1
|
Yoodee S, Peerapen P, Thongboonkerd V. Defining physicochemical properties of urinary proteins that determine their inhibitory activities against calcium oxalate kidney stone formation. Int J Biol Macromol 2024; 279:135242. [PMID: 39218173 DOI: 10.1016/j.ijbiomac.2024.135242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
We have recently reported a set of urinary proteins that inhibited calcium oxalate (CaOx) stone development. However, physicochemical properties that determine their inhibitory activities remained unknown. Herein, human urinary proteins were chromatographically fractionated into 15 fractions and subjected to various CaOx crystal assays and identification by nanoLC-ESI-Qq-TOF MS/MS. Their physicochemical properties and crystal inhibitory activities were subjected to Pearson correlation analysis. The data showed that almost all urinary protein fractions had crystal inhibitory activities. Up to 128 proteins were identified from each fraction. Crystallization inhibitory activity correlated with percentages of Ca2+-binding proteins, stable proteins, polar amino acids, alpha helix, beta turn, and random coil, but inversely correlated with number of Ox2--binding motifs/protein and percentage of unstable proteins. Crystal aggregation inhibitory activity correlated with percentage of stable proteins but inversely correlated with percentage of unstable proteins. Crystal adhesion inhibitory activity correlated with percentage of stable proteins and GRAVY, but inversely correlated with pI, instability index and percentages of unstable proteins and positively charged amino acids. However, there was no correlation between crystal growth inhibitory activity and any physicochemical properties. In summary, some physicochemical properties of urinary proteins can determine and may be able to predict their CaOx stone inhibitory activities.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
2
|
Yoodee S, Peerapen P, Rattananinsruang P, Detsangiamsak S, Sukphan S, Thongboonkerd V. Large-scale identification of calcium oxalate stone inhibitory proteins in normal human urine. Int J Biol Macromol 2024; 275:133646. [PMID: 38969041 DOI: 10.1016/j.ijbiomac.2024.133646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Recent evidence has shown that proteins in normal human urine can inhibit calcium oxalate (CaOx) kidney stone formation. Herein, we performed fast protein liquid chromatography (FPLC) to fractionate normal human urinary proteins using anion-exchange (DEAE) and size-exclusion (Superdex 200) materials. FPLC fractions (F1-F15) were examined by CaOx crystallization, growth, aggregation and crystal-cell adhesion assays. The fractions with potent inhibitory activities against CaOx crystals were then subjected to mass spectrometric protein identification. The data revealed that 13 of 15 fractions showed inhibitory activities in at least one crystal assay. Integrating CaOx inhibitory scores demonstrated that F6, F7 and F8 had the most potent inhibitory activities. NanoLC-ESI-Qq-TOF MS/MS identified 105, 93 and 53 proteins in F6, F7 and F8, respectively. Among them, 60 were found in at least two fractions and/or listed among known inhibitors with solid experimental evidence in the StoneMod database (https://www.stonemod.org). Interestingly, 10 of these 60 potential inhibitors have been reported with lower urinary levels in CaOx stone formers compared with healthy (non-stone) individuals, strengthening their roles as potent CaOx stone inhibitors. Our study provides the largest dataset of potential CaOx stone inhibitory proteins that will be useful for further elucidations of stone-forming mechanisms and ultimately for therapeutic/preventive applications.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyaporn Rattananinsruang
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sasinun Detsangiamsak
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sirirat Sukphan
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
3
|
