1
|
Chen P, Rehman MU, He Y, Li A, Jian F, Zhang L, Huang S. Exploring the interplay between Eimeria spp. infection and the host: understanding the dynamics of gut barrier function. Vet Q 2025; 45:1-22. [PMID: 39831548 PMCID: PMC11749151 DOI: 10.1080/01652176.2025.2452169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/23/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Coccidiosis is a global disease caused by protozoans, typically including Eimeria spp., which pose a significant threat to the normal growth and development of young animals. Coccidiosis affects mainly the gut, where parasite proliferation occurs. The intestinal barrier, which consists of chemical, mechanical, biological, and immune defences, plays a crucial role in protecting the host against pathogens, xenobiotics, and toxins present in the gastrointestinal tract. When animals ingest sporulated Eimeria spp. oocysts, these parasites primarily reproduce in the intestinal tract, causing damage to the structure and function of the intestine. This disruption of intestinal homeostasis adversely affects animal health. Numerous studies have also revealed that Eimeria-infected animals experience slower bone growth rates, inferior meat quality, reduced egg production and quality, as well as impaired growth and development. Therefore, the purpose of this review is to examine the underlying mechanisms through which Eimeria spp. regulate intestinal damage and disturb the balance of the internal environment. Specifically, this review will focus on their effects on the structural basis of the host intestine's chemical, mechanical, biological and immune barriers. This understanding is crucial for the development of effective drugs to prevent the invasion of Eimeria spp. into the intestine, which is of paramount importance for maintaining host health.
Collapse
Affiliation(s)
- Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock & Dairy Development Department Balochistan, Quetta, Pakistan
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Baillou A, Tomal F, Chaumeil T, Barc C, Levern Y, Sausset A, Pezier T, Schulthess J, Peltier-Pain P, Laurent F, Lacroix-Lamandé S. Characterization of intestinal mononuclear phagocyte subsets in young ruminants at homeostasis and during Cryptosporidium parvum infection. Front Immunol 2024; 15:1379798. [PMID: 38756777 PMCID: PMC11096452 DOI: 10.3389/fimmu.2024.1379798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Cryptosporidiosis is a poorly controlled zoonosis caused by an intestinal parasite, Cryptosporidium parvum, with a high prevalence in livestock (cattle, sheep, and goats). Young animals are particularly susceptible to this infection due to the immaturity of their intestinal immune system. In a neonatal mouse model, we previously demonstrated the importance of the innate immunity and particularly of type 1 conventional dendritic cells (cDC1) among mononuclear phagocytes (MPs) in controlling the acute phase of C. parvum infection. These immune populations are well described in mice and humans, but their fine characterization in the intestine of young ruminants remained to be further explored. Methods Immune cells of the small intestinal Peyer's patches and of the distal jejunum were isolated from naive lambs and calves at different ages. This was followed by their fine characterization by flow cytometry and transcriptomic analyses (q-RT-PCR and single cell RNAseq (lamb cells)). Newborn animals were infected with C. parvum, clinical signs and parasite burden were quantified, and isolated MP cells were characterized by flow cytometry in comparison with age matched control animals. Results Here, we identified one population of macrophages and three subsets of cDC (cDC1, cDC2, and a minor cDC subset with migratory properties) in the intestine of lamb and calf by phenotypic and targeted gene expression analyses. Unsupervised single-cell transcriptomic analysis confirmed the identification of these four intestinal MP subpopulations in lamb, while highlighting a deeper diversity of cell subsets among monocytic and dendritic cells. We demonstrated a weak proportion of cDC1 in the intestine of highly susceptible newborn lambs together with an increase of these cells within the first days of life and in response to the infection. Discussion Considering cDC1 importance for efficient parasite control in the mouse model, one may speculate that the cDC1/cDC2 ratio plays also a key role for the efficient control of C. parvum in young ruminants. In this study, we established the first fine characterization of intestinal MP subsets in young lambs and calves providing new insights for comparative immunology of the intestinal MP system across species and for future investigations on host-Cryptosporidium interactions in target species.
Collapse
Affiliation(s)
- Ambre Baillou
- Unité Mixte de Recherches (UMR)1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, Université François Rabelais de Tours, Nouzilly, France
- Phileo by Lesaffre, Marcq-en-Barœul, France
| | - Florian Tomal
- Unité Mixte de Recherches (UMR)1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, Université François Rabelais de Tours, Nouzilly, France
| | - Thierry Chaumeil
- Unité Expérimentale (UE)1277 Plateforme d’Infectiologie Expérimentale (PFIE), INRAE Centre Val de Loire, Nouzilly, France
| | - Céline Barc
- Unité Expérimentale (UE)1277 Plateforme d’Infectiologie Expérimentale (PFIE), INRAE Centre Val de Loire, Nouzilly, France
| | - Yves Levern
- Unité Mixte de Recherches (UMR)1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, Université François Rabelais de Tours, Nouzilly, France
| | - Alix Sausset
- Unité Mixte de Recherches (UMR)1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, Université François Rabelais de Tours, Nouzilly, France
| | - Tiffany Pezier
- Unité Mixte de Recherches (UMR)1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, Université François Rabelais de Tours, Nouzilly, France
| | | | | | - Fabrice Laurent
- Unité Mixte de Recherches (UMR)1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, Université François Rabelais de Tours, Nouzilly, France
| | - Sonia Lacroix-Lamandé
- Unité Mixte de Recherches (UMR)1282 Infectiologie et Santé Publique, INRAE Centre Val de Loire, Université François Rabelais de Tours, Nouzilly, France
| |
Collapse
|
3
|
Lu J, Cheng YJ, Xu XH, Zhang LJ, Chen ZH, Liu L, Wang WH. Developmental characteristics of aggregated lymphoid nodules area in the abomasum of fetal Bactrian camels (Camelus bactrianus). BMC Vet Res 2024; 20:157. [PMID: 38664826 PMCID: PMC11044426 DOI: 10.1186/s12917-024-04000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Bactrian camel is one of the important economic animals in northwest China. They live in arid desert, and their gestation period is about 13 months, which is longer than other ruminants (such as cattle and sheep). The harsh living conditions have made its unique histological characteristics a research focus. Aggregated lymphoid nodules area (ALNA) in the abomasum of Bactrian camels, as one of the most important sites for the induction of the immune response, provide a comprehensive and effective protective role for the organism, and their lack of information will affect the feeding management, reproduction and epidemic prevention of Bactrian camels. In this study, the histological characteristics of the fetal ALNA in the abomasum of Bactrian camels at different developmental gestation have been described by using light microscopy and histology . RESULTS The ALNA in the abomasum of the Chinese Alashan Bactrian camel is a special immune structure that was first discovered and reported by Wen-hui Wang. To further establish the developmental characteristics of this special structure in the embryonic stage, the abomasum ALNA of 8 fetuses of Alashan Bactrian camels with different gestational ages (5~13 months) were observed and studied by anatomy and histology. The results showed that the aggregation of reticular epithelial cells (RECs) surrounded by a very small number of lymphoid cells was detected for the first time in the abomasum of fetal camel at 5 months gestation, which was presumed to be primitive ALNA. At 7 months gestation, the reticular mucosal folds region (RMFR) appeared, but the longitudinal mucosal folds region (LMFR) was not significant, and histological observations showed that there were diffusely distributed lymphocytes around the RECs. At 10months gestation, RMFR and LMFR were clearly visible, lymphoid follicles appeared in histological observation, lymphocytes proliferated vigorously. By 13 months, the volume of lymphoid follicles increased, forming the subepithelial dome (SED), and there was a primitive interfollicular area between the lymphoid follicles, which contained high endothelial vein (HEV), but no germinal center (GC) was found. In summary, ALNA of Bactrian camels is not fully mature before birth. CONCLUSIONS Generally, the small intestine PPs of ruminants (such as cattle and sheep) is already mature before birth, while the ALNA in the abomasum of Bactrian camels is not yet mature in the fetal period. During the development of ALNA in Bactrian camel, the development of lymphoid follicles extends from submucosa to Lamina propria. Interestingly, the deformation of FAE changes with age from simple columnar epithelium at the beginning of pregnancy to Simple cuboidal epithelium, which is opposite to the FAE deformation characteristics of PPs in the small intestine of fetal cattle and sheep. These results are the basis of further research on the specificity of ALNA in the abomasum of Bactrian camels.
