1
|
Caspe SG, Hill H. Chlamydiosis in Animals. Animals (Basel) 2024; 14:3130. [PMID: 39518853 PMCID: PMC11545194 DOI: 10.3390/ani14213130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The Chlamydiaceae family consists of Gram-negative, obligate intracellular bacteria that replicate within the cells of a diverse range of hosts. These hosts include domesticated animals such as cats, dogs, and livestock, as well as wildlife like koalas and birds, exotic species such as reptiles and amphibians, and humans. Chlamydial infection can result in various clinical signs, including respiratory diseases, reproductive failures, ocular pathologies, and enteritis, though the infected organism may remain asymptomatic. In recent years, chlamydial nomenclature has undergone several revisions due to the wide range of hosts, the frequent discovery of novel strains, and the reclassification of existing ones. Given this and the clinical significance of these infections, ranging from asymptomatic to fatal, an updated review is essential. This article outlines key characteristics of Chlamydia species and provides an updated overview of their nomenclature, offering a concise reference for future research on chlamydial diseases.
Collapse
Affiliation(s)
- Sergio Gastón Caspe
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
- Animal Health Deptartment, Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Mercedes, Juan Pujol al este S/N, Mercedes W3470, Corrientes, Argentina
| | - Holly Hill
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| |
Collapse
|
2
|
Barth SA, Preussger D, Pietschmann J, Feßler AT, Heller M, Herbst W, Schnee C, Schwarz S, Kloss F, Berens C, Menge C. In Vitro Antibacterial Activity of Microbial Natural Products against Bacterial Pathogens of Veterinary and Zoonotic Relevance. Antibiotics (Basel) 2024; 13:135. [PMID: 38391521 PMCID: PMC10886079 DOI: 10.3390/antibiotics13020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is considered one of the greatest threats to both human and animal health. Efforts to address AMR include implementing antimicrobial stewardship programs and introducing alternative treatment options. Nevertheless, effective treatment of infectious diseases caused by bacteria will still require the identification and development of new antimicrobial agents. Eight different natural products were tested for antimicrobial activity against seven pathogenic bacterial species (Brachyspira sp., Chlamydia sp., Clostridioides sp., Mannheimia sp., Mycobacterium sp., Mycoplasma sp., Pasteurella sp.). In a first pre-screening, most compounds (five out of eight) inhibited bacterial growth only at high concentrations, but three natural products (celastramycin A [CA], closthioamide [CT], maduranic acid [MA]) displayed activity at concentrations <2 µg/mL against Pasteurella sp. and two of them (CA and CT) also against Mannheimia sp. Those results were confirmed by testing a larger collection of isolates encompassing 64 Pasteurella and 56 Mannheimia field isolates originating from pigs or cattle, which yielded MIC90 values of 0.5, 0.5, and 2 µg/mL against Pasteurella and 0.5, 4, and >16 µg/mL against Mannheimia for CA, CT, and MA, respectively. CA, CT, and MA exhibited higher MIC50 and MIC90 values against Pasteurella isolates with a known AMR phenotype against commonly used therapeutic antimicrobial agents than against isolates with unknown AMR profiles. This study demonstrates the importance of whole-cell antibacterial screening of natural products to identify promising scaffolds with broad- or narrow-spectrum antimicrobial activity against important Gram-negative veterinary pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Stefanie A Barth
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Daniel Preussger
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Jana Pietschmann
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Martin Heller
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Werner Herbst
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, 35392 Giessen, Germany
| | - Christiane Schnee
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, 07745 Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut-Federal Research Institute for Animal Health (FLI), Institute of Molecular Pathogenesis, 07743 Jena, Germany
| |
Collapse
|
3
|
Huang Y, Wurihan W, Lu B, Zou Y, Wang Y, Weldon K, Fondell JD, Lai Z, Wu X, Fan H. Robust Heat Shock Response in Chlamydia Lacking a Typical Heat Shock Sigma Factor. Front Microbiol 2022; 12:812448. [PMID: 35046926 PMCID: PMC8762339 DOI: 10.3389/fmicb.2021.812448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium Chlamydia trachomatis, whose genome encodes only three sigma factors and a single heat-induced transcription factor. Nearly one-third of C. trachomatis genes showed statistically significant (≥1.5-fold) expression changes 30 min after shifting from 37 to 45°C. Notably, chromosomal genes encoding chaperones, energy metabolism enzymes, type III secretion proteins, as well as most plasmid-encoded genes, were differentially upregulated. In contrast, genes with functions in protein synthesis were disproportionately downregulated. These findings suggest that facilitating protein folding, increasing energy production, manipulating host activities, upregulating plasmid-encoded gene expression, and decreasing general protein synthesis helps facilitate C. trachomatis survival under stress. In addition to relieving negative regulation by the heat-inducible transcriptional repressor HrcA, heat shock upregulated the chlamydial primary sigma factor σ66 and an alternative sigma factor σ28. Interestingly, we show for the first time that heat shock downregulates the other alternative sigma factor σ54 in a bacterium. Downregulation of σ54 was accompanied by increased expression of the σ54 RNA polymerase activator AtoC, thus suggesting a unique regulatory mechanism for reestablishing normal expression of select σ54 target genes. Taken together, our findings reveal that C. trachomatis utilizes multiple novel survival strategies to cope with environmental stress and even to replicate. Future strategies that can specifically target and disrupt Chlamydia’s heat shock response will likely be of therapeutic value.
Collapse
Affiliation(s)
- Yehong Huang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Joseph D Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
4
|
Characteristics of Chlamydia suis Ocular Infection in Pigs. Pathogens 2021; 10:pathogens10091103. [PMID: 34578134 PMCID: PMC8470092 DOI: 10.3390/pathogens10091103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chlamydia (C.) suis can often be isolated from conjunctival swab specimens from pigs with conjunctivitis or keratoconjunctivitis. In the field, it is assumed to be a multifactorial disease triggered by immunosuppressing factors. This is the first experimental study to provoke clinical signs of conjunctivitis in pigs after C. suis primary mono-infection. Five six-week-old male piglets, free of ocular chlamydia shedding and seronegative for Chlamydia, were conjunctivally infected with the C. suis-type strain S45 (1 × 109 inclusion forming units), while four piglets served as negative controls. The infection group developed clinical signs of conjunctivitis with a peak in the first week post-infection. Immunohistochemical evaluation revealed the presence of Chlamydia not only in the conjunctival epithelium, but also in the enlarged lacrimal glands, lungs, and intestine. No circulating antibodies could be detected during the whole study period of three weeks, although three different test systems were applied as follows: the complement fixation test, MOMP-based Chlamydiaceae ELISA, and PmpC-based C. suis ELISA. Meanwhile, high numbers of IFN-γ-producing lymphocytes within PBMC were seen after C. suis re-stimulation 14 days post-infection. Hence, these data suggest that entry via the eye may not elicit immunological responses comparable to other routes of chlamydial infections.