Cheng Y, Li Y, Scherer N, Grundner-Culemann F, Lehtimäki T, Mishra BH, Raitakari OT, Nauck M, Eckardt KU, Sekula P, Schultheiss UT. Genetics of osteopontin in patients with chronic kidney disease: The German Chronic Kidney Disease study. PLoS Genet 2022; 18:e1010139. [PMID: 35385482 PMCID: PMC9015153 DOI: 10.1371/journal.pgen.1010139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/18/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN), encoded by SPP1, is a phosphorylated glycoprotein predominantly synthesized in kidney tissue. Increased OPN mRNA and protein expression correlates with proteinuria, reduced creatinine clearance, and kidney fibrosis in animal models of kidney disease. But its genetic underpinnings are incompletely understood. We therefore conducted a genome-wide association study (GWAS) of OPN in a European chronic kidney disease (CKD) population. Using data from participants of the German Chronic Kidney Disease (GCKD) study (N = 4,897), a GWAS (minor allele frequency [MAF]≥1%) and aggregated variant testing (AVT, MAF<1%) of ELISA-quantified serum OPN, adjusted for age, sex, estimated glomerular filtration rate (eGFR), and urinary albumin-to-creatinine ratio (UACR) was conducted. In the project, GCKD participants had a mean age of 60 years (SD 12), median eGFR of 46 mL/min/1.73m2 (p25: 37, p75: 57) and median UACR of 50 mg/g (p25: 9, p75: 383). GWAS revealed 3 loci (p<5.0E-08), two of which replicated in the population-based Young Finns Study (YFS) cohort (p<1.67E-03): rs10011284, upstream of SPP1 encoding the OPN protein and related to OPN production, and rs4253311, mapping into KLKB1 encoding prekallikrein (PK), which is processed to kallikrein (KAL) implicated through the kinin-kallikrein system (KKS) in blood pressure control, inflammation, blood coagulation, cancer, and cardiovascular disease. The SPP1 gene was also identified by AVT (p = 2.5E-8), comprising 7 splice-site and missense variants. Among others, downstream analyses revealed colocalization of the OPN association signal at SPP1 with expression in pancreas tissue, and at KLKB1 with various plasma proteins in trans, and with phenotypes (bone disorder, deep venous thrombosis) in human tissue. In summary, this GWAS of OPN levels revealed two replicated associations. The KLKB1 locus connects the function of OPN with PK, suggestive of possible further post-translation processing of OPN. Further studies are needed to elucidate the complex role of OPN within human (patho)physiology.
Collapse
Affiliation(s)
- Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Binisha H. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité, University-Medicine, Berlin, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Ulla T. Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Department of Medicine IV, Nephrology and Primary Care, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
4
|
Manissorn J, Fong-Ngern K, Peerapen P, Thongboonkerd V. Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Sci Rep 2017; 7:1798. [PMID: 28496123 PMCID: PMC5431959 DOI: 10.1038/s41598-017-01953-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Abstract
Urine pH has been thought to be an important factor that can modulate kidney stone formation. Nevertheless, there was no systematic evaluation of such pH effect. Our present study thus addressed effects of differential urine pH (4.0–8.0) on calcium oxalate (CaOx) crystallization, crystal-cell adhesion, crystal internalization into renal tubular cells, and binding of apical membrane proteins to the crystals. Microscopic examination revealed that CaOx monohydrate (COM), the pathogenic form, was crystallized with greatest size, number and total mass at pH 4.0 and least crystallized at pH 8.0, whereas COD was crystallized with the vice versa order. Fourier-transform infrared (FT-IR) spectroscopy confirmed such morphological study. Crystal-cell adhesion assay showed the greatest degree of crystal-cell adhesion at the most acidic pH and least at the most basic pH. Crystal internalization assay using fluorescein isothiocyanate (FITC)-labelled crystals and flow cytometry demonstrated that crystal internalization into renal tubular cells was maximal at the neutral pH (7.0). Finally, there were no significant differences in binding capacity of the crystals to apical membrane proteins at different pH. We concluded that the acidic urine pH may promote CaOx kidney stone formation, whereas the basic urine pH (i.e. by alkalinization) may help to prevent CaOx kidney stone disease.