Collapse
Affiliation(s)
- Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yu-Jiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Xiao-Hong Xu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730070, Gansu, China
| | | | - Zhi-Hua Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Lei Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
4
|
Veshkini A, Dengler F, Bachmann L, Liermann W, Helm C, Ulrich R, Delling C, Kühn C, Hammon HM. Cryptosporidium parvum infection alters the intestinal mucosa transcriptome in neonatal calves: implications for immune function. Front Immunol 2024; 15:1351427. [PMID: 38318169 PMCID: PMC10839036 DOI: 10.3389/fimmu.2024.1351427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
One of the leading causes of infectious diarrhea in newborn calves is the apicomplexan protozoan Cryptosporidium parvum (C. parvum). However, little is known about its immunopathogenesis. Using next generation sequencing, this study investigated the immune transcriptional response to C. parvum infection in neonatal calves. Neonatal male Holstein-Friesian calves were either orally infected (N = 5) or not (CTRL group, N = 5) with C. parvum oocysts (gp60 subtype IIaA15G2R1) at day 1 of life and slaughtered on day 7 after infection. Total RNA was extracted from the jejunal mucosa for short read. Differentially expressed genes (DEGs) between infected and CTRL groups were assessed using DESeq2 at a false discovery rate < 0.05. Infection did not affect plasma immunohematological parameters, including neutrophil, lymphocyte, monocyte, leucocyte, thrombocyte, and erythrocyte counts as well as hematocrit and hemoglobin concentration on day 7 post infection. The immune-related DEGs were selected according to the UniProt immune system process database and were used for gene ontology (GO) and pathway enrichment analysis using Cytoscape (v3.9.1). Based on GO analysis, DEGs annotated to mucosal immunity, recognizing and presenting antigens, chemotaxis of neutrophils, eosinophils, natural killer cells, B and T cells mediated by signaling pathways including toll like receptors, interleukins, tumor necrosis factor, T cell receptor, and NF-KB were upregulated, while markers of macrophages chemotaxis and cytosolic pattern recognition were downregulated. This study provides a holistic snapshot of immune-related pathways induced by C. parvum in calves, including novel and detailed feedback and feedforward regulatory mechanisms establishing the crosstalk between innate and adaptive immune response in neonate calves, which could be utilized further to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Arash Veshkini
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
| | - Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Lisa Bachmann
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, Neubrandenburg, Germany
| | - Wendy Liermann
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
| | - Christiane Helm
- Institutue for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Reiner Ulrich
- Institutue for Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Cora Delling
- Institute of Veterinary Parasitology, Leipzig University, Leipzig, Germany
| | - Christa Kühn
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
- Agricultural and Environmental Faculty, University Rostock, Rostock, Germany
| | - Harald M. Hammon
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
| |
Collapse
|
5
|
Meek HC, Stenfeldt C, Arzt J. Morphological and Phenotypic Characteristics of the Bovine Nasopharyngeal Mucosa and Associated Lymphoid Tissue. J Comp Pathol 2022; 198:62-79. [PMID: 36116893 DOI: 10.1016/j.jcpa.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022]
Abstract
The mammalian nasopharynx is an anatomically complex region of the upper respiratory tract that directly communicates with the nasal cavity, laryngopharynx, oesophagus and trachea. The nasopharyngeal mucosa contains moderate quantities of mucosa-associated lymphoid tissue (MALT) that is appropriately located for immunological sampling but also creates vulnerability to pathogens. In recent years, the nasopharynx has been inculpated in the pathogenesis of important diseases of cattle (foot-and-mouth disease) and humans (COVID-19), yet the tissue has never been described in detail in any species. In order to characterize the morphology and cellular composition of the bovine nasopharynx, samples of mucosa were collected from the nasopharynx of five 8-13-month-old steers and examined using light microscopy, immunohistochemistry and multichannel immunofluorescence. Morphologically, the nasopharyngeal epithelium was highly heterogeneous, with a continuum ranging from stratified squamous epithelium to highly attenuated, follicle-associated epithelium (FAE). Distribution of MALT was similarly regionally variable ranging from absent to clusters of multiple lymphoid follicles. Phenotypic characterization demonstrated dense distributions of dendritic cells and T lymphocytes surrounding lymphoid follicles, which comprised mostly B lymphocytes. The FAE overlaying the lymphoid follicles also contained higher numbers of dendritic cells and lymphocytes compared with the adjacent non-lymphoid epithelium, although cytotoxic T cells were notably scarce in the FAE. The bovine nasopharyngeal lymphoid tissue had comparable elements to other MALTs with specific differences that may help to elucidate the pathogenesis of infectious agents that have specific tropism for this tissue.
Collapse
Affiliation(s)
- Haillie C Meek
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, New York, USA; Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, New York, USA; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, New York, USA.
| |
Collapse
|
6
|
Yin T, Halli K, König S. Direct genetic effects, maternal genetic effects, and maternal genetic sensitivity on prenatal heat stress for calf diseases and corresponding genomic loci in German Holsteins. J Dairy Sci 2022; 105:6795-6808. [PMID: 35717335 DOI: 10.3168/jds.2022-21804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022]
Abstract
The aim of this study was to infer the effects of heat stress (HS) of dams during late gestation on direct and maternal genetic parameters for pneumonia (PNEU, 112,563 observations), diarrhea (DIAR, 176,904 observations), and omphalitis (OMPH, 176,872 observations) in Holstein calves kept in large-scale co-operator herds. The genotype dataset included 41,135 SNPs from 19,247 male and female cattle. Temperature-humidity indices (THI) during the last 8 wk of pregnancy were calculated, using the climate data from the nearest public weather station for each herd. Heat load effects were considered for average weekly THI larger than 60. Phenotypically, regression coefficients of calf diseases on prenatal THI during the last 8 wk of gestation were estimated in 8 consecutive runs. The strongest detrimental effects of prenatal HS on PNEU and DIAR were identified for the last week of pregnancy (wk 1). Thus, only wk 1 was considered in ongoing genetic and genomic analyses. In an advanced model considering prenatal HS, random regression coefficients on THI in wk 1 nested within maternal genetic effects (maternal slope effects for heat load) were considered as parameters to infer maternal sensitivity in response to prenatal THI alterations. Direct heritabilities from the advanced model ranged from 0.10 (THI 60) to 0.08 (THI 74) for PNEU and were close to 0.16 for DIAR. Maternal heritabilities for PNEU increased from 0.03 to 0.10 along the THI gradient. For DIAR, the maternal heritability was largest (0.07) at the minimum THI (THI = 60) and decreased to 0.05 at THI 74. Genetic correlations smaller than 0.80 for PNEU and DIAR recorded at THI 60 with corresponding diseases at THI 74 indicated genotype by climate interactions for maternal genetic effects. Genome-wide associations studies were performed using de-regressed proofs of genotyped sires for direct genetic, maternal genetic, and maternal slope effects. Thirty suggestive and 2 significant SNPs were identified from the GWAS. Forty-three genes located close to the suggestive SNPs (±100 kb) were annotated as potential candidate genes. Three biological processes were inferred on the basis of the these genes, addressing the negative regulation of the viral life cycle, innate immune response, and protein ubiquitination. Hence, the genetics of prenatal heat stress mechanisms are associated with immune physiology and disease resistance mechanisms.
Collapse
Affiliation(s)
- T Yin
- Institute of Animal Breeding and Genetics, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - K Halli
- Institute of Animal Breeding and Genetics, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus Liebig University Gießen, 35390 Gießen, Germany.
| |
Collapse
|
7
|
Advantages and Challenges of Differential Immune Cell Count Determination in Blood and Milk for Monitoring the Health and Well-Being of Dairy Cows. Vet Sci 2022; 9:vetsci9060255. [PMID: 35737307 PMCID: PMC9229168 DOI: 10.3390/vetsci9060255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
A key challenge of the 21st century will be to provide the growing world population with a sustainable and secure supply of food. Consequently, the dairy farming’s primary task is to lower milk losses and other inefficiencies associated with diseased cows. Moreover, a shift from curative to preventive health management would be desirable for mastitis and a wide variety of other infectious and non-infectious cattle diseases, some of which are known to have profound negative effects on the performance and well-being of cows. Differential cell counting (DCC), a procedure that aims to determine the proportions of different somatic cell types in raw milk samples, has not only the potential to optimize mastitis diagnostics, but it could furthermore serve as a diagnostic tool for monitoring the general and overall health status of dairy cows. Based on a broad search of the literature, the practical utility of various types of DCC is summarized and discussed in this review. Since it might be of advantage to interpret DCC with the aid of data from studies in humans, differences between the immune systems of humans and dairy cattle, with a special focus on surface marker expression profiles and γδ (gamma delta) T-cell characteristics, are also described.
Collapse
|
8
|
Jin YB, Cao X, Shi CW, Feng B, Huang HB, Jiang YL, Wang JZ, Yang GL, Yang WT, Wang CF. Lactobacillus rhamnosus GG Promotes Early B Lineage Development and IgA Production in the Lamina Propria in Piglets. THE JOURNAL OF IMMUNOLOGY 2021; 207:2179-2191. [PMID: 34497150 DOI: 10.4049/jimmunol.2100102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023]
Abstract
Gut microbes play an important role in the development of host B cells. It has been controversial whether GALT is the development site of B cells in pigs. By investigating the relationship between gut microbes and the development of B cells in the GALT of piglets, we found, to our knowledge for the first time, that early B cells exist in the gut lamina propria (LP) in pigs at different ages. We further used Lactobacillus rhamnosus GG (LGG) to treat piglets. The results showed that LGG promotes the development of the early B lineage, affects the composition of the Ig CDR3 repertoires of B cells, and promotes the production of IgA in the intestinal LP. Additionally, we found that the p40 protein derived from LGG can activate the EGFR/AKT and NF-κB signaling pathways, inducing porcine intestinal epithelial cells (IPEC-J2) to secrete a proliferation-inducing ligand (APRIL), which promotes IgA production in B cells. Finally, we identified ARF4 and DIF3 as candidates for p40 receptors on IPEC-J2 by GST pull-down, liquid chromatography-mass spectrometry/mass spectrometry analysis, and coimmunoprecipitation. In conclusion, LGG could promote early B cell differentiation and development in the intestinal LP in piglets and might contribute to promoting IgA production via secretion of p40, which interacts with the membrane receptors on IPEC-J2 and induces them to secrete APRIL. Our study will provide insight to aid in better utilization of probiotics to increase human health.
Collapse
Affiliation(s)
- Yu-Bei Jin
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and.,Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xin Cao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Bo Feng
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| |
Collapse
|
9
|
Establishment of a Newborn Lamb Gut-Loop Model to Evaluate New Methods of Enteric Disease Control and Reduce Experimental Animal Use. Vet Sci 2021; 8:vetsci8090170. [PMID: 34564564 PMCID: PMC8472880 DOI: 10.3390/vetsci8090170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Enteric infectious diseases are not all well controlled, which leads to animal suffering and sometimes death in the most severe cases, in addition to economic losses for farmers. Typical symptoms of enteric infections include watery diarrhea, stomach cramps or pain, dehydration, nausea, vomiting, fever and weight loss. Evaluation of new control methods against enteric infections requires the use of many animals. We aimed to develop a new method for an initial in vivo screen of promising compounds against neonatal diseases such as cryptosporidiosis while limiting experimental animal use. We therefore adapted an in vivo method of multiple consecutive but independent intestinal loops to newborn lambs delivered by cesarean section, in which endotoxin responsiveness is retained. This new method allowed for the screening of natural yeast fractions for their ability to stimulate immune responses and to limit early Cryptosporidium parvum development. This model may also be used to investigate host–pathogen interactions and immune responses in a neonatal controlled environment.
