm11154378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 02/07/2023] Open
Affiliation(s)
- Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
- Correspondence: (H.S.); (J.N.)
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (H.S.); (J.N.)
| |
Collapse
|
35
|
Person T, King RG, Rizk DV, Novak J, Green TJ, Reily C. Cytokines and Production of Aberrantly O-Glycosylated IgA1, the Main Autoantigen in IgA Nephropathy. J Interferon Cytokine Res 2022; 42:301-315. [PMID: 35793525 PMCID: PMC9536348 DOI: 10.1089/jir.2022.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis worldwide, with no disease-specific treatment and up to 40% of patients progressing to kidney failure. IgA nephropathy (IgAN), characterized by IgA1-containing immunodeposits in the glomeruli, is considered to be an autoimmune disease in which the kidneys are injured as innocent bystanders. Glomerular immunodeposits are thought to originate from the circulating immune complexes that contain aberrantly O-glycosylated IgA1, the main autoantigen in IgAN, bound by IgG autoantibodies. A common clinical manifestation associated with IgAN includes synpharyngitic hematuria at disease onset or during disease activity. This observation suggests a connection of disease pathogenesis with an activated mucosal immune system of the upper-respiratory and/or gastrointestinal tract and IgA1 glycosylation. In fact, some cytokines can enhance production of aberrantly O-glycosylated IgA1. This process involves abnormal cytokine signaling in IgA1-producing cells from patients with IgAN. In this article, we present our view of pathogenesis of IgAN and review how some cytokines can contribute to the disease process by enhancing production of aberrantly glycosylated IgA1. We also review current clinical trials of IgAN based on cytokine-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Taylor Person
- Department of Microbiology and Birmingham, Alabama, USA
| | - R. Glenn King
- Department of Microbiology and Birmingham, Alabama, USA
| | - Dana V. Rizk
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jan Novak
- Department of Microbiology and Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology and Birmingham, Alabama, USA
| | - Colin Reily
- Department of Microbiology and Birmingham, Alabama, USA
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
36
|
Linke A, Tiegs G, Neumann K. Pathogenic T-Cell Responses in Immune-Mediated Glomerulonephritis. Cells 2022; 11:cells11101625. [PMID: 35626662 PMCID: PMC9139939 DOI: 10.3390/cells11101625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Glomerulonephritis (GN) comprises a group of immune-mediated kidney diseases affecting glomeruli and the tubulointerstitium. Glomerular crescent formation is a histopathological characteristic of severe forms of GN, also referred to as crescentic GN (cGN). Based on histological findings, cGN includes anti-neutrophil cytoplasmic antibody (ANCA)-associated GN, a severe form of ANCA-associated vasculitis, lupus nephritis associated with systemic lupus erythematosus, Goodpasture’s disease, and IgA nephropathy. The immunopathogenesis of cGN is associated with activation of CD4+ and CD8+ T cells, which particularly accumulate in the periglomerular and tubulointerstitial space but also infiltrate glomeruli. Clinical observations and functional studies in pre-clinical animal models provide evidence for a pathogenic role of Th1 and Th17 cell-mediated immune responses in cGN. Emerging evidence further argues that CD8+ T cells have a role in disease pathology and the mechanisms of activation and function of recently identified tissue-resident CD4+ and CD8+ T cells in cGN are currently under investigation. This review summarizes the mechanisms of pathogenic T-cell responses leading to glomerular damage and renal inflammation in cGN. Advanced knowledge of the underlying immune mechanisms involved with cGN will enable the identification of novel therapeutic targets for the replacement or reduction in standard immunosuppressive therapy or the treatment of refractory disease.
