1
|
Knelangen N, Bader U, Maniaki E, Langan PS, Engert F, Drees B, Schwarzer J, Kotter B, Kiefer L, Gattinoni L, Engels B, Mittelstaet J, Webster B. CAR T cells re-directed by a rationally designed human peptide tag demonstrate efficacy in preclinical models. Cytotherapy 2025:S1465-3249(25)00592-4. [PMID: 40257412 DOI: 10.1016/j.jcyt.2025.03.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
Currently, only a few chimeric antigen receptor (CAR) T cell therapies have been approved by the Food and Drug Administration and European Medicines Agency for the treatment of B-cell malignancies. To enable broader application of the CAR T cell technology in other indications, improved control and flexible targeting of multiple tumor antigens are required. Here, we developed a novel adapter CAR (AdCAR) T cell platform for flexible targeting of multiple tumor antigens. This platform is based on a short peptide tag derived from an interdomain region of fibroblast growth factor receptor 2 (FGFR2), commonly mutated in cancer. To select AdCARs specific for mutated FGFR2-derived peptide tags, a multistep pooled screening approach in primary T cells was employed, incorporating MACS separation and next-generation sequencing. The resulting AdCAR was highly specific for the FGFR2-derived peptide tag. Using different in vitro and in vivo model systems, the activity of AdCAR T cells was shown to be strictly dependent on the presence of the adapter and corresponding target antigen. Moreover, AdCAR T cells could be redirected to different target antigens by the addition of respective adapter molecules (AM). Finally, in situ expression of functional AM in primary T cells under control of a drug-inducible promoter system was demonstrated, highlighting the potential for controlling the activity of AdCAR T cells by cellular micropharmacies.
Collapse
Affiliation(s)
- Nele Knelangen
- Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany; Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany.
| | - Ulrika Bader
- Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany.
| | - Evangelia Maniaki
- Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Patricia S Langan
- Research and Development, Lentigen Technology Inc., A Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Fabian Engert
- Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Britta Drees
- Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Juliane Schwarzer
- Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Bettina Kotter
- Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Lukas Kiefer
- Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy, Regensburg, Germany; University of Regensburg, Regensburg, Germany
| | - Boris Engels
- Research and Development, Miltenyi Biotec, Bergisch Gladbach, Germany
| | - Joerg Mittelstaet
- Faculty of Life Sciences, Reutlingen University, Reutlingen, Germany
| | | |
Collapse
|
2
|
Li R, Qu R, Parisi F, Strino F, Lam H, Stanley JS, Cheng X, Myung P, Kluger Y. LMD: Cluster-Independent Multiscale Marker Identification in Single-cell RNA-seq Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.12.566780. [PMID: 38014159 PMCID: PMC10680591 DOI: 10.1101/2023.11.12.566780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Identifying accurate cell markers in single-cell RNA-seq data is crucial for understanding cellular diversity and function. Localized Marker Detector (LMD) is a novel tool to identify "localized genes" - genes exclusively expressed in groups of highly similar cells - thereby characterizing cellular diversity in a multi-resolution and fine-grained manner. LMD constructs a cell-cell affinity graph, diffuses the gene expression value across the cell graph, and assigns a score to each gene based on its diffusion dynamics. LMD's candidate markers can be grouped into functional gene modules, which accurately reflect cell types, subtypes, and other sources of variation such as cell cycle status. We apply LMD to mouse bone marrow and hair follicle dermal condensate datasets, where LMD facilitates cross-sample comparisons, identifying shared and sample-specific gene signatures and novel cell populations without requiring batch effect correction or integration methods. Furthermore, we assessed the performance of LMD across nine single-cell RNA sequencing datasets, compared it with six other methods aimed at achieving similar objectives, and found that LMD outperforms the other methods evaluated.
Collapse
|
3
|
Lakhani A, Chen X, Chen LC, Hong M, Khericha M, Chen Y, Chen YY, Park JO. Extracellular domains of CARs reprogramme T cell metabolism without antigen stimulation. Nat Metab 2024; 6:1143-1160. [PMID: 38658805 PMCID: PMC11845092 DOI: 10.1038/s42255-024-01034-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolism is an indispensable part of T cell proliferation, activation and exhaustion, yet the metabolism of chimeric antigen receptor (CAR)-T cells remains incompletely understood. CARs are composed of extracellular domains-often single-chain variable fragments (scFvs)-that determine ligand specificity and intracellular domains that trigger signalling following antigen binding. Here, we show that CARs differing only in the scFv variously reprogramme T cell metabolism. Even without exposure to antigens, some CARs increase proliferation and nutrient uptake in T cells. Using stable isotope tracers and mass spectrometry, we observed basal metabolic fluxes through glycolysis doubling and amino acid uptake overtaking anaplerosis in CAR-T cells harbouring a rituximab scFv, unlike other similar anti-CD20 scFvs. Disparate rituximab and 14G2a-based anti-GD2 CAR-T cells are similarly hypermetabolic and channel excess nutrients to nitrogen overflow metabolism. Modest overflow metabolism of CAR-T cells and metabolic compatibility between cancer cells and CAR-T cells are identified as features of efficacious CAR-T cell therapy.