Collapse
|
5
|
Sheng CY, Gong QL, Ma BY, Liu Y, Ge GY, Li DL, Luan MH, Diao NC, Li JM, Shi K, Leng X, Du R. Prevalence of Chlamydia in Pigs in China from 1985 to 2020: A Systematic Review and Meta-Analysis. Vector Borne Zoonotic Dis 2021; 21:517-533. [PMID: 33887161 DOI: 10.1089/vbz.2020.2694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlamydia is a small gram-negative (G-) microorganism that can be dangerous to human and animals. In this study, we conducted a systematic review and meta-analysis of Chlamydia infection in swine in China. From PubMed, ScienceDirect, Chinese Web of knowledge (CNKI), VIP Chinese journal database, and Wanfang database, we collected a total of 72 publications reported in 1985-2020. The prevalence of Chlamydia was 22.48% in China. In the sampling year subgroup, the prevalence after 2011 was the highest (26.14%). In southern China, the prevalence was 30.97%. By contrast, the prevalence in northern China was only 10.79%. Also the difference was significant (p < 0.05). In the provincial level, Hubei had the highest rate of 36.23%. Boars had a higher prevalence (29.47%). The prevalence of Chlamydia detection in pigs with reproductive disorders (21.86%) was higher than that without reproductive disorders. Among the three age groups, finishing pigs (21.43%) had the highest prevalence. The prevalence in large-scale farmed pigs (28.58%) was the highest in the subgroup of feeding methods. The prevalence in farms was 24.29%, which was the highest in the survey areas. The prevalence in spring was the highest with 40.51%. Other methods had the highest prevalence (39.61%) than enzyme-linked immunosorbent assay (ELISA) and indirect hemagglutination assay. The prevalence of Chlamydia psittaci 18.41% was lower than the prevalence of Chlamydia abortus (41.35%). We also analyzed the impact of different climate factor subgroups (rainfall, temperature, and humidity) on the probability of pigs suffering from the disease. The results showed that Chlamydia was widespread in pigs in China. We suggest that we should strengthen the detection of Chlamydia in the semen of breeding pigs and pigs with reproductive disorders, and reasonably control the environment of large-scale pig farms, so as to reduce further infection of Chlamydia in pigs.
Collapse
Affiliation(s)
- Chen-Yan Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Bao-Yi Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Yi Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Gui-Yang Ge
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Dong-Li Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Mei-Hui Luan
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Nai-Chao Diao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Rui Du
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, P.R. China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, P.R. China
| |
Collapse
|
6
|
Isolation of Tetracycline-Resistant Chlamydia suis from a Pig Herd Affected by Reproductive Disorders and Conjunctivitis. Antibiotics (Basel) 2020; 9:antibiotics9040187. [PMID: 32316412 PMCID: PMC7235844 DOI: 10.3390/antibiotics9040187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Due to various challenges in diagnosing chlamydiosis in pigs, antibiotic treatment is usually performed before any molecular or antibiotic susceptibility testing. This could increase the occurrence of tetracycline-resistant Chlamydia (C.) suis isolates in the affected pig population and potentiate the reoccurrence of clinical signs. Here, we present a case of an Austrian pig farm, where tetracycline resistant and sensitive C. suis isolates were isolated from four finishers with conjunctivitis. On herd-level, 10% of the finishers suffered from severe conjunctivitis and sows showed a high percentage of irregular return to estrus. Subsequent treatment of whole-herd using oxytetracycline led to a significant reduction of clinical signs. Retrospective antibiotic susceptibility testing revealed tetracycline resistance and decreased susceptibility to doxycycline in half of the ocular C. suis isolates, and all isolates were able to partially recover following a single-dose tetracycline treatment in vitro. These findings were later confirmed in vivo, when all former clinical signs recurred three months later. This case report raises awareness of tetracycline resistance in C. suis and emphasizes the importance of preventative selection of tetracycline resistant C. suis isolates.
Collapse
|
7
|
Zuo Z, Li Q, Guo Y, Li X, Huang S, Hegemann JH, He C. Feed-borne Bacillus cereus exacerbates respiratory distress in chickens infected with Chlamydia psittaci by inducing haemorrhagic pneumonia. Avian Pathol 2020; 49:251-260. [PMID: 31951466 DOI: 10.1080/03079457.2020.1716940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chlamydia psittaci is an important zoonotic pathogen and its oral route of infection plays an important role in the transmission and persistence. Bacillus cereus (B. cereus) strain, a common contaminant of animal feed and feedstuffs, can cause severe diarrhoea and malnutrition in poultry. In our previous study, a B. cereus strain (Dawu C), isolated from the haemorrhagic lungs of infected chickens, was shown to harbour two virulence genes (hblC and cytk) and was able to induce haemorrhagic lesions in the lungs, as well as gizzard erosion and ulceration (GEU) syndrome in broilers. In the present study, we tested the hypothesis that B. cereus-induced GEU would aggravate C. psittaci infection. Our results showed that SPF chickens exposed to B. cereus developed a severe GEU syndrome. More interestingly, prior infection with B. cereus facilitated C. psittaci infection, and aggravated GEU and respiratory distress, which were accompanied by high chlamydial loads in the lungs and severe lesions in respiratory organs. Moreover, levels of local inflammatory cytokines were elevated and T cell responses were impaired in the infected birds. In conclusion, GEU caused by B. cereus may facilitate chlamydial transmission from the ventriculus to the lungs.RESEARCH HIGHLIGHTS Bacillus cereus contributes to the gizzard erosion and ulceration syndrome in chickens.Exposure to Bacillus cereus exacerbates pneumonia in birds following chlamydial infection.Bacillus cereus facilitates persistent chlamydial infection and exacerbates immune responses.
Collapse
Affiliation(s)
- Zonghui Zuo
- College of Life Science and Engineering, Foshan University, Foshan, People's Republic of China.,Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Qiang Li
- Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yongxia Guo
- Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Xiaohui Li
- Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, People's Republic of China
| | - Johannes H Hegemann
- Department of Biology, Institute for Functional Microbial Genomics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cheng He
- College of Life Science and Engineering, Foshan University, Foshan, People's Republic of China.,Key Laboratory of Animal Epidemiology and Zoonoses, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms 2019; 7:microorganisms7050146. [PMID: 31137741 PMCID: PMC6560403 DOI: 10.3390/microorganisms7050146] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Bacteria of the Chlamydiaceae family are a type of Gram-negative microorganism typified by their obligate intracellular lifestyle. The majority of the members in the Chlamydiaceae family are known pathogenic organisms that primarily infect the host mucosal surfaces in both humans and animals. For instance, Chlamydia trachomatis is a well-known etiological agent for ocular and genital sexually transmitted diseases, while C. pneumoniae has been implicated in community-acquired pneumonia in humans. Other chlamydial species such as C. abortus, C. caviae, C. felis, C. muridarum, C. pecorum, and C. psittaci are important pathogens that are associated with high morbidities in animals. Importantly, some of these animal pathogens have been recognized as zoonotic agents that pose a significant infectious threat to human health through cross-over transmission. The current review provides a succinct recapitulation of the characteristics as well as transmission for the previously established members of the Chlamydiaceae family and a number of other recently described chlamydial organisms.
