1
|
Wasser-Bennett G, Brown AR, Maynard SK, Owen SF, Tyler CR. Critical insights into the potential risks of antipsychotic drugs to fish, including through effects on behaviour. Biol Rev Camb Philos Soc 2025. [PMID: 40355132 DOI: 10.1111/brv.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Antipsychotic drugs (APDs) are a diverse class of neuroactive pharmaceuticals increasingly detected in surface and ground waters globally. Some APDs are classified as posing a high environmental risk, due, in part, to their tendency to bioaccumulate in wildlife, including fish. Additional risk drivers for APDs relate to their behavioural effects, potentially impacting fitness outcomes. However, standard ecotoxicological tests used in environmental risk assessment (ERA) do not currently account for these mechanisms. In this review, we critically appraise the environmental risks of APDs to fish. We begin by reading-across from human and mammalian effects data to standard ecotoxicological effects endpoints in fish. We then explore the wide range of behaviours suitable for ecotoxicological assessment of APDs (and other neuroactive) pharmaceuticals, principally through laboratory studies with zebrafish, and assess the potential for using these behavioural phenotypes to predict adverse individual- and population-level outcomes in wild fish, taking into account phenotypic plasticity. Next, we illustrate the advantages and challenges of measuring and applying behavioural endpoints for fish, including within current regulatory risk assessments. In our final analysis, the implications of relying on apical endpoints for ERA of neuroactive drugs (including APDs) are assessed and recommendations provided for the development of a more refined and tailored mechanistic approach, which would enable more robust assessment of their environmental risk(s).
Collapse
Affiliation(s)
- Gabrielle Wasser-Bennett
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - A Ross Brown
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - Samuel K Maynard
- AstraZeneca, Global Environment, Macclesfield, Cheshire, SK10 2NA, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire, SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, Devon, UK
| |
Collapse
|
2
|
Vinoth S, Kingston SL, Srinivasan S, Kumarasamy S, Kapitaniak T. Extreme events in gene regulatory networks with time-delays. Sci Rep 2025; 15:13064. [PMID: 40240448 PMCID: PMC12003715 DOI: 10.1038/s41598-025-97268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
This work explores distinct complex dynamics of simplified two nodes of coupled gene regulatory networks with multiple delays in two self-inhibitory and mutually activated genes. We have identified the emergence of extreme events within a specific range of system parameter values. A detailed analysis of the time delay-induced emergence of extreme events is illustrated using bifurcation analysis, two-parameter phase diagrams, return maps, temporal plots, and probability density functions. The reasons behind the advent of extreme events are discussed in detail, with possible analogies to simplified two nodes of gene regulatory networks. The occasional large-amplitude bursting originated in the system via interior crisis-induced intermittency, Pomeau-Manneville intermittency, and the breakdown of quasiperiodic intermittency routes. Additionally, we have used various recurrence quantification statistical measures, such as mean recurrence time, determinism, and recurrence time entropy, to describe the transition from periodic or chaotic to unforeseen large deviations. Our approach shows that the sudden surge of variance and mean recurrence time at the transition points can be used as a new metric to detect the critical transitions of distinct extreme bursting events. The comprehensive overview of the interaction between gene regulatory networks, with insights into the formation of unusual dynamics, is beneficial to grasping different neuronal diseases.
Collapse
Affiliation(s)
- S Vinoth
- Center for Nonlinear and Complex Networks, SRM Institute of Science and Technology, Ramapuram, Chennai, 600 089, India
- Center for Research, SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu, India
| | - S Leo Kingston
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland.
| | - Sabarathinam Srinivasan
- Department of Molecular Analytics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Suresh Kumarasamy
- Centre for Artificial Intelligence, Easwari Engineering College, Chennai, 600 089, India.
- Center for Cognitive Science, Trichy SRM Medical College Hospital and Research Center, Trichy, India.
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland
| |
Collapse
|
3
|
Shimada Y, Aydın B, Kon-Nanjo K, Handayani KS, Gultom VDN, Simakov O, Fahrurrozi, Kon T. Potential of Garra rufa as a novel high-temperature resistant model fish: a review on current and future approaches. ZOOLOGICAL LETTERS 2025; 11:3. [PMID: 40016791 PMCID: PMC11869722 DOI: 10.1186/s40851-025-00249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Garra rufa, commonly known as the "doctor fish", is a freshwater cyprinid native to warm regions of the Middle East. Since the late twentieth century, it has been widely utilized in spas for alternative therapeutics and fish pedicures (or manicures) for dermatological diseases such as psoriasis and eczema. Owing to its unique characteristics, there is growing interest in exploring various applications of G. rufa. This review provides a comprehensive summary of the phylogenetic position, ecology, biological characteristics, and breeding methods of G. rufa, and provides insights into its use as a therapeutic fish. Notably, the ability of G. rufa to thrive in high-temperature environments exceeding 37 °C distinguishes it from other cyprinids and suggests its potential as a model for human diseases, such as human infectious diseases, and in use in cancer xenograft models for high-throughput drug screening. The ongoing genome sequencing project for G. rufa aims to elucidate the mechanisms underlying its high-temperature tolerance and offers valuable genomic resources. These efforts have resulted in significant advances in fish aquaculture, species conservation, and biomedical research.
Collapse
Affiliation(s)
- Yasuhito Shimada
- Mie University Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie, 5148572, Japan.
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 5148572, Japan.
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Baki Aydın
- Department of Aquaculture, Faculty of Fisheries, Akdeniz University, Antalya, 07070, Türkiye
| | - Koto Kon-Nanjo
- Department of Neurosciences and Developmental Biology, University of Vienna, 1030, Vienna, Austria
| | - Kiki Syaputri Handayani
- Research Center for Marine and Land Bioindustry, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Teluk Kodek, Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Victor David Nico Gultom
- Research Center for Marine and Land Bioindustry, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Teluk Kodek, Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, 1030, Vienna, Austria
| | - Fahrurrozi
- Research Center for Marine and Land Bioindustry, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Teluk Kodek, Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Tetsuo Kon
- Department of Neurosciences and Developmental Biology, University of Vienna, 1030, Vienna, Austria
| |
Collapse
|
4
|
Burato A, Legname G. Comparing Prion Proteins Across Species: Is Zebrafish a Useful Model? Mol Neurobiol 2025; 62:832-845. [PMID: 38918277 PMCID: PMC11711791 DOI: 10.1007/s12035-024-04324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Despite the considerable body of research dedicated to the field of neurodegeneration, the gap in knowledge on the prion protein and its intricate involvement in brain diseases remains substantial. However, in the past decades, many steps forward have been taken toward a better understanding of the molecular mechanisms underlying both the physiological role of the prion protein and the misfolding event converting it into its pathological counterpart, the prion. This review aims to provide an overview of the main findings regarding this protein, highlighting the advantages of many different animal models that share a conserved amino acid sequence and/or structure with the human prion protein. A particular focus will be given to the species Danio rerio, a compelling research organism for the investigation of prion biology, thanks to its conserved orthologs, ease of genetic manipulation, and cost-effectiveness of high-throughput experimentation. We will explore its potential in filling some of the gaps on physiological and pathological aspects of the prion protein, with the aim of directing the future development of therapeutic interventions.
Collapse
Affiliation(s)
- Anna Burato
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
5
|
Robles V, Balaguer F, Maicas M, Martínez-Vázquez JM, Martorell P, Tortajada M, Ramón D, Valcarce DG. The Effect of the Combination of Two Postbiotics on Anxiety-like Behavior in Animal Models. Cells 2024; 13:2006. [PMID: 39682754 PMCID: PMC11640140 DOI: 10.3390/cells13232006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
With increasing evidence showing the connections between the microbiome, neurophysiology, and behavior, our research endeavors to investigate whether the consumption of a combination of two postbiotics with antioxidant effects can affect behavior regulation in model species. Here, we worked with a combination (1:1 ratio) of heat-treated Bifidobacterium longum subsp. longum ES1 (CECT7347) and Lacticaseibacillus rhamnosus BPL15 (CECT8361) as a dietary supplement. To examine the potential benefit of using this formulation to alleviate anxiety-like behavior, we employed two model species, Caenorhabditis elegans and adult Danio rerio. In C. elegans, the postbiotic supplementation reduced the anxiety-related behavior analyzed by means of the octanol avoidance test. In zebrafish, the novel tank test indicated a different swimming pattern 2 and 4 months after the animals were fed with the postbiotic combination. While fish did not exhibit any variance in their locomotion parameters such as pace and speed, they showed a statistically significant preference to spend more time in the upper zone of the water tank, a behavior that is correlated with a lower anxiety-like behavior in these species. Our aim with this study is to present evidence that can be used to develop whole-cell postbiotic-based novel and innovative dietary supplements for anxiety-related conditions.
Collapse
Affiliation(s)
- Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain;
| | - Ferran Balaguer
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Miren Maicas
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Juan Manuel Martínez-Vázquez
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004 Santander, Spain;
| | - Patricia Martorell
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Marta Tortajada
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Daniel Ramón
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
- Animal Health and Production, Veterinary Public Health and Food Science and Technology Department Faculty of Veterinary Medicine, University Cardenal Herrera CEU, C/Tirant lo Blanc 7, 46115 Alfara del Patriarca, Spain
| | - David G. Valcarce
- Cell Biology Area, Molecular Biology Department, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain;
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004 Santander, Spain;
| |
Collapse
|
6
|
Ferdous SR, Rojas A, Frank C, Sabatini HM, Luo X, Sharma S, Thummel R, Chouinard C, Dasgupta S. Examining perfluorohexane sulfonate (PFHxS) impacts on sensorimotor and circadian rhythm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617320. [PMID: 39464027 PMCID: PMC11507664 DOI: 10.1101/2024.10.08.617320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Perfluorohexane sulfonate (PFHxS) is a ubiquitous perfluoroalkyl substance known for its environmental persistence and potential toxicity. This study investigated PFHxS's impact on zebrafish embryos, focusing on sensorimotor behavior, circadian rhythm disruption, and underlying molecular mechanisms. Under 24 hr dark incubations, PFHxS exposure induced concentration-dependent hyperactivity within larval photomotor response, characterized by the distinctive "O-bend" response, strong light-phase hyperactive movement and seizure-like movements. It appears that PFHxS-treated embryos cannot sense light cues in a normal manner. Similar hyperactivity was seen for acoustic startle response assay, suggesting that the response is not merely visual, but sensorimotor. LC-MS studies confirmed detectable uptake of PFHxS into embryos. We then conducted mRNA-sequencing across multiple time points (48 and 120 hpf) and concentrations (0.00025, 0.0025 and 25 µM). Data at the 25 µM (2-120 hpf) exposure showed disrupted pathways associated with DNA and cell cycle. Interestingly, data at 0.00025 µM - an environmentally relevant concentration- at 48 hpf showed disruption of MAPK and other signaling pathways. Immunohistochemistry of eyes showed reduced retinal stem cell proliferation, consistent with observed DNA replication pathway disruptions. To assess if these impacts were driven by circadian rhythm development, we manipulated light/dark cycles during PFHxS incubation; this manipulation altered behavioral patterns, implicating circadian rhythm modulation as a target of PFHxS. Since circadian rhythm is modulated by the pineal gland, we ablated the gland using metronidazole; this ablation partially rescued hyperactivity, indicating the gland's role in driving the phenotype. Collectively, these findings underscore proclivity of PFHxS to cause neurodevelopmental toxicity, necessitating further mechanistic exploration and environmental health assessments.