Collapse
Affiliation(s)
- Aliya Lakhani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ximin Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurence C Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mihe Hong
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mobina Khericha
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy at UCLA, Los Angeles, CA, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Lakhani A, Chen X, Chen LC, Khericha M, Chen YY, Park JO. Extracellular Domains of CAR Reprogram T-Cell Metabolism Without Antigen Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.533021. [PMID: 37066394 PMCID: PMC10103977 DOI: 10.1101/2023.04.03.533021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Metabolism is an indispensable part of T-cell proliferation, activation, and exhaustion, yet the metabolism of chimeric antigen receptor (CAR)-T cells remains incompletely understood. CARs are comprised of extracellular domains that determine cancer specificity, often using single-chain variable fragments (scFvs), and intracellular domains that trigger signaling upon antigen binding. Here we show that CARs differing only in the scFv reprogram T-cell metabolism differently. Even in the absence of antigens, some CARs increase proliferation and nutrient uptake in T cells. Using stable isotope tracers and mass spectrometry, we observe basal metabolic fluxes through glycolysis doubling and amino acid uptake overtaking anaplerosis in CAR-T cells harboring rituximab scFv, unlike other similar anti-CD20 scFvs. Disparate rituximab and 14g2a-based anti-GD2 CAR-T cells are similarly hypermetabolic and channel excess nutrients to nitrogen overflow metabolism. Since CAR-dependent metabolic reprogramming alters cellular energetics, nutrient utilization, and proliferation, metabolic profiling should be an integral part of CAR-T cell development.
Collapse
|
5
|
Corey D, Haeseleer F, Hou J, Corey L. Novel engineered chimeric engulfment receptors trigger T cell effector functions against SIV-infected CD4+ T cells. Mol Ther Methods Clin Dev 2023; 28:1-10. [PMID: 36514789 PMCID: PMC9720250 DOI: 10.1016/j.omtm.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Adoptive therapy with genetically engineered T cells offers potential for infectious disease treatment in immunocompromised persons. HIV/simian immunodeficiency virus (SIV)-infected cells express phosphatidylserine (PS) early post infection. We tested whether chimeric engulfment receptor (CER) T cells designed to recognize PS-expressing cells could eliminate SIV-infected cells. Lentiviral CER constructs composed of the extracellular domain of T cell immunoglobulin and mucin domain containing 4 (TIM-4), the PS receptor, and engulfment signaling domains were transduced into primary rhesus macaque (RM) T cells. We measured PS binding and T cell engulfment of RM CD4+ T cells infected with SIV expressing GFP and in vitro, TIM-4 CER CD4+ T cells effectively killed SIV-infected cells, which was dependent on TIM-4 binding to PS. Enhanced killing of SIV-infected CD4+ T cells by CER and chimeric antigen receptor T cell combinations was also observed. This installation of innate immune functions into T cells presents an opportunity to enhance elimination of SIV-infected cells, and studies to evaluate their effect in vivo are warranted.
Collapse
Affiliation(s)
- Daniel Corey
- CERo Therapeutics, 201 Haskins Way, Suite 230, San Francisco, CA 94080, USA
| | - Francoise Haeseleer
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joe Hou
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lawrence Corey
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Belovezhets T, Kulemzin S, Volkova O, Najakshin A, Taranin A, Gorchakov A. Comparative Pre-Clinical Analysis of CD20-Specific CAR T Cells Encompassing 1F5-, Leu16-, and 2F2-Based Antigen-Recognition Moieties. Int J Mol Sci 2023; 24:ijms24043698. [PMID: 36835110 PMCID: PMC9966244 DOI: 10.3390/ijms24043698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Over the past decade, CAR T cell therapy for patients with B cell malignancies has evolved from an experimental technique to a clinically feasible option. To date, four CAR T cell products specific for a B cell surface marker, CD19, have been approved by the FDA. Despite the spectacular rates of complete remission in r/r ALL and NHL patients, a significant proportion of patients still relapse, frequently with the CD19 low/negative tumor phenotype. To address this issue, additional B cell surface molecules such as CD20 were proposed as targets for CAR T cells. Here, we performed a side-by-side comparison of the activity of CD20-specific CAR T cells based on the antigen-recognition modules derived from the murine antibodies, 1F5 and Leu16, and from the human antibody, 2F2. Whereas CD20-specific CAR T cells differed from CD19-specific CAR T cells in terms of subpopulation composition and cytokine secretion, they displayed similar in vitro and in vivo potency.
Collapse
Affiliation(s)
| | - Sergey Kulemzin
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Olga Volkova
- Institute of Molecular and Cellular Biology of the SB RAS, 630090 Novosibirsk, Russia
| | - Alexander Najakshin
- Institute of Molecular and Cellular Biology of the SB RAS, 630090 Novosibirsk, Russia
| | - Alexander Taranin
- Institute of Molecular and Cellular Biology of the SB RAS, 630090 Novosibirsk, Russia
| | - Andrey Gorchakov
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
7
|
Chen X, Chen LC, Khericha M, Meng X, Salvestrini E, Shafer A, Iyer N, Alag AS, Ding Y, Nicolaou DM, Chen YY. Rational Protein Design Yields a CD20 CAR with Superior Antitumor Efficacy Compared with CD19 CAR. Cancer Immunol Res 2023; 11:150-163. [PMID: 36409926 PMCID: PMC9898126 DOI: 10.1158/2326-6066.cir-22-0504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Chimeric antigen receptors (CAR) are fusion proteins whose functional domains are often connected in a plug-and-play manner to generate multiple CAR variants. However, CARs with highly similar sequences can exhibit dramatic differences in function. Thus, approaches to rationally optimize CAR proteins are critical to the development of effective CAR T-cell therapies. Here, we report that as few as two amino-acid changes in nonsignaling domains of a CAR were able to significantly enhance in vivo antitumor efficacy. We demonstrate juxtamembrane alanine insertion and single-chain variable fragment sequence hybridization as two strategies that could be combined to maximize CAR functionality, and describe a CD20 CAR that outperformed the CD19 CAR in antitumor efficacy in preclinical in vitro and in vivo assays. Precise changes in the CAR sequence drove dramatically different transcriptomic profiles upon antigen stimulation, with the most efficacious CAR inducing an enrichment in highly functional memory T cells upon antigen stimulation. These findings underscore the importance of sequence-level optimization to CAR T-cell function, and the protein-engineering strategy described here may be applied to the development of additional CARs against diverse antigens. See related Spotlight by Scheller and Hudecek, p. 142.