Collapse
|
9
|
Nie LB, Liang QL, Zou Y, Gao YH, Zhao Q, Hu GX, Zhu XQ. First Report of Chlamydia Seroprevalence in Farmed Wild Boars in China. Vector Borne Zoonotic Dis 2018; 18:504-508. [PMID: 29688824 DOI: 10.1089/vbz.2018.2272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlamydia is Gram-negative obligate bacterium, which can cause human diseases worldwide and has huge economic impact on animals. It is yet to know whether farmed wild boars are infected with Chlamydia in China. To assess risk factors of Chlamydia infection in farmed wild boars in China, from April 2015 to February 2016, a total of 837 serum samples of farmed wild boars were collected in Jilin province, northeastern China, and antibodies against Chlamydia were examined by the indirect hemagglutination assay. The investigation showed that antibodies to Chlamydia were detected in 332 (39.67%, 95% CI 33.36-42.98) of 837 serum samples of farmed wild boars, seroprevalence ranged from 33.71% to 44.42% among different regions and the differences were statistically significant by SPSS analysis (p = 0.0248). These results indicated that Chlamydia is highly prevalent in farmed wild boars in Jilin province, northeastern China, and may pose a potential risk for human health. To our knowledge, this is the first report of Chlamydia seroprevalence in farmed wild boars in China, which provided baseline data for preventing and controlling Chlamydia infection in wild boars in China.
Collapse
Affiliation(s)
- Lan-Bi Nie
- 1 Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University , Changchun Jilin Province, The People's Republic of China .,2 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, The People's Republic of China
| | - Qin-Li Liang
- 2 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, The People's Republic of China
| | - Yang Zou
- 2 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, The People's Republic of China
| | - Yun-Hang Gao
- 1 Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University , Changchun Jilin Province, The People's Republic of China
| | - Quan Zhao
- 1 Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University , Changchun Jilin Province, The People's Republic of China
| | - Gui-Xue Hu
- 1 Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University , Changchun Jilin Province, The People's Republic of China
| | - Xing-Quan Zhu
- 2 State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, The People's Republic of China .,3 Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine , Yangzhou, Jiangsu Province, The People's Republic of China
| |
Collapse
|
10
|
Chahota R, Ogawa H, Ohya K, Yamaguchi T, Everett KDE, Fukushi H. Involvement of multiple Chlamydia suis genotypes in porcine conjunctivitis. Transbound Emerg Dis 2017; 65:272-277. [PMID: 28345224 DOI: 10.1111/tbed.12645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 01/07/2023]
Abstract
Chlamydia suis has been detected in numerous disease conditions of pigs, particularly in eye infections. This study examined recurring conjunctivitis cases in five commercial pig farms in Japan. 40.5% of the cases were identified as Chlamydia positive using impression cytology of ocular smears and a genus-specific direct fluorescent antibody. C. suis was detected in 59.5% of the samples using PCR tests targeting 16S-23S rRNA intergenic spacer region (ISR) and ompA gene. Genetic analysis of PCR amplicons revealed nine sequence variants of 16S-23S rRNA ISR and 20 sequence variants within ompA gene. Among C. suis-positive conjunctivitis cases, 36.4% showed concurrent infection with 2-4 varied ompA sequence types and 9.1% showed multiple 16S-23S rRNA ISR sequence types of C. suis. Multiple genotypes were found circulating in four of five farms. All 20 detected strains and 25 previously reported C. suis strains were grouped into four clusters. Japanese C. suis strains were closely related to American and European strains indicating wide distribution of these genetically variant strains. This study is the first to show multiple and genetically diverse C. suis strain associations in pig conjunctivitis.
Collapse
Affiliation(s)
- R Chahota
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK HPKV, Palampur, India
| | - H Ogawa
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - K Ohya
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - T Yamaguchi
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | | | - H Fukushi
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
11
|
Zamuruyev KO, Aksenov AA, Baird M, Pasamontes A, Parry C, Foutouhi S, Venn-Watson S, Weimer BC, Delplanque JP, Davis CE. Enhanced non-invasive respiratory sampling from bottlenose dolphins for breath metabolomics measurements. J Breath Res 2016; 10:046005. [PMID: 27689905 DOI: 10.1088/1752-7155/10/4/046005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chemical analysis of exhaled breath metabolites is an emerging alternative to traditional clinical testing for many physiological conditions. The main advantage of breath analysis is its inherent non-invasive nature and ease of sample collection. Therefore, there exists a great interest in further development of this method for both humans and animals. The physiology of cetaceans is exceptionally well suited for breath analysis due to their explosive breathing behavior and respiratory tract morphology. At the present time, breath analysis in cetaceans has very limited practical applications, in large part due to lack of widely adopted sampling device(s) and methodologies that are well-standardized. Here, we present an optimized design and the operating principles of a portable apparatus for reproducible collection of exhaled breath condensate from small cetaceans, such as bottlenose dolphins (Tursiops truncatus). The device design is optimized to meet two criteria: standardized collection and preservation of information-rich metabolomic content of the biological sample, and animal comfort and ease of breath sample collection. The intent is to furnish a fully-benchmarked technology that can be widely adopted by researchers and conservationists to spur further developments of breath analysis applications for marine mammal health assessments.
Collapse
Affiliation(s)
- Konstantin O Zamuruyev
- Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Smith KF, Quinn RL, Rahilly LJ. Biomarkers for differentiation of causes of respiratory distress in dogs and cats: Part 2--Lower airway, thromboembolic, and inflammatory diseases. J Vet Emerg Crit Care (San Antonio) 2016; 25:330-48. [PMID: 26040815 DOI: 10.1111/vec.12317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 03/22/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To review the current veterinary and relevant human literature regarding biomarkers of respiratory diseases leading to dyspnea and to summarize the availability, feasibility, and practicality of using respiratory biomarkers in the veterinary setting. DATA SOURCES Veterinary and human medical literature: original research articles, scientific reviews, consensus statements, and recent textbooks. HUMAN DATA SYNTHESIS Numerous biomarkers have been evaluated in people for discriminating respiratory disease processes with varying degrees of success. VETERINARY DATA SYNTHESIS Although biomarkers should not dictate clinical decisions in lieu of gold standard diagnostics, their use may be useful in directing care in the stabilization process. Serum immunoglobulins have shown promise as an indicator of asthma in cats. A group of biomarkers has also been evaluated in exhaled breath. Of these, hydrogen peroxide has shown the most potential as a marker of inflammation in asthma and potentially aspiration pneumonia, but methods for measurement are not standardized. D-dimers may be useful in screening for thromboembolic disease in dogs. There are a variety of markers of inflammation and oxidative stress, which are being evaluated for their ability to assess the severity and type of underlying disease process. Of these, amino terminal pro-C-type natriuretic peptide may be the most useful in determining if antibiotic therapy is warranted. Although critically evaluated for their use in respiratory disorders, many of the biomarkers which have been evaluated have been found to be affected by more than one type of respiratory or systemic disease. CONCLUSION At this time, there are point-of-care biomarkers that have been shown to reliably differentiate between causes of dyspnea in dogs and cats. Future clinical research is warranted to understand of how various diseases affect the biomarkers and more bedside tests for their utilization.