Collapse
Affiliation(s)
- Alexandra Linke
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| |
Collapse
|
37
|
Hastings MC, Rizk DV, Kiryluk K, Nelson R, Zahr RS, Novak J, Wyatt RJ. IgA vasculitis with nephritis: update of pathogenesis with clinical implications. Pediatr Nephrol 2022; 37:719-733. [PMID: 33818625 PMCID: PMC8490493 DOI: 10.1007/s00467-021-04950-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
IgA vasculitis with nephritis (IgAVN) shares many pathogenetic features with IgA nephropathy (IgAN). The purpose of this review is to describe our current understanding of the pathogenesis of pediatric IgAVN, particularly as it relates to the four-hit hypothesis for IgAN. These individual steps, i.e., hits, in the pathogenesis of IgAN are (1) elevated production of IgA1 glycoforms with some O-glycans deficient in galactose (galactose-deficient IgA1; Gd-IgA1), (2) generation of circulating IgG autoantibodies specific for Gd-IgA1, (3) formation of pathogenic circulating Gd-IgA1-containing immune complexes, and (4) kidney deposition of the Gd-IgA1-IgG immune complexes from the circulation and induction of glomerular injury. Evidence supporting the four-hit hypothesis in the pathogenesis of pediatric IgAVN is detailed. The genetics, pediatric outcomes, and kidney histopathologic features and the impact of these findings on future treatment and potential biomarkers are discussed. In summary, the evidence points to the critical roles of Gd-IgA1-IgG immune complexes and complement activation in the pathogenesis of IgAVN. Future studies are needed to characterize the features of the immune and autoimmune responses that enable progression of IgA vasculitis to IgAVN.
Collapse
Affiliation(s)
- M Colleen Hastings
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute at the Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Dana V Rizk
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Raoul Nelson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Rima S Zahr
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute at the Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert J Wyatt
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA.
- Children's Foundation Research Institute at the Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
38
|
Ebefors K, Bergwall L, Nyström J. The Glomerulus According to the Mesangium. Front Med (Lausanne) 2022; 8:740527. [PMID: 35155460 PMCID: PMC8825785 DOI: 10.3389/fmed.2021.740527] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
The glomerulus is the functional unit for filtration of blood and formation of primary urine. This intricate structure is composed of the endothelium with its glycocalyx facing the blood, the glomerular basement membrane and the podocytes facing the urinary space of Bowman's capsule. The mesangial cells are the central hub connecting and supporting all these structures. The components as a unit ensure a high permselectivity hindering large plasma proteins from passing into the urine while readily filtering water and small solutes. There has been a long-standing interest and discussion regarding the functional contribution of the different cellular components but the mesangial cells have been somewhat overlooked in this context. The mesangium is situated in close proximity to all other cellular components of the glomerulus and should be considered important in pathophysiological events leading to glomerular disease. This review will highlight the role of the mesangium in both glomerular function and intra-glomerular crosstalk. It also aims to explain the role of the mesangium as a central component involved in disease onset and progression as well as signaling to maintain the functions of other glomerular cells to uphold permselectivity and glomerular health.
Collapse
Affiliation(s)
- Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lovisa Bergwall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Nagasawa Y, Misaki T, Ito S, Naka S, Wato K, Nomura R, Matsumoto-Nakano M, Nakano K. Title IgA Nephropathy and Oral Bacterial Species Related to Dental Caries and Periodontitis. Int J Mol Sci 2022; 23:725. [PMID: 35054910 PMCID: PMC8775524 DOI: 10.3390/ijms23020725] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
A relationship between IgA nephropathy (IgAN) and bacterial infection has been suspected. As IgAN is a chronic disease, bacteria that could cause chronic infection in oral areas might be pathogenetic bacteria candidates. Oral bacterial species related to dental caries and periodontitis should be candidates because these bacteria are well known to be pathogenic in chronic dental disease. Recently, several reports have indicated that collagen-binding protein (cnm)-(+) Streptococcs mutans is relate to the incidence of IgAN and the progression of IgAN. Among periodontal bacteria, Treponema denticola, Porphyromonas gingivalis and Campylobacte rectus were found to be related to the incidence of IgAN. These bacteria can cause IgAN-like histological findings in animal models. While the connection between oral bacterial infection, such as infection with S. mutans and periodontal bacteria, and the incidence of IgAN remains unclear, these bacterial infections might cause aberrantly glycosylated IgA1 in nasopharynx-associated lymphoid tissue, which has been reported to cause IgA deposition in mesangial areas in glomeruli, probably through the alteration of microRNAs related to the expression of glycosylation enzymes. The roles of other factors related to the incidence and progression of IgA, such as genes and cigarette smoking, can also be explained from the perspective of the relationship between these factors and oral bacteria. This review summarizes the relationship between IgAN and oral bacteria, such as cnm-(+) S. mutans and periodontal bacteria.