Collapse
Affiliation(s)
- Ximin Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurence C. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mobina Khericha
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma Salvestrini
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda Shafer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Iyer
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Anya S. Alag
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yunfeng Ding
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Demetri M. Nicolaou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yvonne Y. Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Wang L, Zhang Y, Anderson E, Lamble A, Orentas RJ. Bryostatin Activates CAR T-Cell Antigen-Non-Specific Killing (CTAK), and CAR-T NK-Like Killing for Pre-B ALL, While Blocking Cytolysis of a Burkitt Lymphoma Cell Line. Front Immunol 2022; 13:825364. [PMID: 35222407 PMCID: PMC8864095 DOI: 10.3389/fimmu.2022.825364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The advent of CAR-T cell therapy has changed the face of clinical care for relapsed and refractory pre-B-acute lymphocytic leukemia (B-ALL) and lymphoma. Although curative responses are reported, long-term cures remain below 50%. Different CAR T-cell leukemia targets appear to have different mechanisms of CAR-T escape. For CD22, therapeutic evasion is linked to down-modulation of the number CD22 proteins expressed on the extracellular aspect of the leukemia cell plasma membrane. Recently, pharmacologic agents known to induce cellular differentiation or epigenetic modification of leukemia have been shown to impact CD22 and CD19 expression levels on B-ALL, and thereby increase sensitivity to CAR-T mediated cytolysis. We explored the impact of epigenetic modifiers and differentiation agents on leukemia cell lines of B cell origin, as well as normal B cells. We confirmed the activity of bryostatin to increase CD22 expression on model cell lines. However, bryostatin does not change CD22 levels on normal B cells. Furthermore, bryostatin inhibited CAR-T mediated cytolysis of the Raji Burkitt lymphoma cell line. Bryostatin increased the cytolysis by CD22 CAR-T for B-ALL cell lines by at least three mechanisms: 1) the previously reported increase in CD22 target cell numbers on the cell surface, 2) the induction of NK ligands, and 3) the induction of ligands that sensitize leukemia cells to activated T cell antigen-non-specific killing. The opposite effect was seen for Burkitt lymphoma, which arises from a more mature B cell lineage. These findings should caution investigators against a universal application of agents shown to increase killing of leukemia target cells by CAR-T in a specific disease class, and highlights that activation of non-CAR-mediated killing by activated T cells may play a significant role in the control of disease. We have termed the killing of leukemia targets, by a set of cell-surface receptors that does not overlap with NK-like killing “CTAK,” CAR-T Cell antigen-non-specific killing.
Collapse
Affiliation(s)
- Lingyan Wang
- Ben Town Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Yue Zhang
- Ben Town Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Eden Anderson
- Ben Town Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Adam Lamble
- Department of Pediatrics, Hematology, Oncology and Bone Marrow Transplant Division, University of Washington School of Medicine, Seattle, WA, United States
| | - Rimas J Orentas
- Ben Town Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, Hematology, Oncology and Bone Marrow Transplant Division, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
9
|
Füchsl F, Krackhardt AM. Adoptive Cellular Therapy for Multiple Myeloma Using CAR- and TCR-Transgenic T Cells: Response and Resistance. Cells 2022; 11:410. [PMID: 35159220 PMCID: PMC8834324 DOI: 10.3390/cells11030410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Despite the substantial improvement of therapeutic approaches, multiple myeloma (MM) remains mostly incurable. However, immunotherapeutic and especially T cell-based approaches pioneered the therapeutic landscape for relapsed and refractory disease recently. Targeting B-cell maturation antigen (BCMA) on myeloma cells has been demonstrated to be highly effective not only by antibody-derived constructs but also by adoptive cellular therapies. Chimeric antigen receptor (CAR)-transgenic T cells lead to deep, albeit mostly not durable responses with manageable side-effects in intensively pretreated patients. The spectrum of adoptive T cell-transfer covers synthetic CARs with diverse specificities as well as currently less well-established T cell receptor (TCR)-based personalized strategies. In this review, we want to focus on treatment characteristics including efficacy and safety of CAR- and TCR-transgenic T cells in MM as well as the future potential these novel therapies may have. ACT with transgenic T cells has only entered clinical trials and various engineering strategies for optimization of T cell responses are necessary to overcome therapy resistance mechanisms. We want to outline the current success in engineering CAR- and TCR-T cells, but also discuss challenges including resistance mechanisms of MM for evading T cell therapy and point out possible novel strategies.