Collapse
|
13
|
Hoffmann K, Schott F, Donati M, Di Francesco A, Hässig M, Wanninger S, Sidler X, Borel N. Prevalence of Chlamydial Infections in Fattening Pigs and Their Influencing Factors. PLoS One 2015; 10:e0143576. [PMID: 26619187 PMCID: PMC4664257 DOI: 10.1371/journal.pone.0143576] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/08/2015] [Indexed: 11/18/2022] Open
Abstract
Chlamydial infections in pigs are associated with respiratory disease, diarrhea, conjunctivitis and other pathologies. The aim of this study was to define the prevalence of Chlamydiaceae in Swiss fattening pigs by applying sensitive and specific detection methods and to correlate prior antibiotic treatment and farm related factors with differences in prevalence. Conjunctival and fecal swabs were collected from 636 pigs in 29 Swiss fattening pig farms with and without antibiotic treatment, at the beginning and the end of the fattening period. The swabs were screened by real-time PCR for Chlamydiaceae. For the chlamydial detection and species-identification, a DNA-microarray analysis was performed. All farms were positive for Chlamydiaceae with 94.3 and 92.0% prevalence in fecal swabs as well as 45.9 and 32.6% in conjunctival swabs at the first and second time points, respectively. Antibiotic treatment could not clear the infection on herd level. Potential contact with wild boars was a significant risk factor, while hygiene criteria did not influence chlamydial prevalence. A correlation of chlamydial positivity to diarrhea, but not to conjunctivitis was evident. Chlamydia suis was the predominant species. Mixed infections with C. suis and C. pecorum were common, with a substantial increase in C. pecorum positivity at the end of the fattening period, and this finding was associated with ruminant contact. C. abortus was detected in one conjunctival swab. In this study, C. suis inhabited the intestinal tract of nearly all examined pigs, implying a long-term infection. C. pecorum was also common and might be transmitted to pigs by ruminants.
Collapse
Affiliation(s)
- Karolin Hoffmann
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Franziska Schott
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Manuela Donati
- DIMES, Microbiology, University of Bologna, Bologna, Italy
| | | | - Michael Hässig
- Department for Farm Animals, Section for Herd Health, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sabrina Wanninger
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Xaver Sidler
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Lohr M, Prohl A, Ostermann C, Liebler-Tenorio E, Schroedl W, Aeby S, Greub G, Reinhold P. A bovine model of a respiratory Parachlamydia acanthamoebae infection. Pathog Dis 2015; 73:1-14. [PMID: 24989139 DOI: 10.1111/2049-632x.12201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to evaluate the pathogenicity of Parachlamydia (P.) acanthamoebae as a potential agent of lower respiratory tract disease in a bovine model of induced lung infection. Intrabronchial inoculation with P. acanthamoebae was performed in healthy calves aged 2-3 months using two challenge doses: 10(8) and 10(10) bacteria per animal. Controls received 10(8) heat-inactivated bacteria. Challenge with 10(8) viable Parachlamydia resulted in a mild degree of general indisposition, whereas 10(10) bacteria induced a more severe respiratory illness becoming apparent 1-2 days post inoculation (dpi), affecting 9/9 (100%) animals and lasting for 6 days. The extent of macroscopic pulmonary lesions was as high as 6.6 (6.0)% [median (range)] of lung tissue at 2-4 dpi and correlated with parachlamydial genomic copy numbers detected by PCR, and with bacterial load estimated by immunohistochemistry in lung tissue. Clinical outcome, acute phase reactants, pathological findings and bacterial load exhibited an initial dose-dependent effect on severity. Animals fully recovered from clinical signs of respiratory disease within 5 days. The bovine lung was shown to be moderately susceptible to P. acanthamoebae, exhibiting a transient pneumonic inflammation after intrabronchial challenge. Further studies are warranted to determine the precise pathophysiologic pathways of host-pathogen interaction.
Collapse
Affiliation(s)
- Markus Lohr
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Annette Prohl
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Carola Ostermann
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Wieland Schroedl
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sébastien Aeby
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| |
Collapse
|
15
|
De Puysseleyr K, De Puysseleyr L, Dhondt H, Geens T, Braeckman L, Morré SA, Cox E, Vanrompay D. Evaluation of the presence and zoonotic transmission of Chlamydia suis in a pig slaughterhouse. BMC Infect Dis 2014; 14:560. [PMID: 25358497 PMCID: PMC4216655 DOI: 10.1186/s12879-014-0560-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/14/2014] [Indexed: 12/02/2022] Open
Abstract
Background A significant number of studies on pig farms and wild boars worldwide, demonstrate the endemic presence of Chlamydia suis in pigs. However, the zoonotic potential of this pathogen, phylogenetically closely related to Chlamydia trachomatis, is still uninvestigated. Therefore, this study aims to examine the zoonotic transmission in a Belgian pig abattoir. Methods Presence of Chlamydia suis in pigs, contact surfaces, air and employees was assessed using a Chlamydia suis specific real-time PCR and culture. Furthermore, Chlamydia suis isolates were tested for the presence of the tet(C) gene. Results Chlamydia suis bacteria could be demonstrated in samples from pigs, the air and contact surfaces. Moreover, eye swabs of two employees were positive for Chlamydia suis by both PCR and culture. The tet(C) gene was absent in both human Chlamydia suis isolates and no clinical signs were reported. Conclusions These findings suggest the need for further epidemiological and clinical research to elucidate the significance of human ocular Chlamydia suis infections. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0560-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristien De Puysseleyr
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, Gent, B-9000, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
De Clercq E, Devriendt B, Yin L, Chiers K, Cox E, Vanrompay D. The immune response against Chlamydia suis genital tract infection partially protects against re-infection. Vet Res 2014; 45:95. [PMID: 25252649 PMCID: PMC4181727 DOI: 10.1186/s13567-014-0095-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to reveal the characteristic features of genital Chlamydia suis infection and re-infection in female pigs by studying the immune response, pathological changes, replication of chlamydial bacteria in the genital tract and excretion of viable bacteria. Pigs were intravaginally infected and re-infected with C. suis strain S45, the type strain of this species. We demonstrated that S45 is pathogenic for the female urogenital tract. Chlamydia replication occurred throughout the urogenital tract, causing inflammation and pathology. Furthermore, genital infection elicited both cellular and humoral immune responses. Compared to the primo-infection of pigs with C. suis, re-infection was characterized by less severe macroscopic lesions and less chlamydial elementary bodies and inclusions in the urogenital tract. This indicates the development of a certain level of protection following the initial infection. Protective immunity against re-infection coincided with higher Chlamydia-specific IgG and IgA antibody titers in sera and vaginal secretions, higher proliferative responses of peripheral blood mononuclear cells (PBMC), higher percentages of blood B lymphocytes, monocytes and CD8+ T cells and upregulated production of IFN-γ and IL-10 by PBMC.