Collapse
Affiliation(s)
- Yasuyuki Nagasawa
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Hyogo, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu 430-8558, Shizuoka, Japan;
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu 433-8558, Shizuoka, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Gifu Hospital, Kakamigahara 502-0817, Gifu, Japan;
| | - Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Kaoruko Wato
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Okayama, Japan; (S.N.); (M.M.-N.)
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral Infection and Disease Control, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (K.W.); (R.N.); (K.N.)
| |
Collapse
|
40
|
Zhang Y, Zheng S, Mao Y, Cao W, Zhao L, Wu C, Cheng J, Liu F, Li G, Yang H. Systems analysis of plasma IgG intact N-glycopeptides from patients with chronic kidney diseases via EThcD-sceHCD-MS/MS. Analyst 2021; 146:7274-7283. [PMID: 34747425 DOI: 10.1039/d1an01657a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunoglobulin G (IgG) molecules modulate an immune response. However, site-specific N-glycosylation signatures of plasma IgG in patients with chronic kidney disease (CKD) remain unclear. This study aimed to propose a novel method to explore the N-glycosylation pattern of IgG and to compare it with reported methods. We separated human plasma IgG from 58 healthy controls (HC) and 111 patients with CKD. Purified IgG molecules were digested by trypsin. Tryptic peptides without enrichment of intact N-glycopeptides were analyzed using a combination of electron-transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) mass spectrometry (EThcD-sceHCD-MS/MS). This resulted in higher spectral quality, more informative fragment ions, higher Byonic score, and nearly twice the depth of intact N-glycopeptide identification than sceHCD or EThcD alone. Site-specific N-glycosylation mapping revealed that intact N-glycopeptides were differentially expressed in HC and CKD patients; thus, it can be a diagnostic tool. This study provides a method for the determination of glycosylation patterns in CKD and a framework for understanding the role of IgG in the pathophysiology of CKD. Data are available via ProteomeXchange with identifier PXD027174.
Collapse
Affiliation(s)
- Yong Zhang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China. .,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Zheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Cao
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lijun Zhao
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changwei Wu
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Hao Yang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China. .,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Wu HHL, Kalra PA, Chinnadurai R. New-Onset and Relapsed Kidney Histopathology Following COVID-19 Vaccination: A Systematic Review. Vaccines (Basel) 2021; 9:1252. [PMID: 34835183 PMCID: PMC8622870 DOI: 10.3390/vaccines9111252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The introduction of COVID-19 vaccination programs has become an integral part of the major strategy to reduce COVID-19 numbers worldwide. New-onset and relapsed kidney histopathology have been reported following COVID-19 vaccination, sparking debate on whether there are causal associations. How these vaccines achieve an immune response to COVID-19 and the mechanism that this triggers kidney pathology remains unestablished. We describe the results of a systematic review for new-onset and relapsed kidney histopathology following COVID-19 vaccination. METHODS A systematic literature search of published data up until 31 August 2021 was completed through the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guideline. Research articles reporting new onset or relapsed kidney histopathology in adult patients (>18 years) following COVID-19 vaccination were included for qualitative review. Only full-text articles published in the English language were selected for review. RESULTS Forty-eight cases from thirty-six articles were included in the qualitative synthesis of this systematic review. Minimal change disease (19 cases) was the most frequent pathology observed, followed by IgA nephropathy (14 cases) and vasculitis (10 cases). Other cases include relapse of membranous nephropathy, acute rejection of kidney transplant, relapse of IgG4 nephritis, new-onset renal thrombotic microangiopathy, and scleroderma renal crisis following COVID-19 vaccination. There was no mortality reported in any of the included cases. Patients in all but one case largely recovered and did not require long-term renal replacement therapy. CONCLUSION This systematic review provides insight into the relationship between various kidney pathologies that may have followed COVID-19 vaccination. Despite these reported cases, the protective benefits offered by COVID-19 vaccination far outweigh its risks. It would be recommended to consider early biopsy to identify histopathology amongst patients presenting with symptoms relating to new-onset kidney disease following vaccination and to monitor symptoms for those with potential relapsed disease.