Collapse
Affiliation(s)
- Franziska Füchsl
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
| | - Angela M. Krackhardt
- School of Medicine, Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675 Munich, Germany;
- German Cancer Consortium (DKTK), Partner-Site Munich, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Einsteinstraße 25, 81675 Munich, Germany
| |
Collapse
|
10
|
Cappell KM, Kochenderfer JN. A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nat Rev Clin Oncol 2021; 18:715-727. [PMID: 34230645 DOI: 10.1038/s41571-021-00530-z] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptors (CARs) are engineered proteins designed to target T cells to cancer cells. To effectively activate the T cells in which they are expressed, CARs must contain a costimulatory domain. The CAR T cell products approved for the treatment of B cell lymphomas and/or acute lymphoblastic leukaemia or multiple myeloma incorporate either a CD28-derived or a 4-1BB-derived costimulatory domain. Almost all other clinically tested CARs also use costimulatory domains from CD28 or 4-1BB. In preclinical experiments, cytokine release is usually greater with CARs containing CD28 versus 4-1BB costimulatory domains; however, constructs with either domain confer similar anticancer activity in mouse models. T cell products expressing CARs with either CD28 or 4-1BB costimulatory domains have been highly efficacious in patients with relapsed haematological malignancies, with anti-CD19 products having similar activity regardless of the source of the costimulatory domain. In large-cohort clinical trials, the rates of neurological toxicities have been higher with CD28-costimulated CARs, although this finding is probably the result of a combination of factors rather than due to CD28 signalling alone. Future preclinical and clinical research should aim to compare different costimulatory domains while controlling for confounding variables. Herein, we provide an overview of T cell costimulation by CD28 and 4-1BB and, using the available preclinical and clinical data, compare the efficacy and toxicity profiles associated with CARs containing either costimulatory domain.
Collapse
Affiliation(s)
- Kathryn M Cappell
- Hematology Oncology Fellowship Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | |
Collapse
|
11
|
Abken H. Building on Synthetic Immunology and T Cell Engineering: A Brief Journey Through the History of Chimeric Antigen Receptors. Hum Gene Ther 2021; 32:1011-1028. [PMID: 34405686 PMCID: PMC10112879 DOI: 10.1089/hum.2021.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advancement in our understanding of immune cell recognition and emerging cellular engineering technologies during the last decades made active manipulation of the T cell response possible. Synthetic immunology is providing us with an expanding set of composite receptor molecules capable to reprogram immune cell function in a predefined fashion. Since the first prototypes in the late 1980s, the design of chimeric antigen receptors (CARs; T-bodies, immunoreceptors), has followed a clear line of stepwise improvements from antigen-redirected targeting to designed "living factories" delivering transgenic products on demand. Building on basic research and creative clinical exploration, CAR T cell therapy has been achieving spectacular success in the treatment of hematologic malignancies, now beginning to improve the outcome of cancer patients. In this study, we briefly review the history of CARs and outline how the progress in the basic understanding of T cell recognition and of cell engineering technologies made novel therapies possible.
Collapse
Affiliation(s)
- Hinrich Abken
- Department of Genetic Immunotherapy, Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
12
|
Wang Y, Zhong K, Ke J, Chen X, Chen Y, Shu W, Chen C, Hu S, Sun X, Huang H, Luo C, Liu L, Yang J, Zhang Y, Zhi H. Combined 4-1BB and ICOS co-stimulation improves anti-tumor efficacy and persistence of dual anti-CD19/CD20 chimeric antigen receptor T cells. Cytotherapy 2021; 23:715-723. [PMID: 33863641 DOI: 10.1016/j.jcyt.2021.02.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/15/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising therapeutic strategy against lymphoma. However, post-treatment relapses due to antigen loss remain a challenge. Here the authors designed a novel bicistronic CAR construct and tested its functions in vitro and in vivo. The CAR construct consisted of individual anti-CD19 and anti-CD20 single-chain fragment variables equipped with ICOS-CD3ζ and 4-1BB-CD3ζ intracellular domains, respectively. The CD19 and CD20 bicistronic CAR T cells exhibited tumor lytic capacities equivalent to corresponding monospecific CAR T cells. Moreover, when stimulated with CD19 and CD20 simultaneously, the bicistronic CAR T cells showed prolonged persistence and enhanced cytokine generation compared with single stimulations. Interestingly, the authors found that the 4-1BB signal was predominant in the signaling profiles of ICOS and 4-1BB doubly activated CAR T cells. In vivo study using a CD19/CD20 double-positive tumor model revealed that the bicistronic CAR T cells were more efficient than monospecific CD19 CAR T cells in eradicating tumors and prolonging mouse survival. The authors' novel bicistronic CD19/CD20 CAR T cells demonstrate improved anti-tumor efficacy in response to dual antigen stimulations. These data provide optimism that this novel bicistronic CAR construct can improve treatment outcomes in patients with relapsed/refractory B cell malignancy.
Collapse
Affiliation(s)
- Ying Wang
- Livzon Mabpharm Inc, Zhuhai, China; State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | | | - Jun Ke
- Livzon Mabpharm Inc, Zhuhai, China
| | - Xi Chen
- Livzon Mabpharm Inc, Zhuhai, China
| | - Yi Chen
- Livzon Mabpharm Inc, Zhuhai, China
| | | | | | - Shan Hu
- Livzon Mabpharm Inc, Zhuhai, China
| | | | | | | | - Lifang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Yongke Zhang
- AbCyte Therapeutics, Inc, San Jose, California, USA
| | | |
Collapse
|
13
|
Kataoka S, Manandhar P, Lee J, Workman CJ, Banerjee H, Szymczak-Workman AL, Kvorjak M, Lohmueller J, Kane LP. The costimulatory activity of Tim-3 requires Akt and MAPK signaling and its recruitment to the immune synapse. Sci Signal 2021; 14:eaba0717. [PMID: 34131021 PMCID: PMC9741863 DOI: 10.1126/scisignal.aba0717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of the transmembrane protein Tim-3 is increased on dysregulated T cells undergoing chronic activation, including during chronic infection and in solid tumors. Thus, Tim-3 is generally thought of as an inhibitory protein. We and others previously reported that under some circumstances, Tim-3 exerts paradoxical costimulatory activity in T cells (and other cells), including enhancement of the phosphorylation of ribosomal S6 protein. Here, we examined the upstream signaling pathways that control Tim-3-mediated increases in phosphorylated S6 in T cells. We also defined the localization of Tim-3 relative to the T cell immune synapse and its effects on downstream signaling. Recruitment of Tim-3 to the immune synapse was mediated exclusively by the transmembrane domain, replacement of which impaired the ability of Tim-3 to costimulate T cell receptor (TCR)-dependent S6 phosphorylation. Furthermore, enforced localization of the Tim-3 cytoplasmic domain to the immune synapse in a chimeric antigen receptor still enabled T cell activation. Together, our findings are consistent with a model whereby Tim-3 enhances TCR-proximal signaling under acute conditions.
