1
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Wang MY, Zhang S, Zhang ZS, Qian XY, Chai HL, Wang Y, Fan WJ, Yi C, Ding YL, Han WX, Zhao L, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis in dairy cattle in Ningxia, northwestern China. Vet Res Commun 2024; 48:2629-2643. [PMID: 38565798 DOI: 10.1007/s11259-024-10364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are common intestinal pathogens that infect humans and animals. To date, research regarding these three protozoa in the Ningxia Hui Autonomous Region (Ningxia) has mostly been limited to a single pathogen, and comprehensive data on mixed infections are unavailable. This study aimed to evaluate the zoonotic potential of these three protozoa. In this study, small subunit ribosomal RNA (SSU rRNA) and 60 kDa glycoprotein (gp60) genes of Cryptosporidium; internal transcribed spacer (ITS) gene of E. bieneusi; and SSU rRNA, glutamate dehydrogenase (gdh), triosephosphate isomerase (tpi), and beta-giardin (bg) genes of G. duodenalis were examined. DNA extraction, polymerase chain reaction, and sequence analysis were performed on fecal samples collected from 320 dairy cattle at three intensive dairy farms in Ningxia in 2021 to determine the prevalence and genetic characteristics of these three protozoa. The findings revealed that 61.56% (197/320) of the samples were infected with at least one protozoan. The overall prevalence of Cryptosporidium was 19.38% (62/320), E. bieneusi was 41.56% (133/320), and G. duodenalis was 29.38% (94/320). This study identified four Cryptosporidium species (C. bovis, C. andersoni, C. ryanae, and C. parvum) and the presence of mixed infections with two or three Cryptosporidium species. C. bovis was the dominant species in this study, while the dominant C. parvum subtypes were IIdA15G1 and IIdA20G1. The genotypes of E. bieneusis were J, BEB4, and I alongside the novel genotypes NX1-NX8, all belonging to group 2, with genotype J being dominant. G. duodenalis assemblages were identified as assemblages E, A, and B, and a mixed infection involving assemblages A + E was identified, with assemblage E being the dominant one. Concurrently, 11 isolates formed 10 different assemblage E multilocus genotypes (MLGs) and 1 assemblage A MLG and assemblage E MLGs formed 5 subgroups. To the best of our knowledge, this is the first report on mixed infection with two or three Cryptosporidium species in cattle in Ningxia and on the presence of the C. parvum subtype IIdA20G1 in this part of China. This study also discovered nine genotypes of E. bieneusis and novel features of G. duodenalis assemblages in Ningxia. This study indicates that dairy cattle in this region may play a significant role in the zoonotic transmission of Cryptosporidium spp., E. bieneusi, and G. duodenalis.
Collapse
Affiliation(s)
- Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiao-Yin Qian
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Jun Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Yi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co., Ltd., Hohhot, China
| | - Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
3
|
Deng ML, Heng ZJ, Li LJ, Yang JF, He JJ, Zou FC, Shu FF. Cryptosporidium spp. Infection and Genotype Identification in Pre-Weaned and Post-Weaned Calves in Yunnan Province, China. Animals (Basel) 2024; 14:1907. [PMID: 38998019 PMCID: PMC11240314 DOI: 10.3390/ani14131907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Cryptosporidium is a globally distributed zoonotic protozoan parasite in humans and animals. Infection is widespread in dairy cattle, especially in calves, resulting in neonatal enteritis, production losses and high mortality. However, the occurrence of Cryptosporidium spp. in pre- and post-weaned calves in Yunnan Province remains unclear. METHODS We collected 498 fecal samples from Holstein calves on 10 different farms in four regions of Yunnan Province. Nested PCR and DNA sequencing were used to determine the infection, species and genotypes of Cryptosporidium spp. in these animals. RESULTS The overall occurrence of Cryptosporidium spp. in Holstein calves was 32.9% (164/498), and the prevalence in pre- and post-weaned calves was 33.5% (106/316) and 31.9% (58/182), respectively. Four Cryptosporidium species were identified in these animals, namely C. bovis (n = 119), C. parvum (n = 23), C. ryanae (n = 20) and C. andersoni (n = 2). Based on sequencing analysis of the 60 kDa glycoprotein gene of C. bovis, C. parvum and C. ryanae, six subtypes of C. bovis (XXVIe, XXVIb, XXVIf, XXVIa XXVIc and XXVId), two subtypes of C. parvum (IIdA19G1 and IIdA18G1) and four subtypes of C. ryanae (XXIf, XXId, XXIe and XXIg) were identified. CONCLUSIONS These results provide essential information to understand the infection rate, species diversity and genetic structure of Cryptosporidium spp. populations in Holstein pre-weaned and post-weaned calves in Yunnan Province. Further, the presence of IIdA18G1 and IIdA19G1 in C. parvum implies significant animal and public health concerns, which requires greater attention and more preventive measures.
Collapse
Affiliation(s)
- Meng-Ling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Zhao-Jun Heng
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Liu-Jia Li
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Jian-Fa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Feng-Cai Zou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Fan-Fan Shu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Gao JF, Zhou L, Zhang AH, Hou MR, Liu XW, Zhang XH, Wang JW, Wang X, Bai X, Jiao CL, Yang Y, Lan Z, Qiu HY, Wang CR. Prevalence and Molecular Characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Cattle in Heilongjiang Province, Northeast China. Animals (Basel) 2024; 14:1635. [PMID: 38891682 PMCID: PMC11171270 DOI: 10.3390/ani14111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Crytosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are important diarrheal pathogens with a global distribution that threatens the health of humans and animals. Despite cattle being potential transmission hosts of these protozoans, the associated risks to public health have been neglected. In the present study, a total of 1155 cattle fecal samples were collected from 13 administrative regions of Heilongjiang Province. The prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi were 5.5% (64/1155; 95% CI: 4.2-6.9), 3.8% (44/1155; 95% CI: 2.7-4.9), and 6.5% (75/1155; 95% CI: 5.1-7.9), respectively. Among these positive fecal samples, five Cryptosporidium species (C. andersoni, C. bovis, C. ryanae, C. parvum, and C. occultus), two G. duodenalis assemblages (E and A), and eight E. bieneusi genotypes (BEB4, BEB6, BEB8, J, I, CHS7, CHS8, and COS-I) were identified. Phylogenetic analysis showed that all eight genotypes of E. bieneusi identified in the present study belonged to group 2. It is worth noting that some species/genotypes of these intestinal protozoans are zoonotic, suggesting a risk of zoonotic disease transmission in endemic areas. The findings expanded our understanding of the genetic composition and zoonotic potential of Cryptosporidium spp., G. duodenalis, and E. bieneusi in cattle in Heilongjiang Province.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chun-Ren Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affair, Key Laboratory of Prevention and Control of Zoonotic Diseases of Daqing, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.-F.G.); (L.Z.); (A.-H.Z.); (M.-R.H.); (X.-W.L.); (X.-H.Z.); (J.-W.W.); (X.W.); (X.B.); (C.-L.J.); (Y.Y.); (Z.L.); (H.-Y.Q.)