Collapse
|
17
|
Lis P, Kumala A, Spalinski M, Rypula K. Novel locked nucleic acid (LNA)-based probe for the rapid identification of Chlamydia suis using real-time PCR. BMC Vet Res 2014; 10:225. [PMID: 25249439 PMCID: PMC4177436 DOI: 10.1186/s12917-014-0225-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/18/2014] [Indexed: 11/23/2022] Open
Abstract
Background As the importance of chlamydial infections in pigs has become more obvious, a rapid and sensitive method to study the prevalence of Chlamydia suis in pig herds is required. Such a method should permit routine diagnostic tests for herds with clinical and subclinical infections, without the need for Chlamydia culture. Results The main objective of this study was to develop a specific and rapid method for detecting C. suis in swine herds. A real-time PCR assay using a single locked nucleic acid (LNA)-containing probe specific for C. suis was developed based on the previously described 28S rDNA fragment used to identify Chlamydiales. Use of LNA nucleotides enabled the single probe to target a short, specific fragment of the 23S rRNA. The probe showed high specificity for C. suis and did not show any cross-reactivity with other Chlamydia or Chlamydophila species nor with swine DNA. All of the 86 tested field isolates, earlier identified as C. suis, were confirmed as positive using the newly developed assay. Conclusions Using single LNA-based C. suis-specific probe allowed rapid and simple identification of this pathogen without requiring sequencing analysis and culturing. The proposed method may be used to study the prevalence of C. suis infection in pig herds and as a routine diagnostic test for herds with clinical and subclinical infection.
Collapse
|
18
|
De Puysseleyr K, De Puysseleyr L, Geldhof J, Cox E, Vanrompay D. Development and validation of a real-time PCR for Chlamydia suis diagnosis in swine and humans. PLoS One 2014; 9:e96704. [PMID: 24816542 PMCID: PMC4016100 DOI: 10.1371/journal.pone.0096704] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
Pigs are the natural host for Chlamydia suis, a pathogen which is phylogenetically highly related to the human pathogen C. trachomatis. Chlamydia suis infections are generally treated with tetracyclines. In 1998, tetracyline resistant C. suis strains emerged on U.S. pig farms and they are currently present in the Belgian, Cypriote, German, Israeli, Italian and Swiss pig industry. Infections with tetracycline resistant C. suis strains are mainly associated with severe reproductive failure leading to marked economical loss. We developed a sensitive and specific TaqMan probe-based C. suis real-time PCR for examining clinical samples of both pigs and humans. The analytical sensitivity of the real-time PCR is 10 rDNA copies/reaction without cross-amplifying DNA of other Chlamydia species. The PCR was successfully validated using conjunctival, pharyngeal and stool samples of slaughterhouse employees, as well as porcine samples from two farms with evidence of reproductive failure and one farm without clinical disease. Chlamydia suis was only detected in diseased pigs and in the eyes of humans. Positive humans had no clinical complaints. PCR results were confirmed by culture in McCoy cells. In addition, Chlamydia suis isolates were also examined by the tet(C) PCR, designed for demonstrating the tetracycline resistance gene tet(C). The tet(C) gene was only present in porcine C. suis isolates.
Collapse
Affiliation(s)
- Kristien De Puysseleyr
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
- * E-mail:
| | - Leentje De Puysseleyr
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Julie Geldhof
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, University of Ghent, Ghent, Belgium
| | - Daisy Vanrompay
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| |
Collapse
|
19
|
Ostermann C, Linde S, Siegling-Vlitakis C, Reinhold P. Evaluation of pulmonary dysfunctions and acid-base imbalances induced by Chlamydia psittaci in a bovine model of respiratory infection. Multidiscip Respir Med 2014; 9:10. [PMID: 24517577 PMCID: PMC4021058 DOI: 10.1186/2049-6958-9-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/18/2013] [Indexed: 01/19/2023] Open
Abstract
Background Chlamydia psittaci (Cp) is a respiratory pathogen capable of inducing acute pulmonary zoonotic disease (psittacosis) or persistent infection. To elucidate the pathogenesis of this infection, a translational large animal model was recently introduced by our group. This study aims at quantifying and differentiating pulmonary dysfunction and acid–base imbalances induced by Cp. Methods Forty-two calves were grouped in (i) animals inoculated with Cp (n = 21) and (ii) controls sham-inoculated with uninfected cell culture (n = 21). For pulmonary function testing, impulse oscillometry, capnography, and FRC (functional residual capacity) measurement were applied to spontaneously breathing animals. Variables of acid–base status were assessed in venous blood using both (i) traditional Henderson-Hasselbalch and (ii) strong ion approach. Results Both obstructive and restrictive pulmonary disorders were induced in calves experimentally inoculated with Cp. Although disorders in respiratory mechanics lasted for 8–11 days, the pattern of spontaneous breathing was mainly altered in the period of acute illness (until 4 days post inoculation, dpi). Expiration was more impaired than inspiration, resulting in elevated FRC. Ventilation was characterised by a reduction in tidal volume (−25%) combined with an increased percentage of dead space volume and a significant reduction of alveolar volume by 10%. Minute ventilation increased significantly (+50%) due to a compensatory doubling of respiratory rate. Hyperventilatory hypocapnia at 2–3 dpi resulted in slightly increased blood pH at 2 dpi. However, the acid–base equilibrium was additionally influenced by metabolic components, i.e. the systemic inflammatory response, all of which were detected with help of the strong ion theory. Decreased concentrations of albumin (2–10 dpi), a negative acute-phase marker, resulted in a decrease in the sum of non-volatile weak acids (Atot), revealing an alkalotic effect. This was counterbalanced by acidic effects of decreased strong ion difference (SID), mediated by the interplay between hypochloraemia (alkalotic effect) and hyponatraemia (acidic effect). Conclusions This bovine model was found to be suitable for studying pathophysiology of respiratory Cp infection and may help elucidating functional host-pathogen interactions in the mammalian lung.