Collapse
|
7
|
Fan YL, Hsu CH, Hsu FR, Liao LD. Exploring the use of deep learning models for accurate tracking of 3D zebrafish trajectories. Front Bioeng Biotechnol 2024; 12:1461264. [PMID: 39386044 PMCID: PMC11463218 DOI: 10.3389/fbioe.2024.1461264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Zebrafish are ideal model organisms for various fields of biological research, including genetics, neural transmission patterns, disease and drug testing, and heart disease studies, because of their unique ability to regenerate cardiac muscle. Tracking zebrafish trajectories is essential for understanding their behavior, physiological states, and disease associations. While 2D tracking methods are limited, 3D tracking provides more accurate descriptions of their movements, leading to a comprehensive understanding of their behavior. In this study, we used deep learning models to track the 3D movements of zebrafish. Videos were captured by two custom-made cameras, and 21,360 images were labeled for the dataset. The YOLOv7 model was trained using hyperparameter tuning, with the top- and side-view camera models trained using the v7x.pt and v7.pt weights, respectively, over 300 iterations with 10,680 data points each. The models achieved impressive results, with an accuracy of 98.7% and a recall of 98.1% based on the test set. The collected data were also used to generate dynamic 3D trajectories. Based on a test set with 3,632 3D coordinates, the final model detected 173.11% more coordinates than the initial model. Compared to the ground truth, the maximum and minimum errors decreased by 97.39% and 86.36%, respectively, and the average error decreased by 90.5%.This study presents a feasible 3D tracking method for zebrafish trajectories. The results can be used for further analysis of movement-related behavioral data, contributing to experimental research utilizing zebrafish.
Collapse
Affiliation(s)
- Yi-Ling Fan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ching-Han Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Fang-Rong Hsu
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
8
|
Li T, Li W, Li F, Lin J, Zhang Y, Zhang Q, Sun Y, Chen X, Zhou S, Li Q. Effects of two chd2-knockout strains on the morphology and behavior in zebrafish. Dev Genes Evol 2024:10.1007/s00427-024-00721-5. [PMID: 39190085 DOI: 10.1007/s00427-024-00721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
The chromodomain helicase DNA binding domain 2 (CHD2) gene is an ATPase and a member of the SNF2-like family of helicase-related enzymes. CHD2 plays critical roles in human brain development and function, and homozygous mutation of Chd2 in mice results in perinatal lethality. To further elucidate the effects of chd2, we used CRISPR/Cas9 to create two chd2-knockout strains (fdu901, 11,979-11982delGGGT, and fdu902, 27350delG) in zebrafish. We found that the deformity and mortality rates of fdu901 and fdu902 were higher than those of the wild type. Developmental delay was more obvious and embryo mortality was higher in fdu901 than in fdu902. However, the embryo deformity rate in fdu902 was higher than that in fdu901. Although there were no significant differences in behavior between the two knockout zebrafish and wild-type zebrafish at 7 days post fertilization (dpf), fdu901 and fdu902 zebrafish showed different alterations. The excitability of fdu902 was higher than that of fdu901. Overall, our data demonstrate that two homozygous chd2 knockout mutations were survivable and could be stably inherited and that fdu901 and fdu902 zebrafish differed in behavior and morphology. These two models might be good tools for understanding the functions of the different domains of chd2.
Collapse
Affiliation(s)
- Tingting Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Wenhui Li
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Fei Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yanhe Sun
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
9
|
Parviainen T, Alexandrou AM, Lapinkero H, Sipilä S, Kujala J. The link between executive skills and neural dynamics during encoding, inhibition, and retrieval of visual information in the elderly. Hum Brain Mapp 2024; 45:e26755. [PMID: 39185717 PMCID: PMC11345698 DOI: 10.1002/hbm.26755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 08/27/2024] Open
Abstract
During aging the inter-individual variability in both the neural and behavioral functions is likely to be emphasized. Decreased competence particularly in working memory and general executive control compromises many aspects of the quality of life also within the nonclinical population. We aimed, first, to clarify the brain basis of visual working memory and inhibition during multi-stage natural-like task performance, and second, to identify associations between variation in task-related neural activity and relevant cognitive skills, namely inhibition and general working memory capacity. We recorded, using magnetoencephalography (MEG), the neural modulations associated with encoding, maintenance, and retrieval, as well as interference suppression during a visual working memory task in older adults. We quantified the neural correlates of these cognitive processes through two complementary approaches: evoked responses and oscillatory activity. Neural activity during memory retrieval and interference suppression were correlated with behavioral measures of task switching and general executive functions. Our results show that general inhibitory control induced frontocentral neural modulation across a broad range of frequencies whereas domain-specific inhibition was limited to right posterior areas. Our findings also suggest that modulations particularly in phase-locked evoked neural activity can be reliably associated with explicit measures of cognitive skills, with better inhibitory control linked with an early neural effect of distractor inhibition during retrieval. In general, we show that exploiting the inherent inter-individual variability in neural measures and behavioral markers of cognition in aging populations can help establish reliable links between specific brain functions and their behavioral manifestations.
Collapse
Affiliation(s)
- Tiina Parviainen
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Anna Maria Alexandrou
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Hanna‐Maija Lapinkero
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| | - Sarianna Sipilä
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jan Kujala
- Department of PsychologyUniversity of JyväskyläJyväskyläFinland
- Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Faculty of Education and PsychologyUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
10
|
Varshney S, Hegstad-Pettersen MM, Siriyappagouder P, Olsvik PA. Enhanced neurotoxic effect of PCB-153 when co-exposed with polystyrene nanoplastics in zebrafish larvae. CHEMOSPHERE 2024; 355:141783. [PMID: 38554869 DOI: 10.1016/j.chemosphere.2024.141783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Nanoplastics (NPs) and persistent organic pollutants such as polychlorinated biphenyls (PCBs) are ubiquitous aquatic pollutants. The coexistence of these pollutants in the environment emphasises the need to study their combined toxicity. NPs can cross biological membranes and act as vectors for other pollutants, whereas PCBs are known for their ability to bioaccumulate and biomagnify. The present work aimed to study the combined toxicity of polystyrene NPs and PCB-153 using physiological (development, heart rate, respiration), behavioural (swimming behaviour) and molecular (transcriptome) endpoints in zebrafish larvae. The results show that exposure to NPs, PCB and their mixture significantly affected the development and respiration in zebrafish larvae. Larvae co-exposed to NPs and PCB exhibited significant hyperlocomotion, whereas no such effect was observed after exposure to NPs or PCB alone. The transcriptomic results revealed that NPs exposure significantly affected several pathways associated with DNA compaction and nucleosome assembly, whereas PCB exposure significantly affected critical neurogenic pathways. In contrast, co-exposure to NPs and PCB generated multi-faceted toxicity and suppressed neurobehavioural, immune-related and detoxification pathways. The study highlights the complex interplay between NPs and PCBs, and documents how the two toxicants in combination give a stronger effect than the single toxicants alone. Understanding the mixture toxicity of these two pollutants is important to assess the environmental risks and developing effective management strategies, ultimately safeguarding ecosystems and human health.
Collapse
|
11
|
Al-Zoubi RM, Abu-Hijleh H, Zarour A, Zakaria ZZ, Yassin A, Al-Ansari AA, Al-Asmakh M, Bawadi H. Zebrafish Model in Illuminating the Complexities of Post-Traumatic Stress Disorders: A Unique Research Tool. Int J Mol Sci 2024; 25:4895. [PMID: 38732113 PMCID: PMC11084870 DOI: 10.3390/ijms25094895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/13/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychological condition that may develop in certain individuals following exposure to life-threatening or traumatic events. Distressing symptoms, including flashbacks, are characterized by disrupted stress responses, fear, anxiety, avoidance tendencies, and disturbances in sleep patterns. The enduring effects of PTSD can profoundly impact personal and familial relationships, as well as social, medical, and financial stability. The prevalence of PTSD varies among different populations and is influenced by the nature of the traumatic event. Recently, zebrafish have emerged as a valuable model organism in studying various conditions and disorders. Zebrafish display robust behavioral patterns that can be effectively quantified using advanced video-tracking tools. Due to their relatively simple nervous system compared to humans, zebrafish are particularly well suited for behavioral investigations. These unique characteristics make zebrafish an appealing model for exploring the underlying molecular and genetic mechanisms that govern behavior, thus offering a powerful comparative platform for gaining deeper insights into PTSD. This review article aims to provide updates on the pathophysiology of PTSD and the genetic responses associated with psychological stress. Additionally, it highlights the significance of zebrafish behavior as a valuable tool for comprehending PTSD better. By leveraging zebrafish as a model organism, researchers can potentially uncover novel therapeutic interventions for the treatment of PTSD and contribute to a more comprehensive understanding of this complex condition.
Collapse
Affiliation(s)
- Raed M. Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar
| | - Haya Abu-Hijleh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| | - Ahmad Zarour
- Department of Surgery, Acute Care Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Zain Z. Zakaria
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Aksam Yassin
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Center of Medicine and Health Sciences, Dresden International University, 01069 Dresden, Germany
| | - Abdulla A. Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
| | - Maha Al-Asmakh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| |
Collapse
|
12
|
Zúñiga Mouret R, Greenbaum JP, Doll HM, Brody EM, Iacobucci EL, Roland NC, Simamora RC, Ruiz I, Seymour R, Ludwick L, Krawitz JA, Groneberg AH, Marques JC, Laborde A, Rajan G, Del Bene F, Orger MB, Jain RA. The adaptor protein 2 (AP2) complex modulates habituation and behavioral selection across multiple pathways and time windows. iScience 2024; 27:109455. [PMID: 38550987 PMCID: PMC10973200 DOI: 10.1016/j.isci.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/28/2024] [Accepted: 03/06/2024] [Indexed: 10/04/2024] Open
Abstract
Animals constantly integrate sensory information with prior experience to select behavioral responses appropriate to the current situation. Genetic factors supporting this behavioral flexibility are often disrupted in neuropsychiatric conditions, such as the autism-linked ap2s1 gene which supports acoustically evoked habituation learning. ap2s1 encodes an AP2 endocytosis adaptor complex subunit, although its behavioral mechanisms and importance have been unclear. Here, we show that multiple AP2 subunits regulate acoustically evoked behavior selection and habituation learning in zebrafish. Furthermore, ap2s1 biases escape behavior choice in sensory modality-specific manners, and broadly regulates action selection across sensory contexts. We demonstrate that the AP2 complex functions acutely in the nervous system to modulate acoustically evoked habituation, suggesting several spatially and/or temporally distinct mechanisms through which AP2 regulates escape behavior selection and performance. Altogether, we show the AP2 complex coordinates action selection across diverse contexts, providing a vertebrate model for ap2s1's role in human conditions including autism spectrum disorder.