Collapse
Affiliation(s)
- Henry H. L. Wu
- Department of Renal Medicine, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (P.A.K.); (R.C.)
| | - Philip A. Kalra
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (P.A.K.); (R.C.)
- Department of Renal Medicine, Salford Royal Hospital, Northern Care Alliance Foundation Trust, Salford M6 8HD, UK
| | - Rajkumar Chinnadurai
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (P.A.K.); (R.C.)
- Department of Renal Medicine, Salford Royal Hospital, Northern Care Alliance Foundation Trust, Salford M6 8HD, UK
| |
Collapse
|
42
|
Soluble CD89 is a critical factor for mesangial proliferation in childhood IgA nephropathy. Kidney Int 2021; 101:274-287. [PMID: 34756952 DOI: 10.1016/j.kint.2021.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
Childhood IgA nephropathy (IgAN) includes a wide spectrum of clinical presentations, from isolated hematuria to acute nephritis with rapid loss of kidney function. IgAN is an autoimmune disease and its pathogenesis involves galactose deficient (Gd) IgA1, IgG anti-Gd-IgA1 autoantibodies and the soluble IgA Fc receptor (CD89). However, implication of such factors, notably soluble CD89, in childhood IgAN pathogenesis remains unclear. Here, we studied these biomarkers in a cohort of 67 patients with childhood IgAN and 42 pediatric controls. While Gd-IgA1 was only moderately increased in patient plasma, levels of circulating IgA complexes (soluble CD89-IgA and IgG-IgA) and free soluble CD89 were markedly increased in childhood IgAN. Soluble CD89-IgA1 complexes and free soluble CD89 correlated with proteinuria, as well as histological markers of disease activity: mesangial, endocapillary hypercellularity and cellular crescents. Soluble CD89 was found in patient's urine but not in urine from pediatric controls. Mesangial deposits of soluble CD89 were detected in biopsies from patients with childhood IgAN. Serum chromatographic fractions containing covalently linked soluble CD89-IgA1 complexes or free soluble CD89 from patients induced mesangial cell proliferation in vitro in a soluble CD89-dependent manner. Recombinant soluble CD89 induced mesangial cell proliferation in vitro which was inhibited by free soluble recombinant CD71 (also a mesangial IgA receptor) or mTOR blockers. Interestingly, injection of recombinant soluble CD89 induced marked glomerular proliferation and proteinuria in mice expressing human IgA1. Thus, free and IgA1-complexed soluble CD89 are key players in mesangial proliferation. Hence, our findings suggest that soluble CD89 plays an essential role in IgAN pathogenesis making it a potential biomarker and therapeutic target.
Collapse
|
43
|
The relationship between glomerular IgG staining and poor prognostic findings in patients with IgA nephropathy: the data from TSN-GOLD working group. BMC Nephrol 2021; 22:352. [PMID: 34711174 PMCID: PMC8555045 DOI: 10.1186/s12882-021-02560-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022] Open
Abstract
Background Galactose-deficient IgA1 (Gd-IgA1) has an increased tendency to form immunocomplexes with IgG in the serum, contributing to IgAN pathogenesis by accumulating in the glomerular mesangium. Several studies showed that glomerular IgG deposition in IgAN is an important cause of mesangial proliferation and glomerular damage. This study aims to determine the association of the positivity of IgG and the intensity of IgG staining with a poor renal prognosis. Methods A total of 943 IgAN patients were included in the study. Glomerular IgG staining negative and positive patients were compared using Oxford classification scores, histopathological evaluations, proteinuria, eGFR, albumin, blood pressures. IgG positive patients were classified as (+), (++), (+++) based on their staining intensity, and the association with the prognostic criteria was also evaluated. Results 81% (n = 764) of the patients were detected as IgG negative, while 19% (n = 179) were positive. Age, gender, body mass index, blood pressure, proteinuria, eGFR, uric acid values were similar in IgG positive and negative patients who underwent biopsy (p > 0.05). Intensity of glomerular IgG positivity was not found to be associated with diastolic and systolic blood pressure, urea, uric acid, age, eGFR, albumin, proteinuria (p > 0.05 for all, r = − 0.084, r = − 0.102, r = − 0.006, r = 0.062, r = 0.014, r = − 0.044, r = − 0.061, r = − 0.066, r = 0.150, respectively). There was no difference for histopathological findings between IgG (+), IgG (++), IgG (+++) groups (for all, p > 0.05). Conclusion Glomerular IgG negativity and positivity detected by routine IFM in IgAN patients is not associated with poor renal prognostic risk factors.