Collapse
Affiliation(s)
- Shunsuke Kataoka
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Asahi Kasei Pharma Corporation, Shizuoka, Japan
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Judong Lee
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hridesh Banerjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Michael Kvorjak
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jason Lohmueller
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
14
|
Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood 2021; 136:1632-1644. [PMID: 32556247 DOI: 10.1182/blood.2020005278] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 01/22/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 have achieved breakthroughs in the treatment of hematological malignancies, such as relapsed/refractory non-Hodgkin lymphoma (r/rNHL); however, high rates of treatment failure and recurrence after CAR T-cell therapy are considerable obstacles to overcome. In this study, we designed a series of tandem CARs (TanCARs) and found that TanCAR7 T cells showed dual antigen targeting of CD19 and CD20, as well as formed superior and stable immunological synapse (IS) structures, which may be related to their robust antitumor activity. In an open-label single-arm phase 1/2a trial (NCT03097770), we enrolled 33 patients with r/rNHL; 28 patients received an infusion after conditioning chemotherapy. The primary objective was to evaluate the safety and tolerability of TanCAR7 T cells. Efficacy, progression-free survival, and overall survival were evaluated as secondary objectives. Cytokine release syndrome occurred in 14 patients (50%): 36% had grade 1 or 2 and 14% had grade 3. No cases of CAR T-cell-related encephalopathy syndrome (CRES) of grade 3 or higher were confirmed in any patient. One patient died from a treatment-associated severe pulmonary infection. The overall response rate was 79% (95% confidence interval [CI], 60-92%), and the complete response rate was 71%. The progression-free survival rate at 12 months was 64% (95% CI, 43-79%). In this study, TanCAR7 T cells elicited a potent and durable antitumor response, but not grade 3 or higher CRES, in patients with r/rNHL.
Collapse
|
15
|
Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nat Commun 2021; 12:409. [PMID: 33462245 PMCID: PMC7814040 DOI: 10.1038/s41467-020-20696-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Insufficient eradication capacity and dysfunction are common occurrences in T cells that characterize cancer immunotherapy failure. De novo DNA methylation promotes T cell exhaustion, whereas methylation inhibition enhances T cell rejuvenation in vivo. Decitabine, a DNA methyltransferase inhibitor approved for clinical use, may provide a means of modifying exhaustion-associated DNA methylation programmes. Herein, anti-tumour activities, cytokine production, and proliferation are enhanced in decitabine-treated chimeric antigen receptor T (dCAR T) cells both in vitro and in vivo. Additionally, dCAR T cells can eradicate bulky tumours at a low-dose and establish effective recall responses upon tumour rechallenge. Antigen-expressing tumour cells trigger higher expression levels of memory-, proliferation- and cytokine production-associated genes in dCAR T cells. Tumour-infiltrating dCAR T cells retain a relatively high expression of memory-related genes and low expression of exhaustion-related genes in vivo. In vitro administration of decitabine may represent an option for the generation of CAR T cells with improved anti-tumour properties.
Collapse
|
16
|
Mehravar M, Roshandel E, Salimi M, Chegeni R, Gholizadeh M, Mohammadi MH, Hajifathali A. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunol Lett 2020; 226:71-82. [DOI: 10.1016/j.imlet.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
17
|
Schäfer D, Henze J, Pfeifer R, Schleicher A, Brauner J, Mockel-Tenbrinck N, Barth C, Gudert D, Al Rawashdeh W, Johnston ICD, Hardt O. A Novel Siglec-4 Derived Spacer Improves the Functionality of CAR T Cells Against Membrane-Proximal Epitopes. Front Immunol 2020; 11:1704. [PMID: 32849600 PMCID: PMC7426717 DOI: 10.3389/fimmu.2020.01704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
A domain that is often neglected in the assessment of chimeric antigen receptor (CAR) functionality is the extracellular spacer module. However, several studies have elucidated that membrane proximal epitopes are best targeted through CARs comprising long spacers, while short spacer CARs exhibit highest activity on distal epitopes. This finding can be explained by the requirement to have an optimal distance between the effector T cell and target cell. Commonly used long spacer domains are the CH2-CH3 domains of IgG molecules. However, CARs containing these spacers generally show inferior in vivo efficacy in mouse models compared to their observed in vitro activity, which is linked to unspecific Fcγ-Receptor binding and can be abolished by mutating the respective regions. Here, we first assessed a CAR therapy targeting membrane proximal CD20 using such a modified long IgG1 spacer. However, despite these mutations, this construct failed to unfold its observed in vitro cytotoxic potential in an in vivo model, while a shorter but less structured CD8α spacer CAR showed complete tumor clearance. Given the shortage of well-described long spacer domains with a favorable functionality profile, we designed a novel class of CAR spacers with similar attributes to IgG spacers but without unspecific off-target binding, derived from the Sialic acid-binding immunoglobulin-type lectins (Siglecs). Of five constructs tested, a Siglec-4 derived spacer showed highest cytotoxic potential and similar performance to a CD8α spacer in a CD20 specific CAR setting. In a pancreatic ductal adenocarcinoma model, a Siglec-4 spacer CAR targeting a membrane proximal (TSPAN8) epitope was efficiently engaged in vitro, while a membrane distal (CD66c) epitope did not activate the T cell. Transfer of the TSPAN8 specific Siglec-4 spacer CAR to an in vivo setting maintained the excellent tumor killing characteristics being indistinguishable from a TSPAN8 CD8α spacer CAR while outperforming an IgG4 long spacer CAR and, at the same time, showing an advantageous central memory CAR T cell phenotype with lower release of inflammatory cytokines. In summary, we developed a novel spacer that combines cytotoxic potential with an advantageous T cell and cytokine release phenotype, which make this an interesting candidate for future clinical applications.