Collapse
Affiliation(s)
- Rodrigo Zúñiga Mouret
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jordyn P. Greenbaum
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hannah M. Doll
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison WI 53705, USA
| | - Eliza M. Brody
- Department of Biology, Haverford College, Haverford, PA 19041, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104, USA
| | | | | | - Roy C. Simamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Ivan Ruiz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Rory Seymour
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Leanne Ludwick
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Jacob A. Krawitz
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Antonia H. Groneberg
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - João C. Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Alexandre Laborde
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Gokul Rajan
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Institut Curie, PSL Research University; INSERM U934, CNRS UMR3215, Paris, France
| | - Filippo Del Bene
- Sorbonne Université; INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Michael B. Orger
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Roshan A. Jain
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| |
Collapse
|
13
|
McNaught-Flores DA, Kooistra AJ, Chen YC, Arias-Montano JA, Panula P, Leurs R. Pharmacological Characterization of the Zebrafish (Danio Rerio) Histamine H 1 Receptor Reveals the Involvement of the Second Extracellular Loop in the Binding of Histamine. Mol Pharmacol 2024; 105:84-96. [PMID: 37977823 DOI: 10.1124/molpharm.123.000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The zebrafish (Danio rerio) histamine H1 receptor gene (zfH1R) was cloned in 2007 and reported to be involved in fish locomotion. Yet, no detailed characterization of its pharmacology and signaling properties have so far been reported. In this study, we pharmacologically characterized the zfH1R expressed in HEK-293T cells by means of [3H]-mepyramine binding and G protein-signaling assays. The zfH1R [dissociation constant (KD), 0.7 nM] displayed similar affinity for the antagonist [3H]-mepyramine as the human histamine H1 receptor (hH1R) (KD, 1.5 nM), whereas the affinity for histamine is 100-fold higher than for the human H1R. The zfH1R couples to Gαq/11 proteins and activates several reporter genes, i.e., NFAT, NFϰB, CRE, VEGF, COX-2, SRE, and AP-1, and zfH1R-mediated signaling is prevented by the Gαq/11 inhibitor YM-254890 and the antagonist mepyramine. Molecular modeling of the zfH1R and human H1R shows that the binding pockets are identical, implying that variations along the ligand binding pathway could underly the differences in histamine affinity instead. Targeting differentially charged residues in extracellular loop 2 (ECL2) using site-directed mutagenesis revealed that Arg21045x55 is most likely involved in the binding process of histamine in zfH1R. This study aids the understanding of the pharmacological differences between H1R orthologs and the role of ECL2 in histamine binding and provides fundamental information for the understanding of the histaminergic system in the zebrafish. SIGNIFICANCE STATEMENT: The use of the zebrafish as in vivo models in neuroscience is growing exponentially, which asks for detailed characterization of the aminergic neurotransmitter systems in this model. This study is the first to pharmacologically characterize the zebrafish histamine H1 receptor after expression in HEK-293T cells. The results show a high pharmacological and functional resemblance with the human ortholog but also reveal interesting structural differences and unveils an important role of the second extracellular loop in histamine binding.
Collapse
Affiliation(s)
- Daniel A McNaught-Flores
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Albert J Kooistra
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Yu-Chia Chen
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Jose-Antonio Arias-Montano
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Pertti Panula
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| |
Collapse
|
14
|
Abozaid A, Gerlai R. Paradoxical effects of feeding status on food consumption and learning performance in zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110846. [PMID: 37611652 DOI: 10.1016/j.pnpbp.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Associative learning is often studied using food reward as the unconditioned stimulus (US). With warm-blooded species, to get the subject more motivated the solution has been to feed less, making the subject hungrier. Here we show the opposite with zebrafish. We randomly assigned zebrafish to two groups: a once-a-day-fed and a five-times-a-day-fed group, with the same amount of food fed per occasion for fish of both groups, a feeding regimen that lasted for three months. Subsequently, we trained fish by pairing food (US) with a red cue card (the conditioned stimulus, CS), which were placed together in one arm of a plus-maze across eight training sessions. We also ran unpaired training, in which the CS and US were presented in different arms. We found the previously once-a-day-fed zebrafish to consume less food throughout habituation and training sessions compared to the previously five-times-a-day-fed ones. Furthermore, five-times-a-day-fed fish in the paired group swam significantly closer to the CS during a post-training probe trial compared to the five-times-a-day-fed unpaired fish, a paired training effect that was absent in once-a-day-fed fish. Groups did not differ in health or general activity. In sum, elevated chronic feeding improved food consumption and enhanced learning and memory performance without affecting activity levels in adult zebrafish.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto, Mississauga, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto, Mississauga, Canada.
| |
Collapse
|
15
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
16
|
Fan YL, Hsu FR, Wang Y, Liao LD. Unlocking the Potential of Zebrafish Research with Artificial Intelligence: Advancements in Tracking, Processing, and Visualization. Med Biol Eng Comput 2023; 61:2797-2814. [PMID: 37558927 DOI: 10.1007/s11517-023-02903-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Zebrafish have become a widely accepted model organism for biomedical research due to their strong cortisol stress response, behavioral strain differences, and sensitivity to both drug treatments and predators. However, experimental zebrafish studies generate substantial data that must be analyzed through objective, accurate, and repeatable analysis methods. Recently, advancements in artificial intelligence (AI) have enabled automated tracking, image recognition, and data analysis, leading to more efficient and insightful investigations. In this review, we examine key AI applications in zebrafish research, including behavior analysis, genomics, and neuroscience. With the development of deep learning technology, AI algorithms have been used to precisely analyze and identify images of zebrafish, enabling automated testing and analysis. By applying AI algorithms in genomics research, researchers have elucidated the relationship between genes and biology, providing a better basis for the development of disease treatments and gene therapies. Additionally, the development of more effective neuroscience tools could help researchers better understand the complex neural networks in the zebrafish brain. In the future, further advancements in AI technology are expected to enable more extensive and in-depth medical research applications in zebrafish, improving our understanding of this important animal model. This review highlights the potential of AI technology in achieving the full potential of zebrafish research by enabling researchers to efficiently track, process, and visualize the outcomes of their experiments.
Collapse
Affiliation(s)
- Yi-Ling Fan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung, 407, Taiwan
| | - Fang-Rong Hsu
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung, 407, Taiwan
| | - Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan
- Department of Electrical Engineering, National United University, 2, Lien-Da, Nan-Shih Li, Miaoli, 360302, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 35053, Taiwan.
| |
Collapse
|
17
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
18
|
Couto GT, Caetano HA, da Silva GP, Rockenbach L, Silva JSD, Vianna MR, Da Silva RS. Functioning and Gene Expression of Adenosine A 1 Receptor During Zebrafish ( Danio rerio) Development. Zebrafish 2023; 20:210-220. [PMID: 37856674 DOI: 10.1089/zeb.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
The A1 adenosine receptor is the most widely expressed P1 receptor in vertebrates, performing inhibitory tone of the nervous system. Increased levels of adenosine are crucial to promote tissue protection in threatening situations, such as convulsion and hypoxia. Zebrafish is an established model organism for studies on health and disease. In this study, we evaluated the functionality of A1 adenosine receptor through development of zebrafish (6-7-day-, 3-, 8-, and 24-month-old), assessing: (I) the effects of the agonist N6-cyclopenthyladenosine (CPA) over locomotor parameters, (II) the anticonvulsant properties of CPA and adenosine per se in the pentylenetetrazol-induced seizure, and (III) the gene expression of adora1b through development. CPA promoted decreased distance traveled in the highest concentrations/doses tested (larvae: 75 to 500 μM; adults: 20 mg.kg-1), altered mean velocity (larvae: 50-500 μM; adults: 20 mg.kg-1) and time in the bottom zone of apparatus (adults: decrease in 20 mg.kg-1). Adenosine increased the latency of the larvae to reach stage II at 5 and 10 μM. CPA anticonvulsant effect against convulsive stage II was reached at 75 μM, although it decreased basal locomotor activity in larvae. For adults, CPA 10 mg.kg-1 was effective as anticonvulsant without locomotory effects. Adenosine had minor anticonvulsant effects in the concentration tested (larvae: 5 and 10 μM). The level of gene expression of adora1b was stable in brain from adult animals (8- and 24-month-old animals). These results suggest that zebrafish has similar responses to CPA as mammals. To avoid confounding factors, such as locomotor effects, during any brain function investigation using A1 adenosine receptor as a target, the concentration below 75 μM or below the dose of 20 mg.kg-1 of CPA is ideal for zebrafish at larval and adult stages, respectively.
Collapse
Affiliation(s)
- Giovanna Trevisan Couto
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontificia Universidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Higor Arruda Caetano
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontificia Universidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Pietro da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontificia Universidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Liliana Rockenbach
- Programa de Pós-Graduação me Medician e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Scheid da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontificia Universidade, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Monica Ryff Vianna
- Laboratório de Biologia do Desenvolvimento do Sistema Nervoso, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane Souza Da Silva
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Alef R, Blaser RE. Social group during housing and testing modulates the effect of ethanol on zebrafish (Danio rerio) behavior. Behav Processes 2023; 209:104877. [PMID: 37105449 DOI: 10.1016/j.beproc.2023.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Zebrafish (Danio rerio) are a popular model organism in behavioral pharmacology research due to many genetic and neurological similarities with humans. As a social species, the presence (or absence) of conspecifics during housing and testing is likely to affect behavior, but these effects have not yet been well characterized. The goal of the current study was to better understand how social variables influence depth preference in zebrafish. Subjects were housed individually, in pairs, or in groups of four, then tested in a novel tank either individually or with their tankmates. Prior to testing, fish were exposed to 0.0%, 0.5%, or 1.0% ethanol. Behavior was recorded using a combination of manual coding methods and ANYMaze (™) video-tracking. Our results demonstrated more exploration by fish tested with their tankmates, and less exploration by fish tested in isolation. Additionally, the effects of ethanol on diving behavior were modulated by social groups during both housing and testing. We conclude that social variables likely contribute to the variability of behavior often observed in pharmacological research with zebrafish, and that additional effort should be directed to both standardization and further characterization of these variables.
Collapse
Affiliation(s)
- Rachel Alef
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - R E Blaser
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| |
Collapse
|
20
|
Cao X, Fu M, Du Q, Chang Z. Developmental toxicity of black phosphorus quantum dots in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2023:139029. [PMID: 37244547 DOI: 10.1016/j.chemosphere.2023.139029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Nanomaterials have attracted much attention in the biomedical field. Black phosphorus quantum dots (BPQDs) have shown great potential in biomedical applications, but their potential risks to biosafety and environmental stability have not been fully evaluated. In the present study, zebrafish (Danio rerio) embryos were exposed to 0, 2.5, 5 and 10 mg/L BPQDs from 2 to 144 h post-fertilization (hpf) to explore developmental toxicity. The results showed that exposure to BPQDs for 96 h induced developmental malformations (tail deformation, yolk sac edema, pericardial edema, and spinal curvature) in zebrafish embryos. ROS and antioxidant enzyme activities (CAT, SOD, MDA and T-AOC) were substantially altered and the acetylcholinesterase (AChE) enzyme activity was significantly decreased in the BPQDs exposed groups. Locomotor behavior was inhibited after BPQDs exposure for 144 h in zebrafish larvae. A significant increase in 8-OHdG content indicates DNA oxidative damage in embryos. In addition, obvious apoptotic fluorescence signals were detected in the brain, spine, yolk sac and heart. At the molecular level, the mRNA transcript levels of key genes related to skeletal development (igf1, gh, MyoD and LOX), neurodevelopment (gfap, pomca, bdnf and Mbpa), cardiovascular development (Myh6, Nkx2.5, Myl7, Tbx2b, Tbx5 and Gata4) and apoptosis (p53, Bax, Bcl-2, apaf1, caspase-3 and caspase-9) were abnormal after BPQDs exposure. In conclusion, BPQDs induced morphological malformations, oxidative stress, locomotor behavior disorders, DNA oxidative damage and apoptosis in zebrafish embryos. This study provides a basis for further study on the toxic effects of BPQDs.