Collapse
|
10
|
Yu B, Wang L, Chu Y. Gut microbiota shape B cell in health and disease settings. J Leukoc Biol 2021; 110:271-281. [PMID: 33974295 DOI: 10.1002/jlb.1mr0321-660r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Recent accumulating evidence supports the hypothesis that the intricate interaction between gut microbiota and the immune system profoundly affects health and disease in humans and mice. In this context, microbiota plays an important role in educating and shaping the host immune system which, in turn, regulates gut microbiota diversity and function to maintain homeostasis. Studies have demonstrated that intestinal microbiota participates in shaping B cells in health and disease settings. Herein, we review the recent progress in understanding how microbiota regulates B-cell development, focusing on early-life B-cell repertoire generation in GALT and how microbial products, including microbial antigens and metabolites, affect B-cell activation and differentiation to ultimately regulate B-cell function. We also discuss the interaction between gut microbiota and B cells under pathogenic conditions and highlight new approaches that can be applied to treat various diseases.
Collapse
Affiliation(s)
- Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Furukawa M, Ito S, Suzuki S, Fuchimoto D, Onishi A, Niimi K, Usami K, Wu G, Bazer FW, Ogasawara K, Watanabe K, Aso H, Nochi T. Organogenesis of Ileal Peyer's Patches Is Initiated Prenatally and Accelerated Postnatally With Comprehensive Proliferation of B Cells in Pigs. Front Immunol 2020; 11:604674. [PMID: 33424851 PMCID: PMC7793923 DOI: 10.3389/fimmu.2020.604674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022] Open
Abstract
Morphogenesis and differentiation of organs is required for subsequent functional maturation. The morphological features of Peyer's patches vary among species. In pigs, they develop extensively in the ileum as ileal Peyer's patches (IPPs). However, the role of IPPs in the porcine immune system remains to be elucidated because of a lack of complete understanding of IPP organogenesis. Results of the present study revealed that development of porcine IPPs is initiated prenatally between embryonic days 76 and 91. The process of IPP organogenesis is concomitant with increased transcriptional patterns of CXCL13 and CCL19. IPPs undergo further development postnatally by forming central, marginal, and subepithelial zones. Importantly, a large number of proliferating B cells and apoptotic cells are found in porcine IPPs postnatally, but not prenatally. The expression level of IgM in proliferating B cells depends on the zone in which distinct B cells are separately localized after birth. Specifically, IgM+ cells are predominantly found in the central zone, whereas IgM-/low cells are abundant in the marginal zone. Importantly, the cellular feature of IPPs differs from that of mesenteric lymph nodes (MLNs) where such distinct zones are not formed both prenatally and postnatally. Our findings suggest that IPPs (not MLNs) in postnatal pigs are involved in complementing functions of the primary lymphoid tissue that promotes the differentiation and maturation of B cells.
Collapse
Affiliation(s)
- Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shun Ito
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shunichi Suzuki
- Division of Animal Science, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Daiichiro Fuchimoto
- Division of Animal Science, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Akira Onishi
- Department of Animal Science and Resources, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Kanae Niimi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsuki Usami
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Kouetsu Ogasawara
- Department of Immunobiology, Tohoku University Institute of Development, Aging and Cancer, Sendai, Japan
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Nagy N, Busalt F, Halasy V, Kohn M, Schmieder S, Fejszak N, Kaspers B, Härtle S. In and Out of the Bursa-The Role of CXCR4 in Chicken B Cell Development. Front Immunol 2020; 11:1468. [PMID: 32765509 PMCID: PMC7381227 DOI: 10.3389/fimmu.2020.01468] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
In contrast to mammals, early B cell differentiation and diversification of the antibody repertoire in chickens do not take place in the bone marrow but in a specialized gut associated lymphoid tissue (GALT), the bursa of Fabricius. During embryonic development, B cell precursors migrate to the bursa anlage, where they proliferate and diversify their B cell receptor repertoire. Around hatch these diversified B cells start to emigrate from the bursa of Fabricius and populate peripheral lymphoid organs, but very little is known how the migratory processes are regulated. As CXCL12 (syn. SDF-1) and CXCR4 were shown to be essential for the control of B cell migration during the development of lymphoid tissues in mammals, we analyzed expression and function of this chemokine/chemokine-receptor pair in the chicken bursa. We found a strong variation of mRNA abundance of CXCL12 and CXCR4 in different stages of bursa development, with high abundance of CXCL12 mRNA in the bursa anlage at embryonic day 10 (ED10). In situ hybridization demonstrated disseminated CXCL12 expression in the early bursa anlage, which condensed in the developing follicles and was mainly restricted to the follicle cortex post-hatch. Flow cytometric analysis detected CXCR4 protein already on early B cell stages, increasing during bursal development. Post-hatch, a subpopulation with the hallmarks of emigrating B cells became detectable, which had lower CXCR4 expression, suggesting that downregulation of CXCR4 is necessary to leave the CXCL12-high bursal environment. In vivo blockade of CXCR4 using AMD3100 at the time of B cell precursor immigration strongly inhibited follicle development, demonstrating that CXCL12 attracts pre-bursal B cells into the bursal anlage. Altogether, we show that CXCL12 and its receptor CXCR4 are important for both populating the bursa with B cells and emigration of mature B cells into the periphery post hatch, and that CXCR4 function in primary B cell organs is conserved between mammals and birds.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Florian Busalt
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktoria Halasy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Marina Kohn
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Schmieder
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nora Fejszak
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bernd Kaspers
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
13
|
Shi CW, Zeng Y, Yang GL, Jiang YL, Yang WT, Chen YQ, Wang JY, Wang JZ, Kang YH, Huang HB, Ye LP, Cao X, Wang CF. Effect of Lactobacillus rhamnosus on the development of B cells in gut-associated lymphoid tissue of BALB/c mice. J Cell Mol Med 2020; 24:8883-8886. [PMID: 32639108 PMCID: PMC7412698 DOI: 10.1111/jcmm.15574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Qiu Chen
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing-Ying Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
14
|
Facciuolo A, Lee AH, Gonzalez Cano P, Townsend HGG, Falsafi R, Gerdts V, Potter A, Napper S, Hancock REW, Mutharia LM, Griebel PJ. Regional Dichotomy in Enteric Mucosal Immune Responses to a Persistent Mycobacterium avium ssp. paratuberculosis Infection. Front Immunol 2020; 11:1020. [PMID: 32547548 PMCID: PMC7272674 DOI: 10.3389/fimmu.2020.01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic enteric Mycobacterium avium ssp. paratuberculosis (MAP) infections are endemic in ruminants globally resulting in significant production losses. The mucosal immune responses occurring at the site of infection, specifically in Peyer's patches (PP), are not well-understood. The ruminant small intestine possesses two functionally distinct PPs. Discrete PPs function as mucosal immune induction sites and a single continuous PP, in the terminal small intestine, functions as a primary lymphoid tissue for B cell repertoire diversification. We investigated whether MAP infection of discrete vs. continuous PPs resulted in the induction of significantly different pathogen-specific immune responses and persistence of MAP infection. Surgically isolated intestinal segments in neonatal calves were used to target MAP infection to individual PPs. At 12 months post-infection, MAP persisted in continuous PP (n = 4), but was significantly reduced (p = 0.046) in discrete PP (n = 5). RNA-seq analysis revealed control of MAP infection in discrete PP was associated with extensive transcriptomic changes (1,707 differentially expressed genes) but MAP persistent in continuous PP elicited few host responses (4 differentially expressed genes). Cytokine gene expression in tissue and MAP-specific recall responses by mucosal immune cells isolated from PP, lamina propria and mesenteric lymph node revealed interleukin (IL)22 and IL27 as unique correlates of protection associated with decreased MAP infection in discrete PP. This study provides the first description of mucosal immune responses occurring in bovine discrete jejunal PPs and reveals that a significant reduction in MAP infection is associated with specific cytokine responses. Conversely, MAP infection persists in the continuous ileal PP with minimal perturbation of host immune responses. These data reveal a marked dichotomy in host-MAP interactions within the two functionally distinct PPs of the small intestine and identifies mucosal immune responses associated with the control of a mycobacterial infection in the natural host.
Collapse
Affiliation(s)
- Antonio Facciuolo
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amy H. Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | - Hugh G. G. Townsend
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Volker Gerdts
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Potter
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - R. E. W. Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Lucy M. Mutharia
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Philip J. Griebel
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Baumgarten HD, Wright CM, Rossidis AC, Lawrence KM, Kim AG, Mejaddam AY, McGovern PE, Orr MN, Coons BE, Butt Z, Li H, Hwang G, Radu A, Brown LJ, Rubenstein RC, Peranteau WH, Davey M, Heuckeroth RO, Flake AW. The EXTrauterine Environment for Neonatal Development Supports Normal Intestinal Maturation and Development. Cell Mol Gastroenterol Hepatol 2020; 10:623-637. [PMID: 32474164 PMCID: PMC7408362 DOI: 10.1016/j.jcmgh.2020.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS The Extra-Uterine Environment for Neonatal Development (EXTEND) aims to avoid the complications of prematurity, such as NEC. Our goal was to determine if bowel development occurs normally in EXTEND-supported lambs, with specific emphasis on markers of immaturity associated with NEC. METHODS We compared terminal ileum from 17 pre-term lambs supported on EXTEND for 2- 4 weeks to bowel from age-matched fetal lambs that developed in utero. We evaluated morphology, markers of epithelial integrity and maturation, enteric nervous system structure, and bowel motility. RESULTS EXTEND-supported lamb ileum had normal villus height, crypt depth, density of mucin-containing goblet cells, and enteric neuron density. Expression patterns for I-FABP, activated caspase-3 and EGFR were normal in bowel epithelium. Transmural resistance assessed in Ussing chambers was normal. Bowel motility was also normal as assessed by ex vivo organ bath and video imaging. However, Peyer's patch organization did not occur normally in EXTEND ileum, resulting in fewer circulating B cells in experimental animals. CONCLUSION EXTEND supports normal ileal epithelial and enteric nervous system maturation in pre-term lambs. The classic morphologic changes and cellular expression profiles associated with NEC are not seen. However, immune development within the EXTEND supported lamb bowel does not progress normally.