| |
Collapse
|
5
|
Zhao L, Wang Y, Wang M, Zhang S, Wang L, Zhang Z, Chai H, Yi C, Fan W, Liu Y. First report of Giardia duodenalis in dairy cattle and beef cattle in Shanxi, China. Mol Biol Rep 2024; 51:403. [PMID: 38457002 DOI: 10.1007/s11033-024-09342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Giardia duodenalis is an important intestinal parasitic protozoan that infects several vertebrates, including humans. Cattle are considered the major source of giardiasis outbreak in humans. This study aimed to investigate the prevalence and multilocus genotype (MLG) of G. duodenalis in Shanxi, and lay the foundation for the prevention and control of Giardiosis. METHODS AND RESULTS DNA extraction, nested polymerase chain reaction, sequence analysis, MLG analysis, and statistical analysis were performed using 858 bovine fecal samples from Shanxi based on three gene loci: β-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi). The overall prevalence of G. duodenalis was 28.3%, while its prevalence in Yingxian and Lingqiu was 28.1% and 28.5%, respectively. The overall prevalence of G. duodenalis in dairy cattle and beef cattle was 28.0% and 28.5%, respectively. G. duodenalis infection was detected in all age groups evaluated in this study. The overall prevalence of G. duodenalis in diarrhea and nondiarrhea samples was 32.4% and 27.5%, respectively, whereas that in intensively farmed and free-range cattle was 35.0% and 19.9%, respectively. We obtained 83, 53, and 59 sequences of bg, gdh, and tpi in G. duodenalis, respectively. Moreover, assemblage A (n = 2) and assemblage E (n = 81) by bg, assemblage A (n = 1) and assemblage E (n = 52) by gdh, and assemblage A (n = 2) and assemblage E (n = 57) by tpi were identified. Multilocus genotyping yielded 29 assemblage E MLGs, which formed 10 subgroups. CONCLUSIONS To the best of our knowledge, this is the first study to report cattle infected with G. duodenalis in Shanxi, China. Livestock-specific G. duodenalis assemblage E was the dominant assemblage genotype, and zoonotic sub-assemblage AI was also detected in this region.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingyuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Lifeng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhansheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hailiang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Yi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yonghong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
6
|
Zhao L, Wang M, Wang L, Wang Y, Zhang S, Zhang Z, Chai H, Fan W, Yi C, Ding Y, Wang J, Sulijid J, Liu Y. Prevalence and molecular characterization of Cryptosporidium spp. in dairy and beef cattle in Shanxi, China. Parasitol Res 2023; 123:8. [PMID: 38052995 DOI: 10.1007/s00436-023-08058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
Cryptosporidium spp. are key gastrointestinal protists in humans and animals worldwide. Infected cattle are considered the main source of cryptosporidiosis outbreaks in humans. However, little is known about the genetic makeup of Cryptosporidium populations in Shanxi province, China. We analyzed 858 fecal samples collected from farms in Shanxi. The presence of Cryptosporidium spp. was determined via polymerase chain reaction and subsequent sequence analysis of the small subunit rRNA gene as well as restriction fragment length polymorphism analysis. Cryptosporidium parvum was subtyped following sequence analysis of the 60 kDa glycoprotein gene (gp60). The overall prevalence of Cryptosporidium in cattle was 11.19%, with a prevalence of 13.30% and 8.67% in Lingqiu and Yingxian, respectively. The overall prevalence of Cryptosporidium in dairy and beef cattle was 10.78% and 11.50%, respectively. Cryptosporidium infection was detected across all analyzed age groups. The overall prevalence of Cryptosporidium in diarrhea and nondiarrhea samples was 18.24% and 9.72%, respectively, whereas that in intensively farmed and free-range cattle was 17.40% and 3.41%, respectively. We identified five Cryptosporidium species, with C. andersoni being the dominant species. Further, two cases of mixed infections of Cryptosporidium species were detected. All identified C. parvum isolates belonged to the subtype IIdA17G1.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Mingyuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Lifeng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhansheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hailiang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Yi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yulin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jinling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jirintai Sulijid
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yonghong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
7
|
Liang Y, Liu YY, Mei JJ, Zheng WB, Liu Q, Gao WW, Zhu XQ, Xie SC. Molecular Identification and Genotyping of Cryptosporidium spp. and Blastocystis sp. in Cattle in Representative Areas of Shanxi Province, North China. Animals (Basel) 2023; 13:2929. [PMID: 37760332 PMCID: PMC10525831 DOI: 10.3390/ani13182929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Both Cryptosporidium spp. and Blastocystis sp. are common intestinal protozoa, which can cause zoonotic diseases and economic losses to livestock industry. To evaluate the prevalence and genetic population structure of Cryptosporidium spp. and Blastocystis sp. in beef and dairy cattle in Shanxi Province, north China, a total of 795 fecal samples were collected from beef and dairy cattle in three representative counties in Shanxi Province, and these fecal samples were examined using molecular approaches based on 18S small-subunit ribosomal RNA (SSU rRNA) of Cryptosporidium spp. and Blastocystis sp., respectively. Among 795 cattle fecal samples, 23 were detected as Cryptosporidium-positive and 103 were detected as Blastocystis-positive, and the overall prevalence of Cryptosporidium spp. and Blastocystis sp. in cattle in Shanxi Province was 2.9% and 13.0%, respectively. For Cryptosporidium spp., DNA sequence analysis indicated that all 23 positive samples were identified as C. andersoni. Furthermore, five known subtypes (ST1, ST10, ST14, ST21 and ST26) and three unknown subtypes of Blastocystis sp. were detected among 103 positive samples using DNA sequence analysis. This study reported the occurrence and prevalence of Cryptosporidium spp. and Blastocystis sp. in cattle in Shanxi Province for the first time, which extends the geographical distribution of these two zoonotic parasites and provides baseline data for the prevention and control of these two important zoonotic parasites in cattle in Shanxi Province.
Collapse
Affiliation(s)
- Yao Liang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.L.); (Y.-Y.L.); (J.-J.M.); (W.-B.Z.); (Q.L.); (W.-W.G.)
| | - Ya-Ya Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.L.); (Y.-Y.L.); (J.-J.M.); (W.-B.Z.); (Q.L.); (W.-W.G.)
| | - Jin-Jin Mei
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.L.); (Y.-Y.L.); (J.-J.M.); (W.-B.Z.); (Q.L.); (W.-W.G.)
| | - Wen-Bin Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.L.); (Y.-Y.L.); (J.-J.M.); (W.-B.Z.); (Q.L.); (W.-W.G.)
| | - Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.L.); (Y.-Y.L.); (J.-J.M.); (W.-B.Z.); (Q.L.); (W.-W.G.)
| | - Wen-Wei Gao
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.L.); (Y.-Y.L.); (J.-J.M.); (W.-B.Z.); (Q.L.); (W.-W.G.)
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.L.); (Y.-Y.L.); (J.-J.M.); (W.-B.Z.); (Q.L.); (W.-W.G.)
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shi-Chen Xie
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.L.); (Y.-Y.L.); (J.-J.M.); (W.-B.Z.); (Q.L.); (W.-W.G.)
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Zhou X, Wang Z, Zhu P, Gu X, He R, Xu J, Jing B, Wang L, Chen S, Xie Y. Eimeria zuernii (Eimeriidae: Coccidia): mitochondrial genome and genetic diversity in the Chinese yak. Parasit Vectors 2023; 16:312. [PMID: 37661262 PMCID: PMC10475197 DOI: 10.1186/s13071-023-05925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Coccidiosis caused by Eimeria zuernii (Eimeriidae: Coccidia) represents a significant economic threat to the bovine industry. Understanding the evolutionary and genetic biology of E. zuernii can assist in new interaction developments for the prevention and control of this protozoosis. METHODS We defined the evolutionary and genetic characteristics of E. zuernii by sequencing the complete mitogenome and analyzing the genetic diversity and population structure of 51 isolates collected from eight yak breeding parks in China. RESULTS The 6176-bp mitogenome of E. zuernii was linear and encoded typical mitochondrial contents of apicomplexan parasites, including three protein-coding genes [PCGs; cytochrome c oxidase subunits I and III (cox1 and cox3), and cytochrome b (cytb)], seven fragmented small subunit (SSU) and 12 fragmented large subunit (LSU) rRNAs. Genome-wide comparative and evolutionary analyses showed cytb and cox3 to be the most and least conserved Eimeria PCGs, respectively, and placed E. zuernii more closely related to Eimeria mephitidis than other Eimeria species. Furthermore, cox1-based genetic structure defined 24 haplotypes of E. zuernii with high haplotype diversities and low nucleotide diversities across eight geographic populations, supporting a low genetic structure and rapid evolutionary rate as well as a previous expansion event among E. zuernii populations. CONCLUSIONS To our knowledge, this is the first study presenting the phylogeny, genetic diversity, and population structure of the yak E. zuernii, and such information, together with its mitogenomic data, should contribute to a better understanding of the genetic and evolutionary biological studies of apicomplexan parasites in bovines.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Zhao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Pengchen Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Lidan Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| |