Collapse
Affiliation(s)
- Xiaonan Cao
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Mengxiao Fu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
21
|
Widelski J, Kasica N, Maciąg M, Luca SV, Budzyńska B, Fondai D, Podlasz P, Skalicka-Woźniak K. Simple Coumarins from Peucedanum luxurians Fruits: Evaluation of Anxiolytic Activity and Influence on Gene Expression Related to Anxiety in Zebrafish Model. Int J Mol Sci 2023; 24:ijms24108693. [PMID: 37240050 DOI: 10.3390/ijms24108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Anxiety is one of the most common central nervous system disorders, affecting at least one-quarter of the worldwide population. The medications routinely used for the treatment of anxiety (mainly benzodiazepines) are a cause of addiction and are characterized by many undesirable side effects. Thus, there is an important and urgent need for screening and finding novel drug candidates that can be used in the prevention or treatment of anxiety. Simple coumarins usually do not show side effects, or these effects are much lower than in the case of synthetic drugs acting on the central nervous system (CNS). This study aimed to evaluate the anxiolytic activity of three simple coumarins from Peucedanum luxurians Tamamsch, namely officinalin, stenocarpin isobutyrate, and officinalin isobutyrate, in a 5 dpf larval zebrafish model. Moreover, the influence of the tested coumarins on the expression of genes involved in the neural activity (c-fos, bdnf) or dopaminergic (th1), serotoninergic (htr1Aa, htr1b, htr2b), GABA-ergic (gabarapa, gabarapb), enkephalinergic (penka, penkb), and galaninergic (galn) neurotransmission was assessed by quantitative PCR. All tested coumarins showed significant anxiolytic activity, with officinalin as the most potent compound. The presence of a free hydroxyl group at position C-7 and the lack of methoxy moiety at position C-8 might be key structural features responsible for the observed effects. In addition, officinalin and its isobutyrate upregulated the expression of genes involved in neurotransmission and decreased the expression of genes connected with neural activity. Therefore, the coumarins from P. luxurians might be considered as promising drug candidates for the therapy of anxiety and related disorders.
Collapse
Affiliation(s)
- Jarosław Widelski
- Medicinal Plant Unit, Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Monika Maciąg
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-093 Lublin, Poland
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-093 Lublin, Poland
| | - Dafina Fondai
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | | |
Collapse
|
22
|
Wiśniewski K, Antonowski T, Juranek J, Podlasz P, Wojtkiewicz J. Antiepileptic Properties of Scyllo-Inositol on Pentylenetetrazol-Induced Seizures. Int J Mol Sci 2023; 24:ijms24087598. [PMID: 37108760 PMCID: PMC10144795 DOI: 10.3390/ijms24087598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Epilepsy, with about 70 million affected people worldwide, is one of the biggest challenges of medicine today. It is estimated that about one-third of epileptic patients receive inadequate treatment. Inositols have proved effective in many disorders; hence, in the current study, we tested potential antiepileptic properties of scyllo-inositol (SCI)-one of the most common commercially available inositols-in zebrafish larvae with pentylenetetrazol-induced seizures. First, we studied the general effect of SCI on zebrafish motility, and then we tested SCI antiepileptic properties over short (1 h) and long (120 h) exposure protocols. Our results demonstrated that SCI alone does not reduce zebrafish motility regardless of the dose. We also observed that short-term exposure to SCI groups reduced PTZ-treated larva motility compared to controls (p < 0.05). In contrast, prolonged exposure did not produce similar results, likely due to the insufficient concentration of SCI given. Our results highlight the potential of SCI use in epilepsy treatment and warrant further clinical studies with inositols as potential seizure-reducing drugs.
Collapse
Affiliation(s)
- Karol Wiśniewski
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Tomasz Antonowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
23
|
Chen H, Li H, Yin X, Liu Y, Zhang T, Wu H, Kang G, Yu Y, Bai M, Bao L, Yang J, Dong W. The therapeutic effect of Zhenbao pills on behavioral changes in zebrafish caused by aluminum chloride. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
24
|
Gore SV, Kakodkar R, Del Rosario Hernández T, Edmister ST, Creton R. Zebrafish Larvae Position Tracker (Z-LaP Tracker): a high-throughput deep-learning behavioral approach for the identification of calcineurin pathway-modulating drugs using zebrafish larvae. Sci Rep 2023; 13:3174. [PMID: 36823315 PMCID: PMC9950053 DOI: 10.1038/s41598-023-30303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Brain function studies greatly depend on quantification and analysis of behavior. While behavior can be imaged efficiently, the quantification of specific aspects of behavior is labor-intensive and may introduce individual biases. Recent advances in deep learning and artificial intelligence-based tools have made it possible to precisely track individual features of freely moving animals in diverse environments without any markers. In the current study, we developed Zebrafish Larvae Position Tracker (Z-LaP Tracker), a modification of the markerless position estimation software DeepLabCut, to quantify zebrafish larval behavior in a high-throughput 384-well setting. We utilized the high-contrast features of our model animal, zebrafish larvae, including the eyes and the yolk for our behavioral analysis. Using this experimental setup, we quantified relevant behaviors with similar accuracy to the analysis performed by humans. The changes in behavior were organized in behavioral profiles, which were examined by K-means and hierarchical cluster analysis. Calcineurin inhibitors exhibited a distinct behavioral profile characterized by increased activity, acoustic hyperexcitability, reduced visually guided behaviors, and reduced habituation to acoustic stimuli. The developed methodologies were used to identify 'CsA-type' drugs that might be promising candidates for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sayali V. Gore
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Rohit Kakodkar
- grid.40263.330000 0004 1936 9094Center for Computation and Visualization, Brown University, Providence, RI USA
| | - Thaís Del Rosario Hernández
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Sara Tucker Edmister
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| | - Robbert Creton
- grid.40263.330000 0004 1936 9094Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912 USA
| |
Collapse
|
25
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
26
|
Hu H, Su M, Ba H, Chen G, Luo J, Liu F, Liao X, Cao Z, Zeng J, Lu H, Xiong G, Chen J. ZIF-8 nanoparticles induce neurobehavioral disorders through the regulation of ROS-mediated oxidative stress in zebrafish embryos. CHEMOSPHERE 2022; 305:135453. [PMID: 35752317 DOI: 10.1016/j.chemosphere.2022.135453] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Zeolite imidazolate framework-8 (ZIF-8) is a nanomaterial of metal-organic frameworks (MOFs), which have various applications in drug delivery and water pollution remediation. However, little is known about its developmental neurotoxicity in aquatic organisms, especially on the low-level exposure. In the present study, we investigated the toxic effects of ZIF-8 NPs on the neuron development, behavioral traits, oxidative stress and gene expression in zebrafish embryos. Firstly, our results showed that ZIF-8 induced significantly embryonic malformations and abnormal development of nervous system in zebrafish embryos with a concentration-dependent manner. Meanwhile, the locomotor behavior was obviously inhibited while the anxiety behavior was greatly increased after ZIF-8 exposure. Secondly, the levels of ROS and antioxidant enzyme activities (CAT, SOD and MDA) together with AChE and ATPase were substantially increased in the ZIF-8 exposed groups. At the molecular level, ZIF-8 NPs could down-regulate the expression profiles of neural development-related genes (gap43, synapsin 2a and neurogenin 1) and PD-like related genes (dj-1, dynactin and parkin), but up-regulate the expression levels of neuro-inflammatory genes (nox-1, glip1a and glip1b) in larval zebrafish. In addition, we further explored the molecular mechanism of neurotoxicity induced by ZIF-8 with pharmacological experiments. The results showed that specific inhibition of ROS-mediated oxidative stress by the astaxanthin could reverse the expression patterns of ATPase, AChE and neurodevelopmental genes. Moreover, astaxanthin can partially rescue the ZIF-8-modulated locomotor behavior. Taken together, our results demonstrated that ZIF-8 had the potential to cause neurotoxicity in zebrafish embryos. These informations presented in this study will help to elucidate the molecular mechanisms of ZIF-8 nanoparticles exposure in zebrafish, which providing a scientific evaluation of its safety to aquatic ecosystems.
Collapse
Affiliation(s)
- Hongmei Hu
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Meile Su
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Huixia Ba
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Guilan Chen
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Jiaqi Luo
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Fasheng Liu
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Junquan Zeng
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Guanghua Xiong
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China.
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| |
Collapse
|
27
|
Wagle M, Zarei M, Lovett-Barron M, Poston KT, Xu J, Ramey V, Pollard KS, Prober DA, Schulkin J, Deisseroth K, Guo S. Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons. Mol Psychiatry 2022; 27:3777-3793. [PMID: 35484242 PMCID: PMC9613822 DOI: 10.1038/s41380-022-01567-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Salient sensory stimuli are perceived by the brain, which guides both the timing and outcome of behaviors in a context-dependent manner. Light is such a stimulus, which is used in treating mood disorders often associated with a dysregulated hypothalamic-pituitary-adrenal stress axis. Relationships between the emotional valence of light and the hypothalamus, and how they interact to exert brain-wide impacts remain unclear. Employing larval zebrafish with analogous hypothalamic systems to mammals, we show in free-swimming animals that hypothalamic corticotropin releasing factor (CRFHy) neurons promote dark avoidance, and such role is not shared by other hypothalamic peptidergic neurons. Single-neuron projection analyses uncover processes extended by individual CRFHy neurons to multiple targets including sensorimotor and decision-making areas. In vivo calcium imaging uncovers a complex and heterogeneous response of individual CRFHy neurons to the light or dark stimulus, with a reduced overall sum of CRF neuronal activity in the presence of light. Brain-wide calcium imaging under alternating light/dark stimuli further identifies distinct and distributed photic response neuronal types. CRFHy neuronal ablation increases an overall representation of light in the brain and broadly enhances the functional connectivity associated with an exploratory brain state. These findings delineate brain-wide photic perception, uncover a previously unknown role of CRFHy neurons in regulating the perception and emotional valence of light, and suggest that light therapy may alleviate mood disorders through reducing an overall sum of CRF neuronal activity.
Collapse
Affiliation(s)
- Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Mahdi Zarei
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Matthew Lovett-Barron
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kristina Tyler Poston
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Jin Xu
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vince Ramey
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Invitae Inc., San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - David A Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jay Schulkin
- Department of Obstetrics & Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA.