Collapse
Affiliation(s)
- Heron D Baumgarten
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christina M Wright
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Avery C Rossidis
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kendall M Lawrence
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aimee G Kim
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Y Mejaddam
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick E McGovern
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melissa N Orr
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Barbara E Coons
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zoya Butt
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Haiying Li
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Grace Hwang
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Antoneta Radu
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lauren J Brown
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald C Rubenstein
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - William H Peranteau
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcus Davey
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert O Heuckeroth
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alan W Flake
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Huang Y, Cui Y, Yu S, Liu P, Liu J, He JF, Sun J. Expression characteristics of immune factors in secondary lymphoid organs of newborn, juvenile and adult yaks (Bos grunniens). Cell Tissue Res 2020; 381:285-298. [PMID: 32424508 DOI: 10.1007/s00441-020-03219-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
Little is known about lymphoid organ development in yaks. In this study, we characterize and evaluate the main markers of T cell, B cell, plasma cell and antigen-presenting cell in the mesenteric lymph nodes, spleen and hemal node in newborn, juvenile and adult yaks by immunohistochemistry, real-time quantitative polymerase chain reaction and western blotting. The structures of all organs were not fully developed in newborn. The CD3+ cells were mainly located in the paracortex area of the mesenteric lymph node and the T cell dependent area in the hemal node and spleen. CD79a+ cells were mainly detected in the lymphoid follicles. The expression of CD3 and CD79a increased from newborn to juvenile and then decreased in adults. The expression of CD3 was always higher in the spleen and CD79a was higher in the mesenteric lymph node. IgG+ and IgA+ cells were observed in all examined samples, except in newborn yak hemal node. IgG and IgA were up-regulated with age and the highest expression was observed in the mesenteric lymph node. The SIRPα and CD68 were widely expressed. A significant feature was that the SIRPα expression in the spleen was lowest in newborns but highest in juvenile and adult yaks. The expression of CD68 in the hemal node was highest in all groups and increased from newborn to adult yaks. This study sheds light on the relationship between the morphology and function of these organs and provides useful references for normal yak lymphoid organ development.
Collapse
Affiliation(s)
- Yufeng Huang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China. .,Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Penggang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun-Feng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Juan Sun
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Muriuki C, Bush SJ, Salavati M, McCulloch ME, Lisowski ZM, Agaba M, Djikeng A, Hume DA, Clark EL. A Mini-Atlas of Gene Expression for the Domestic Goat ( Capra hircus). Front Genet 2019; 10:1080. [PMID: 31749840 PMCID: PMC6844187 DOI: 10.3389/fgene.2019.01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Goats (Capra hircus) are an economically important livestock species providing meat and milk across the globe. They are of particular importance in tropical agri-systems contributing to sustainable agriculture, alleviation of poverty, social cohesion, and utilisation of marginal grazing. There are excellent genetic and genomic resources available for goats, including a highly contiguous reference genome (ARS1). However, gene expression information is limited in comparison to other ruminants. To support functional annotation of the genome and comparative transcriptomics, we created a mini-atlas of gene expression for the domestic goat. RNA-Seq analysis of 17 transcriptionally rich tissues and 3 cell-types detected the majority (90%) of predicted protein-coding transcripts and assigned informative gene names to more than 1000 previously unannotated protein-coding genes in the current reference genome for goat (ARS1). Using network-based cluster analysis, we grouped genes according to their expression patterns and assigned those groups of coexpressed genes to specific cell populations or pathways. We describe clusters of genes expressed in the gastro-intestinal tract and provide the expression profiles across tissues of a subset of genes associated with functional traits. Comparative analysis of the goat atlas with the larger sheep gene expression atlas dataset revealed transcriptional similarities between macrophage associated signatures in the sheep and goats sampled in this study. The goat transcriptomic resource complements the large gene expression dataset we have generated for sheep and contributes to the available genomic resources for interpretation of the relationship between genotype and phenotype in small ruminants.
Collapse
Affiliation(s)
- Charity Muriuki
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mazdak Salavati
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - Mary E.B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Zofia M. Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Morris Agaba
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA - ILRI) Hub, Nairobi, Kenya
| | - Appolinaire Djikeng
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Woolloongabba, QLD, Australia
| | - Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| |
Collapse
|
18
|
Özbek M, Bayraktaroğlu AG. Developmental study on the ileal Peyer's patches of sheep, and cytokeratin-18 as a possible marker for M cells in follicle associated epithelium. Acta Histochem 2019; 121:311-322. [PMID: 30745250 DOI: 10.1016/j.acthis.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/08/2023]
Abstract
Peyer's patches are known as the immune sensors of the intestine because of their ability to transport luminal antigens. The objective of this study was both to assess the prenatal and postnatal development of sheep ileal Peyer's patches with respect to histomorphology, distribution of CD4+ and CD8+ cells, and localization of proliferating and apoptotic cells, and to examine the morphology of M cells and expression of CK18 in follicle associated epithelium (FAE). We also hypothesized that CK18 could be a potential marker for M cell. Peyer's patches completed their histomorphological development in prenatal period and involuted in the postnatal period. The distribution of the CD4+ and CD8+ cells was similar in the last trimester of pregnancy (days 120-150) and the postnatal period, but differed in the early stages of foetal development (days 70-120). In the prenatal period, the follicular area displayed high levels of proliferation and apoptosis. We observed CK18 immunoreaction only in FAE. While M cells were devoid of microfolds in the early stages of the prenatal period, these cells acquired a prismatic shape and bore distinct apical microfolds in the late prenatal period and postnatal period. As a result, it was determined that, in sheep, the development of the ileal Peyer's patches occurred in the prenatal period, independent of exogenous antigenic stimulation, and in association with high levels of lymphopoiesis and apoptosis in the follicles. We found, for the first time, that CK18 is a novel and reliable marker for FAE in sheep ileal Peyer's patches. We suggest that CK18 positive cells in FAE are M cells.
Collapse
Affiliation(s)
- Mehmet Özbek
- Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Burdur, Turkey.
| | - Alev Gürol Bayraktaroğlu
- Ankara University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
19
|
Veazey RS. Intestinal CD4 Depletion in HIV / SIV Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:76-91. [PMID: 31431807 PMCID: PMC6701936 DOI: 10.2174/1573395514666180605083448] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Among the most significant findings in the pathogenesis of HIV infection was the discovery that almost total depletion of intestinal CD4+ T cells occurs rapidly after SIV or HIV infection, regardless of the route of exposure, and long before CD4+ T cell losses occur in blood or lymph nodes. Since these seminal discoveries, we have learned much about mucosal and systemic CD4+ T cells, and found several key differences between the circulating and intestinal CD4+ T cell subsets, both in phenotype, relative proportions, and functional capabilities. Further, specific subsets of CD4+ T cells are selectively targeted and eliminated first, especially cells critically important for initiating primary immune responses, and for maintenance of mucosal integrity (Th1, Th17, and Th22 cells). This simultaneously results in loss of innate immune responses, and loss of mucosal integrity, resulting in mucosal, and systemic immune activation that drives proliferation and activation of new target cells throughout the course of infection. The propensity for the SIV/HIV to infect and efficiently replicate in specific cells also permits viral persistence, as the mucosal and systemic activation that ensues continues to damage mucosal barriers, resulting in continued influx of target cells to maintain viral replication. Finally, infection and elimination of recently activated and proliferating CD4+ T cells, and infection and dysregulation of Tfh and other key CD4+ T cell results in hyperactive, yet non-protective immune responses that support active viral replication and evolution, and thus persistence in host tissue reservoirs, all of which continue to challenge our efforts to design effective vaccine or cure strategies.
Collapse
Affiliation(s)
- Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
20
|
Matsuzawa S, Isobe M, Kurosawa N. Guinea pig immunoglobulin VH and VL naïve repertoire analysis. PLoS One 2018; 13:e0208977. [PMID: 30543679 PMCID: PMC6292586 DOI: 10.1371/journal.pone.0208977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
The guinea pig has been used as a model to study various human infectious diseases because of its similarity to humans regarding symptoms and immune response, but little is known about the humoral immune response. To better understand the mechanism underlying the generation of the antibody repertoire in guinea pigs, we performed deep sequencing of full-length immunoglobulin variable chains from naïve B and plasma cells. We gathered and analyzed nearly 16,000 full-length VH, Vκ and Vλ genes and analyzed V and J gene segment usage profiles and mutation statuses by annotating recently reported genome data of guinea pig immunoglobulin genes. We found that approximately 70% of heavy, 73% of kappa and 81% of lambda functional germline V gene segments are integrated into the actual V(D)J recombination events. We also found preferential use of a particular V gene segment and accumulated mutation in CDRs 1 and 2 in antigen-specific plasma cells. Our study represents the first attempt to characterize sequence diversity in the expressed guinea pig antibody repertoire and provides significant insight into antibody repertoire generation and Ig-based immunity of guinea pigs.