Collapse
Affiliation(s)
- Juthatip Manissorn
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Khan SR, Joshi S, Wang W, Peck AB. Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am J Physiol Renal Physiol 2014; 306:F1285-95. [PMID: 24598804 DOI: 10.1152/ajprenal.00057.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used an unbiased approach of gene expression profiling to determine differential gene expression of all the macromolecular modulators (MMs) considered to be involved in stone formation, in hyperoxaluric rats, with and without treatment with the NADPH oxidase inhibitor apocynin. Male rats were fed rat chow or chow supplemented with 5% wt/wt hydroxy-l-proline (HLP) with or without apocynin-supplemented water. After 28 days, rats were euthanized and their kidneys explanted. Total RNA was isolated and microarray analysis was conducted using the Illumina bead array reader. Gene ontology analysis and the pathway analyses of the genes were done using Database for Annotation, Visualization of Integrated Discovery enrichment analysis tool. Quantitative RT-PCR of selected genes was carried out to verify the microarray results. Expression of selected gene products was confirmed using immunohistochemistry. Administration of HLP led to crystal deposition. Genes encoding for fibronectin, CD 44, fetuin B, osteopontin, and matrix-gla protein were upregulated while those encoding for heavy chains of inter-alpha-inhibitor 1, 3, and 4, calgranulin B, prothrombin, and Tamm-Horsfall protein were downregulated. HLP-fed rats receiving apocynin had a significant reversal in gene expression profiles: those that were upregulated came down while those that were downregulated stepped up. Apocynin treatment resulted in near complete absence of crystals. Clearly, there are two types of MMs; one is downregulated while the other is upregulated during hyperoxaluria and crystal deposition. Apparently gene and protein expressions of known macromolecular modulators of CaOx crystallization are likely regulated by ROS produced in part through the activation of NADPH oxidase.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida; Department of Urology, College of Medicine, University of Florida, Gainesville, Florida; and
| | - Sunil Joshi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Wei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Ammon B Peck
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. BIOMED RESEARCH INTERNATIONAL 2013; 2013:292953. [PMID: 24151593 PMCID: PMC3787572 DOI: 10.1155/2013/292953] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/26/2013] [Indexed: 12/14/2022]
Abstract
Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation.
Collapse
Affiliation(s)
- Kanu Priya Aggarwal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| | - Shifa Narula
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| | - Monica Kakkar
- Department of Biochemistry, Himalyan Institute Hospital Trust, Swami Ram Nagar, Dehradun, Uttrakhand 248140, India
| | - Chanderdeep Tandon
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| |
Collapse
|
7
|
Wadey RM, Pinches MG, Jones HB, Riccardi D, Price SA. Tissue expression and correlation of a panel of urinary biomarkers following cisplatin-induced kidney injury. Toxicol Pathol 2013; 42:591-602. [PMID: 23823703 DOI: 10.1177/0192623313492044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, there has been considerable activity to identify urinary biomarkers of nephrotoxicity as noninvasive measurements with greater sensitivity and specificity than traditional biomarkers, such as serum creatinine and blood urea nitrogen. Our study aimed to use cisplatin-treated rats to evaluate the use of immunohistochemistry directed at multiple urinary biomarkers in kidney tissue. Tissue levels were compared to urinary levels of these biomarkers to demonstrate tissue specificity and sensitivity. These techniques could also be used in studies where urine samples are not available, such as retrospective studies in drug safety testing, to demonstrate the potential utility of using these biomarkers in future preclinical or clinical studies. All of the biomarkers investigated showed either an increase (kidney injury molecule [KIM-1], osteopontin [OPN], and, clusterin) or a decrease (alpha-glutathione S-transferase and trefoil factor 3) except beta 2 microglobulin (β2MG) that showed no significant changes 5 days after 1.0 mg/kg or 2.5 mg/kg cisplatin treatment. All of the biomarkers except β2MG showed utility as tissue biomarkers, but KIM-1 and OPN expression correlated closely with urinary biomarker measurements and reflect tissue damage. Future studies are needed to determine the wider application of these two markers for detecting renal toxicity following administration of other nephrotoxicants.
Collapse
Affiliation(s)
- Rebecca M Wadey
- 1School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | | | | | | |
Collapse
|
8
|
Abstract
Calcium nephrolithiasis in children is increasing in prevalence and tends to be recurrent. Although children have a lower incidence of nephrolithiasis than adults, its etiology in children is less well understood; hence, treatments targeted for adults may not be optimal in children. To better understand metabolic abnormalities in stone-forming children, we compared chemical measurements and the crystallization properties of 24-h urine collections from 129 stone formers matched to 105 non-stone-forming siblings and 183 normal, healthy children with no family history of stones, all aged 6 to 17 years. The principal risk factor for calcium stone formation was hypercalciuria. Stone formers have strikingly higher calcium excretion along with high supersaturation for calcium oxalate and calcium phosphate, and a reduced distance between the upper limit of metastability and supersaturation for calcium phosphate, indicating increased risk of calcium phosphate crystallization. Other differences in urine chemistry that exist between adult stone formers and normal individuals such as hyperoxaluria, hypocitraturia, abnormal urine pH, and low urine volume were not found in these children. Hence, hypercalciuria and a reduction in the gap between calcium phosphate upper limit of metastability and supersaturation are crucial determinants of stone risk. This highlights the importance of managing hypercalciuria in children with calcium stones.