- Programs in Human Genetics and Biological Sciences, Kavli Institute of Fundamental Neuroscience, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Aging Research Institute, University of California, San Francisco, CA, 94143-2811, USA.
| |
Collapse
|
28
|
Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J. The Relationship between Procyanidin Structure and Their Protective Effect in a Parkinson's Disease Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155007. [PMID: 35956957 PMCID: PMC9370466 DOI: 10.3390/molecules27155007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
This study evaluated the effect of grape seed-derived monomer, dimeric, and trimeric procyanidins on rat pheochromocytoma cell line (PC12) cells and in a zebrafish Parkinson’s disease (PD) model. PC12 cells were cultured with grape seed-derived procyanidins or deprenyl for 24 h and then exposed to 1.5 mm 1-methyl-4-phenylpyridinium (MPP+) for 24 h. Zebrafish larvae (AB strain) 3 days post-fertilization were incubated with deprenyl or grape seed-derived procyanidins in 400 µM 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 4 days. The results showed that the procyanidin dimers procyanidin B1 (B1), procyanidin B2 (B2), procyanidin B3 (B3), procyanidin B4 (B4), procyanidin B1-3-O-gallate (B1-G), procyanidin B2-3-O-gallate (B2-G), and the procyanidin trimer procyanidin C1 (C1) had a protective effect on PC12 cells, decreasing the damaged dopaminergic neurons and motor impairment in zebrafish. In PC12 cells and the zebrafish PD model, procyanidin (B1, B2, B3, B4, B1-G, B2-G, C1) treatment decreased the content of reactive oxygen species (ROS) and malondialdehyde (MDA), increased the activity of antioxidant enzymes glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD), and upregulated the expression of nuclear factor-erythroid 2-related factor (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1). These results suggest that in PC12 cells and the zebrafish PD model, the neuroprotective effects of the procyanidins were positively correlated with their degree of polymerization.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiajin Zhu
- Correspondence: ; Tel./Fax: +86-571-8898-2191
| |
Collapse
|
29
|
Chen Z, Long H, Guo J, Wang Y, He K, Tao C, Li X, Jiang K, Guo S, Pi Y. Autism-Risk Gene necab2 Regulates Psychomotor and Social Behavior as a Neuronal Modulator of mGluR1 Signaling. Front Mol Neurosci 2022; 15:901682. [PMID: 35909444 PMCID: PMC9326220 DOI: 10.3389/fnmol.2022.901682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDe novo deletion of the neuronal calcium-binding protein 2 (NECAB2) locus is associated with idiopathic autism spectrum disorders (ASDs). The in vivo function of NECAB2 in the brain remains largely elusive.MethodsWe investigated the morphological and behavioral profiles of both necab2 knock-out and overexpression zebrafish models. The expression pattern and molecular role of necab2 were probed through a combination of in vitro and in vivo assays.ResultsWe show that Necab2 is a neuronal specific, cytoplasmic, and membrane-associated protein, abundantly expressed in the telencephalon, habenula, and cerebellum. Necab2 is distributed peri-synaptically in subsets of glutamatergic and GABAergic neurons. CRISPR/Cas9-generated necab2 knock-out zebrafish display normal morphology but exhibit a decrease in locomotor activity and thigmotaxis with impaired social interaction only in males. Conversely, necab2 overexpression yields behavioral phenotypes opposite to the loss-of-function. Proteomic profiling uncovers a role of Necab2 in modulating signal transduction of G-protein coupled receptors. Specifically, co-immunoprecipitation, immunofluorescence, and confocal live-cell imaging suggest a complex containing NECAB2 and the metabotropic glutamate receptor 1 (mGluR1). In vivo measurement of phosphatidylinositol 4,5-bisphosphate further substantiates that Necab2 promotes mGluR1 signaling.ConclusionsNecab2 regulates psychomotor and social behavior via modulating a signaling cascade downstream of mGluR1.
Collapse
Affiliation(s)
- Zexu Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Han Long
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiran Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Kezhe He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenchen Tao
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiong Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Keji Jiang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Su Guo,
| | - Yan Pi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Yan Pi,
| |
Collapse
|
30
|
Wu L, Dang Y, Liang LX, Gong YC, Zeeshan M, Qian Z, Geiger SD, Vaughn MG, Zhou Y, Li QQ, Chu C, Tan YW, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu Y, Dong GH. Perfluorooctane sulfonates induces neurobehavioral changes and increases dopamine neurotransmitter levels in zebrafish larvae. CHEMOSPHERE 2022; 297:134234. [PMID: 35259355 DOI: 10.1016/j.chemosphere.2022.134234] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
It has been reported that exposure to perfluorooctane sulfonates (PFOS) causes behavioral abnormalities in zebrafish larvae, but the possible mechanisms underlying these changes remain unexplored. In this study, zebrafish embryos (2 h postfertilization, 2-hpf) were exposed to PFOS at different concentrations (0, 0.032, 0.32 and 3.2 mg/L) for 120 h. Developmental endpoints and the locomotion behavior of larvae were evaluated. Reactive oxygen species (ROS) levels, dopamine contents, several genes and proteins related to neurodevelopment and dopamine signaling were examined. Our results indicate that increased ROS levels in the zebrafish larvae heads may be causally associated with neurodevelopment damage. Meanwhile, brain-derived neurotrophic factor (BDNF) and alpha1-Tubulin (α1-Tubulin) protein contents were significantly increased, which may be a compensatory mechanism for the impaired central nervous system. PFOS-induced locomotor hyperactivity was observed in the first light phase and dark phase at the 0.32 and 3.2 mg/L of PFOS. Upregulation of dopamine-related genes tyrosine hydroxylase (th) and dopamine transporter (dat) associated with increased dopamine contents in the 3.2 mg/L of PFOS. In addition, protein expression of TH and DAT were noted at the 0.32 and 3.2 mg/L of PFOS concentrations. Our results suggested that PFOS induces neurobehavioral changes in zebrafish larvae, possibly by perturbing a dopamine signaling pathway. In addition, PFOS induced development damage, such as increased malformation rate and shorter body length.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Chen Gong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Wen Tan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Andersson M, Roques JAC, Aliti GM, Ademar K, Sundh H, Sundell K, Ericson M, Kettunen P. Low Holding Densities Increase Stress Response and Aggression in Zebrafish. BIOLOGY 2022; 11:725. [PMID: 35625453 PMCID: PMC9139139 DOI: 10.3390/biology11050725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
With laboratory zebrafish (Danio rerio) being an established and popular research model, there is a need for universal, research-based husbandry guidelines for this species, since guidelines can help promote good welfare through providing appropriate care. Despite the widespread use of zebrafish in research, it remains unclear how holding densities affect their welfare. Previous studies have mainly evaluated the effects of holding densities on a single parameter, such as growth, reproductive output, or social interactions, rather than looking at multiple welfare parameters simultaneously. Here we investigated how chronic (nine weeks) exposure to five different holding densities (1, 4, 8, 12, and 16 fish/L) affected multiple welfare indicators. We found that fish in the 1 fish/L density treatment had higher free water cortisol concentrations per fish, increased vertical distribution, and displayed aggressive behaviour more frequently than fish held at higher densities. On the other hand, density treatments had no effect on anxiety behaviour, whole-brain neurotransmitter levels, egg volume, or the proportion of fertilised eggs. Our results demonstrate that zebrafish can be held at densities between 4 and 16 fish/L without compromising their welfare. However, housing zebrafish in the density of 1 fish/L increased their stress level and aggressive behaviour.
Collapse
Affiliation(s)
- Marica Andersson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jonathan A. C. Roques
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Geoffrey Mukisa Aliti
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Karin Ademar
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.A.C.R.); (H.S.); (K.S.)
- Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Mia Ericson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 45 Gothenburg, Sweden; (M.A.); (G.M.A.); (K.A.); (M.E.)
| |
Collapse
|
32
|
Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J. Relationship between Neuroprotective Effects and Structure of Procyanidins. Molecules 2022; 27:molecules27072308. [PMID: 35408708 PMCID: PMC9000754 DOI: 10.3390/molecules27072308] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the relationship between the neuroprotective effects of procyanidins and their structural characteristics. In vitro, a rat pheochromocytoma cell line (PC12) was exposed to the grape seed-derived procyanidin monomers: catechin (C), epicatechin (EC), and epicatechin gallate (ECG); the procyanidin dimers: procyanidin B1 (B1), procyanidin B2 (B2), procyanidin B3 (B3), procyanidin B4 (B4), procyanidin B1-3-O-gallate (B1-G), and procyanidin B2-3-O-gallate (B2-G); and the procyanidin trimers: procyanidin C1 (C1) and N-acetyl-l-cysteine (NAC) for 24 h. Cells were then incubated with 200 μM H2O2 for 24 h. In vivo, zebrafish larvae (AB strain) 3 days post-fertilization were incubated with NAC or procyanidins (C, EC, ECG, B1, B2, B3, B4, B1-G, B2-G, C1) in 300 µM H2O2 for 4 days. Different grape seed procyanidins increased the survival of PC12 cells challenged with H2O2, improved the movement behavior disorder of zebrafish caused by H2O2, inhibited the increase of ROS and MDA and the decrease of GSH-Px, CAT, and SOD activities, and up-regulated the Nrf2/ARE pathway. The neuroprotective effects of the procyanidin trimer C1 treatment group were greater than the other treatment groups. These results suggest that the neuroprotective effect of procyanidins is positively correlated with their degree of polymerization.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiajin Zhu
- Correspondence: ; Tel./Fax: +86-571-8898-2191
| |
Collapse
|
33
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
34
|
Nie Y, Yang J, Zhou L, Yang Z, Liang J, Liu Y, Ma X, Qian Z, Hong P, Kalueff AV, Song C, Zhang Y. Marine fungal metabolite butyrolactone I prevents cognitive deficits by relieving inflammation and intestinal microbiota imbalance on aluminum trichloride-injured zebrafish. J Neuroinflammation 2022; 19:39. [PMID: 35130930 PMCID: PMC8822793 DOI: 10.1186/s12974-022-02403-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/30/2022] Open
Abstract
Background Mounting evidences indicate that oxidative stress, neuroinflammation, and dysregulation of gut microbiota are related to neurodegenerative disorders (NDs). Butyrolactone I (BTL-I), a marine fungal metabolite, was previously reported as an in vitro neuroprotectant and inflammation inhibitor. However, little is known regarding its in vivo effects, whereas zebrafish (Danio rerio) could be used as a convenient in vivo model of toxicology and central nervous system (CNS) diseases.
Methods Here, we employed in vivo and in silico methods to investigate the anti-NDs potential of BTL-I. Specifically, we established a cognitive deficit model in zebrafish by intraperitoneal (i.p.) injection of aluminum trichloride (AlCl3) (21 μg) and assessed their behaviors in the T-maze test. The proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) as well as acetylcholinesterase (AChE) activity or glutathione (GSH) levels were assayed 24 h after AlCl3 injection. The intestinal flora variation of the zebrafish was investigated by 16S rDNA high-throughput analysis. The marine fungal metabolite, butyrolactone I (BTL-I), was used to modulate zebrafish cognitive deficits evoked by AlCl3 and evaluated about its effects on the above inflammatory, cholinergic, oxidative stress, and gut floral indicators. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of BTL-I were studied by the in silico tool ADMETlab. Results BTL-I dose-dependently ameliorated AlCl3-induced cognitive deficits in zebrafish. While AlCl3 treatment elevated the levels of central and peripheral proinflammatory cytokines, increased AChE activity, and lowered GSH in the brains of zebrafish, these effects, except GSH reduction, were reversed by 25–100 mg/kg BTL-I administration. Besides, 16S rDNA high-throughput sequencing of the intestinal flora of zebrafish showed that AlCl3 decreased Gram-positive bacteria and increased proinflammatory Gram-negative bacteria, while BTL-I contributed to maintaining the predominance of beneficial Gram-positive bacteria. Moreover, the in silico analysis indicated that BTL-I exhibits acceptable drug-likeness and ADMET profiles. Conclusions The present findings suggest that BTL-I is a potential therapeutic agent for preventing CNS deficits caused by inflammation, neurotoxicity, and gut flora imbalance. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02403-3.