Collapse
|
44
|
Lai L, Liu S, Azrad M, Hall S, Hao C, Novak J, Julian BA, Novak L. IgA Vasculitis with Nephritis in Adults: Histological and Clinical Assessment. J Clin Med 2021; 10:4851. [PMID: 34768371 PMCID: PMC8584405 DOI: 10.3390/jcm10214851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with IgA vasculitis (IgAV), an immune complex-mediated disease, may exhibit kidney involvement-IgAV with nephritis (IgAVN). The kidney-biopsy histopathologic features of IgAVN are similar to those of IgA nephropathy, but little is known about histopathologic disease severity based on the interval between purpura onset and diagnostic kidney biopsy. We assessed kidney histopathology and clinical and laboratory data in a cohort of adult patients with IgAVN (n = 110). The cases were grouped based on the interval between the onset of purpura and kidney biopsy: Group 1 (G1, <1 month, n = 14), Group 2 (G2, 1-6 months, n = 58), and Group 3 (G3, >6 months, n = 38). Glomerular leukocytes were more common in G1 than in the other groups (p = 0.0008). The proportion of neutrophils among peripheral-blood leukocytes was the highest in the patients biopsied within a month after onset of purpura (G1: 71 ± 8%). In the patients with an interval >6 months, the neutrophil proportion was lower, 60%. Moreover, the glomerular mesangial proliferation score correlated with the serum total IgA concentration (p = 0.0056). In conclusion, IgAVN patients biopsied <1 month from purpura onset showed an elevated percentage of blood neutrophils and glomerular leukocytes, consistent with an acute-onset inflammatory reaction. In all IgAVN patients, the mesangial proliferation score correlated with the serum IgA level.
Collapse
Affiliation(s)
- Lingyun Lai
- Division of Nephrology, Fudan University Huashan Hospital, Shanghai 200040, China; (L.L.); (S.L.); (C.H.)
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.H.); (J.N.)
| | - Shaojun Liu
- Division of Nephrology, Fudan University Huashan Hospital, Shanghai 200040, China; (L.L.); (S.L.); (C.H.)
| | - Maria Azrad
- Department of Nutrition, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Stacy Hall
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.H.); (J.N.)
| | - Chuanming Hao
- Division of Nephrology, Fudan University Huashan Hospital, Shanghai 200040, China; (L.L.); (S.L.); (C.H.)
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.H.); (J.N.)
| | - Bruce A. Julian
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lea Novak
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
45
|
Zhang Z, Zhang Y, Zhang H. IgA Nephropathy: A Chinese Perspective. GLOMERULAR DISEASES 2021; 2:30-41. [PMID: 36751266 PMCID: PMC9677733 DOI: 10.1159/000520039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022]
Abstract
Background IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and remains a leading cause of chronic kidney disease and end-stage renal disease. The disease prevalence, clinical and pathological phenotypes, the underlying pathogenic molecular mechanisms, and the response to treatments are highly heterogeneous in different ethnic populations, which raise the concern that IgAN may differ across different parts of the world. Summary From a Chinese perspective, we stated the disease burden of IgAN, summarized genome-wide association studies and research into pathological molecules, and compared them with findings based on other populations. The emerging biomarkers, indigenous clinical trials, and major challenges for Chinese researchers and nephrologists in studying IgAN are also discussed. Key Messages In this review, we described a higher risk of major susceptible loci in mucosal immunity, IgA production, and complement activation pathways in Chinese patients with IgAN. With our understanding of the pathogenesis of IgAN, novel biomarkers are emerging. Although there are challenges for conducting high-quality clinical trials in China, it is still feasible to conduct innovative and well-designed studies of IgAN. In the future, international collaborations on research infrastructure would be helpful to advance clinical and basic research in China.