Collapse
Affiliation(s)
- Shun Matsuzawa
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, Toyama-shi, Toyama, Japan
- Medical & Biological Laboratories Co., Ltd., Ina-shi, Nagano, Japan
| | - Masaharu Isobe
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, Toyama-shi, Toyama, Japan
| | - Nobuyuki Kurosawa
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, Toyama-shi, Toyama, Japan
- * E-mail:
| |
Collapse
|
21
|
Ladel S, Flamm J, Zadeh AS, Filzwieser D, Walter JC, Schlossbauer P, Kinscherf R, Lischka K, Luksch H, Schindowski K. Allogenic Fc Domain-Facilitated Uptake of IgG in Nasal Lamina Propria: Friend or Foe for Intranasal CNS Delivery? Pharmaceutics 2018; 10:pharmaceutics10030107. [PMID: 30050027 PMCID: PMC6161100 DOI: 10.3390/pharmaceutics10030107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
Background: The use of therapeutic antibodies for the treatment of neurological diseases is of increasing interest. Nose-to-brain drug delivery is one strategy to bypass the blood brain barrier. The neonatal Fc receptor (FcRn) plays an important role in transepithelial transcytosis of immunoglobulin G (IgG). Recently, the presence of the FcRn was observed in nasal respiratory mucosa. The aim of the present study was to determine the presence of functional FcRn in olfactory mucosa and to evaluate its role in drug delivery. Methods: Immunoreactivity and messenger RNA (mRNA) expression of FcRn was determined in ex vivo porcine olfactory mucosa. Uptake of IgG was performed in a side-by-side cell and analysed by immunofluorescence. Results: FcRn was found in epithelial and basal cells of the olfactory epithelium as well as in glands, cavernous bodies and blood vessels. Allogenic porcine IgGs were found time-dependently in the lamina propria and along axonal bundles, while only small amounts of xenogenic human IgGs were detected. Interestingly, lymphoid follicles were spared from allogenic IgGs. Conclusion: Fc-mediated transport of IgG across the nasal epithelial barrier may have significant potential for intranasal delivery, but the relevance of immune interaction in lymphoid follicles must be clarified to avoid immunogenicity.
Collapse
Affiliation(s)
- Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
| | - Arghavan Soleimani Zadeh
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
- Faculty of Medicine, Graduate School 'Molecular Medicine', University of Ulm, 89081 Ulm, Germany.
| | - Dorothea Filzwieser
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
| | - Julia-Christina Walter
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University Marburg, 35032 Marburg, Germany.
| | - Katharina Lischka
- Chair of Zoology, Technical University of Munich, 85354 Freising-Weihenstephan, Germany.
| | - Harald Luksch
- Chair of Zoology, Technical University of Munich, 85354 Freising-Weihenstephan, Germany.
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
| |
Collapse
|
22
|
Herd immunity: hyperimmune globulins for the 21st century. THE LANCET INFECTIOUS DISEASES 2018; 18:361-363. [PMID: 29329956 PMCID: PMC7158990 DOI: 10.1016/s1473-3099(18)30003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
|
23
|
Stanfield RL, Haakenson J, Deiss TC, Criscitiello MF, Wilson IA, Smider VV. The Unusual Genetics and Biochemistry of Bovine Immunoglobulins. Adv Immunol 2018; 137:135-164. [PMID: 29455846 DOI: 10.1016/bs.ai.2017.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibodies are the key circulating molecules that have evolved to fight infection by the adaptive immune system of vertebrates. Typical antibodies of most species contain six complementarity-determining regions (CDRs), where the third CDR of the heavy chain (CDR H3) has the greatest diversity and often makes the most significant contact with antigen. Generally, the process of V(D)J recombination produces a vast repertoire of antibodies; multiple V, D, and J gene segments recombine with additional junctional diversity at the V-D and D-J joints, and additional combinatorial possibilities occur through heavy- and light-chain pairing. Despite these processes, the overall structure of the resulting antibody is largely conserved, and binding to antigen occurs predominantly through the CDR loops of the immunoglobulin V domains. Bovines have deviated from this general paradigm by having few VH regions and thus little germline combinatorial diversity, but their antibodies contain long CDR H3 regions, with substantial diversity generated through somatic hypermutation. A subset of the repertoire comprises antibodies with ultralong CDR H3s, which can reach over 70 amino acids in length. Structurally, these unusual antibodies form a β-ribbon "stalk" and disulfide-bonded "knob" that protrude far from the antibody surface. These long CDR H3s allow cows to mount a particularly robust immune response when immunized with viral antigens, particularly to broadly neutralizing epitopes on a stabilized HIV gp140 trimer, which has been a challenge for other species. The unusual genetics and structural biology of cows provide for a unique paradigm for creation of immune diversity and could enable generation of antibodies against especially challenging targets and epitopes.
Collapse
Affiliation(s)
| | | | - Thaddeus C Deiss
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael F Criscitiello
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Ian A Wilson
- The Scripps Research Institute, La Jolla, CA, United States
| | - Vaughn V Smider
- The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
24
|
Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies. Cell Mol Immunol 2017; 16:53-64. [PMID: 29200193 DOI: 10.1038/cmi.2017.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
The antibody repertoire of Bos taurus is characterized by a subset of variable heavy (VH) chain regions with ultralong third complementarity determining regions (CDR3) which, compared to other species, can provide a potent response to challenging antigens like HIV env. These unusual CDR3 can range to over seventy highly diverse amino acids in length and form unique β-ribbon 'stalk' and disulfide bonded 'knob' structures, far from the typical antigen binding site. The genetic components and processes for forming these unusual cattle antibody VH CDR3 are not well understood. Here we analyze sequences of Bos taurus antibody VH domains and find that the subset with ultralong CDR3 exclusively uses a single variable gene, IGHV1-7 (VHBUL) rearranged to the longest diversity gene, IGHD8-2. An eight nucleotide duplication at the 3' end of IGHV1-7 encodes a longer V-region producing an extended F β-strand that contributes to the stalk in a rearranged CDR3. A low amino acid variability was observed in CDR1 and CDR2, suggesting that antigen binding for this subset most likely only depends on the CDR3. Importantly a novel, potentially AID mediated, deletional diversification mechanism of the B. taurus VH ultralong CDR3 knob was discovered, in which interior codons of the IGHD8-2 region are removed while maintaining integral structural components of the knob and descending strand of the stalk in place. These deletions serve to further diversify cysteine positions, and thus disulfide bonded loops. Hence, both germline and somatic genetic factors and processes appear to be involved in diversification of this structurally unusual cattle VH ultralong CDR3 repertoire.
Collapse
|
25
|
A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Laurent F, Lacroix-Lamandé S. Innate immune responses play a key role in controlling infection of the intestinal epithelium by Cryptosporidium. Int J Parasitol 2017; 47:711-721. [PMID: 28893638 DOI: 10.1016/j.ijpara.2017.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
Cryptosporidium infection leads to acute diarrhea worldwide. The development of cryptosporidiosis is closely related to the immune status of its host, affecting primarily young ruminants, infants, and immunocompromised individuals. In recent years, several studies have improved our knowledge on the immune mechanisms responsible for the control of the acute phase of the infection and have highlighted the importance of innate immunity. The parasite develops in the apical side of intestinal epithelial cells, giving these cells a central role, as they are both the exclusive host cell for replication of the parasite and participate in the protective immune response. Epithelial cells signal the infection by producing chemokines, attracting immune cells to the infected area. They also actively participate in host defense by inducing apoptosis and releasing antimicrobial peptides, free or incorporated into luminal exosomes, with parasiticidal activity. The parasite has developed several escape mechanisms to slow down these protective mechanisms. Recent development of several three-dimensional culture models and the ability to genetically manipulate Cryptosporidium will greatly help to further investigate host-pathogen interactions and identify virulence factors. Intestinal epithelial cells require the help of immune cells to clear the infection. Intestinal dendritic cells, well known for their ability to induce and orchestrate adaptive immunity, play a key role in controlling the very early steps of Cryptosporidium parvum infection by acting as immunological sentinels and active effectors. However, inflammatory monocytes, which are quickly and massively recruited to the infected mucosa, seem to participate in the loss of epithelial integrity. In addition to new promising chemotherapies, we must consider stimulating the innate immunity of neonates to strengthen their ability to control Cryptosporidium development. The microbiota plays a fundamental role in the development of intestinal immunity and may be considered to be a third actor in host-pathogen interactions. There is an urgent need to reduce the incidence of this yet poorly controlled disease in the populations of developing countries, and decrease economic losses due to infected livestock.
Collapse
Affiliation(s)
- Fabrice Laurent
- UMR1282 Infectiologie et Santé Publique, INRA Centre Val de Loire, Université François Rabelais de Tours, 37380 Nouzilly, France.
| | - Sonia Lacroix-Lamandé
- UMR1282 Infectiologie et Santé Publique, INRA Centre Val de Loire, Université François Rabelais de Tours, 37380 Nouzilly, France.
| |
Collapse
|
27
|
Malmuthuge N, Guan LL. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. J Dairy Sci 2017; 100:5996-6005. [PMID: 28501408 DOI: 10.3168/jds.2016-12239] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Abstract
Early gut microbiota plays a vital role in the long-term health of the host. However, understanding of these microbiota is very limited in livestock species, especially in dairy calves. Neonatal calves are highly susceptible to enteric infections, one of the major causes of calf death, so approaches to improving gut health and overall calf health are needed. An increasing number of studies are exploring the microbial composition of the gut, the mucosal immune system, and early dietary interventions to improve the health of dairy calves, revealing possibilities for effectively reducing the susceptibility of calves to enteric infections while promoting growth. Still, comprehensive understanding of the effect of dietary interventions on gut microbiota-one of the key aspects of gut health-is lacking. Such knowledge may provide in-depth understanding of the mechanisms behind functional changes in response to dietary interventions. Understanding of host-microbial interactions with dietary interventions and the role of the gut microbiota during pathogenesis at the site of infection in early life is vital for designing effective tools and techniques to improve calf gut health.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5 Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5 Canada.
| |
Collapse
|
28
|
Kuper CF, Wijnands MVW, Zander SAL. Mucosa-Associated Lymphoid Tissues. IMMUNOPATHOLOGY IN TOXICOLOGY AND DRUG DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-47385-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Mešťanová V, Varga I. Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Kieckens E, Rybarczyk J, Li RW, Vanrompay D, Cox E. Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host. BMC Genomics 2016; 17:1049. [PMID: 28003017 PMCID: PMC5178093 DOI: 10.1186/s12864-016-3374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from re-infection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157:H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. RESULTS In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. CONCLUSIONS Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157:H7 (Stx-) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function.