Collapse
|
9
|
Li Y, McLaren MC, McMartin KE. Involvement of urinary proteins in the rat strain difference in sensitivity to ethylene glycol-induced renal toxicity. Am J Physiol Renal Physiol 2010; 299:F605-15. [DOI: 10.1152/ajprenal.00419.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethylene glycol (EG) exposure is a common model for kidney stones, because animals accumulate calcium oxalate monohydrate (COM) in kidneys. Wistar rats are more sensitive to EG than Fischer 344 (F344) rats, with greater COM deposition in kidneys. The mechanisms by which COM accumulates differently among strains are poorly understood. Urinary proteins inhibit COM adhesion to renal cells, which could alter COM deposition in kidneys. We hypothesize that COM accumulates more in Wistar rat kidneys because of lower levels of inhibitory proteins in urine. Wistar and F344 rats were treated with 0.75% EG in drinking water for 8 wk. Twenty-four-hour urine was collected every 2 wk for analysis of urinary proteins. Similar studies were conducted for 2 wk using 2% hydroxyproline (HP) as an alternative oxalate source. Total urinary protein was higher in F344 than Wistar rats at all times. Tamm-Horsfall protein was not different between strains. Osteopontin (OPN) levels in Wistar urine and kidney tissue were higher and were further increased by EG treatment. This increase in OPN occurred before renal COM accumulation. Untreated F344 rats showed greater CD45 and ED-1 staining in kidneys than untreated Wistars; in contrast, EG treatment increased CD45 and ED-1 staining in Wistars more than in F344 rats, indicating macrophage infiltration. This increase occurred in parallel with the increase in OPN and before COM accumulation. Like EG, HP induced markedly greater oxalate concentrations in the plasma and urine of Wistar rats compared with F344 rats. These results suggest that OPN upregulation and macrophage infiltration do not completely protect against COM accumulation and may be a response to crystal retention. Because the two oxalate precursors, EG and HP, produced similar elevations of oxalate, the strain difference in COM accumulation may result more so from metabolic differences between strains than from differences in urinary proteins or inflammatory responses.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Marie C. McLaren
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Kenneth E. McMartin
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
10
|
Igci M, Arslan A, Igci YZ, Gogebakan B, Erturhan MS, Cengiz B, Oztuzcu S, Cakmak EA, Demiryurek AT. Bikunin and α1-microglobulin/bikunin precursor (AMBP) gene mutational screening in patients with kidney stones: a case-control study. ACTA ACUST UNITED AC 2010; 44:413-9. [PMID: 20602574 DOI: 10.3109/00365599.2010.497768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Bikunin is an inhibitor of kidney stone formation synthesized in the liver together with α(1)-microglobulin from the α(1)-microglobulin/bikunin precursor (AMBP) gene. The aim of this study was to investigate the possible association between bikunin/AMBP gene polymorphisms and urinary stone formation. MATERIAL AND METHODS To analyse the DNA, blood samples were taken from 75 kidney stone formers who had a familial stone history, 35 sporadic stone formers and 101 healthy individuals. Four exons of bikunin gene and five parts of the promoter region of the AMBP gene were screened using single-strand conformation polymorphism and nucleotide sequence analysis. RESULTS The Init-2 region of the promoter of AMBP gene had polymorphisms at positions -218 and -189 nt giving three different genotypes having 1,3, 2,4 and 1,2,3,4 alleles with frequencies of 17.06%, 60.19% and 22.75%, respectively, in all groups. Therefore, the Init-2 region appears to be polymorphic. As a result, the 1,3 allele has -218G and -189T complying with the reference database sequence, the 2,4 allele has -218G and T-189C substitution and the allele 1,2,3,4 genotype has substitutions at positions G-218C and T-189C. CONCLUSIONS There were no significant differences in allele distribution between patients and controls. These common alleles exist in the Turkish population independent of stone formation. These results are the first to demonstrate the existence of bikunin and AMBP promoter polymorphism. Although the Init-2 region of the AMBP gene is the binding site for various transcription factors, the results showed no association between these observed genotypes and stone-forming phenotypes.