Collapse
Affiliation(s)
- Zhao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,Institute of Nephrology, Peking University, Beijing, China,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,Institute of Nephrology, Peking University, Beijing, China,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China,Institute of Nephrology, Peking University, Beijing, China,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China,*Hong Zhang,
| |
Collapse
|
46
|
Scionti K, Molyneux K, Selvaskandan H, Barratt J, Cheung CK. New Insights into the Pathogenesis and Treatment Strategies in IgA Nephropathy. GLOMERULAR DISEASES 2021; 2:15-29. [PMID: 36751267 PMCID: PMC9677740 DOI: 10.1159/000519973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Background Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide. It is defined by mesangial IgA deposition, with consequent mesangial cell proliferation, inflammation, and tubulointerstitial fibrosis. Summary Approximately 30% of affected patients will progress to end-stage kidney disease within 20 years of diagnosis. Currently, there is no disease-specific treatment available and management recommendations are, in general, limited to optimization of lifestyle measures and use of renin-angiotensin-aldosterone system blockers. More recently, advances in the understanding of the pathogenesis of IgAN have informed the development of novel therapeutic strategies that are now being tested in clinical trials. These have focused on different areas that include modulating the production of poorly galactosylated IgA1, which is central to the development of IgAN, and inhibiting the downstream signaling pathways and complement activation that are triggered following mesangial IgA1 deposition. In this review, we will summarize important pathogenic mechanisms in IgAN and highlight important areas of interest where treatment strategies are being developed. Key messages IgAN is a common form of primary glomerulonephritis for which there is no current approved specific therapy. Recent advances in the understanding of its pathogenesis have led to the development of novel therapies, with the hope that new treatment options will be available soon to treat this condition.
Collapse
Affiliation(s)
- Katrin Scionti
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Karen Molyneux
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom,*Jonathan Barratt,
| | - Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
47
|
Dotz V, Visconti A, Lomax-Browne HJ, Clerc F, Hipgrave Ederveen AL, Medjeral-Thomas NR, Cook HT, Pickering MC, Wuhrer M, Falchi M. O- and N-Glycosylation of Serum Immunoglobulin A is Associated with IgA Nephropathy and Glomerular Function. J Am Soc Nephrol 2021; 32:2455-2465. [PMID: 34127537 PMCID: PMC8722783 DOI: 10.1681/asn.2020081208] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide and is a leading cause of renal failure. The disease mechanisms are not completely understood, but a higher abundance of galactose-deficient IgA is recognized to play a crucial role in IgAN pathogenesis. Although both types of human IgA (IgA1 and IgA2) have several N-glycans as post-translational modification, only IgA1 features extensive hinge-region O-glycosylation. IgA1 galactose deficiency on the O-glycans is commonly detected by a lectin-based method. To date, limited detail is known about IgA O- and N-glycosylation in IgAN. METHODS To gain insights into the complex O- and N-glycosylation of serum IgA1 and IgA2 in IgAN, we used liquid chromatography-mass spectrometry (LC-MS) for the analysis of tryptic glycopeptides of serum IgA from 83 patients with IgAN and 244 age- and sex-matched healthy controls. RESULTS Multiple structural features of N-glycosylation of IgA1 and IgA2 were associated with IgAN and glomerular function in our cross-sectional study. These features included differences in galactosylation, sialylation, bisection, fucosylation, and N-glycan complexity. Moreover, IgA1 O-glycan sialylation was associated with both the disease and glomerular function. Finally, glycopeptides were a better predictor of IgAN and glomerular function than galactose-deficient IgA1 levels measured by lectin-based ELISA. CONCLUSIONS Our high-resolution data suggest that IgA O- and N-glycopeptides are promising targets for future investigations on the pathophysiology of IgAN and as potential noninvasive biomarkers for disease prediction and deteriorating kidney function.