Collapse
Affiliation(s)
- Yingying Nie
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingming Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Longjian Zhou
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinyue Liang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yayue Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxiang Ma
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongji Qian
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Allan V Kalueff
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.,Ural Federal University, Ekaterinburg, 620002, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, 199034, Russia
| | - Cai Song
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
35
|
Cueto-Escobedo J, German-Ponciano LJ, Guillén-Ruiz G, Soria-Fregozo C, Herrera-Huerta EV. Zebrafish as a Useful Tool in the Research of Natural Products With Potential Anxiolytic Effects. Front Behav Neurosci 2022; 15:795285. [PMID: 35095438 PMCID: PMC8789748 DOI: 10.3389/fnbeh.2021.795285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish (Danio rerio) is a popular and valuable species used in many different biomedical research areas. The complex behavior that fish exhibit in response to different stimuli allows researchers to explore the biological and pharmacological basis of affective and mood disorders. In this sense, anxiety is commonly studied in preclinical research with animal models in rodents. During the last decade, those models have been successfully adapted to zebrafish. Stressful stimuli, such as novel environments, chemical substances, light conditions, and predator images, can trigger defensive behaviors considered indicators of an anxiety-like state. In the first stage, models were adapted and validated with different stressors and anxiolytic drugs with promising results and are now successfully used to generate scientific knowledge. In that sense, zebrafish allows several routes of administration and other methodological advantages to explore the anxiolytic effects of natural products in behavioral tests as novel tank, light-dark chamber, and black/white maze, among others. The present work will review the main findings on preclinical research using adult zebrafish to explore anxiolytics effects of natural products as plant secondary metabolites such as flavonoids, alkaloids and terpenes or standardized extracts of plants, among others. Scientific literature confirms the utility of zebrafish tests to explore anxiety-like states and anxiolytic-like effects of plant secondary metabolites, which represent a useful and ethical tool in the first stages of behavioral.
Collapse
Affiliation(s)
- Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica y Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | | | - Gabriel Guillén-Ruiz
- Investigador por México, Consejo Nacional de Ciencia y Tecnología (CONACyT) – Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Cesar Soria-Fregozo
- Laboratorio Ciencias Biomédicas/Área Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de Los Lagos, Universidad de Guadalajara, Lagos de Moreno, Mexico
| | | |
Collapse
|
36
|
Araújo JRC, Campos AR, Ferreira MKA, Santos SAAR, de Barros Mamede Vidal Damasceno M, Magalhães FEA, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Dioclea Altissima Seed Lectin (DAL) Prevents Anxiety-like Behavioral Responses in Adult Zebrafish (Danio Rerio): Involvement of GABAergic and 5-HT Systems. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:95-103. [PMID: 33583388 DOI: 10.2174/1871527320666210212112651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant lectins have shown promising neuropharmacological activities in animal models. OBJECTIVE This study evaluated the effect of Dioclea altissima seed lectin (DAL) on adult zebrafish behavior. METHOD Zebrafish (n=6/group) were treated (i.p.; 20 μL) with DAL (0.025; 0.05 or 0.1 mg/mL), vehicle or diazepam (DZP) and submitted to several tests (open field, light/dark preference or novel tank). Flumazenil, pizotifen or granisetron were administered 15 min before DAL (0.05 mg/mL), and the animals were evaluated on light/dark preference test. It was also verified whether the DAL effect depended on its structural integrity and ability to interact with carbohydrates. RESULTS DAL decreased the locomotor activity of adult zebrafish (0.025; 0.05 or 0.1 mg/mL), increased the time spent in the upper region of the aquarium (0.025 mg/mL), and decreased the latency time of adult zebrafish to enter the upper region on the novel tank test. DAL (0.05 mg/mL) also increased their permanence in the light zone of the light/dark preference test. The effect of DAL was dependent on carbohydrate interaction and protein structure integrity and was prevented by pizotifen, granizetron and flumazenil. CONCLUSION DAL was found to have an anxiolytic-like effect mediated by the 5-HT and GABAergic receptors.
Collapse
Affiliation(s)
| | - Adriana Rolim Campos
- Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceará,Brazil
| | | | | | | | - Francisco Ernani Alves Magalhães
- Laboratory of Natural Products Chemistry, Synthesis and Biocatalysis of Organic Compounds (LBPNSB), State University of Vale do Acaraú, Betânia Campus, Sobral, Ceará,Brazil
| | | | | |
Collapse
|
37
|
Kim GHJ, Melgoza A, Jiang F, Guo S. The effect of renin-angiotensin-aldosterone system inhibitors on organ-specific ace2 expression in zebrafish and its implications for COVID-19. Sci Rep 2021; 11:23670. [PMID: 34880395 PMCID: PMC8655050 DOI: 10.1038/s41598-021-03244-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/24/2021] [Indexed: 01/28/2023] Open
Abstract
Among cases of SARS-CoV-2 infections that result in serious conditions or death, many have pre-existing conditions such as hypertension and are on renin–angiotensin–aldosterone system (RAAS) inhibitors. The angiotensin-converting-enzyme-2 (ACE2), a key protein of the RAAS pathway, also mediates cellular entry of SARS-CoV-2. RAAS inhibitors might affect the expression levels of ace2, which could impact patient susceptibility to SARS-CoV-2. However, multi-organ-specific information is currently lacking and no species other than rodents have been examined. To address this knowledge gap, we treated adult zebrafish with the RAAS inhibitors aliskiren, olmesartan, and captopril for 7 consecutive days and performed qRT-PCR analysis of major RAAS pathway genes in the brain, gill, heart, intestine, kidney, and liver. Both olmesartan and captopril significantly increased ace2 expression in the heart, gill, and kidney. Olmesartan also increased ace2 expression in the intestine. Conversely, aliskiren significantly decreased ace2 expression in the heart. Discontinuation of compound treatments for 7 days did not return ace2 expression to baseline levels. While potential risks or benefits of antihypertensive RAAS inhibitors to SARS-CoV-2 infections in humans remain uncertain, this study provides new insights regarding the impact of RAAS inhibitors on organ-specific ace2 expression in another vertebrate model, thereby providing comparative data and laying scientific groundwork for future clinical decisions of RAAS inhibitor use in the context of COVID-19.
Collapse
Affiliation(s)
- Gha-Hyun J Kim
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Adam Melgoza
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA.,Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Fei Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
38
|
Gundlach M, Augustin M, Smith KEC, Kämpfer D, Paulzen M, Hollert H. Effects of the antidepressant mirtazapine on the swimming behaviour and gene expression rate of Danio rerio embryos - Is the sedating effect seen in humans also evident for fish? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148368. [PMID: 34147801 DOI: 10.1016/j.scitotenv.2021.148368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
In the last decade, mirtazapine has become an important antidepressant in clinical use and has also been found at many different environmental sampling sites. Several homologies between the zebrafish Danio rerio and humans, combined with a number of advantages for behavioural and gene expression research using zebrafish embryos, make their use for the analysis of mirtazapine appropriate. The sedative effect of mirtazapine in humans was also found for a specific concentration range in zebrafish embryos (1333.4 μg/L - 2666.9 μg/L). Specifically, 116 hpf old zebrafish embryos showed a reduced swimming distance when exposed to 1334.4 μg/L mirtazapine. Furthermore, changes at the gene regulatory level could be measured (1333.4 μg/L), in particular in the superordinate regulatory systems. For selected transporters of all regulatory systems, an up regulation of the genes by a factor of more than five times could be measured at the highest mirtazapine exposure concentration that was tested. Finally, studies on the protein levels demonstrated an increase in acetylcholinesterase activity for several exposure concentrations (83.3 μg/L and 666.7 μg/L). The physiological changes in zebrafish embryos caused by mirtazapine demonstrate the relevance of these types of studies in aquatic non-target organisms. Such neuroactive substances could pose a potential risk for aquatic organisms below the previously considered concentration threshold for morphological effects.
Collapse
Affiliation(s)
- Michael Gundlach
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc Augustin
- Protestant University of Applied Sciences, Bochum, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, JARA - Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Kilian E C Smith
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; Department of Water, Environment, Construction and Safety, University of Applied Sciences Magdeburg-Stendal, Breitscheidstr. 2, 39114 Magdeburg, Germany
| | - David Kämpfer
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, JARA - Translational Brain Medicine, RWTH Aachen University, Aachen, Germany; Alexianer Hospital Aachen, Alexianergraben 33, 52062 Aachen, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Tuqan M, Porfiri M. Mathematical modeling of zebrafish social behavior in response to acute caffeine administration. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2021; 7:751351. [PMID: 35493317 PMCID: PMC9053518 DOI: 10.3389/fams.2021.751351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zebrafish is a model organism that is receiving considerable attention in preclinical research. Particularly important is the use of zebrafish in behavioral pharmacology, where a number of high-throughput experimental paradigms have been proposed to quantify the effect of psychoactive substances consequences on individual and social behavior. In an effort to assist experimental research and improve animal welfare, we propose a mathematical model for the social behavior of groups of zebrafish swimming in a shallow water tank in response to the administration of psychoactive compounds to select individuals. We specialize the mathematical model to caffeine, a popular anxiogenic compound. Each fish is assigned to a Markov chain that describes transitions between freezing and swimming. When swimming, zebrafish locomotion is modeled as a pair of coupled stochastic differential equations, describing the time evolution of the turn-rate and speed in response to caffeine administration. Comparison with experimental results demonstrates the accuracy of the model and its potential use in the design of in-silico experiments.
Collapse
Affiliation(s)
- Mohammad Tuqan
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, New York, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, New York, USA
- Center for Urban Science + Progress, New York University, New York, USA
- Department of Biomedical Engineering, New York University, Tandon School of Engineering, New York, USA
| |
Collapse
|
40
|
Vignon A, Salvador-Prince L, Lehmann S, Perrier V, Torrent J. Deconstructing Alzheimer's Disease: How to Bridge the Gap between Experimental Models and the Human Pathology? Int J Mol Sci 2021; 22:8769. [PMID: 34445475 PMCID: PMC8395727 DOI: 10.3390/ijms22168769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Discovered more than a century ago, Alzheimer's disease (AD) is not only still present in our societies but has also become the most common dementia, with 50 million people worldwide affected by the disease. This number is expected to double in the next generation, and no cure is currently available to slow down or stop the disease progression. Recently, some advances were made due to the approval of the aducanumab treatment by the American Food and Drug Administration. The etiology of this human-specific disease remains poorly understood, and the mechanisms of its development have not been completely clarified. Several hypotheses concerning the molecular mechanisms of AD have been proposed, but the existing studies focus primarily on the two main markers of the disease: the amyloid β peptides, whose aggregation in the brain generates amyloid plaques, and the abnormally phosphorylated tau proteins, which are responsible for neurofibrillary tangles. These protein aggregates induce neuroinflammation and neurodegeneration, which, in turn, lead to cognitive and behavioral deficits. The challenge is, therefore, to create models that best reproduce this pathology. This review aims at gathering the different existing AD models developed in vitro, in cellulo, and in vivo. Many models have already been set up, but it is necessary to identify the most relevant ones for our investigations. The purpose of the review is to help researchers to identify the most pertinent disease models, from the most often used to the most recently generated and from simple to complex, explaining their specificities and giving concrete examples.