Collapse
Affiliation(s)
- Mehri Igci
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Inter-alpha-trypsin inhibitor family proteins are mainly detected in plasma and urine and comprise the common light chain bikunin and at least 6 closely related heavy chains. The bikunin moiety exhibits protease inhibitory activity and has been studied extensively; however, the heavy chains have been largely overlooked. Recent studies clearly indicate that the heavy chain moieties have important biological functions either in association with or independent of bikunin. Because the heavy chains comprise the main part of the protein structure of this family, it is important to understand their functions. This review summarizes the domain structural features of heavy chains, the heavy chain-interacting molecules identified thus far, and the association of heavy chains with diseases to encourage the discovery of novel heavy chains-interacting molecules and to gain a deeper insight into their functions.
Collapse
Affiliation(s)
- Lisheng Zhuo
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | | |
Collapse
|
12
|
Evan AP, Bledsoe S, Worcester EM, Coe FL, Lingeman JE, Bergsland KJ. Renal inter-alpha-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int 2007; 72:1503-11. [PMID: 17898697 DOI: 10.1038/sj.ki.5002569] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inter-alpha-trypsin inhibitor heavy-chain proteins bind to the protease inhibitor bikunin and to hyaluronan, stabilizes extracellular matrix in various tissues, and also inhibits calcium oxalate crystallization in vitro. In both normal and stone-forming patients, we found heavy chain 3 and hyaluronan in the interstitial matrix of the kidney. Osteopontin was found in the collecting duct, thin loop of Henle, and urothelial cells. In stone formers, heavy chain 3 was also present in collecting duct, thin loop, and interstitial cells. Heavy chain 3 and osteopontin colocalized in plaque matrix and urothelial cells. Within individual plaque spherules, heavy chain 3 was found in the matrix layer while osteopontin was located along the crystal-matrix interface. Bikunin was present only in the collecting duct apical membranes and the loop cell cytoplasm of stone formers colocalizing with osteopontin and heavy chain 3. Widespread heavy chain 3 was only present in stone formers, whereas osteopontin was similarly expressed in normal and stone-forming subjects except for its localization in plaques of the stone formers. This is consistent with studies linking inter-alpha-trypsin inhibitor components to human stone disease, although their role is still unclear. Heavy chain 3 may also play a role in stabilizing hyaluronan in the renal interstitial matrix.
Collapse
Affiliation(s)
- A P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46223, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Basavaraj DR, Biyani CS, Browning AJ, Cartledge JJ. The Role of Urinary Kidney Stone Inhibitors and Promoters in the Pathogenesis of Calcium Containing Renal Stones. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.eeus.2007.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Bergsland KJ, Kelly JK, Coe BJ, Coe FL. Urine protein markers distinguish stone-forming from non-stone-forming relatives of calcium stone formers. Am J Physiol Renal Physiol 2006; 291:F530-6. [PMID: 16622176 DOI: 10.1152/ajprenal.00370.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated urine protein inhibitors of calcium oxalate crystallization to determine whether variations in these proteins are associated with kidney stone disease and whether protein measurements improve the identification of stone formers compared with conventional risk factors (RF). Using Western blotting, we studied variations in the electrophoretic mobility patterns and relative abundances of crystallization-inhibitory proteins in urine from 50 stone-forming (SF) and 50 non-stone-forming (NS) first-degree relatives of calcium SF patients, matched by gender and age. Standard urine chemistry stone risk measurements were also made. Multivariate discriminant analysis was used to test the association of these proteins with nephrolithiasis. Differences in form and abundance of several urine proteins including inter-alpha-trypsin inhibitor (ITI), prothrombin fragment 1 (PF1), CD59, and calgranulin B (calB) were found to be associated with stone formation. By multivariate discriminant analysis, measurements of forms of PF1, ITI, and calB in men and ITI and CD59 in women, classified 84% of men and 76% of women correctly by stone status. In contrast, standard urine chemistry RF identified only 70% of men correctly and failed to distinguish female SF from NS. Thus a small subset of protein measurements distinguished SF from NS far better than conventional RF in a population of relatives of calcium SF, illustrating the significant association of these proteins with stone disease. Variations in these proteins may serve as markers of stone disease activity or vulnerability to recurrence and may provide new insights into mechanisms of stone formation.