Collapse
|
9
|
Zhao L, Zhang ZS, Han WX, Yang B, Chai HL, Wang MY, Wang Y, Zhang S, Zhao WH, Ma YM, Zhan YJ, Wang LF, Ding YL, Wang JL, Liu YH. Prevalence and molecular characterization of Giardia duodenalis in dairy cattle in Central Inner Mongolia, Northern China. Sci Rep 2023; 13:13960. [PMID: 37634027 PMCID: PMC10460406 DOI: 10.1038/s41598-023-40987-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
Giardia duodenalis is a gastrointestinal protozoan ubiquitous in nature. It is a confirmed zoonotic pathogen, and cattle are considered a source of giardiasis outbreaks in humans. This study aimed to evaluate the prevalence and multilocus genotype (MLG) of G. duodenalis in dairy cattle in Central Inner Mongolia. This study was based on the small subunit ribosomal RNA (SSU rRNA), glutamate dehydrogenase (gdh), triosephosphate isomerase (tpi), and beta-giardin (bg) genes of G. duodenalis. DNA extraction, polymerase chain reaction (PCR), and sequence analysis were performed on 505 dairy cattle fecal samples collected in 2021 from six sampling sites and four age groups in Central Inner Mongolia to determine the prevalence and MLG distribution of G. duodenalis. The PCR results of SSU rRNA revealed that the overall prevalence of G. duodenalis was 29.5% (149/505) and that the overall prevalence of the diarrhea and nondiarrhea samples was 31.5% (46/146) and 28.5% (103/359), respectively; the difference was not significant (p > 0.05). SSU rRNA sequence analysis revealed that G. duodenalis assemblage E (91.1%, 133/146) was primarily detected and that assemblage A (8.9%, 13/146) was detected in 13 samples. The G. duodenalis-positive samples were PCR amplified and sequenced for gdh, tpi, and bg, from which 38, 47, and 70 amplified sequences were obtained, respectively. A combination of G. duodenalis assemblages A and E were detected in seven samples. Multilocus genotyping yielded 25 different assemblage E MLGs, which formed six subgroups. To the best of our knowledge, this is the first report regarding G. duodenalis infection in dairy cattle in Inner Mongolia, China. This study revealed that Inner Mongolian cattle pose a risk of giardiasis transmission to humans and that the distribution of local cattle G. duodenalis assemblage E MLGs is diverse. The findings of this study can bridge the knowledge gap in the molecular epidemiological investigation of giardiasis in Central Inner Mongolia.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co., Ltd., Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Min Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jie Zhan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li-Feng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jin-Ling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
10
|
Zhao L, Chai HL, Wang MY, Zhang ZS, Han WX, Yang B, Wang Y, Zhang S, Zhao WH, Ma YM, Zhan YJ, Wang LF, Ding YL, Wang JL, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp. in dairy cattle in Central Inner Mongolia, Northern China. BMC Vet Res 2023; 19:134. [PMID: 37626358 PMCID: PMC10464073 DOI: 10.1186/s12917-023-03696-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cryptosporidium is a gastrointestinal protozoan that widely exists in nature, it is an established zoonotic pathogen. Infected cattle are considered to be associated with cryptosporidiosis outbreaks in humans. In the present study, we aimed to assess the prevalence and species distribution of Cryptosporidium in dairy cattle in Central Inner Mongolia. METHODS We focused on the small subunit ribosomal RNA gene (SSU rRNA) of Cryptosporidium and 60-kDa glycoprotein gene (gp60) of Cryptosporidium parvum. We collected 505 dairy cattle manure samples from 6 sampling sites in Inner Mongolia in 2021; the samples were divided into 4 groups based on age. DNA extraction, polymerase chain reaction (PCR), sequence analysis, and restriction fragment length polymorphism (RFLP) using SspI and MboII restriction endonucleases were performed. RFLP analysis was performed to determine the prevalence and species distribution of Cryptosporidium. RESULTS SSU rRNA PCR revealed that the overall prevalence of Cryptosporidium infection was 29.90% (151/505), with a prevalence of 37.67% (55/146) and 26.74% (96/359) in diarrheal and nondiarrheal samples, respectively; these differences were significant. The overall prevalence of Cryptosporidium infection at the 6 sampling sites ranged from 0 to 47.06% and that among the 4 age groups ranged from 18.50 to 43.81%. SSU rRNA sequence analysis and RFLP analysis revealed the presence of 4 Cryptosporidium species, namely, C. bovis (44.37%), C. andersoni (35.10%), C. ryanae (21.85%), and C. parvum (11.92%), along with a mixed infection involving two or three Cryptosporidium species. Cryptosporidium bovis or C. andersoni was the most common cause of infection in the four age groups. The subtype of C. parvum was successfully identified as IIdA via gp60 analysis; all isolates were identified as the subtype IIdA19G1. CONCLUSIONS To the best of our knowledge, this is the first report of dairy cattle infected with four Cryptosporidium species in Inner Mongolia, China, along with a mixed infection involving two or three Cryptosporidium species, with C. bovis and C. andersoni as the dominant species. Moreover, this is the first study to identify C. parvum subtype IIdA19G1 in cattle in Inner Mongolia. Our study findings provide detailed information on molecular epidemiological investigation of bovine cryptosporidiosis in Inner Mongolia, suggesting that dairy cattle in this region are at risk of transmitting cryptosporidiosis to humans.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co.,Ltd, Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Min Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jie Zhan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li-Feng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jin-Ling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
11
|
Chen Y, Huang J, Qin H, Wang L, Li J, Zhang L. Cryptosporidium parvum and gp60 genotype prevalence in dairy calves worldwide: a systematic review and meta-analysis. Acta Trop 2023; 240:106843. [PMID: 36738819 DOI: 10.1016/j.actatropica.2023.106843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
Cryptosporidium is a significant zoonotic pathogen that often occurs in dairy cattle. We conducted a systematic review and meta-analysis of the prevalence of Cryptosporidium parvum infection in dairy calves worldwide to help improve global animal husbandry and public policy implementation. Published articles were obtained from PubMed and Web of Science from January 1, 2000 to December 31, 2021. The prevalence of C. parvum infection in dairy calves was estimated using a random effects model, and the sources of heterogeneity were explored using meta-regression. In total, 118 datasets were included in the final quantitative analysis. The results showed that the global prevalence of C. parvum in dairy calves was 21.9% (7755/42,890; 95% confidence interval: 19.9-23.9%). C. parvum infection was high in pre-weaned dairy calves (24.9%, 6706/29,753) and diarrhea dairy calves (33.6%, 1637/6077). In countries with low dairy stocking density (<10 cows/farm), the prevalence of C. parvum in dairy calves was also relatively low (15.2%, 1960/16,584). Three subtype families [IIa (72.2%, 2293/3177), IId (27.4%, 872/3177), and IIl (0.4%, 12/3177)] were detected in dairy calves globally from selected studies. C. parvum IIa was the dominant zoonotic subtype. In the IIa subtype family of C. parvum, the proportions of subtypes from high to low (top nine) were IIaA15G2R1 (32.4%, 742/2293), IIaA18G3R1 (11.8%, 271/2293), IIaA13G2R1 (8.2%, 187/2293), IIaA16G1R1 (6.4%, 147/2293), IIaA20G1R1 (3.5%, 81/2293), IIaA16G3R1 (3.4%, 78/2293), IIaA17G2R1 (2.7%, 62/2293), IIaA18G1R1 (2.5%, 58/2293), and IIaA15G1R1 (2.4%, 56/2293). In the IId subtype family of C. parvum, the proportions of subtypes (top four) were IIdA19G1 (36.0%, 314/872), IIdA15G1 (27.3%, 238/872), IIdA20G1 (16.2%, 141/872), and IIdA14G1 (13.0%, 113/872). Furthermore, IId is commonly found in China (771/872). The study results indicated that the IIa subtype family is globally prevalent, while IId is found in Asia, Europe, and Africa and IIl is only found in Europe. Diarrhea in dairy calves is associated with C. parvum infection and a significantly higher prevalence is observed in diarrheic calves. Age and stock density are two significant risk factors in the prevalence of C. parvum in dairy calves. The prevention and control of this zoonosis in dairy calves should receive greater attention, especially in regions with a high degree of intensive dairy farming.