Collapse
Affiliation(s)
- Daniel Schäfer
- Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany.,R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Janina Henze
- Translational Molecular Imaging, Institute for Diagnostic and Interventional Radiology & Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany.,R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Rita Pfeifer
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anna Schleicher
- Faculty of Chemistry and Biosciences, Karlsruher Institute of Technology, Karlsruhe, Germany
| | - Janina Brauner
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Carola Barth
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Daniela Gudert
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Ian C D Johnston
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Olaf Hardt
- R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
18
|
Varshosaz J, Jandaghian S, Mirian M, Sajjadi SE. Co-delivery of rituximab targeted curcumin and imatinib nanostructured lipid carriers in non-Hodgkin lymphoma cells. J Liposome Res 2020; 31:64-78. [PMID: 32138557 DOI: 10.1080/08982104.2020.1720718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study was production of nanostructured lipid carriers (NLCs) of curcumin and imatinib for co-administration in non-Hodgkin lymphoma cells. NLCs were prepared and conjugated to rituximab to target CD20 receptors of lymphoma cell lines. Oleic acid or Labrafac and glyceryl monostearate or lecithin were used for production of NLCs. The antibody coupling efficiency to NLCs and their physical characteristics were studied. The cytotoxicity of NLCs on Jurkat T cells (CD20 receptor negative) and Ramos B cells (CD20 receptor positive) was studied by MTT assay. The cellular uptake was determined by fluorescent microscopy. The results indicated both curcumin and imatinib targeted NLCs had a significant cytotoxic effect much higher than the free drugs and non-targeted NLCs on Ramos cells. In both cell lines, the cytotoxicity of the co-administrated drugs was significantly higher than each drug alone. In Ramos cells the co-administration of curcumin (15 μg/ml)/imatinib (5 μg/ml) decreased the free curcumin IC50 from 8.3 ± 0.9 to 1.9 ± 0.2 μg/ml, and curcumin targeted NLCs from 6.7 ± 0.1 to 1.3 ± 0.2 μg/ml. In this case the IC50 of imatinib was reduced from 11.1 ± 0.7 to 2.3 ± 0.1 μg/ml and imatinib targeted NLCs from 4.3 ± 0.1 to 1.4 ± 0.0 μg/ml. The co-administration of ritoximab conjugated NLCs of curcumin and imatinib may enhance cytotoxicity of imatinib in treatment of non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghian
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S Ebrahim Sajjadi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Seif M, Einsele H, Löffler J. CAR T Cells Beyond Cancer: Hope for Immunomodulatory Therapy of Infectious Diseases. Front Immunol 2019; 10:2711. [PMID: 31824500 PMCID: PMC6881243 DOI: 10.3389/fimmu.2019.02711] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022] Open
Abstract
Infectious diseases are still a significant cause of morbidity and mortality worldwide. Despite the progress in drug development, the occurrence of microbial resistance is still a significant concern. Alternative therapeutic strategies are required for non-responding or relapsing patients. Chimeric antigen receptor (CAR) T cells has revolutionized cancer immunotherapy, providing a potential therapeutic option for patients who are unresponsive to standard treatments. Recently two CAR T cell therapies, Yescarta® (Kite Pharma/Gilead) and Kymriah® (Novartis) were approved by the FDA for the treatments of certain types of non-Hodgkin lymphoma and B-cell precursor acute lymphoblastic leukemia, respectively. The success of adoptive CAR T cell therapy for cancer has inspired researchers to develop CARs for the treatment of infectious diseases. Here, we review the main achievements in CAR T cell therapy targeting viral infections, including Human Immunodeficiency Virus, Hepatitis C Virus, Hepatitis B Virus, Human Cytomegalovirus, and opportunistic fungal infections such as invasive aspergillosis.
Collapse
Affiliation(s)
| | | | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Wuerzburg, Würzburg, Germany
| |
Collapse
|
20
|
Guedan S, Calderon H, Posey AD, Maus MV. Engineering and Design of Chimeric Antigen Receptors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:145-156. [PMID: 30666307 PMCID: PMC6330382 DOI: 10.1016/j.omtm.2018.12.009] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cells engineered with chimeric antigen receptors (CARs) have emerged as a potent new class of therapeutics for cancer, based on their remarkable potency in blood cancers. Since the first clinical reports of their efficacy emerged 7 years ago, investigators have focused on the mechanisms and properties that make CARs effective or toxic, and their effects on T cell biology. Novel CAR designs coupled with improvements in gene transfer technology, incorporating advances in gene editing, have the potential to increase access to engineered cell therapies, as well as improve their potency in solid tumors.