Collapse
Affiliation(s)
- E. Kieckens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - J. Rybarczyk
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - R. W. Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD USA
| | - D. Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E. Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
31
|
Butler JE, Santiago-Mateo K, Wertz N, Sun X, Sinkora M, Francis DL. Antibody repertoire development in fetal and neonatal piglets. XXIV. Hypothesis: The ileal Peyer patches (IPP) are the major source of primary, undiversified IgA antibodies in newborn piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:340-351. [PMID: 27497872 DOI: 10.1016/j.dci.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
The ileal Peyers patches (IPP) of newborn germfree (GF) piglets were isolated into blind loops and the piglets colonized with a defined probiotic microflora. After 5 weeks, IgA levels in the intestinal lavage (IL) of loop piglets remained at GF levels and IgM comprised ∼70% while in controls, IgA levels were elevated 5-fold and comprised ∼70% of total Igs. Loop piglets also had reduced serum IgA levels suggesting the source of serum IgA had been interrupted. The isotype profile for loop contents was intermediate between that in the IL of GF and probiotic controls. Surprisingly, colonization alone did not result in repertoire diversification in the IPP. Rather, colonization promoted pronounced proliferation of fully switched IgA(+)IgM(-) B cells in the IPP that supply early, non-diversified "natural" SIgA antibodies to the gut lumen and a primary IgA response in serum.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - David L Francis
- Department of Veterinary Sciences, South Dakota State University, Brooking, SD, USA
| |
Collapse
|
32
|
Marked Differences in Mucosal Immune Responses Induced in Ileal versus Jejunal Peyer's Patches to Mycobacterium avium subsp. paratuberculosis Secreted Proteins following Targeted Enteric Infection in Young Calves. PLoS One 2016; 11:e0158747. [PMID: 27387969 PMCID: PMC4936678 DOI: 10.1371/journal.pone.0158747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022] Open
Abstract
In cattle, Mycobacterium avium subsp. paratuberculosis infection is primarily mediated through M cells overlying Peyer's patches (PP) in the ileum. The capacity of M. avium subsp. paratuberculosis to invade ileal PP (IPP) versus discrete PP in the jejunum (JPP) and subsequent differences in mucosal immune responses were investigated. Intestinal segments were surgically prepared in both mid-jejunum, containing two JPPs, and in terminal small intestine containing continuous IPP. M. avium subsp. paratuberculosis (109 CFU) was injected into the lumen of half of each intestinal segment when calves were 10-14 days-old and infection confirmed 1-2 months later by PCR and immunohistochemistry. Thirteen recombinant M. avium subsp. paratuberculosis proteins, previously identified as immunogenic, were used to analyze pathogen-specific B- and T-cell responses in PP and mesenteric lymph nodes. IgA plasma cell responses to 9 of 13 recombinant proteins were detected in JPP but not in IPP. Secretory IgA reacting in ELISA with 9 of the 13 recombinant proteins was detected in luminal contents from both jejunal and ileal segments. These observations support the conclusion that pathogen-specific IgA B cells were induced in JPP but not IPP early after a primary infection. The presence of secretory IgA in intestinal contents is consistent with dissemination of IgA plasma cells from the identified mucosa-associated immune induction sites. This is the first direct evidence for M. avium subsp. paratuberculosis uptake by bovine JPP and for local induction of pathogen-specific IgA plasma cell responses after enteric infection. We also provide evidence that bacterial invasion of IPP, a primary B lymphoid tissue, provides a novel strategy to evade induction of mucosal immune responses. Over 60% of PPs in the newborn calf small intestine is primary lymphoid tissue, which has significant implications when designing oral vaccines or diagnostic tests to detect early M. avium subsp. paratuberculosis infections.
Collapse
|
33
|
Fischer S, Diers S, Bauerfeind R, Czerny CP, Neumann S. Dynamics of salivary immunoglobulin A and serum interleukin 6 levels in newborn calves. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Abstract
Secondary lymphoid tissues share the important function of bringing together antigens and rare antigen-specific lymphocytes to foster induction of adaptive immune responses. Peyer's patches (PPs) are unique compared to other secondary lymphoid tissues in their continual exposure to an enormous diversity of microbiome- and food-derived antigens and in the types of pathogens they encounter. Antigens are delivered to PPs by specialized microfold (M) epithelial cells and they may be captured and presented by resident dendritic cells (DCs). In accord with their state of chronic microbial antigen exposure, PPs exhibit continual germinal center (GC) activity. These GCs not only contribute to the generation of B cells and plasma cells producing somatically mutated gut antigen-specific IgA antibodies but have also been suggested to support non-specific antigen diversification of the B-cell repertoire. Here, we review current understanding of how PPs foster B-cell encounters with antigen, how they favor isotype switching to the secretory IgA isotype, and how their GC responses may uniquely contribute to mucosal immunity.
Collapse
Affiliation(s)
- Andrea Reboldi
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Hirano M. Evolution of vertebrate adaptive immunity: immune cells and tissues, and AID/APOBEC cytidine deaminases. Bioessays 2015. [PMID: 26212221 DOI: 10.1002/bies.201400178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All surviving jawed vertebrate representatives achieve diversity in immunoglobulin-based B and T cell receptors for antigen recognition through recombinatorial rearrangement of V(D)J segments. However, the extant jawless vertebrates, lampreys and hagfish, instead generate three types of variable lymphocyte receptors (VLRs) through a template-mediated combinatorial assembly of different leucine-rich repeat (LRR) sequences. The clonally diverse VLRB receptors are expressed by B-like lymphocytes, while the VLRA and VLRC receptors are expressed by lymphocyte lineages that resemble αβ and γδ T lymphocytes, respectively. These findings suggest that three basic types of lymphocytes, one B-like and two T-like, are an essential feature of vertebrate adaptive immunity. Around 500 million years ago, a common ancestor of jawed and jawless vertebrates evolved a genetic program for the development of prototypic lymphoid cells as a foundation for an adaptive immune system. This acquisition preceded the convergent evolution of alternative types of clonally diverse receptors for antigens in all vertebrates, as reviewed in this article.
Collapse
Affiliation(s)
- Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
36
|
Olsen L, Åkesson CP, Storset AK, Lacroix-Lamandé S, Boysen P, Metton C, Connelley T, Espenes A, Laurent F, Drouet F. The early intestinal immune response in experimental neonatal ovine cryptosporidiosis is characterized by an increased frequency of perforin expressing NCR1(+) NK cells and by NCR1(-) CD8(+) cell recruitment. Vet Res 2015; 46:28. [PMID: 25890354 PMCID: PMC4355373 DOI: 10.1186/s13567-014-0136-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/11/2014] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium parvum, a zoonotic protozoan parasite, causes important losses in neonatal ruminants. Innate immunity plays a key role in controlling the acute phase of this infection. The participation of NCR1+ Natural Killer (NK) cells in the early intestinal innate immune response to the parasite was investigated in neonatal lambs inoculated at birth. The observed increase in the lymphocyte infiltration was further studied by immunohistology and flow cytometry with focus on distribution, density, cellular phenotype related to cytotoxic function and activation status. The frequency of NCR1+ cells did not change with infection, while their absolute number slightly increased in the jejunum and the CD8+/NCR1- T cell density increased markedly. The frequency of perforin+ cells increased significantly with infection in the NCR1+ population (in both NCR1+/CD16+ and NCR1+/CD16- populations) but not in the NCR1-/CD8+ population. The proportion of NCR1+ cells co-expressing CD16+ also increased. The fraction of cells expressing IL2 receptor (CD25), higher in the NCR1+/CD8+ population than among the CD8+/NCR1- cells in jejunal Peyer’s patches, remained unchanged during infection. However, contrary to CD8+/NCR1- lymphocytes, the intensity of CD25 expressed by NCR1+ lymphocytes increased in infected lambs. Altogether, the data demonstrating that NK cells are highly activated and possess a high cytotoxic potential very early during infection, concomitant with an up-regulation of the interferon gamma gene in the gut segments, support the hypothesis that they are involved in the innate immune response against C. parvum. The early significant recruitment of CD8+/NCR1- T cells in the small intestine suggests that they could rapidly drive the establishment of the acquired immune response.