Collapse
Affiliation(s)
- Carola Ostermann
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Susanna Linde
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | | | - Petra Reinhold
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
20
|
Ostermann C, Rüttger A, Schubert E, Schrödl W, Sachse K, Reinhold P. Infection, disease, and transmission dynamics in calves after experimental and natural challenge with a Bovine Chlamydia psittaci isolate. PLoS One 2013; 8:e64066. [PMID: 23691148 PMCID: PMC3653844 DOI: 10.1371/journal.pone.0064066] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
Chlamydia (C.) psittaci is the causative agent of psittacosis, a zoonotic disease in birds and man. In addition, C. psittaci has been repeatedly found in domestic animals and is, at least in calves, also able to induce respiratory disease. Knowledge about transmission routes in cattle herds is still deficient, and nothing is known about differences in host response after either experimental or natural exposure to C. psittaci. Therefore, our recently developed respiratory infection model was exploited to evaluate (i) the presence of the pathogen in blood, excretions and air, (ii) the possibility of transmission and (iii) clinical symptoms, acute phase and immune response until 5 weeks after exposure. In this prospective study, intrabronchial inoculation of 108 inclusion-forming units of C. psittaci (n = 21 calves) led to reproducible acute respiratory illness (of approximately one week), accompanied by a systemic inflammatory reaction with an innate immune response dominated by neutrophils. Excretion and/or exhalation of the pathogen was sufficient to transmit the infection to naïve sentinel calves (n = 3) co-housed with the infected animals. Sentinel calves developed mild to subclinical infections only. Notably, excretion of the pathogen, predominantly via feces, occurred more frequently in animals naturally exposed to C. psittaci (i.e. sentinels) as compared to experimentally-inoculated calves. The humoral immune response was generally weak, and did not emerge regularly following experimental infection; however, it was largely absent after naturally acquired infection.
Collapse
Affiliation(s)
- Carola Ostermann
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Jena, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Ocular lesions associated with Chlamydia suis in a wild boar piglet (Sus scrofa) from a semi-free range population in Spain. J Zoo Wildl Med 2013; 44:159-62. [PMID: 23505718 DOI: 10.1638/1042-7260-44.1.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of the wild boar (Sus scrofa) as a reservoir for a large number of pathogens that can affect both domestic animals and humans has been widely studied in the last few years. However, the impact of some of these pathogens on the health of wild boar populations is still being determined. This article presents a clinical case of severe bilateral keratoconjunctivitis affecting a 2-mo-old piglet from a semi-free range population in Spain. Histopathologic and microbiologic analysis revealed lesions in the cornea, choroid, and optical nerve, and Chlamydia suis was detected in the eyes bilaterally. The visual handicap resulting from this type of lesion greatly affects the survival of this affected piglet.
Collapse
|
22
|
Zhang NZ, Zhou DH, Shi XC, Nisbet AJ, Huang SY, Ciren D, Wu SM, Zhu XQ. First report of Chlamydiaceae seroprevalence in Tibetan pigs in Tibet, China. Vector Borne Zoonotic Dis 2013; 13:196-9. [PMID: 23428089 DOI: 10.1089/vbz.2012.1208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The seroprevalence of Chlamydiaceae infection in Tibetan pigs in Tibet, China, was examined by indirect hemagglutination assay (IHA), between April, 2010, and December, 2010. A total of 71 of 427 serum samples (16.63%, 95% confidence interval [CI] 15.31-17.95] were positive for Chlamydiaceae antibodies. Forty Chlamydiaceae seropositives from 232 samples were recorded in sera from Nyingchi (17.24%, 95% CI 15.40-19.08) and 31 positives were recorded in 195 serum samples from Mainling (15.90%, 95% CI 14.02-17.78). The investigation showed that the prevalence in female animals was 17.61% (95% CI 15.22-20.00), and in male animals it was 12.72% (95% CI 11.07-14.37). The prevalence ranged from 0% to 20.61% (95% CI 17.81-23.48) among different age groups, with a higher prevalence in growing pigs (p<0.01). The results indicated that Chlamydiaceae infection was widespread in Tibetan pigs in Tibet, China, which is of public health concern in this region of the world. To our knowledge, this is the first report of Chlamydiaceae seroprevalence in Tibetan pigs in Tibet, China.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
de Broucker V, Hassoun SM, Hulo S, Chérot-Kornobis N, Nevière R, Matran R, Sobaszek A, Edme JL. Non-invasive collection of exhaled breath condensate in rats: Evaluation of pH, H2O2 and NOx in lipopolysaccharide-induced acute lung injury. Vet J 2012; 194:222-8. [DOI: 10.1016/j.tvjl.2012.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 11/30/2022]
|
24
|
Reinhold P, Ostermann C, Liebler-Tenorio E, Berndt A, Vogel A, Lambertz J, Rothe M, Rüttger A, Schubert E, Sachse K. A bovine model of respiratory Chlamydia psittaci infection: challenge dose titration. PLoS One 2012; 7:e30125. [PMID: 22299031 PMCID: PMC3267716 DOI: 10.1371/journal.pone.0030125] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/09/2011] [Indexed: 12/26/2022] Open
Abstract
This study aimed to establish and evaluate a bovine respiratory model of experimentally induced acute C. psittaci infection. Calves are natural hosts and pathogenesis may resemble the situation in humans. Intrabronchial inoculation of C. psittaci strain DC15 was performed in calves aged 2–3 months via bronchoscope at four different challenge doses from 106 to 109 inclusion-forming units (ifu) per animal. Control groups received either UV-inactivated C. psittaci or cell culture medium. While 106 ifu/calf resulted in a mild respiratory infection only, the doses of 107 and 108 induced fever, tachypnea, dry cough, and tachycardia that became apparent 2–3 days post inoculation (dpi) and lasted for about one week. In calves exposed to 109 ifu C. psittaci, the respiratory disease was accompanied by severe systemic illness (apathy, tremor, markedly reduced appetite). At the time point of most pronounced clinical signs (3 dpi) the extent of lung lesions was below 10% of pulmonary tissue in calves inoculated with 106 and 107 ifu, about 15% in calves inoculated with 108 and more than 30% in calves inoculated with 109 ifu C. psittaci. Beside clinical signs and pathologic lesions, the bacterial load of lung tissue and markers of pulmonary inflammation (i.e., cell counts, concentration of proteins and eicosanoids in broncho-alveolar lavage fluid) were positively associated with ifu of viable C. psittaci. While any effect of endotoxin has been ruled out, all effects could be attributed to infection by the replicating bacteria. In conclusion, the calf represents a suitable model of respiratory chlamydial infection. Dose titration revealed that both clinically latent and clinically manifest infection can be reproduced experimentally by either 106 or 108 ifu/calf of C. psittaci DC15 while doses above 108 ifu C. psittaci cannot be recommended for further studies for ethical reasons. This defined model of different clinical expressions of chlamydial infection allows studying host-pathogen interactions.