Collapse
Affiliation(s)
- Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Jianying Huang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Huikai Qin
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Lu Wang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450002, China.
| |
Collapse
|
12
|
Meng XZ, Kang C, Wei J, Ma H, Liu G, Zhao JP, Zhang HS, Yang XB, Wang XY, Yang LH, Geng HL, Cao H. Meta-Analysis of the Prevalence of Giardia duodenalis in Cattle in China. Foodborne Pathog Dis 2023; 20:17-31. [PMID: 36576972 DOI: 10.1089/fpd.2022.0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Giardia duodenum (G. duodenalis) can cause giardiasis and infect a variety of hosts. So far, there have been no detailed data regarding the positive rate of G. duodenalis in cattle in China. Here, a systematic literature review was carried out to investigate the epidemiology of bovine G. duodenalis in China. To perform the meta-analysis, the databases China National Knowledge Infrastructure, VIP Chinese Journal Databases, WanFang Databases, PubMed, and ScienceDirect were employed for screening studies related to the prevalence of G. duodenalis in cattle in China. The total prevalence of G. duodenalis in cattle was estimated to be 8.00% (95% confidence interval [CI]: 5.51-11.62). In the age subgroup, the prevalence of G. duodenalis in calves (11.72%; 95% CI: 7.75-17.73) was significantly higher than that in cattle of other age groups. An analysis based on seasons showed that the prevalence of G. duodenalis in cattle was higher in summer (9.69%; 95% CI: 2.66-35.30) than that in other seasons. The prevalence of G. duodenalis in cattle in 2016 or later was 11.62% (95% CI: 6.49-20.79), which was significantly higher than that before 2016 (3.65%; 95% CI: 2.17-6.12). The highest prevalence of G. duodenalis in cattle was 74.23% (95% CI: 69.76-78.45) recorded in South China. The NOAA's National Center for Environmental Information (https://gis.ncdc.noaa.gov/maps/ncei/cdo/monthly) was used to extract relevant geoclimatic data (latitude, longitude, elevation, temperature, precipitation, humidity, and climate). By analyzing the data of each subgroup, it was shown that age of cattle, sampling year, province, region, temperature, and climate were potential risk factors for giardiasis prevalence in cattle. Based on the analysis of common factors and geographical factors, it is recommended to strengthen effective management measures (e.g., ventilation and disinfection in warm and humid areas) and formulate relevant policies according to local conditions. Breeders should pay more attention to the detection of G. duodenalis in calves, to prevent giardiasis prevalence in cattle of different ages, thereby reducing the economic losses of animal husbandry in China.
Collapse
Affiliation(s)
- Xiang-Zhu Meng
- Department of Preventive Veterinary Medicine, College of Life Sciences, Changchun Sci-Tech University, Changchun, Jilin, China.,Department of Preventive Veterinary Medicine, School of Pharmacy, The Yancheng Teachers University, Yancheng, Jiangsu, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Chao Kang
- Department of Preventive Veterinary Medicine, Center for Animal Disease Prevention and Control, Baicheng, Jilin, China
| | - Jiaqi Wei
- Department of Preventive Veterinary Medicine, School of Pharmacy, The Yancheng Teachers University, Yancheng, Jiangsu, China
| | - He Ma
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Gang Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jin-Ping Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hong-Shun Zhang
- Department of Preventive Veterinary Medicine, Inner Mongolia Shunwang Cattle Co., Ltd., Tongliao, Inner Mongolia Autonomous Region, China
| | - Xin-Bo Yang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiang-Yu Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Li-Hua Yang
- Department of Preventive Veterinary Medicine, College of Life Sciences, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Hong-Li Geng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hongwei Cao
- Department of Preventive Veterinary Medicine, School of Pharmacy, The Yancheng Teachers University, Yancheng, Jiangsu, China
| |
Collapse
|
13
|
Guo Y, Ryan U, Feng Y, Xiao L. Emergence of zoonotic Cryptosporidium parvum in China. Trends Parasitol 2021; 38:335-343. [PMID: 34972653 DOI: 10.1016/j.pt.2021.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022]
Abstract
Zoonotic cryptosporidiosis is a major public health problem in industrialized nations; in those countries it is caused mainly by Cryptosporidium parvum IIa subtypes that are prevalent in dairy calves. Because of the short history of intensive animal farming in China, strains of C. parvum are found only on some dairy farms in this country and are the IId subtypes. However, the prevalence of C. parvum is increasing rapidly, with IIa subtypes recently detected in a few grazing animals, and both IIa and IId subtypes are emerging in humans. As animal farming intensifies, China may follow in the footsteps of industrialized nations where zoonotic cryptosporidiosis is rampant. One Health and biosecurity measures are urgently needed to slow down the dispersal of autochthonous IId subtypes and imported IIa subtypes.
Collapse
Affiliation(s)
- Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
14
|
Zhang K, Wu Y, Jing B, Xu C, Chen Y, Yu F, Wei Z, Zhang Y, Cui Z, Qi M, Zhang L. Seasonal monitoring of Cryptosporidium species and their genetic diversity in neonatal calves on two large-scale farms in Xinjiang, China. J Eukaryot Microbiol 2021; 69:e12878. [PMID: 34877732 DOI: 10.1111/jeu.12878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To find out whether and how the prevalence and genetic diversity of Cryptosporidium in neonatal calves vary with the season, 380 fecal samples from neonatal calves on two large-scale farms in Xinjiang (Alar and Wensu) were studied using molecular biology techniques. Cryptosporidium was detected in 48.7% (185/380) of the samples and was most frequent in summer (56.8%), followed by spring (50.0%), winter (46.8%), and autumn (41.7%; p > 0.05). Calves with diarrhea seem to be more likely infected by Cryptosporidium than those without diarrhea (p < 0.01). We also found that C. parvum (n = 173), C. bovis (n = 7), and C. ryanae (n = 3) were the Cryptosporidium species detected in this study, and co-infections of these three species (n = 2) were also identified. Two subtypes (IIdA14G1 and IIdA15G1) of C. parvum were identified, and both can infect human. These results also show that neonatal calves commonly suffer diarrhea caused by C. parvum throughout the year.
Collapse
Affiliation(s)
- Kuankuan Zhang
- College of Animal Science, Tarim University, Alar, China
| | - Yayun Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Bo Jing
- College of Animal Science, Tarim University, Alar, China
| | - Chunyan Xu
- College of Animal Science, Tarim University, Alar, China
| | - Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchang Yu
- College of Animal Science, Tarim University, Alar, China
| | - Zilin Wei
- College of Animal Science, Tarim University, Alar, China
| | - Ying Zhang
- College of Animal Science, Tarim University, Alar, China
| | - Zhaohui Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
15
|
Liang XX, Zou Y, Li TS, Chen H, Wang SS, Cao FQ, Yang JF, Sun XL, Zhu XQ, Zou FC. First report of the prevalence and genetic characterization of Giardia duodenalis and Cryptosporidium spp. in Yunling cattle in Yunnan Province, southwestern China. Microb Pathog 2021; 158:105025. [PMID: 34090984 DOI: 10.1016/j.micpath.2021.105025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022]
Abstract
Yunling cattle is an unique cattle breed distributed in Yunnan Province, southwestern China. It is yet to know whether Yunling cattle are infected with Giardia duodenalis and Cryptosporidium spp.. The objectives of the present study were to investigate the prevalence and characterize the assemblages of G. duodenalis and species of Cryptosporidium spp. in Yunling cattle in Yunnan province. The overall prevalence of G. duodenalis and Cryptosporidium spp. were 10.49% (41/391) and 0.77% (3/391), respectively. The age was considered as the risk factor for Yunling cattle infection with G. duodenalis (χ2 = 8.082, OR = 2.56, P = 0.004). Two assemblages of G. duodenalis, assemblage A (n = 1) and assemblage E (n = 40), were identified by amplification of the β-giardin (bg) and glutamate dehydrogenase (gdh) gene loci using the nested PCR methods. Furthermore, Cryptosporidium andersoni (n = 1) and Cryptosporidium ryanae (n = 2) were detected by nested PCR targeting the small subunit (SSU) rRNA gene. This is the first report of G. duodenalis and Cryptosporidium spp. in Yunling cattle in China, which provided baseline date for further studies of the prevalence, genetic identity, and public health potential of these parasites in Yunling cattle.