Collapse
Affiliation(s)
- Anaïs Vignon
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Lucie Salvador-Prince
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, CHU Montpellier, 34095 Montpellier, France;
| | - Véronique Perrier
- INM, University of Montpellier, INSERM, CNRS, 34095 Montpellier, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| |
Collapse
|
41
|
Ariyasiri K, Choi TI, Gerlai R, Kim CH. Acute ethanol induces behavioral changes and alters c-fos expression in specific brain regions, including the mammillary body, in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110264. [PMID: 33545226 DOI: 10.1016/j.pnpbp.2021.110264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Ethanol is one of the most commonly abused substances in the world, and ethanol abuse and dependence disorders represent major societal problems. However, appropriate treatment is lacking as we still do not fully understand the molecular bases of these disorders. The zebrafish is one of the model organisms utilized for studying such mechanisms. In this study, we examined the effects of acute ethanol administration on the behavior of zebrafish, and we also analyzed correlated gene expression changes using whole-mount in situ hybridization focusing on a number of genes associated with different neurotransmitter systems, stress response, and neuronal activity. We found ethanol treatment to result in hyperactivity and reduced shoal cohesion compared to control. Analysis of c-fos expression demonstrated altered activity patterns in certain brain regions, including intense activation of the mammillary body in zebrafish with acute ethanol treatment. We also found reduced level of gad1b expression in the cerebellum of ethanol treated fish compared to control. However, we could not detect significant changes in the expression level of other genes, including vglut2b, th, crh, hdc, avp, pomc, and galn in ethanol treated fish compared controls. Our results suggest that zebrafish is a promising animal model for the study of mechanisms underlying alcohol induced behavioral changes and alcohol related human disorders.
Collapse
Affiliation(s)
- Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
42
|
Xia S, Zhu X, Yan Y, Zhang T, Chen G, Lei D, Wang G. Developmental neurotoxicity of antimony (Sb) in the early life stages of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112308. [PMID: 33975224 DOI: 10.1016/j.ecoenv.2021.112308] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Accumulating studies have revealed the toxicity of antimony (Sb) to soil-dwelling and aquatic organisms at the individual level. However, little is known about the neurotoxic effects of antimony and its underlying mechanisms. To assess this issue, we investigated the neurotoxicity of antimony (0, 200, 400, 600 and 800 mg/L) in zebrafish embryos. After exposure, zebrafish embryos showed abnormal phenotypes such as a shortened body length, morphological malformations, and weakened heart function. Behavioral experiments indicated that antimony caused neurotoxicity in zebrafish embryos, manifested in a decreased spontaneous movement frequency, delayed response to touch, and reduced movement distance. We also showed that antimony caused a decrease in acetylcholinesterase (AChE) levels in zebrafish embryos, along with decreased expression of neurofunctional markers such as gfap, nestin, mbp, and shha. Additionally, antimony significantly increased reactive oxygen species levels and significantly reduced glutathione (GSH) and superoxide dismutase (SOD) activity. In summary, our findings indicated that antimony can induce developmental toxicity and neurotoxicity in zebrafish embryos by affecting neurotransmitter systems and oxidative stress, thus altering behavior. These outcomes will advance our understanding of antimony-induced neurotoxicity, environmental problems, and health hazards.
Collapse
Affiliation(s)
- Siyu Xia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xinhong Zhu
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| | - Yuepei Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guoliang Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Daoxi Lei
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
43
|
Zebrafish Models to Study New Pathways in Tauopathies. Int J Mol Sci 2021; 22:ijms22094626. [PMID: 33924882 PMCID: PMC8125481 DOI: 10.3390/ijms22094626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Tauopathies represent a vast family of neurodegenerative diseases, the most well-known of which is Alzheimer’s disease. The symptoms observed in patients include cognitive deficits and locomotor problems and can lead ultimately to dementia. The common point found in all these pathologies is the accumulation in neural and/or glial cells of abnormal forms of Tau protein, leading to its aggregation and neurofibrillary tangles. Zebrafish transgenic models have been generated with different overexpression strategies of human Tau protein. These transgenic lines have made it possible to highlight Tau interacting factors or factors which may limit the neurotoxicity induced by mutations and hyperphosphorylation of the Tau protein in neurons. Several studies have tested neuroprotective pharmacological approaches. On few-days-old larvae, modulation of various signaling or degradation pathways reversed the deleterious effects of Tau mutations, mainly hTauP301L and hTauA152T. Live imaging and live tracking techniques as well as behavioral follow-up enable the analysis of the wide range of Tau-related phenotypes from synaptic loss to cognitive functional consequences.
Collapse
|
44
|
Kim SS, Kan H, Hwang KS, Yang JY, Son Y, Shin DS, Lee BH, Ahn SH, Ahn JH, Cho SH, Bae MA. Neurochemical Effects of 4-(2Chloro-4-Fluorobenzyl)-3-(2-Thienyl)-1,2,4-Oxadiazol-5(4H)-One in the Pentylenetetrazole (PTZ)-Induced Epileptic Seizure Zebrafish Model. Int J Mol Sci 2021; 22:1285. [PMID: 33525453 PMCID: PMC7865321 DOI: 10.3390/ijms22031285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders, and it is characterized by spontaneous seizures. In a previous study, we identified 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) as a novel anti-epileptic agent in chemically- or genetically-induced epileptic zebrafish and mouse models. In this study, we investigated the anti-epileptic effects of GM-90432 through neurochemical profiling-based approach to understand the neuroprotective mechanism in a pentylenetetrazole (PTZ)-induced epileptic seizure zebrafish model. GM-90432 effectively improved PTZ-induced epileptic behaviors via upregulation of 5-hydroxytryptamine, 17-β-estradiol, dihydrotestosterone, progesterone, 5α -dihydroprogesterone, and allopregnanolone levels, and downregulation of normetanephrine, gamma-aminobutyric acid, and cortisol levels in brain tissue. GM-90432 also had a protective effect against PTZ-induced oxidative stress and zebrafish death, suggesting that it exhibits biphasic neuroprotective effects via scavenging of reactive oxygen species and anti-epileptic activities in a zebrafish model. In conclusion, our results suggest that neurochemical profiling study could be used to better understand of anti-epileptic mechanism of GM-90432, potentially leading to new drug discovery and development of anti-seizure agents.
Collapse
Affiliation(s)
- Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (S.S.K.); (H.K.); (K.-S.H.); (J.Y.Y.); (Y.S.); (D.-S.S.); (B.H.L.)
| | - Hyemin Kan
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (S.S.K.); (H.K.); (K.-S.H.); (J.Y.Y.); (Y.S.); (D.-S.S.); (B.H.L.)
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (S.S.K.); (H.K.); (K.-S.H.); (J.Y.Y.); (Y.S.); (D.-S.S.); (B.H.L.)
| | - Jung Yoon Yang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (S.S.K.); (H.K.); (K.-S.H.); (J.Y.Y.); (Y.S.); (D.-S.S.); (B.H.L.)
| | - Yuji Son
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (S.S.K.); (H.K.); (K.-S.H.); (J.Y.Y.); (Y.S.); (D.-S.S.); (B.H.L.)
| | - Dae-Seop Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (S.S.K.); (H.K.); (K.-S.H.); (J.Y.Y.); (Y.S.); (D.-S.S.); (B.H.L.)
| | - Byung Hoi Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (S.S.K.); (H.K.); (K.-S.H.); (J.Y.Y.); (Y.S.); (D.-S.S.); (B.H.L.)
| | - Se Hwan Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.A.); (J.H.A.)
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.H.A.); (J.H.A.)
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (S.S.K.); (H.K.); (K.-S.H.); (J.Y.Y.); (Y.S.); (D.-S.S.); (B.H.L.)
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Korea
| |
Collapse
|
45
|
Yang H, Liang X, Zhao Y, Gu X, Mao Z, Zeng Q, Chen H, Martyniuk CJ. Molecular and behavioral responses of zebrafish embryos/larvae after sertraline exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111700. [PMID: 33396031 DOI: 10.1016/j.ecoenv.2020.111700] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Sertraline (SER) is one of the most frequently detected antidepressant drugs in aquatic environments. However, knowledge regarding SER-induced behavioral alterations in fish is insufficient, as well as the mechanisms underlying SER-induced toxicity. The present study aimed to determine behavioral and molecular responses in larval fish following SER exposure with a focus on its mode of action. Zebrafish embryos (~6 h-post-fertilization, hpf) were exposed to one of three concentrations of SER (1, 10, 100 μg/L) for 6 days, respectively. Evaluated parameters included development, behavior, transcripts related to serotonin signaling, serotonin levels, and acetylcholinesterase activity. Accelerated hatching of zebrafish embryos was observed for those fish exposed to 100 μg/L SER at 54 hpf. Locomotor activity (e.g. distance moved and mobile cumulative duration) was significantly reduced in larval zebrafish following exposure to 10 and 100 μg/L SER. Conversely, larval fish showed increased dark-avoidance after exposure to 1-100 μg/L SER. Of the measured transcripts related to serotonin signaling, only serotonin transporter (serta) and serotonin receptor 2c (5-ht2c) mRNA levels were increased in fish in response to 10 μg/L SER treatment. However, serotonin levels were unaltered in larvae exposed to SER. There were no differences among groups in acetylcholinesterase activity at any concentration tested. Taking together, the results evidenced that exposure to SER alters behavioral responses in early-staged zebrafish, which may be related to the abnormal expression of 5-ht2c. This study elucidates molecular responses to SER and characterizes targets that may be sensitive to antidepressant pharmaceuticals in larval fish.