Collapse
|
15
|
Yang L, Resnick MI, Marengo SR. A simple procedure for isolating microgram quantities of biologically active bikunin from human urine. BJU Int 2005; 96:647-53. [PMID: 16104926 DOI: 10.1111/j.1464-410x.2005.05700.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To report a simple, relatively rapid protocol to isolate biologically active bikunin from human urine using ion-exchange-trypsin affinity chromatography. Bikunin is a protease inhibitor which has been shown to play a role in various processes, including inhibition of calcium oxalate crystallization, the regulation of proliferation and modulation of carcinogenesis. The unavailability of the purified protein has hampered studies on bikunin's expanding role in these processes. MATERIALS AND METHODS Female human urine was dialysed (15 kDa threshold) and crudely fractionated with a double-saturated ammonium sulphate precipitation. The first precipitation was with 35% saturated ammonium sulphate, and the supernatant was harvested, and the second with 90% saturated ammonium sulphate, and the precipitate collected. The protein mixture was then passed over Sepharose SP-fast-flow cation exchange and Sepharose Q-fast-flow anion exchange columns connected in series. The final purification was with a trypsin-affinity column which selectively bound bikunin. RESULTS This procedure could recover 1 microg of bikunin per 2 mL of urine, and the final product was essentially free of contaminating inter-alpha-trypsin inhibitor heavy chains or bikunin-heavy chain conjugates. Product purity was confirmed by two-dimensional polyacrylamide gel electrophoresis combined with silver staining or Western blot. All isolations contained the 17 kDa minimally glycoslyated/sulphated form of bikunin and the 28 kDa form of bikunin. Some preparations also contained 33-48 kDa forms of bikunin. The protein cores of all three proteins were confirmed to be bikunin by mass spectrometry and Western blot. Harvested bikunin retained its trypsin inhibitory activity (L-benzoylarginine-p-nitroanilide assay). Preparations containing the 33-45 kDa form had two to three times more trypsin inhibitory activity than preparations without this band. CONCLUSIONS This novel ion exchange-trypsin affinity chromatography protocol uses only two chromatographic steps. The product consists of three isomers of biologically active bikunin, free of contaminating heavy chains or bikunin-heavy chain conjugates. The ready availability of purified bikunin should facilitate future studies of bikunin's emerging role in urolithiasis, proliferation and carcinogenesis.
Collapse
Affiliation(s)
- Lizhu Yang
- The James and Eilleen Dicke Research Laboratory, Department of Urology, School of, Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio 44106-4931, USA
| | | | | |
Collapse
|
16
|
Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, Kleinman JG, Hughes J. Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 2003; 14:139-47. [PMID: 12506146 DOI: 10.1097/01.asn.0000040593.93815.9d] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calcium nephrolithiasis is the most common form of renal stone disease, with calcium oxalate (CaOx) being the predominant constituent of renal stones. Current in vitro evidence implicates osteopontin (OPN) as one of several macromolecular inhibitors of urinary crystallization with potentially important actions at several stages of CaOx crystal formation and retention. To determine the importance of OPN in vivo, hyperoxaluria was induced in mice targeted for the deletion of the OPN gene together with wild-type control mice. Both groups were given 1% ethylene glycol, an oxalate precursor, in their drinking water for up to 4 wk. At 4 wk, OPN-deficient mice demonstrated significant intratubular deposits of CaOx crystals, whereas wild-type mice were completely unaffected. Retained crystals in tissue sections were positively identified as CaOx monohydrate by both polarized optical microscopy and x-ray powder diffraction analysis. Furthermore, hyperoxaluria in the OPN wild-type mice was associated with a significant 2- to 4-fold upregulation of renal OPN expression by immunocytochemistry, lending further support to a renoprotective role for OPN. These data indicate that OPN plays a critical renoprotective role in vivo as an inhibitor of CaOx crystal formation and retention in renal tubules.