Collapse
Affiliation(s)
- Xia-Xia Liang
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, PR China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China.
| | - Tao-Shan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Hong Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, PR China
| | - Sha-Sha Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Fu-Qiong Cao
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Jian-Fa Yang
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, PR China
| | - Xiao-Lin Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, PR China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, PR China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, PR China
| | - Feng-Cai Zou
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, 650201, PR China.
| |
Collapse
|
16
|
Zhang X, Dan J, Wang L, Liu H, Zhou Z, Ma X, Ren Z, Fu H, Geng Y, Luo Y, Xie Y, Peng G, Zhong Z. High genetic diversity of Giardia duodenalis assemblage E in Chinese dairy cattle. INFECTION GENETICS AND EVOLUTION 2021; 92:104912. [PMID: 33989813 DOI: 10.1016/j.meegid.2021.104912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Giardia duodenalis is a common protozoan parasite that can infect humans and animals. Although previous studies demonstrated that the assemblage E of G. duodenalis is prevalent in cattle, studies on its genetic diversity were mostly based on single loci and very few involved multilocus analysis. To better understand the genetic variability and structure of G. duodenalis assemblage E in Chinese dairy cattle, 651 multilocus sequences derived from nine provinces (Gansu, Guangdong, Henan, Jiangsu, Ningxia, Shaanxi, Shanghai, Sichuan and Xinjiang) of China were analyzed in this study. Results showed that a total of 220 haplotypes were identified in the G. duodenalis assemblage E, with a high haplotype diversity (Hd = 0.97225) and low nucleotide diversity (π = 0.00259). The genetic differentiation index (FST) and gene flow (Nm) results indicated low degree of genetic differentiation, implying frequent genetic communication. Combined with the analysis of molecular variance (AMOVA), genetic variation within populations (81.7%) was higher than that among populations (18.3%), indicating low degree of genetic differentiation between populations. Such low rates of gene differentiation supported no significant correlations with geographical divisions. Moreover, both negative Tajima's D and Fu's FS values of neutrality tests and unimodal curve of mismatch distribution analyses indicated that G. duodenalis assemblage E population in Chinese dairy cattle had experienced demographic expansion. Overall, these findings contribute to an improved understanding of the population genetics and evolutionary biology of G. duodenalis assemblage E and assist in its control in cattle.
Collapse
Affiliation(s)
- Xueping Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Jiaming Dan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu 610081, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu 611130, China.
| |
Collapse
|
17
|
Li S, Zou Y, Wang P, Qu MR, Zheng WB, Wang P, Chen XQ, Zhu XQ. Prevalence and multilocus genotyping of Cryptosporidium spp. in cattle in Jiangxi Province, southeastern China. Parasitol Res 2021; 120:1281-1289. [PMID: 33615408 DOI: 10.1007/s00436-021-07047-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 11/24/2022]
Abstract
Cryptosporidium is a genus of single-celled protozoa, infecting a wide range of animals and humans. Although Cryptosporidium infections of cattle have been reported in some provinces in China, there is no available information on the prevalence and predominant species of Cryptosporidium in cattle in Jiangxi province. To investigate the prevalence of Cryptosporidium in cattle in Jiangxi province of China, 556 fecal samples were collected from eight farms in four cities and the SSU rRNA locus of Cryptosporidium was amplified from the DNA of each fecal sample by PCR. The overall prevalence of Cryptosporidium was 12.8% (71/556) in cattle in Jiangxi province, with 24.3% (54/222) in Nanchang city, 7.8% (13/166) in Gao'an city, 3.7% (4/108) in Xinyu city, and 0.0% (0/60) in Ji'an city. The differences of the prevalence rates by region, breed, and age groups were statistically significant. All positive PCR products of Cryptosporidium were successfully sequenced and identified as three Cryptosporidium species, namely Cryptosporidium bovis (1/556, 0.18%), Cryptosporidium ryanae (7/556, 1.3%), and Cryptosporidium andersoni (63/556, 11.3%). Furthermore, 36 C. andersoni isolates were successfully classified into three MLST (multilocus sequence typing) subtypes based on four genetic loci (MS1, MS2, MS3, and MS16). The predominant MLST subtype was A4, A4, A4, A1 (n = 30). These findings not only revealed the prevalence and predominant species of Cryptosporidium in cattle in Jiangxi province, but also provided a baseline for studying the genetic structure of C. andersoni, offering a novel resource for better understanding of the epidemiology of Cryptosporidium infection in cattle in Jiangxi province, southeastern China.
Collapse
Affiliation(s)
- Sen Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Pei Wang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Ming-Ren Qu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi Province, People's Republic of China
| | - Ping Wang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Xiao-Qing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi Province, People's Republic of China. .,Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
| |
Collapse
|
18
|
Zhang Z, Su D, Meng X, Liang R, Wang W, Li N, Guo Y, Guo A, Li S, Zhao Z, Xiao L, Feng Y. Cryptosporidiosis outbreak caused by Cryptosporidium parvum subtype IIdA20G1 in neonatal calves. Transbound Emerg Dis 2021; 69:278-285. [PMID: 33406306 DOI: 10.1111/tbed.13976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/20/2020] [Accepted: 01/01/2021] [Indexed: 01/03/2023]
Abstract
Cryptosporidium parvum is a major zoonotic pathogen responsible for outbreaks of severe diarrhoea in humans and calves. Almost all investigations of cryptosporidiosis outbreaks caused by C. parvum have focused on its IIa subtype family in industrialized nations. From December 2018 to April 2019, approximately 200 neonatal calves on a large cattle farm in Hebei Province, China, were diagnosed with watery diarrhoea and over 40 died. To investigate the cause of the outbreak, faecal samples were taken during and after the outbreak from neonatal calves of ≤4 weeks of age (n = 40 and n = 56) and older calves of 4-24 weeks of age (n = 79 and n = 38). A total of 18 faecal samples collected from ill calves at the peak of the outbreak were analysed for four common enteric pathogens using an enzymatic immunoassay (EIA). In addition, 75 samples from neonatal calves were tested for rotavirus by EIA. All samples were analysed for Cryptosporidium spp. using PCR and sequencing techniques. Of the initial 18 samples from sick calves, ten were positive for C. parvum, five for rotavirus, and one for coronavirus. The overall prevalence of rotavirus in neonatal calves was 20.0% (15/75), with no significant differences during and after the outbreak. In contrast, Cryptosporidium parvum infections were significantly higher during the outbreak (60.0%, 24/40) than after the outbreak (30.4%, 17/56; p = .004). Cryptosporidium parvum infection was associated with the presence of watery diarrhoea in neonatal calves (OR = 11.19), while no association was observed between C. bovis infection and diarrhoea. All C. parvum isolates were identified as subtype IIdA20G1. This is one of the few reports of outbreaks of severe diarrhoea caused by C. parvum IId subtypes in calves. More attention should be directed towards the dissemination of C. parvum in China.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Dongle Su
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinan Meng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruobing Liang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijian Wang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Shujing Li
- Shijiazhuang Tianquan Elite Breeding Dairy Cow Co., LTD., Shijiazhuang, China
| | - Zengyuan Zhao
- Shijiazhuang Tianquan Elite Breeding Dairy Cow Co., LTD., Shijiazhuang, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
19
|
Li S, Zou Y, Zhang XL, Wang P, Chen XQ, Zhu XQ. Prevalence and Multilocus Genotyping of Giardia lamblia in Cattle in Jiangxi Province, China: Novel Assemblage E Subtypes Identified. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:681-687. [PMID: 33412773 PMCID: PMC7806433 DOI: 10.3347/kjp.2020.58.6.681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/08/2020] [Indexed: 12/28/2022]
Abstract
Giardia lamblia is a common enteric pathogen associated with diarrheal diseases. There are some reports of G. lamblia infection among different breeds of cattle in recent years worldwide. However, it is yet to know whether cattle in Jiangxi province, southeastern China is infected with G. lamblia. The objectives of the present study were to investigate the prevalence and examine the multilocus genotypes of G. lamblia in cattle in Jiangxi province. A total of 556 fecal samples were collected from 3 cattle breeds (dairy cattle, beef cattle, and buffalo) in Jiangxi province, and the prevalence and genotypes of G. lamblia were determined by the nested PCR amplification of the beta-giardin (bg) gene. A total of 52 samples (9.2%) were positive for G. lamblia. The highest prevalence of G. lamblia was detected in dairy cattle (20.0%), followed by that in beef cattle (6.4%), and meat buffalo (0.9%). Multilocus sequence typing of G. lamblia was performed based on sequences of the bg, triose phosphate isomerase and glutamate dehydrogenase loci, and 22, 42, and 52 samples were amplifiable, respectively, forming 15 MLGs. Moreover, one mixed G. lamblia infection (assemblages A and E) was found in the present study. Altogether, 6 novel assemblage E subtypes (E41*–E46*) were identified for the first time. These results not only provided baseline data for the control of G. lamblia infection in cattle in this southeastern province of China, but also enriched the molecular epidemiological data and genetic diversity of G. lamblia in cattle.