Collapse
Affiliation(s)
- Line Olsen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway.
| | - Caroline Piercey Åkesson
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway.
| | - Anne K Storset
- Department of Food Safety & Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway.
| | - Sonia Lacroix-Lamandé
- Institut National de la Recherche Agronomique, UMR1282, Infectiologie et Santé Publique, Laboratoire Apicomplexes et Immunité Muqueuse, Nouzilly, France.
| | - Preben Boysen
- Department of Food Safety & Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway.
| | - Coralie Metton
- Institut National de la Recherche Agronomique, UMR1282, Infectiologie et Santé Publique, Laboratoire Apicomplexes et Immunité Muqueuse, Nouzilly, France.
| | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway.
| | - Fabrice Laurent
- Institut National de la Recherche Agronomique, UMR1282, Infectiologie et Santé Publique, Laboratoire Apicomplexes et Immunité Muqueuse, Nouzilly, France.
| | - Françoise Drouet
- Institut National de la Recherche Agronomique, UMR1282, Infectiologie et Santé Publique, Laboratoire Apicomplexes et Immunité Muqueuse, Nouzilly, France.
| |
Collapse
|
37
|
Romero-Palomo F, Risalde MA, Molina V, Lauzi S, Bautista MJ, Gómez-Villamandos JC. Characterization of thymus atrophy in calves with subclinical BVD challenged with BHV-1. Vet Microbiol 2015; 177:32-42. [PMID: 25759294 DOI: 10.1016/j.vetmic.2015.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 12/21/2022]
Abstract
Since the thymus is a target organ for the bovine viral diarrhea virus (BVDV), our experiment aimed to understand its relationship with the immunosuppressive effect by studying the consequences of a previous infection with BVDV on the thymus of calves challenged with bovine herpesvirus 1.1 (BHV-1). For this purpose, 12 animals were inoculated intranasally with non-cytopathic BVDV-1; 12 days later, 10 of them were coinfected intranasally with BHV-1. These animals were euthanized in batches of two at 0, 1, 2, 4, 7 or 14 dpi with BHV-1. Another 10 calves were inoculated solely with BHV-1 and euthanized in batches of two at 1, 2, 4, 7 or 14 dpi with BHV-1; two uninoculated calves were used as negative controls. Thymus samples from these animals were processed for viral detection and histopathological, immunohistochemical, and ultrastructural studies focused on BVDV/BHV-1 antigens, cortex:medulla ratio, apoptosis (TUNEL and caspase-3), collagen deposition, and factor VIII endothelial detection. Our study revealed the immunohistochemical presence of BVDV antigen in all animals in the BVDV-infected group, unlike BHV-1 detection, which was observed in animals in both infection groups only by molecular techniques. BVDV-preinfected animals showed severe atrophic changes associated with reduced cortex:medulla ratio, higher presence of cortical apoptosis, and increased collagen deposition and vascularization. However, calves solely infected with BHV-1 did not show atrophic changes. These findings could affect not only the numbers of circulating and local mature T cells but also the T cell-mediated immunity, which seems to be impaired during infections with this virus, thus favoring pathogenic effects during secondary infections.
Collapse
Affiliation(s)
- F Romero-Palomo
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain
| | - M A Risalde
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain
| | - V Molina
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain
| | - S Lauzi
- Department of Veterinary Science and Public Health, University of Milan, 20133 Milan, Italy
| | - M J Bautista
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain
| | - J C Gómez-Villamandos
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14014 Córdoba, Spain.
| |
Collapse
|
38
|
Hodgins DC, Chattha K, Vlasova A, Parreño V, Corbeil LB, Renukaradhya GJ, Saif LJ. Mucosal Veterinary Vaccines. Mucosal Immunol 2015. [PMCID: PMC7149859 DOI: 10.1016/b978-0-12-415847-4.00068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Abstract
Enteric viral infections in domestic animals cause significant economic losses. The recent emergence of virulent enteric coronaviruses [porcine epidemic diarrhea virus (PEDV)] in North America and Asia, for which no vaccines are available, remains a challenge for the global swine industry. Vaccination strategies against rotavirus and coronavirus (transmissible gastroenteritis virus) infections are reviewed. These vaccination principles are applicable against emerging enteric infections such as PEDV. Maternal vaccines to induce lactogenic immunity, and their transmission to suckling neonates via colostrum and milk, are critical for early passive protection. Subsequently, in weaned animals, oral vaccines incorporating novel mucosal adjuvants (e.g., vitamin A, probiotics) may provide active protection when maternal immunity wanes. Understanding intestinal and systemic immune responses to experimental rotavirus and transmissible gastroenteritis virus vaccines and infection in pigs provides a basis and model for the development of safe and effective vaccines for young animals and children against established and emerging enteric infections.
Collapse
Affiliation(s)
- Kuldeep S Chattha
- Canadian Food Inspection Agency, Lethbridge, Alberta T1H 6P7, Canada;
| | | | | |
Collapse
|
40
|
Sinkora M, Sinkorova J. B Cell Lymphogenesis in Swine Is Located in the Bone Marrow. THE JOURNAL OF IMMUNOLOGY 2014; 193:5023-32. [DOI: 10.4049/jimmunol.1401152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Ikebuchi R, Konnai S, Okagawa T, Nishimori A, Nakahara A, Murata S, Ohashi K. Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle. J Gen Virol 2014; 95:1832-1842. [PMID: 24814926 DOI: 10.1099/vir.0.065011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bovine leukemia virus (BLV) induces abnormal B-cell proliferation and B-cell lymphoma in cattle, where the BLV provirus is integrated into the host genome. BLV-infected B-cells rarely express viral proteins in vivo, but short-term cultivation augments BLV expression in some, but not all, BLV-infected B-cells. This observation suggests that two subsets, i.e. BLV-silencing cells and BLV-expressing cells, are present among BLV-infected B-cells, although the mechanisms of viral expression have not been determined. In this study, we examined B-cell markers and viral antigen expression in B-cells from BLV-infected cattle to identify markers that may discriminate BLV-expressing cells from BLV-silencing cells. The proportions of IgM(high) B-cells were increased in blood lymphocytes from BLV-infected cattle. IgM(high) B-cells mainly expressed BLV antigens, whereas IgM(low) B-cells did not, although the provirus load was equivalent in both subsets. Several parameters were investigated in these two subsets to characterize their cellular behaviour. Real-time PCR and microarray analyses detected higher expression levels of some proto-oncogenes (e.g. Maf, Jun and Fos) in IgM(low) B-cells than those in IgM(high) B-cells. Moreover, lymphoma cells obtained from the lymph nodes of 14 BLV-infected cattle contained IgM(low) or IgM(-) B-cells but no IgM(high) B-cells. To our knowledge, this is the first study to demonstrate that IgM(high) B-cells mainly comprise BLV-expressing cells, whereas IgM(low) B-cells comprise a high proportion of BLV-silencing B-cells in BLV-infected cattle.
Collapse
Affiliation(s)
- Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ayako Nakahara
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
42
|
Olsen L, Boysen P, Åkesson CP, Gunnes G, Connelley T, Storset AK, Espenes A. Characterization of NCR1+ cells residing in lymphoid tissues in the gut of lambs indicates that the majority are NK cells. Vet Res 2013; 44:109. [PMID: 24219350 PMCID: PMC4176090 DOI: 10.1186/1297-9716-44-109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are important for immune protection of the gut mucosa. Previous studies have shown that under pathologic conditions NK cells, T cells and dendritic cells are found co-localised in secondary lymphoid organs where their interaction coordinates immune responses. However, in the gut-associated lymphoid tissues (GALTs), there are few detailed reports on the distribution of NK cells. Sheep harbour several types of organised lymphoid tissues in the gut that have different functions. The ileal Peyer's patch (IPP) functions as a primary lymphoid tissue for B cell generation, while the jejunal Peyer's patches (JPPs) and colon patches (CPs) are considered secondary lymphoid tissues. In the present study, we analysed tissues from healthy lambs by flow cytometry and in situ multicolour immunofluorescence, using recently described NCR1 antibodies to identify ovine NK cells. Most NCR1+ cells isolated from all tissues were negative for the pan T cell marker CD3, and thus comply with the general definition of NK cells. The majority of NCR1+ cells in blood as well as secondary lymphoid organs expressed CD16, but in the GALT around half of the NCR1+ cells were negative for CD16. A semi-quantitative morphometric study on tissue sections was used to compare the density of NK cells in four compartments of the IPPs, JPP and CPs. NCR1+ cells were found in all gut segments. Statistical analysis revealed significant differences between compartments of the primary lymphoid organ IPP and the secondary lymphoid organs of the JPPs and CP. NK cells co-localised and made close contact with T cells, dendritic cells and other NK cells, but did not show signs of proliferation. We conclude that NK cells are present in all investigated segments of the sheep gut, but that presence of other innate lymphoid cells expressing NCR1 cannot be excluded.
Collapse
Affiliation(s)
- Line Olsen
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
43
|
Liljavirta J, Ekman A, Knight JS, Pernthaner A, Iivanainen A, Niku M. Activation-induced cytidine deaminase (AID) is strongly expressed in the fetal bovine ileal Peyer's patch and spleen and is associated with expansion of the primary antibody repertoire in the absence of exogenous antigens. Mucosal Immunol 2013; 6:942-9. [PMID: 23299615 DOI: 10.1038/mi.2012.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 11/27/2012] [Indexed: 02/04/2023]
Abstract
Due to a limited range of immunoglobulin (Ig) genes, cattle and several other domestic animals rely on postrecombinatorial amplification of the primary repertoire. We report that activation-induced cytidine deaminase (AID) is strongly expressed in the fetal bovine ileal Peyer's patch and spleen but not in fetal bone marrow. The numbers of IGHV (immunoglobulin heavy chain variable) mutations correlate with AID expression. The mutational profile in the fetuses is similar to postnatal and immunized calves, with targeting of complementarity-determining region (CDR) over framework region (FR), preference of replacement over silent mutations in CDRs but not in FRs, and targeting of the AID hotspot motif RGYW/WRCY. Statistical analysis indicates negative selection on FRs and positive selection on CDRs. Our results suggest that AID-mediated somatic hypermutation and selection take place in bovine fetuses, implying a role for AID in the diversification of the primary antibody repertoire in the absence of exogenous antigens.