Collapse
Affiliation(s)
- Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Hannah J. Lomax-Browne
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nicholas R. Medjeral-Thomas
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - H. Terence Cook
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, United Kingdom
| |
Collapse
|
48
|
Suzuki H, Novak J. IgA glycosylation and immune complex formation in IgAN. Semin Immunopathol 2021; 43:669-678. [PMID: 34570260 DOI: 10.1007/s00281-021-00883-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022]
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. This disease, discovered in 1968, is characterized by IgA-IgG glomerular immunodeposits with a mesangial pattern. It is thought that these immunodeposits originate from the immune complexes formed in the circulation. It is hypothesized that the pathogenesis of IgAN is driven by aberrant glycoforms of IgA1 (galactose-deficient IgA1, Gd-IgA1). Gd-IgA1, in genetically susceptible individuals, represents the initiating factor for the formation of circulating immune complexes due to its recognition by IgG autoantibodies and the subsequent formation of pathogenic IgA1-IgG immune complexes. Complement activation through alternative and/or lectin pathways is likely playing an important role in the pathogenic properties of these complexes and may further upregulate local inflammatory responses and glomerular injury.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 761A, AL, 35294, Birmingham, USA.
| |
Collapse
|
49
|
Is complement the main accomplice in IgA nephropathy? From initial observations to potential complement-targeted therapies. Mol Immunol 2021; 140:1-11. [PMID: 34601376 DOI: 10.1016/j.molimm.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022]
Abstract
IgA Nephropathy (IgAN) is the main cause of primary glomerulonephritis, globally. This disease is associated with a wide range of clinical presentations, variable prognosis and a spectrum of histological findings. More than fifty years after its first description, this heterogeneity continues to complicate efforts to understand the pathogenesis. Nevertheless, involvement of the complement system in IgAN was identified early on. Dysfunction of the immunoglobulin A (IgA) system, the principal offender in this disease, including modification of isoforms and glycoforms of IgA1, the nature of immune complexes and autoantibodies to galactose deficient IgA1 might all be responsible for complement activation in IgAN. However, the specific mechanisms engaging complement are still under examination. Research in this domain should allow for identification of patients that may benefit from complement-targeted therapy, in the foreseeable future.
Collapse
|
50
|
Pathogenesis of IgA Nephropathy: Current Understanding and Implications for Development of Disease-Specific Treatment. J Clin Med 2021; 10:jcm10194501. [PMID: 34640530 PMCID: PMC8509647 DOI: 10.3390/jcm10194501] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
IgA nephropathy, initially described in 1968 as a kidney disease with glomerular “intercapillary deposits of IgA-IgG”, has no disease-specific treatment and is a common cause of kidney failure. Clinical observations and laboratory analyses suggest that IgA nephropathy is an autoimmune disease wherein the kidneys are damaged as innocent bystanders due to deposition of IgA1-IgG immune complexes from the circulation. A multi-hit hypothesis for the pathogenesis of IgA nephropathy describes four sequential steps in disease development. Specifically, patients with IgA nephropathy have elevated circulating levels of IgA1 with some O-glycans deficient in galactose (galactose-deficient IgA1) and these IgA1 glycoforms are recognized as autoantigens by unique IgG autoantibodies, resulting in formation of circulating immune complexes, some of which deposit in glomeruli and activate mesangial cells to induce kidney injury. This proposed mechanism is supported by observations that (i) glomerular immunodeposits in patients with IgA nephropathy are enriched for galactose-deficient IgA1 glycoforms and the corresponding IgG autoantibodies; (ii) circulatory levels of galactose-deficient IgA1 and IgG autoantibodies predict disease progression; and (iii) pathogenic potential of galactose-deficient IgA1 and IgG autoantibodies was demonstrated in vivo. Thus, a better understanding of the structure–function of these immunoglobulins as autoantibodies and autoantigens will enable development of disease-specific treatments.
Collapse
|