Collapse
Affiliation(s)
- Sen Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China
| | - Xue-Liang Zhang
- Nanchang Bureau of Agriculture and Rural Affairs, Nanchang, Jiangxi Province 330009, China
| | - Ping Wang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, China
| | - Xiao-Qing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, China
| |
Collapse
|
20
|
Wang Y, Zhang B, Li J, Yu S, Zhang N, Liu S, Zhang Y, Li J, Ma N, Cai Y, Zhao Q. Development of a Quantitative Real-Time PCR Assay for Detection of Cryptosporidium spp. Infection and Threatening Caused by Cryptosporidium parvum Subtype IIdA19G1 in Diarrhea Calves from Northeastern China. Vector Borne Zoonotic Dis 2020; 21:179-190. [PMID: 33259769 DOI: 10.1089/vbz.2020.2674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Parasitic diarrheal disease is a major cause of morbidity and mortality in the developing world. Calves are highly susceptible to Cryptosporidium spp. infection that resulted in diarrhea, growth retardation, and weight loss, and was one of the most common enteropathogens. It is especially difficult for molecular detection of calves with inapparent or subclinical infections of cryptosporidiosis. In view of this, this study established a real-time quantitative PCR (RT-qPCR) detection method to clarify its epidemic characteristics, based on Cryptosporidium 18S rRNA gene with the 150 bp product length to investigate the infection of Cryptosporidium spp. in northeastern China The standard curve equation is Ct = -2.91 × lg (Cryptosporidium spp. copies) +10.18, with better sensitivity, stability, and reproducibility. A total of 148 out of 425 fecal samples (34.82%) were detected Cryptosporidium positive with RT-qPCR, including (36.11%) in Heilongjiang province (29.60%), (29.6%) in Jilin province, and (37.50%) in Liaoning province. The infection prevalence of Cryptosporidium parvum, Cryptosporidium ryanae, Cryptosporidium andersoni, and Cryptosporidium bovis from calves in order from high to low was 14.35% (95% confidence interval [CI], 11.2-18.1), 6.12 (95% CI, 4.0-8.8), 2.35 (95% CI, 1.1-4.3), and 0.47 (95% CI, 0.1-1.7), respectively, suggesting C. parvum was the predominant species in calves in northeastern China. Using 60-kDa glycoprotein gp60 gene, all of the 61 C. parvum-positive specimens were further precisely confirmed to IIdA19G1 subtype. This suggested that IIdA19G1 subtype of C. parvum could threaten to cause diarrhea calves from notheastern China (p < 0.01). The prevalence of 34.82% (148/425) using RT-qPCR had a significant difference compared with the prevalence of nested-PCR (23.29%) and microscopic examination (3.76%). The findings improved the epidemiological knowledge of calves infected with cryptosporidiosis in China, highlighting the importance of ongoing Cryptosporidium surveillance.
Collapse
Affiliation(s)
- Yanchun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Baihui Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingping Li
- College of Animal Medicine, Shangdong Vocational Animal Science and Veterinary University, Weifang, China
| | - Songling Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shuting Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jian Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ning Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Quan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
21
|
Qi M, Zhang K, Huang M, Wang S, Xu C, Wang T, Jing B, Li J. Longitudinal detection of Cryptosporidium spp. in 1-10-week-old dairy calves on a farm in Xinjiang, China. Parasitol Res 2020; 119:3839-3844. [PMID: 32996049 DOI: 10.1007/s00436-020-06904-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022]
Abstract
Cryptosporidiosis is an important cause of morbidity and mortality in the cattle industry and leads to severe economic losses. Fecal samples were collected from 25 dairy calves once a week for 10 weeks for continuous longitudinal detection of Cryptosporidium spp. Cryptosporidium spp. were detected via nested PCR amplification of the ribosomal small subunit RNA gene, followed by restriction fragment length polymorphism analysis with enzymes SspI and MboII to identify the species. PCR results indicated that all calves were infected with Cryptosporidium spp. at least once, with an average overall prevalence rate of 52.0% (130/250). One-week-old calves had the highest occurrences of Cryptosporidium infection (96.0%), 2-week-old calves (80.0%) had the second highest, and calves with watery diarrhea also had a higher occurrence of infection (92.3%). Four Cryptosporidium species, C. parvum, C. bovis, C. ryanae, and C. andersoni, were identified, with C. parvum being the most common. Forty-eight C. parvum isolates were further subtyped via nested PCR amplification of the 60-kDa glycoprotein gene, and all were identified as subtype IIdA15G1. The results demonstrated that C. parvum mainly infects dairy calves which are younger than 3 weeks old.
Collapse
Affiliation(s)
- Meng Qi
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, People's Republic of China
| | - Kuankuan Zhang
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, People's Republic of China
| | - Meigui Huang
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, People's Republic of China
| | - Siqi Wang
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, People's Republic of China
| | - Chunyan Xu
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, People's Republic of China
| | - Tian Wang
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, People's Republic of China
| | - Bo Jing
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, People's Republic of China.
| | - Junqiang Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
22
|
Wu Y, Zhang K, Zhang Y, Jing B, Chen Y, Xu C, Wang T, Qi M, Zhang L. Genetic Diversity of Cryptosporidium parvum in Neonatal Dairy Calves in Xinjiang, China. Pathogens 2020; 9:pathogens9090692. [PMID: 32842484 PMCID: PMC7559002 DOI: 10.3390/pathogens9090692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Cryptosporidium parvum has been identified as a major cause of diarrhea and diarrhea-associated deaths in young children and neonatal calves. Infections can remain asymptomatic but may lead to malnutrition and persistent growth retardation. To assess the relationship between C. parvum genetic diversity and pathogenicity in neonatal dairy calves and determine the cause of diarrhea among these calves, 232 fecal samples from neonatal dairy calves on 12 farms in Xinjiang, China, were characterized for Cryptosporidium presence based on the small subunit rRNA gene. The Cryptosporidium prevalence was 38.4% (89/232), and three species were detected with restriction fragment length polymorphism analysis, including C. parvum (the significantly dominant species), C. ryanae, and C. bovis. Cryptosporidium prevalence was significantly higher in neonatal dairy calves with diarrhea (52.6%, 51/97) than in calves without diarrhea (28.1%, 38/135). All C. parvum-positive samples were analyzed based on the 60 KDa glycoprotein gene, and IIdA15G1, IIdA20G1, IIdA14G1, and IIdA19G1 were successfully subtyped. These data indicate that C. parvum may be a major contributor to diarrheal disease in neonatal dairy calves, and C. parvum subtypes from neonatal dairy calves in Xinjiang exhibited high genetic diversity.
Collapse
Affiliation(s)
- Yayun Wu
- College of Animal Science, Tarim University, Alar 843300, China; (Y.W.); (K.Z.); (Y.Z.); (B.J.); (C.X.); (T.W.)
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China;
| | - Kuankuan Zhang
- College of Animal Science, Tarim University, Alar 843300, China; (Y.W.); (K.Z.); (Y.Z.); (B.J.); (C.X.); (T.W.)
| | - Ying Zhang
- College of Animal Science, Tarim University, Alar 843300, China; (Y.W.); (K.Z.); (Y.Z.); (B.J.); (C.X.); (T.W.)
| | - Bo Jing
- College of Animal Science, Tarim University, Alar 843300, China; (Y.W.); (K.Z.); (Y.Z.); (B.J.); (C.X.); (T.W.)
| | - Yuancai Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China;
| | - Chunyan Xu
- College of Animal Science, Tarim University, Alar 843300, China; (Y.W.); (K.Z.); (Y.Z.); (B.J.); (C.X.); (T.W.)
| | - Tian Wang
- College of Animal Science, Tarim University, Alar 843300, China; (Y.W.); (K.Z.); (Y.Z.); (B.J.); (C.X.); (T.W.)
| | - Meng Qi
- College of Animal Science, Tarim University, Alar 843300, China; (Y.W.); (K.Z.); (Y.Z.); (B.J.); (C.X.); (T.W.)
- Correspondence: (M.Q.); (L.Z.); Tel.: +86-997-4680332 (M.Q.); +86-0371-56990163 (L.Z.)