Collapse
Affiliation(s)
- Sonia Guedan
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Hugo Calderon
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cellular Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Zhou H, Luo Y, Zhu S, Wang X, Zhao Y, Ou X, Zhang T, Ma X. The efficacy and safety of anti-CD19/CD20 chimeric antigen receptor- T cells immunotherapy in relapsed or refractory B-cell malignancies:a meta-analysis. BMC Cancer 2018; 18:929. [PMID: 30257649 PMCID: PMC6158876 DOI: 10.1186/s12885-018-4817-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/13/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor T (CAR T) cells immunotherapy is rapidly developed in treating cancers, especially relapsed or refractory B-cell malignancies. METHODS To assess the efficacy and safety of CAR T therapy, we analyzed clinical trials from PUBMED and EMBASE. RESULTS Results showed that the pooled response rate, 6-months and 1-year progression-free survival (PFS) rate were 67%, 65.62% and 44.18%, respectively. We observed that received lymphodepletion (72% vs 44%, P = 0.0405) and high peak serum IL-2 level (85% vs 31%, P = 0.04) were positively associated with patients' response to CAR T cells. Similarly, costimulatory domains (CD28 vs CD137) in second generation CAR T was positively associated with PFS (52.69% vs 33.39%, P = 0.0489). The pooled risks of all grade adverse effects (AEs) and grade ≥ 3 AEs were 71% and 43%. Most common grade ≥ 3 AEs were fatigue (18%), night sweats (14%), hypotension (12%), injection site reaction (12%), leukopenia (10%), anemia (9%). CONCLUSIONS In conclusion, CAR T therapy has promising outcomes with tolerable AEs in relapsed or refractory B-cell malignancies. Further modifications of CAR structure and optimal therapy strategy in continued clinical trials are needed to obtain significant improvements.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041 People’s Republic of China
| | - Yuling Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041 People’s Republic of China
| | - Sha Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041 People’s Republic of China
| | - Xi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041 People’s Republic of China
| | - Yunuo Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041 People’s Republic of China
| | - Xuejin Ou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041 People’s Republic of China
| | - Tao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041 People’s Republic of China
| | - Xuelei Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, No.37, Guoxue Alley, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
22
|
CAR-T Cells: Next Generation Cancer Therapeutics. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You. Curr Hematol Malig Rep 2017; 11:368-84. [PMID: 27475429 DOI: 10.1007/s11899-016-0336-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genetic redirection of T lymphocytes allows us to unleash these potent cellular immune effectors against cancer. Chimeric antigen receptor (CAR) T cells are the best-in-class example that genetic engineering of T cells can lead to deep and durable responses, as has been shown in several clinical trials for CD19+ B cell malignancies. As a consequence, in the last few years, several academic institutions and commercial partners have started developing anti-CD19 CAR T cell products. Although most of these T cell products are highly effective in vivo, basic differences among them can generate different performance characteristics and thereby impact their long-term clinical outcome. Several strategies are being implemented in order to solve the current open issues of CART19 therapy: (i) increasing efficacy against indolent B cell leukemias and lymphomas, (ii) avoiding or preventing antigen-loss relapses, (iii) reducing and managing toxicity, and (iv) bringing this CART therapy to routine clinical practice. The field of CART therapies is thriving, and exciting new avenues are opening for both scientists and patients.
Collapse
|
24
|
Oldham RAA, Medin JA. Practical considerations for chimeric antigen receptor design and delivery. Expert Opin Biol Ther 2017; 17:961-978. [DOI: 10.1080/14712598.2017.1339687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robyn A. A. Oldham
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jeffrey A. Medin
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, USA
- The Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Schneider D, Xiong Y, Wu D, Nӧlle V, Schmitz S, Haso W, Kaiser A, Dropulic B, Orentas RJ. A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J Immunother Cancer 2017; 5:42. [PMID: 28515942 PMCID: PMC5433150 DOI: 10.1186/s40425-017-0246-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/28/2017] [Indexed: 01/13/2023] Open
Abstract
Background Clinical success with chimeric antigen receptor (CAR)- based immunotherapy for leukemia has been accompanied by the associated finding that antigen-escape variants of the disease are responsible for relapse. To target hematologic malignancies with a chimeric antigen receptor (CAR) that targets two antigens with a single vector, and thus potentially lessen the chance of leukemic escape mutations, a tandem-CAR approach was investigated. Methods Antigen binding domains from the FMC63 (anti-CD19) and Leu16 (anti-CD20) antibodies were linked in differing configurations to transmembrane and T cell signaling domains to create tandem-CARs. Expression on the surface of primary human T cells was induced by transduction with a single lentiviral vector (LV) encoding the tandem-CAR. Tandem-CARs were compared to single antigen targeting CARs in vitro and in vivo, and to an admixture of transduced cells expressing each CAR in vivo in immunodeficient (NSG) disease-bearing mice. Results Tandem constructs efficient killed the Raji leukemia cell line both in vitro and in vivo. Tandem CARs generated less cytokine than the CD20 CAR, but similar to CD19 CARs, on their own. In co-culture experiments at low effector to target ratios with both single- and tandem- CAR-T cells, a rapid down-modulation of full-length CD19 expression was seen on leukemia targets. There also was a partial down-modulation of CD22, and to a lesser degree, of CD20. Our data also highlight the extreme sensitivity of the NALM-6 cell line to general lymphocyte-mediated cytotoxicity. While single and tandem constructs were effective in vivo in a standard setting, in a high-disease burden setting, the tandem CAR proved both effective and less toxic than an admixture of transduced T cell populations expressing single CARs. Conclusion Tandem CARs are equally effective in standard disease models to single antigen specificity CARs, and may be both more effective and less toxic in a higher disease burden setting. This may be due to optimized cell killing with more moderate cytokine production. The rapid co-modulation of CD19, CD20, and CD22 may account for the ability to rapidly evolve escape mutants by selecting for leukemic clones that not require these target antigens for continued expansion. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0246-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dina Schneider