Collapse
Affiliation(s)
- J Liljavirta
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
44
|
Tao S, Dahl G. Invited review: Heat stress effects during late gestation on dry cows and their calves. J Dairy Sci 2013; 96:4079-93. [DOI: 10.3168/jds.2012-6278] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/19/2013] [Indexed: 12/18/2022]
|
45
|
Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract. Anim Health Res Rev 2013; 13:129-41. [PMID: 22853940 DOI: 10.1017/s1466252312000096] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Commensal microflora play many roles within the mammalian gastrointestinal tract (GIT) that benefit host physiology by way of direct or indirect interactions with mucosal surfaces. Commensal flora comprises members across all microbial phyla, although predominantly bacterial, with population dynamics varying with host species, genotype, and environmental factors. Little is known, however, about the complex mechanisms regulating host-commensal interactions that underlie this mutually beneficial relationship and how alterations in the microbiome may influence host development and susceptibility to infection. Research into the gut microbiome has intensified as it becomes increasingly evident that symbiont-host interactions have a significant impact on mucosal immunity and health. Furthermore, evidence that microbial populations vary significantly throughout the GIT suggest that regional differences in the microbiome may also influence immune function within distinct compartments of the GIT. Postpartum colonization of the GIT has been shown to have a direct effect on mucosal immune system development, but information is limited regarding regional effects of the microbiome on the development, activation, and maturation of the mucosal immune system. This review discusses factors influencing the colonization and establishment of the microbiome throughout the GIT of newborn calves and the evidence that regional differences in the microbiome influence mucosal immune system development and maturation. The implications of this complex interaction are also discussed in terms of possible effects on responses to enteric pathogens and vaccines.
Collapse
|
46
|
Hansen MS, Segalés J, Fernandes LT, Grau-Roma L, Bille-Hansen V, Larsen LE, Nielsen OL. Detection of porcine circovirus type 2 and viral replication by in situ hybridization in primary lymphoid organs from naturally and experimentally infected pigs. Vet Pathol 2013; 50:980-8. [PMID: 23482522 DOI: 10.1177/0300985813480805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porcine circovirus type 2 (PCV2) infection is the cause of postweaning multisystemic wasting syndrome (PMWS). It has been speculated whether cell types permissive of replication are found in the primary lymphoid organs and whether infection of these tissues has an important role in the pathogenesis of PMWS. The aim of this study was to determine if primary lymphoid organ cells support viral replication during PCV2 infection. This was done by histopathological examination of thymus and bone marrow from pigs experimentally inoculated with PCV2 (n = 24), mock-infected pigs (n = 12), pigs naturally affected by PMWS (n = 33), and age-matched healthy control animals (n = 29). In situ hybridization (ISH) techniques were used to detect PCV2 nucleic acid irrespective of replicative status (complementary probe, CP) or to detect only the replicative form of the virus (replicative form probe, RFP). PCV2 was not detected in the experimentally PCV2-inoculated pigs or the control animals. Among the PMWS-affected pigs, 19 of 20 (95%) thymuses were positive for PCV2 by CP ISH, and 7 of 19 (37%) of these also supported viral replication. By CP ISH, PCV2 was detected in 16 of 33 (48%) bone marrow samples, and 5 of 16 (31%) of these also supported replication. The 2 ISH probes labeled the same cell types, which were histiocytes in both organs and lymphocytes in thymus. The RFP labeled fewer cells than the CP. Thus, PCV2 nucleic acids and replication were found in bone marrow and thymus of PMWS-affected pigs, but there was no evidence that primary lymphoid organ cells are major supporters of PCV2 replication.
Collapse
Affiliation(s)
- M S Hansen
- Department of Veterinary Diagnostics and Research, The National Veterinary Institute, Technical University of Denmark (DTU), Bülowsvej 27, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
47
|
Xu B, Wang J, Zhang M, Wang P, Wei Z, Sun Y, Tao Q, Ren L, Hu X, Guo Y, Fei J, Zhang L, Li N, Zhao Y. Expressional analysis of immunoglobulin D in cattle (Bos taurus), a large domesticated ungulate. PLoS One 2012; 7:e44719. [PMID: 23028592 PMCID: PMC3441446 DOI: 10.1371/journal.pone.0044719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/09/2012] [Indexed: 12/29/2022] Open
Abstract
For decades, it has remained unknown whether artiodactyls, such as cattle, pigs, and sheep, express immunoglobulin D (IgD), although the δ gene was identified in these species nearly 10 years ago. By developing a mouse anti-bovine IgD heavy chain monoclonal antibody (13C2), we show that secreted bovine IgD was present mainly as a monomer in serum and was heavily glycosylated by N-linked saccharides. Nonetheless, IgD was detectable in some but not all of the Holstein cattle examined. Membrane-bound IgD was detected in the spleen by western blotting. Flow cytometric analysis demonstrated that IgD-positive B cells constituted a much lower percentage of B cells in the bovine spleen (∼6.8% of total B cells), jejunal Peyer's patches (∼0.8%), and peripheral blood leukocytes (∼1.2%) than in humans and mice. Furthermore, IgD-positive B cells were almost undetectable in bovine bone marrow and ileal Peyer's patches. We also demonstrated that the bovine δ gene can be expressed via class switch recombination. Accordingly, bovine δ germline transcription, which involves an Iδ exon and is highly homologous to Iμ, was confirmed. However, we could not identify an Iδ promoter, despite bovine Eμ demonstrating both enhancer and promoter activity. This study has answered a long-standing question in cattle B cell biology and significantly contributes to our understanding of B cell development in this species.
Collapse
Affiliation(s)
- Beilei Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Jing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Min Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Ping Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Zhiguo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, P. R. China
| | - Yi Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Qiqing Tao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Ying Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Jing Fei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Lei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
- * E-mail:
| |
Collapse
|
48
|
Tamao H, Inoshima Y, Ishiguro N. Distribution of immune cells and expression of interleukin receptors in ileal Peyer's patches of calves. Cell Tissue Res 2012; 346:245-54. [PMID: 21975847 DOI: 10.1007/s00441-011-1250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Newborn calves lack a mature immune system. The immune system develops with age, but the role of the expression of cytokine receptors in the development of immune cells of Peyer's patches (PPs) in the intestines of calves in the first 2 months has not yet been elucidated. In this study, the distribution of immune cells and the expression of interleukin (IL) receptors (R) in the ileal PPs of newborn and 2-month-old calves were investigated immunohistochemically with monoclonal antibodies against bovine CD4, CD8, IgM, γδTCR, T19, WC3, WC5, and WC6 antigens. The expression of ILRs was examined with antibodies against CD25 (IL-2Rα), IL-2Rγ, IL-4R, IL-6R, IL-10R, and IL-13R antigens. CD4(+), CD8(+), γδTCR(+), T19(+), and WC6(+) cells were found to be more widely distributed in the ileal PPs of 2-month-old calves than in those of newborn calves. Moreover, the expression of CD25 (IL-2Rα), IL-4R, and IL-13R in the ileal PPs of 2-month-old calves was more prominent than that in newborn calves. These data suggest that the immune system of calves at 2 months of age is developed by reactions to foreign antigens and aging.
Collapse
Affiliation(s)
- Hidehisa Tamao
- Laboratory of Food and Environmental Hygiene, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | |
Collapse
|
49
|
Malmuthuge N, Li M, Fries P, Griebel PJ, Guan LL. Regional and age dependent changes in gene expression of Toll-like receptors and key antimicrobial defence molecules throughout the gastrointestinal tract of dairy calves. Vet Immunol Immunopathol 2012; 146:18-26. [PMID: 22321738 DOI: 10.1016/j.vetimm.2012.01.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/05/2012] [Accepted: 01/14/2012] [Indexed: 12/16/2022]
Abstract
The primary aim of this study was to determine regional and age-dependent expression patterns of Toll-like receptors (TLRs), peptidoglycan recognition protein 1 (PGLYRP1), and β-defensin in rumen, jejunum, ileum, cecum and colon of 3 week (n=8) and 6 month old (n=8) calves. The expression of most TLRs was significantly down-regulated throughout the gastrointestinal tract (GIT) with increasing age. TLR10 expression was significantly higher in ileum than all other gut regions, irrespective of age. TLR2 and TLR4 expression were significantly higher in the cecum and colon of 6 month old calves. Furthermore, expression of β-defensin, and PGLYRP1 was only detectable in 6 month old calves. The expression of TLRs was positively or negatively correlated with population of total bacteria and/or lactic acid bacteria depending on the GIT region. These observations indicate that innate immune responses to commensal microflora may vary significantly throughout the GIT and with age changes.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
50
|
Buchanan R, Popowych Y, Dagenais C, Arsic N, Mutwiri GK, Potter AA, Babiuk LA, Griebel PJ, Wilson HL. Interferon-gamma and B-cell Activating Factor (BAFF) promote bovine B cell activation independent of TLR9 and T-cell signaling. Vet Immunol Immunopathol 2012; 145:453-63. [PMID: 22264737 DOI: 10.1016/j.vetimm.2012.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/22/2011] [Accepted: 01/03/2012] [Indexed: 01/20/2023]
Abstract
We previously reported that CD21(+) B cells purified from bovine blood do not respond to CpG-ODN stimulation unless either CD14(+) monocytes or B-cell Activating Factor (BAFF), a cytokine produced by activated monocytes, are present. In this report, we present evidence that CD14(+) monocytes are critical for CpG-specific lymphocyte proliferation within the peripheral blood mononuclear cell (PBMC) population but that this response is not mediated by soluble factors produced by CpG-activated monocytes. We further determine that bovine monocytes stimulated with IFN-γ induce expression of the BAFF gene and that recombinant IFN-γ and BAFF induced robust B cell activation when cultured in the absence of CpG ODN. These data suggest that CpG-stimulated monocytes may indirectly promote B cell activation by promoting release of cytokines and/or other soluble factors from accessory cells which in turn act on CpG-stimulated B cells to promote antigen-independent and T cell independent B cell activation. Understanding the T cell independent signals that induce B cell activation has important implications for understanding B cell development in locations where T cells are limited and in understanding polyclonal B cell activation that may contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Rachelle Buchanan
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N
| | | | | | | | | | | | | | | | | |
Collapse
|