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China;
- Correspondence: (M.Q.); (L.Z.); Tel.: +86-997-4680332 (M.Q.); +86-0371-56990163 (L.Z.)
| |
Collapse
|
23
|
Onder Z, Simsek E, Duzlu O, Yetismis G, Ciloglu A, Okur M, Kokcu ND, Inci A, Yildirim A. Molecular prevalence and genotyping of Giardia duodenalis in cattle in Central Anatolia Region of Turkey. Parasitol Res 2020; 119:2927-2934. [PMID: 32562064 DOI: 10.1007/s00436-020-06771-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
The molecular prevalence and genotypes of Giardia duodenalis in cattle were investigated. A total of 450 fecal samples were collected from cattle in three provinces of Central Anatolia from August 2017 to July 2019. Genomic DNA was extracted from the fecal samples and used in molecular analysis carried out by nested PCR analyses of the β-giardin (bg) gene of G. duodenalis. Positive samples were further analyzed by nested PCR at two gene loci (triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh)) for genotyping of G. duodenalis isolates. PCR analyses of the bg gene indicated that the overall prevalence of G. duodenalis was 30.2%. However, lower rates were determined with PCR analyses for gdh and tpi loci. The sequence analyses of the bg, gdh, and tpi genes revealed the presence of zoonotic assemblage A and livestock-specific assemblage E. Combined-sequence analyses revealed that assemblage E was the most common in the study area. Our study provides the first data on the wide prevalence of livestock-specific assemblages E in cattle in Turkey. The prevalence of assemblage A in cattle also reveals the importance of cattle for zoonotic transmission of giardiasis in Turkey.
Collapse
Affiliation(s)
- Zuhal Onder
- Faculty of Veterinary Medicine, Department of Parasitology, Erciyes University, Kayseri, Turkey.
| | - Emrah Simsek
- Faculty of Veterinary Medicine, Department of Preclinical Science, Erciyes University, Kayseri, Turkey
| | - Onder Duzlu
- Faculty of Veterinary Medicine, Department of Parasitology, Erciyes University, Kayseri, Turkey
| | - Gamze Yetismis
- Faculty of Veterinary Medicine, Department of Parasitology, Erciyes University, Kayseri, Turkey
| | - Arif Ciloglu
- Faculty of Veterinary Medicine, Department of Parasitology, Erciyes University, Kayseri, Turkey
| | - Mubeccel Okur
- Faculty of Veterinary Medicine, Department of Parasitology, Erciyes University, Kayseri, Turkey
| | - Nesrin Delibası Kokcu
- Faculty of Veterinary Medicine, Department of Parasitology, Erciyes University, Kayseri, Turkey
| | - Abdullah Inci
- Faculty of Veterinary Medicine, Department of Parasitology, Erciyes University, Kayseri, Turkey
| | - Alparslan Yildirim
- Faculty of Veterinary Medicine, Department of Parasitology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
24
|
Li X, Zhang X, Jian Y, Wang G, Ma L, Schou C, Karanis P. Detection of Cryptosporidium oocysts and Giardia cysts in vegetables from street markets from the Qinghai Tibetan Plateau Area in China. Parasitol Res 2020; 119:1847-1855. [PMID: 32350588 DOI: 10.1007/s00436-020-06661-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Cryptosporidium and Giardia are well-known parasitic protozoans responsible for waterborne and foodborne diarrhoeal diseases. However, data are not available on market vegetables contaminated with Cryptosporidium and Giardia in China. In the present study, 642 different vegetable samples were collected from Xining City street vendors in the Qinghai Province to study the Cryptosporidium and Giardia contamination rates via PCR and sequence analyses. Cryptosporidium spp. and Giardia duodenalis were detected in 16 (2.5%) and 73 (11.4%) samples, respectively. Two species of Cryptosporidium, C. parvum (n = 11) and C. andersoni (n = 5), were identified. G. duodenalis assemblage B was identified in almost all positive samples (n = 72), except one sample that contained G. duodenalis assemblage E. We report on the rate of Cryptosporidium and Giardia contamination in vegetables for the first time from the Qinghai Tibetan Plateau Area (QTPA) in China.
Collapse
Affiliation(s)
- Xiuping Li
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Centre for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, People's Republic of China
| | - Xueyong Zhang
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Centre for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, People's Republic of China
| | - Yingna Jian
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Centre for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, People's Republic of China
| | - Geping Wang
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Centre for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, People's Republic of China
| | - Liqing Ma
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Centre for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, People's Republic of China
| | - Chad Schou
- Department of Basic and Clinical Sciences, Nicosia University Medical School, 2408, Nicosia, Cyprus
| | - Panagiotis Karanis
- State Key Laboratory of Plateau Ecology and Agriculture Qinghai University, Centre for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, 810016, People's Republic of China. .,University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany. .,Department of Basic and Clinical Sciences, Nicosia University Medical School, 2408, Nicosia, Cyprus.
| |
Collapse
|
25
|
Occurrence and multilocus genotyping of Giardia duodenalis from post-weaned dairy calves in Sichuan province, China. PLoS One 2019; 14:e0224627. [PMID: 31682629 PMCID: PMC6827885 DOI: 10.1371/journal.pone.0224627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Giardia duodenalis is a zoonotic parasitic protist and poses a threat to human and animal health. This study investigated the occurrence of G. duodenalis infection in post-weaned calves from Sichuan province, China. Faecal samples were collected from a total of 306 post-weaned calves (3–12 months old) from 10 farms, including 4 intensive feeding farms and 6 free-ranging farms. The overall infection rate of G. duodenalis was 41.2% (126/306) based on the PCR results at any of the three genetic loci: beta-giardin (bg), triose-phosphate isomerase (tpi) and glutamate dehydrogenase (gdh) genes. Giardia duodenalis assemblages E (n = 115, 91.3%), A (n = 3, 2.4%), and A mixed with E (n = 8, 6.3%) were identified among the 126 positive specimens. Multilocus sequence typing of G. duodenalis revealed 34 assemblage E multilocus genotypes (MLGs), 1 assemblage A MLG and 7 mixed assemblage (A and E) MLGs. The eBURST data showed a high degree of genetic diversity within assemblage E MLGs. The phylogenetic tree revealed that MLG E3 was the primary MLG subtype in Sichuan province and also the most widely distributed in China.
Collapse
|
26
|
Doungmala P, Phuektes P, Taweenan W, Sangmaneedet S, Japa O. Prevalence and species identification of Cryptosporidium spp. in the newborn dairy calves from Muang District, Khon Kaen Province, Thailand. Vet World 2019; 12:1454-1459. [PMID: 31749581 PMCID: PMC6813613 DOI: 10.14202/vetworld.2019.1454-1459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/20/2019] [Indexed: 11/27/2022] Open
Abstract
AIM This study aims to determine the prevalence of Cryptosporidium spp. infection and to identify the species of Cryptosporidium spp. in newborn dairy calves between December 2016 and March 2017 in Muang District, Khon Kaen Province, Thailand. MATERIALS AND METHODS A total of 200 fecal samples from newborn dairy calves of the ages 1 day up to 28 days were collected and the presence of Cryptosporidium oocysts was examined microscopically using the modified Kinyoun's acid-fast staining technique. Then, Cryptosporidium species were identified using nested polymerase chain reaction amplification of 18S rRNA gene and sequencing. RESULTS The modified Kinyoun's acid-fast staining revealed the presence of Cryptosporidium oocysts in 51% (102/200). Sequence analysis of the 18S rRNA gene identified two species, namely, Cryptosporidium bovis (n=11) and Cryptosporidium ryanae (n=11) and one isolated strain could not be identified. CONCLUSION This study indicated that newborn dairy calves aging up to 4 weeks were highly infected with Cryptosporidium spp., and the infection mostly occurred in diarrheic dairy calves. This is the first report of Cryptosporidium in dairy calves in Khon Kaen Province and the results provide baseline information for further studies and control of Cryptosporidium infection in dairy calves in the study area.