Collapse
Affiliation(s)
- Petra Reinhold
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Englund S, af Segerstad CH, Arnlund F, Westergren E, Jacobson M. The occurrence of Chlamydia spp. in pigs with and without clinical disease. BMC Vet Res 2012; 8:9. [PMID: 22280482 PMCID: PMC3307427 DOI: 10.1186/1746-6148-8-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/26/2012] [Indexed: 11/29/2022] Open
Abstract
Background Within the genera Chlamydia, the development of refined diagnostic techniques has allowed the identification of four species that are capable of infecting pigs. The epidemiology, clinical, and zoonotic impacts of these species are however largely unknown. The study aimed to investigate the presence of Chlamydia spp. in the intestines of growing pigs and in conjunctival swabs from finisher pigs, and relate the findings to clinical signs. Results By histology, 20 of 48 pigs had intestinal lesions that may be consistent with chlamydial infection. By PCR, forty-six of the pigs were positive whereas two samples were inhibited. Sequencing of 19 DNA extracts identified these as Chlamydia suis. By immunohistochemistry, 32 of 44 samples were positive and a significant relationship was detected between macroscopically visible intestinal lesions and a high degree of infection. By real-time PCR, a significant difference was detected between pigs with and without conjunctivitis when a Ct value of 36 was employed but not when a Ct value of 38 was employed. Conclusions Chlamydia suis was demonstrated in most samples and overall, no correlation to clinical signs was detected. However, a correlation was noted between samples with a high degree of infection and the presence of clinical signs. It is possible, that the intensive pig production systems studied might predispose for the transmission and maintenance of the infection thus increasing the infectious load and the risk for disease in the pig.
Collapse
Affiliation(s)
- Stina Englund
- National Veterinary Institute, 751 89 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
26
|
Cathcart MP, Love S, Hughes KJ. The application of exhaled breath gas and exhaled breath condensate analysis in the investigation of the lower respiratory tract in veterinary medicine: A review. Vet J 2011; 191:282-91. [PMID: 21908213 DOI: 10.1016/j.tvjl.2011.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 08/12/2011] [Accepted: 08/13/2011] [Indexed: 10/17/2022]
Abstract
The analysis of biomarkers in exhaled breath (EB) and exhaled breath condensate (EBC) may allow non-invasive and repeatable assessment of respiratory health and disease in mammals. Compared to human medicine, however, research data from EB and EBC analysis in veterinary medicine are limited and more patient variables influencing concentrations of EB/EBC analytes may be present. In addition, variations in methodologies between studies may influence results. A comparison of the approaches used in veterinary research by different groups may aid in the identification of potentially reliable and repeatable biomarkers suitable for further investigation. To date, changes in acid-base status and increased concentrations of inflammatory mediators have been the main findings in studies of pulmonary disease states in animals. Whilst these biomarkers are unlikely to represent specific and sensitive diagnostic parameters, they do have potential application in monitoring disease progression and treatment response.
Collapse
Affiliation(s)
- M P Cathcart
- Weipers Centre for Equine Welfare, School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G611QH, UK
| | | | | |
Collapse
|
27
|
Wagner J, Kneucker A, Liebler-Tenorio E, Fachinger V, Glaser M, Pesch S, Murtaugh MP, Reinhold P. Respiratory function and pulmonary lesions in pigs infected with porcine reproductive and respiratory syndrome virus. Vet J 2011; 187:310-9. [PMID: 20089425 PMCID: PMC7128265 DOI: 10.1016/j.tvjl.2009.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/14/2009] [Accepted: 12/22/2009] [Indexed: 11/18/2022]
Abstract
Pulmonary dysfunction was evaluated in pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV, isolate VR-2332) and compared to clinical and pathological findings. Infected pigs developed fever, reduced appetite, respiratory distress and dullness at 9 days post-inoculation (dpi). Non-invasive pulmonary function tests using impulse oscillometry and rebreathing of test gases (He, CO) revealed peripheral airway obstruction, reduced lung compliance and reduced lung CO-transfer factor. PRRSV-induced pulmonary dysfunction was most marked at 9-18 dpi and was accompanied by a significantly increased respiratory rate and decreased tidal volume. Expiration was affected more than inspiration. On histopathological examination, multifocal areas of interstitial pneumonia (more severe and extensive at 10 dpi than 21 dpi) were identified as a possible structural basis for reduced lung compliance and gas exchange disturbances.
Collapse
Affiliation(s)
- Judith Wagner
- Institute of Molecular Pathogenesis in the ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Annette Kneucker
- Institute of Molecular Pathogenesis in the ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute of Molecular Pathogenesis in the ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Vicky Fachinger
- Boehringer Ingelheim Vetmedica GmbH, Corporate R&D, Binger Str. 173, 55216 Ingelheim, Germany
| | - Melanie Glaser
- Institute of Molecular Pathogenesis in the ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Stefan Pesch
- Bioscreen EVDMC GmbH, Mendelstr. 11, 48149 Münster, Germany
| | - Michael P. Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Petra Reinhold
- Institute of Molecular Pathogenesis in the ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
28
|
Schautteet K, Vanrompay D. Chlamydiaceae infections in pig. Vet Res 2011; 42:29. [PMID: 21314912 PMCID: PMC3041669 DOI: 10.1186/1297-9716-42-29] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/17/2011] [Indexed: 12/03/2022] Open
Abstract
Chlamydiaceae are Gram-negative obligate intracellular bacteria. They are responsible for a broad range of diseases in animals and humans. In pigs, Chlamydia suis, Chlamydia abortus, Chlamydia pecorum and Chlamydia psittaci have been isolated. Chlamydiaceae infections in pigs are associated with different pathologies such as conjunctivitis, pneumonia, pericarditis, polyarthritis, polyserositis, pseudo-membranous or necrotizing enteritis, periparturient dysgalactiae syndrome, vaginal discharge, return to oestrus, abortion, mummification, delivery of weak piglets, increased perinatal and neonatal mortality and inferior semen quality, orchitis, epididymitis and urethritis in boars. However, Chlamydiaceae are still considered as non-important pathogens because reports of porcine chlamydiosis are rare. Furthermore, Chlamydiaceae infections are often unnoticed because tests for Chlamydiaceae are not routinely performed in all veterinary diagnostic laboratories and Chlamydiaceae are often found in association with other pathogens, which are sometimes more easily to detect. However, recent studies have demonstrated that Chlamydiaceae infections in breeding sows, boars and piglets occur more often than thought and are economically important. This paper presents an overview on: the taxonomy of Chlamydiaceae occurring in pigs, diagnostic considerations, epidemiology and pathology of infections with Chlamydiaceae in pigs, public health significance and finally on prevention and treatment of Chlamydiaceae infections in pigs.