Collapse
Affiliation(s)
- Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| |
Collapse
|
46
|
Maphanga VB, Skalicka-Woźniak K, Budzynska B, Enslin GM, Viljoen AM. Screening selected medicinal plants for potential anxiolytic activity using an in vivo zebrafish model. Psychopharmacology (Berl) 2020; 237:3641-3652. [PMID: 32840669 DOI: 10.1007/s00213-020-05642-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/13/2020] [Indexed: 02/03/2023]
Abstract
RATIONALE Medicinal plants are used extensively in many countries to treat conditions related to the central nervous system (CNS), and there is renewed interest to explore natural products, which may exhibit CNS activity. OBJECTIVE In this study, seven plants were selected based on literature reports of their ethnopharmacological use in treating anxiety-related conditions and assayed in a zebrafish model. METHODS Crude extracts were prepared with solvents of different polarities, and the maximum tolerated concentration (MTC) of these crude extracts was established. The anxiolytic activity of the crude extracts was determined using 5-day post-fertilization (dpf) zebrafish larvae. General locomotor activity and reverse-thigmotaxis behavior (indicative of anxiolytic activity) were analyzed under continuous illumination and alternating light-dark challenges, which induced anxiety in the zebrafish larvae. RESULTS Of the 28 extracts tested, 13 were toxic according to the MTC values obtained. Larvae were subsequently treated with the 15 non-toxic extracts, at a dose determined in the MTC assay or with 1% DMSO as control. The anxiolytic activity (reverse-thigmotaxis) was demonstrated by an increase in the percentage time spent by the larvae in the central arena of the well. Of the 15 non-toxic extracts tested, the Sceletium tortuosum water extract exhibited the most promising anxiolytic activity. CONCLUSIONS The zebrafish model was effective in studying anxiety-related behavior. Thus, the study confirmed that S. tortuosum mitigates anxiety in zebrafish larvae, a step towards the full in vivo validation of the traditional use of the plant.
Collapse
Affiliation(s)
- Veronica B Maphanga
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Barbara Budzynska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Gill M Enslin
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa. .,SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, 0001, South Africa.
| |
Collapse
|
47
|
Panlilio JM, Aluru N, Hahn ME. Developmental Neurotoxicity of the Harmful Algal Bloom Toxin Domoic Acid: Cellular and Molecular Mechanisms Underlying Altered Behavior in the Zebrafish Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:117002. [PMID: 33147070 PMCID: PMC7641300 DOI: 10.1289/ehp6652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Harmful algal blooms (HABs) produce potent neurotoxins that threaten human health, but current regulations may not be protective of sensitive populations. Early life exposure to low levels of the HAB toxin domoic acid (DomA) produces long-lasting behavioral deficits in rodent and primate models; however, the mechanisms involved are unknown. The zebrafish is a powerful in vivo vertebrate model system for exploring cellular processes during development and thus may help to elucidate mechanisms of DomA developmental neurotoxicity. OBJECTIVES We used the zebrafish model to investigate how low doses of DomA affect the developing nervous system, including windows of susceptibility to DomA exposure, structural and molecular changes in the nervous system, and the link to behavioral alterations. METHODS To identify potential windows of susceptibility, DomA (0.09-0.18 ng) was delivered to zebrafish through caudal vein microinjection during distinct periods in early neurodevelopment. Following exposure, structural and molecular targets were identified using live imaging of transgenic fish and RNA sequencing. To assess the functional consequences of exposures, we quantified startle behavior in response to acoustic/vibrational stimuli. RESULTS Larvae exposed to DomA at 2 d postfertilization (dpf), but not at 1 or 4 dpf, showed consistent deficits in startle behavior at 7 dpf, including lower responsiveness and altered kinematics. Similarly, myelination in the spinal cord was disorganized after exposure at 2 dpf but not 1 or 4 dpf. Time-lapse imaging revealed disruption of the initial stages of myelination. DomA exposure at 2 dpf down-regulated genes required for maintaining myelin structure and the axonal cytoskeleton. DISCUSSION These results in zebrafish reveal a developmental window of susceptibility to DomA-induced behavioral deficits and identify altered gene expression and disrupted myelin structure as possible mechanisms. The results establish a zebrafish model for investigating the mechanisms of developmental DomA toxicity, including effects with potential relevance to exposed sensitive human populations. https://doi.org/10.1289/EHP6652.
Collapse
Affiliation(s)
- Jennifer M. Panlilio
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, Massachusetts, USA
- Massachusetts Institute of Technology (MIT)–WHOI Joint Graduate Program in Oceanography and Oceanographic Engineering, Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
- Woods Hole Center for Oceans and Human Health, WHOI, Woods Hole, Massachusetts, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, Massachusetts, USA
- Woods Hole Center for Oceans and Human Health, WHOI, Woods Hole, Massachusetts, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, Massachusetts, USA
- Woods Hole Center for Oceans and Human Health, WHOI, Woods Hole, Massachusetts, USA
| |
Collapse
|
48
|
Guo SY, Zhang Y, Zhu XY, Zhou JL, Li J, Li CQ, Wu LR. Developmental neurotoxicity and toxic mechanisms induced by olaquindox in zebrafish. J Appl Toxicol 2020; 41:549-560. [PMID: 33111391 DOI: 10.1002/jat.4062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022]
Abstract
Olaquindox (OLA) has been widely used as an animal feed additive in China for decades; however, its toxicity and toxic mechanisms have not been well investigated. In this study, the developmental neurotoxicity and toxic mechanisms of OLA were evaluated in zebrafish. Zebrafish embryos were exposed to different concentrations of OLA (25-1,000 mg/L) from 6 to 120 hours post fertilization (hpf). OLA exposure resulted in many abnormal phenotypes in zebrafish, including shortened body length, notochord degeneration, spinal curvature, brain apoptosis, damage of axon and peripheral motor neuron, and hepatotoxicity. Interestingly, OLA increased zebrafish spontaneous tail coiling, while reduced locomotor capacity. Quantitative polymerase chain reaction (Q-PCR) showed that the expression levels of nine marker genes for nervous system functions or development, namely, α1-tubulin, glial fibrillary acidic protein (gfap), myelin basic protein (mbp), synapsinII a (syn2a), sonic hedgehog a (shha), encoding HuC (elavl3), mesencephalic astrocyte-derived neurotrophic factor (manf) growth associated protein 43 (gap43), and acetylcholinesterase (ache) were all down-regulated significantly in zebrafish after treated with OLA. Besides, the anti-apoptotic and pro-apoptotic genes bcl-2/bax ratio was reduced. These results show that OLA exposure could cause severe developmental neurotoxicity in the early stages of zebrafish life and OLA might induce neurotoxicity by inhibiting the expression of neuro-developmental genes and promoting apoptosis.
Collapse
Affiliation(s)
- Sheng-Ya Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China.,Research and Development Department, Hunter Biotechnology, Inc., Jiangling Road, Hangzhou, 310051, China
| | - Yong Zhang
- Research and Development Department, Hunter Biotechnology, Inc., Jiangling Road, Hangzhou, 310051, China
| | - Xiao-Yu Zhu
- Research and Development Department, Hunter Biotechnology, Inc., Jiangling Road, Hangzhou, 310051, China
| | - Jia-Li Zhou
- Research and Development Department, Hunter Biotechnology, Inc., Jiangling Road, Hangzhou, 310051, China
| | - Jiao Li
- Research and Development Department, Hunter Biotechnology, Inc., Jiangling Road, Hangzhou, 310051, China
| | - Chun-Qi Li
- Research and Development Department, Hunter Biotechnology, Inc., Jiangling Road, Hangzhou, 310051, China.,Research and Development Department, New Hunter Testing and Technology Co., Ltd, Xinjinhu Road, Nanjing, 210046, China
| | - Li-Ren Wu
- Laboratory Animal Regulatory Center, Hangzhou Medical College, Tianmushan Road, Hangzhou, 310013, China
| |
Collapse
|
49
|
Annona G, Tarallo A, Nittoli V, Varricchio E, Sordino P, D'Aniello S, Paolucci M. Short-term exposure to the simple polyphenolic compound gallic acid induces neuronal hyperactivity in zebrafish larvae. Eur J Neurosci 2020; 53:1367-1377. [PMID: 33098676 DOI: 10.1111/ejn.15021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 11/29/2022]
Abstract
A growing body of evidence suggests that the biological effects of polyphenols are not restricted to antioxidant activity, but they exert a wide range of modulatory effects on metabolic pathways, cellular signaling and gene expression. In this study, we tested the minimum safe concentration of gallic acid (GA) in 72 hpf zebrafish larvae in order to evaluate the effects on the central nervous system and the behavioral response. We showed that a short exposure (30 min) induces the depletion of the two main excitatory and inhibitory neurotransmitters, Glu and GABA, respectively, in the larval nervous system. The acute impairment of GABAergic-glutamatergic balance was paralleled by an increase of the fosab neuronal activity marker in specific brain areas, such as the forebrain, olfactory bulbs, pallial area, ventral midbrain, tegmentum, and the medulla oblongata ventral area. The neuronal excitation was mirrored by the increased cumulative motor response. The inhibition of the olfactory epithelium with brief cadmium exposition suggests a direct involvement of olfaction in the larvae response to GA. Our results demonstrate that a brief exposure to GA induces motoneuronal hyperexcitability in zebrafish. The behavioral response was probably elicited through the activation of an odorous, or chemical, stimulus. The specificity of the activated neuronal territories suggests the involvement of additional signaling pathways. Although the underlying molecular mechanisms remain to be elucidated, our data support the hypothesis that GA acts as an excitatory molecule, capable of inducing a specific nerve response. These results offer a new vision on potential effects of GA.
Collapse
Affiliation(s)
- Giovanni Annona
- Department of Science and Technologies, University of Sannio, Benevento, Italy.,Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Napoli, Italy
| | - Andrea Tarallo
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Valeria Nittoli
- Biogem s.c.ar.l, Istituto di Ricerche Genetiche G. Salvatore, Avellino, Italy
| | - Ettore Varricchio
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Napoli, Italy
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Napoli, Italy
| | - Marina Paolucci
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
50
|
Zhao Y, Chen H, Li C, Chen S, Xiao H. Comparative Transcriptomics Reveals the Molecular Genetic Basis of Cave Adaptability in Sinocyclocheilus Fish Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.589039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cavefish evolved a series of distinct survival mechanisms for adaptation to cave habitat. Such mechanisms include loss of eyesight and pigmentation, sensitive sensory organs, unique dietary preferences, and predation behavior. Thus, it is of great interest to understand the mechanisms underlying these adaptability traits of troglobites. The teleost genus Sinocyclocheilus (Cypriniformes: Cyprinidae) is endemic to China and has more than 70 species reported (including over 30 cavefish species). High species diversity and diverse phenotypes make the Sinocyclocheilus as an outstanding model for studying speciation and adaptive evolution. In this study, we conducted a comparative transcriptomics study on the brain tissues of two Sinocyclocheilus species (surface-dwelling species – Sinocyclocheilus malacopterus and semi-cave-dwelling species – Sinocyclocheilus rhinocerous living in the same water body. A total of 425,188,768 clean reads were generated, which contributed to 102,839 Unigenes. Bioinformatic analysis revealed a total of 3,289 differentially expressed genes (DEGs) between two species Comparing to S. malacopterus, 2,598 and 691 DEGs were found to be respectively, down-regulated and up-regulated in S. rhinocerous. Furthermore, it is also found tens of DEGs related to cave adaptability such as insulin secretion regulation (MafA, MafB, MafK, BRSK, and CDK16) and troglomorphic traits formation (CEP290, nmnat1, coasy, and pqbp1) in the cave-dwelling S. rhinocerous. Interestingly, most of the DEGs were found to be down-regulated in cavefish species and this trend of DEGs expression was confirmed through qPCR experiments. This study would provide an appropriate genetic basis for future studies on the formation of troglomorphic traits and adaptability characters of troglobites, and improve our understanding of mechanisms of cave adaptation.
Collapse
|