Collapse
Affiliation(s)
- Phennarin Doungmala
- Interdisciplinary Veterinary Science, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patchara Phuektes
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Weerapol Taweenan
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somboon Sangmaneedet
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ornampai Japa
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Phayao University, Phayao 56000, Thailand
| |
Collapse
|
27
|
Wang R, Li N, Jiang W, Guo Y, Wang X, Jin Y, Feng Y, Xiao L. Infection patterns, clinical significance, and genetic characteristics of Enterocytozoon bieneusi and Giardia duodenalis in dairy cattle in Jiangsu, China. Parasitol Res 2019; 118:3053-3060. [PMID: 31420739 DOI: 10.1007/s00436-019-06426-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
The infection patterns and clinical significance of Enterocytozoon bieneusi and Giardia duodenalis in dairy cattle remain poorly investigated despite their common occurrence. Data on the genetic diversity are also needed to understand the transmission and human-infective potential of the two pathogens. In this study, fecal specimens from 1366 dairy cattle on a large farm were examined for the presence and genotype distribution of E. bieneusi and G. duodenalis by PCR and DNA sequencing. The overall infection rates of E. bieneusi and G. duodenalis were 13.0% and 20.6%, respectively. Pre-weaned calves had significantly higher infection rates of both pathogens than post-weaned and adult cattle (P < 0.001), with peak occurrence of the pathogens in animals of 7-12 weeks. In both pre- and post-weaned calves, animals with diarrhea were 2.1-3.0 times more likely to be infected with either pathogen than those without diarrhea (P < 0.01). The E. bieneusi identified belonged to five genotypes, including J (n = 138), I (n = 21), BEB4 (n = 10), Type IV (n = 1), and a novel genotype CHC17 (n = 1). Genotype J was the dominant one in all age groups, whereas genotype I was only identified in calves of 6-11 weeks. Genotyping of G. duodenalis at three genetic loci identified assemblage E (n = 278), assemblage A (n = 2), and concurrence of the two (n = 1). Altogether, 13, 7 and 10 subtypes of assemblage E were detected at the bg, gdh, and tpi loci, respectively, forming 65 multilocus genotypes. The formation of two major clusters of MLGs in eBURST analysis indicated that intra-assemblage genetic recombination of two dominant MLGs could have led to the high genetic heterogeneity within assemblage E on a single farm. Results of this study provide much needed data on the pathogenicity of E. bieneusi and G. duodenalis in pre- and post-weaned calves. The clinical significance of the two pathogens in dairy cattle warrants further investigations.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Wen Jiang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Xiaolan Wang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yue Jin
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Zhang HJ, Song JK, Wu XM, Li YH, Wang Y, Lin Q, Zhao GH. First report of Giardia duodenalis genotypes in Zangxiang pigs from China. Parasitol Res 2019; 118:2305-2310. [PMID: 31079254 DOI: 10.1007/s00436-019-06340-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/29/2019] [Indexed: 11/24/2022]
Abstract
Giardia duodenalis is an important zoonotic intestinal protozoan of animals and humans. We collected 450 faecal specimens from four age groups (pre-weaned piglets, weaned piglets, juveniles, adults) of Zangxiang pigs from Shaanxi and Qinghai provinces, to investigate the prevalence and genetic diversity of G. duodenalis at the β-giardin (bg), triosephosphate isomerase (tpi) and glutamate dehydrogenase (gdh) loci using nested PCRs in the present study. A total of 28 faecal samples were positive for presence of G. duodenalis, with an overall prevalence of 6.2%. Giardia duodenalis was detected in pigs from all age groups and in both investigated provinces. Significant differences (P < 0.0001) in prevalence were observed among the four age groups with prevalence decreasing with age. Sequence analysis indicated existence of genetic diversity of G. duodenalis isolates from Zangxiang pigs, with 4, 2 and 4 haplotypes at the bg, tpi and gdh loci, respectively. Two assemblages were identified, including the zoonotic assemblage B and assemblage E, with the latter as the predominant assemblage found in both locations and all age groups except adults. The present study expanded the host range of G. duodenalis and provided fundamental data for controlling G. duodenalis infection in Zangxiang pigs.
Collapse
Affiliation(s)
- H J Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - J K Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - X M Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Y H Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Y Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China
| | - Q Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China.
| | - G H Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, People's Republic of China.
| |
Collapse
|
29
|
Cai Y, Zhang NZ, Gong QL, Zhao Q, Zhang XX. Prevalence of Cryptosporidium in dairy cattle in China during 2008-2018: A systematic review and meta-analysis. Microb Pathog 2019; 132:193-200. [PMID: 31075427 DOI: 10.1016/j.micpath.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 11/17/2022]
Abstract
Cryptosporidium is the causative agent of cryptosporidiosis. Cryptosporidium not only has a worldwide distribution, but also can infect various hosts, including dairy cattle and humans. Although numerous researches on Cryptosporidium infection in cattle have been conducted, no nationwide study on the prevalence of Cryptosporidium infection in dairy cattle in mainland China was carried out. In this meta-analysis, five databases, including PubMed, ScienceDirect, China National Knowledge Infrastructure (CNKI), Chongqing VIP, and Wanfang, were used to search for published papers regarding Cryptosporidium infection in dairy cattle in China from inception to February 25, 2019. Our study obtained 60 eligibility studies that reported Cryptosporidium infection in dairy cattle. We estimated the pooled Cryptosporidium prevalence to be 17.0% (3,901/33,313), with 16.9% (722/5,191) in Central China, 17.4% (959/6,162) in Eastern China, 29.8% (404/2,021) in Northeastern China, 15.7% (227/2,344) in Northern China, 15.8% (1,042/11,452) in Northwestern China, 9.5% (494/5,758) in Southern China, and 13.7% (53/385) in Southwestern China. The pooled prevalence of Cryptosporidium in before 2000 group (28.0%, 944/3,417) was significantly higher than in 2000-2010 group (11.1%, 384/3,643) and after 2010 group (13.7%, 2,134/22,411). Cattle with the age of ≤ 12 months (22.5%, 2,142/12,948) had a significantly higher prevalence than those of > 12 months (9.5%, 840/10,282). The pooled prevalence of Cryptosporidium in different seasons ranged from 8.2% (343/4,552) in Autumn to 19.5% (285/1,570) in Winter. Diarrhea cattle (38%, 133/477) had a higher Cryptosporidium prevalence than non-diarrhea cattle (13.0%, 367/2423). The pooled prevalence of Cryptosporidium in different provinces was various, with the highest (35.6%, 355/1,667) in Heilongjiang province, and the lowest (4.3%, 15/440) in Tianjin province. The univariate meta-regression analyses indicated that the collection year (P = 0.002) and age of cattle (P = 0.001) might be sources of heterogeneity. This systematic review suggests that China is a country where cryptosporidiosis frequently occurs in cattle. Due to the particular relationship between dairy cattle and feeder, further research is required to investigate the links between cattle ownership and Cryptosporidium infection.
Collapse
Affiliation(s)
- Yanan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China.
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China.
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China.
| | - Quan Zhao
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, PR China.
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China.
| |
Collapse
|
30
|
Feng Y, Gong X, Zhu K, Li N, Yu Z, Guo Y, Weng Y, Kváč M, Feng Y, Xiao L. Prevalence and genotypic identification of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China. Parasit Vectors 2019; 12:41. [PMID: 30654832 PMCID: PMC6337774 DOI: 10.1186/s13071-019-3310-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi are common enteric pathogens in humans and animals. Data on the transmission of these pathogens are scarce from Guangdong, China, which has a subtropical monsoon climate and is the epicenter for many emerging infectious diseases. This study was conducted to better understand the prevalence and identity of the three pathogens in pre-weaned dairy calves in Guangdong. Methods The occurrence and genetic identity of three pathogens were analyzed by polymerase chain reaction. PCR-positive products were sequenced to determine the species and genotypes. A Chi-square test was used to compare the prevalence of pathogens among sampling dates, age groups, or clinical signs. Results The detection rates of Cryptosporidium spp., G. duodenalis and E. bieneusi were 24.0% (93/388), 74.2% (288/388) and 15.7% (61/388), respectively. Three Cryptosporidium species were detected, including C. bovis (n = 73), C. parvum (n = 12) and C. ryanae (n = 7); one animal had concurrence of C. bovis and C. parvum. C. parvum was the dominant species during the first two weeks of life, whereas C. bovis and C. ryanae were mostly seen at 3–9 weeks of age. Sequence analysis identified the C. parvum as subtype IIdA19G1. Assemblage E (n = 282), assemblage A (n = 1), and concurrence of A and E (n = 5) were identified among G. duodenalis-positive animals using multilocus genotyping (MLG). Altogether, 15, 10 and 17 subtypes of assemblage E were observed at the bg, gdh and tpi loci, respectively, forming 49 assemblage E MLGs. The highest detection rate of G. duodenalis was found in winter. Sequence analysis identified genotypes J (n = 57), D (n = 3) and one concurrence of J and D among E. bieneusi-positive animals. The detection rate of E. bieneusi was significantly higher in spring (38.0%; 41/108) than in summer (7.2%; 8/111) and winter (7.1%; 12/169). Conclusions These results indicate a common occurrence of C. parvum subtype IIdA19G1, G. duodenalis assemblage E, and E. bieneusi genotype J in pre-weaned dairy calves in Guangdong. More studies are needed to understand the unique genetic characteristics and zoonotic potential of the three enteric pathogens in the province.
Collapse
Affiliation(s)
- Yuanyuan Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoqing Gong
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kexin Zhu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengjie Yu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yabiao Weng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental, East China University of Science and Technology, Shanghai, 200237, China. .,Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|