Collapse
Affiliation(s)
- Katelijn Schautteet
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | |
Collapse
|
29
|
Fairbairn L, Kapetanovic R, Sester DP, Hume DA. The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukoc Biol 2011; 89:855-71. [PMID: 21233410 DOI: 10.1189/jlb.1110607] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The biology of cells of the mononuclear phagocyte system has been studied extensively in the mouse. Studies of the pig as an experimental model have commonly been consigned to specialist animal science journals. In this review, we consider some of the many ways in which the innate immune systems of humans differ from those of mice, the ways that pigs may address the shortcomings of mice as models for the study of macrophage differentiation and activation in vitro, and the biology of sepsis and other pathologies in the living animal. With the completion of the genome sequence and the characterization of many key regulators and markers, the pig has emerged as a tractable model of human innate immunity and disease that should address the limited, predictive value of rodents in preclinical studies.
Collapse
Affiliation(s)
- Lynsey Fairbairn
- The Roslin Institute and Royal (Dick) School of Veterinary Medicine, University of Edinburgh, Roslin BioCentre, Scotland, United Kingdom
| | | | | | | |
Collapse
|
30
|
Bermudez-Fajardo A, Stark AK, El-Kadri R, Penichet ML, Hölzle K, Wittenbrink MM, Hölzle L, Oviedo-Orta E. The effect of Chlamydophila pneumoniae Major Outer Membrane Protein (MOMP) on macrophage and T cell-mediated immune responses. Immunobiology 2011; 216:152-63. [DOI: 10.1016/j.imbio.2010.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 06/09/2010] [Accepted: 06/11/2010] [Indexed: 01/31/2023]
|
31
|
Reinhold P, Liebler-Tenorio E, Sattler S, Sachse K. Recurrence of Chlamydiasuis infection in pigs after short-term antimicrobial treatment. Vet J 2010; 187:405-7. [PMID: 20800518 DOI: 10.1016/j.tvjl.2010.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 01/09/2010] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
Abstract
The effect of short-term antimicrobial treatment on natural excretion of Chlamydia suis in rectal swabs and C. suis and Chlamydophila psittaci in nasal swabs was investigated in 47 clinically normal piglets by quantitative real-time PCR. Pigs were treated IM with 4 mg/kg enrofloxacin for 5 days (n = 22) or 2.5mg/kg enrofloxacin for 3 days followed by 100mg/mL tiamulin (n = 25). Antimicrobial treatment reduced the number of pigs positive for chlamydiae and the quantity of chlamydial DNA in positive swabs for a few days, but chlamydial excretion recurred in both groups. Short-term antimicrobial treatment at dosages recommended for treatment of other bacterial infections in pig herds was not effective in eliminating naturally occurring subclinical chlamydial infection in pigs.
Collapse
Affiliation(s)
- Petra Reinhold
- Institute of Molecular Pathogenesis in the Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Str 96a, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
32
|
Burciaga-Robles LO, Holland BP, Step DL, Krehbiel CR, McMillen GL, Richards CJ, Sims LE, Jeffers JD, Namjou K, McCann PJ. Evaluation of breath biomarkers and serum haptoglobin concentration for diagnosis of bovine respiratory disease in heifers newly arrived at a feedlot. Am J Vet Res 2009; 70:1291-8. [DOI: 10.2460/ajvr.70.10.1291] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Reinhold P, Hartmann H, Constable PD. Characterisation of acid-base abnormalities in pigs experimentally infected with Chlamydia suis. Vet J 2009; 184:212-8. [PMID: 19286403 DOI: 10.1016/j.tvjl.2009.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 11/26/2022]
Abstract
This study characterises the acid-base abnormalities in pigs experimentally infected with Chlamydia suis (Henderson-Hasselbalch equation and Constable's simplified strong ion equation). Eight pigs were challenged with the respiratory pathogen C. suis and four pigs served as non-infected controls. Pigs were monitored from 7 days before challenge to 8 days post-inoculation. Clinical examination was performed twice daily and venous blood samples were collected every two days. Blood-gas analysis, haemoxymetry, serum biochemical analysis and electrophoresis were performed in order to characterise the acid-base derangement. Aerosol challenge with C. suis resulted in severe acid-base disturbance characterised by acute respiratory acidosis and strong ion (metabolic) acidosis secondary to anaerobic metabolism and hyper L-lactataemia. Maximal changes were seen at day 3 post-inoculation when severe clinical signs of respiratory dysfunction were evident. The results of the study provide new information regarding the pathophysiology of respiratory infection caused by C. suis and the applicability and diagnostic utility of different approaches for assessing acid-base status in pigs.
Collapse
Affiliation(s)
- Petra Reinhold
- Institute of Molecular Pathogenesis in the Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany.
| | | | | |
Collapse
|
34
|
Host cell cytokines induced by Chlamydia pneumoniae decrease the expression of interstitial collagens and fibronectin in fibroblasts. Infect Immun 2008; 77:867-76. [PMID: 19047405 DOI: 10.1128/iai.00566-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia pneumoniae infection has been associated with chronic obstructive airway disease (COPD), asthma, and atherosclerosis. Inflammation and airway remodeling in asthma and COPD result in subepithelial fibrosis that is characterized by the deposition of interstitial collagens and fibronectin. The progression of atherosclerosis is also accompanied by an increased production of interstitial collagens in the intima. As shown by reverse transcription-PCR and immunoblotting, infection of human fibroblasts and smooth muscle cells by C. pneumoniae TW-183 downregulated the expression of type I and III collagen and fibronectin, whereas the level of type IV collagen remained unchanged. Conditioned medium from infected fibroblasts as well as epithelial WISH cells also reduced the expression of interstitial collagens and fibronectin in uninfected cells. In experiments using blocking antibodies, beta interferon was found to contribute to the inhibitory effects of conditioned medium collected from infected fibroblasts. In contrast, downregulation of matrix protein expression by conditioned medium from epithelial cells was caused by interleukin-1alpha, which was not secreted from fibroblasts following chlamydial infection. C. pneumoniae-mediated inhibition of collagen and fibronectin expression was diminished following transfection of fibroblasts with specific small interfering RNA targeting the transcription factor CCAAT/enhancer-binding protein beta. The downregulation of interstitial collagens and fibronectin by the Chlamydia-induced host cell cytokine response may modulate tissue remodeling processes in airway diseases. In atherosclerosis the inhibition of collagen synthesis by C. pneumoniae infection may promote plaque vulnerability, thereby increasing the risk of plaque rupture.
Collapse
|