Collapse
Affiliation(s)
- Jeffrey A Wesson
- Department of Veterans Affairs Medical Center and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ricchiuti V, Hartke DM, Yang LZ, Goldman HB, Elder JS, Resnick MI, Marengo SR. Levels of urinary inter-alpha-trypsin inhibitor trimer as a function of age and sex-hormone status in males and females not forming stones. BJU Int 2002; 90:513-7. [PMID: 12230607 DOI: 10.1046/j.1464-410x.2002.02984.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To determine if levels of inter-alpha-trypsin inhibitor (I alpha TI)-trimer differ in normal individuals based on age, gender or hormonal status, as the regulation of calcium oxalate (CaOx) crystallization inhibitors, e.g. by sex steroids, could be a mechanism contributing to the differences in CaOx urolithiasis between the sexes. SUBJECTS AND METHODS Voided urine samples were collected from normal males and females. In Experiment 1 samples were grouped by gender and age, i.e. paediatric (PED) < or = 10 years, male (M) 21, female (F) 14; young adult (YGAD) 20-30 years, M 23, F 18; adults (AD), 35-50 year, M 25, F 13; adults aged > or = 60 years (> 60), M 24, F 16 (totals, M 93, F 61). In Experiment 2 samples were grouped by gender, age and hormonal status, i.e. PED, M 24, F 17; AD, M 24, F 22; > 60 and not on hormonal therapy, M 23, F 30; M > 60 and on androgen deprivation therapy (ANDEP) 18; and F > 60 on oestrogen supplementation, F+EST, 18 (total M 89, F 85). Levels of urinary I alpha TI-trimer were determined by immunoblotting and enhanced chemiluminescence, and relative densities of the bands determined. RESULTS In both experiments the relative levels of I alpha TI-trimer were 2-7 times higher in M-PED than in all other groups of males (P < or = 0.007). Among adult males, I alpha TI-trimer levels were similar in all groups, including ANDEP (P > or = 0.9). There were no differences in the relative levels of I alpha TI-trimer among any of the groups of females, regardless of age or hormonal status (P > or = 0.7). CONCLUSIONS In males a decrease in I alpha TI-trimer was associated with the onset of adulthood and entry into the 'stone-forming years'. Females did not show this decrease, and neither sex showed an increase in I alpha TI-trimer in the > 60 group, when the incidence of CaOx urolithiasis is supposedly declining. While changes in urinary I alpha TI-trimer levels in males may reflect maturational changes in the kidney, overall these data do not support the hypothesis that the age-related changes in the incidence of urolithiasis are paralleled by changes in the expression I alpha TI-trimer. Additionally, the sex steroids do not appear to acutely regulate the expression of I alpha TI-trimer in adults, making differences in I alpha TI-trimer levels unlikely to be the reason for the disparity in the incidence of CaOx urolithiasis between the sexes.
Collapse
Affiliation(s)
- V Ricchiuti
- James and Eilleen Dicke Research Laboratory, Department of Urology, Care Western Reserve University, School of Medicine and the University Hospitals of Cleveland, Cleveland, OH 44106-4931, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Schepers MS, van der Boom BG, Romijn JC, Schröoderand FH, Verkoelen CF. Urinary Crystallization Inhibitors Do Not Prevent Crystal Binding. J Urol 2002. [DOI: 10.1016/s0022-5347(05)65246-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Marieke S.J. Schepers
- From the Department of Urology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Burt G. van der Boom
- From the Department of Urology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Johannes C. Romijn
- From the Department of Urology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Fritz H. Schröoderand
- From the Department of Urology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Carl F. Verkoelen
- From the Department of Urology, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Affiliation(s)
- M Mazzali
- Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|