- Lentigen Technology, Inc., 910 Clopper Rd., Gaithersburg, MD 20878 USA
| | - Ying Xiong
- Lentigen Technology, Inc., 910 Clopper Rd., Gaithersburg, MD 20878 USA
| | - Darong Wu
- Lentigen Technology, Inc., 910 Clopper Rd., Gaithersburg, MD 20878 USA
| | - Volker Nӧlle
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | - Waleed Haso
- Lentigen Technology, Inc., 910 Clopper Rd., Gaithersburg, MD 20878 USA
| | | | - Boro Dropulic
- Lentigen Technology, Inc., 910 Clopper Rd., Gaithersburg, MD 20878 USA
| | - Rimas J Orentas
- Lentigen Technology, Inc., 910 Clopper Rd., Gaithersburg, MD 20878 USA
| |
Collapse
|
26
|
Rufener GA, Press OW, Olsen P, Lee SY, Jensen MC, Gopal AK, Pender B, Budde LE, Rossow JK, Green DJ, Maloney DG, Riddell SR, Till BG. Preserved Activity of CD20-Specific Chimeric Antigen Receptor–Expressing T Cells in the Presence of Rituximab. Cancer Immunol Res 2016; 4:509-19. [DOI: 10.1158/2326-6066.cir-15-0276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/09/2016] [Indexed: 11/16/2022]
|
27
|
Safdari Y, Ahmadzadeh V, Farajnia S. CD20-targeting in B-cell malignancies: novel prospects for antibodies and combination therapies. Invest New Drugs 2016; 34:497-512. [DOI: 10.1007/s10637-016-0349-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|
28
|
Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res 2016; 4:498-508. [PMID: 27059623 DOI: 10.1158/2326-6066.cir-15-0231] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/06/2016] [Indexed: 01/29/2023]
Abstract
The adoptive transfer of T cells expressing anti-CD19 chimeric antigen receptors (CARs) has shown remarkable curative potential against advanced B-cell malignancies, but multiple trials have also reported patient relapses due to the emergence of CD19-negative leukemic cells. Here, we report the design and optimization of single-chain, bispecific CARs that trigger robust cytotoxicity against target cells expressing either CD19 or CD20, two clinically validated targets for B-cell malignancies. We determined the structural parameters required for efficient dual-antigen recognition, and we demonstrate that optimized bispecific CARs can control both wild-type B-cell lymphoma and CD19(-) mutants with equal efficiency in vivo To our knowledge, this is the first bispecific CAR capable of preventing antigen escape by performing true OR-gate signal computation on a clinically relevant pair of tumor-associated antigens. The CD19-OR-CD20 CAR is fully compatible with existing T-cell manufacturing procedures and implementable by current clinical protocols. These results present an effective solution to the challenge of antigen escape in CD19 CAR T-cell therapy, and they highlight the utility of structure-based rational design in the development of receptors with higher-level complexity. Cancer Immunol Res; 4(6); 498-508. ©2016 AACR
Collapse
Affiliation(s)
- Eugenia Zah
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California
| | - Meng-Yin Lin
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California
| | - Anne Silva-Benedict
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington. Department of Oncology and Hematology, St. Luke's Regional Cancer Center, Duluth, Minnesota
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington. Division of Pediatric Hematology-Oncology, University of Washington School of Medicine, Seattle, Washington. Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
29
|
Slovin SF. Immunotherapeutic approaches in prostate cancer: combinations and clinical integration. Am Soc Clin Oncol Educ Book 2016:e275-83. [PMID: 25993186 DOI: 10.14694/edbook_am.2015.35.e275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite multiple immunologic approaches with peptide, protein, and DNA vaccines, no single therapy has induced complete remission or maintained durability of response in patients with castration-resistant prostate cancer (CRPC). Historically, immunotherapy has had limited effect on solid tumors with the exception of melanoma and renal cell carcinomas, which have been deemed as immunologic cancers given their potential for remissions either spontaneously or after removal of the primary lesion. There is considerable excitement about using an immunotherapy in combination with biologic agents such as checkpoint inhibitors, cytokines, other vaccines, or chemotherapy. Sipuleucel-T represents one of several novel immunologic therapeutic approaches to treat prostate cancer in addition to other solid tumors. It is the first in its class of autologous cellular therapies to demonstrate safety and an overall survival benefit in patients with asymptomatic or minimally symptomatic CRPC and represents a unique treatment method that may be further enhanced with other agents. Although sipuleucel-T can be used as a foundation on which to build and enhance future immunologic clinical trials, other exciting strategies are in development that may be easily integrated into the algorithm of current care.
Collapse
Affiliation(s)
- Susan F Slovin
- From the Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
30
|
Guerrero AD, Moyes JS, Cooper LJN. The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors. CHINESE JOURNAL OF CANCER 2015; 33:421-33. [PMID: 25189715 PMCID: PMC4190432 DOI: 10.5732/cjc.014.10100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The adoptive transfer of T cells is a promising approach to treat cancers. Primary human T cells can be modified using viral and non-viral vectors to promote the specific targeting of cancer cells via the introduction of exogenous T-cell receptors (TCRs) or chimeric antigen receptors (CARs). This gene transfer displays the potential to increase the specificity and potency of the anticancer response while decreasing the systemic adverse effects that arise from conventional treatments that target both cancerous and healthy cells. This review highlights the generation of clinical-grade T cells expressing CARs for immunotherapy, the use of these cells to target B-cell malignancies and, particularly, the first clinical trials deploying the Sleeping Beauty gene transfer system, which engineers T cells to target CD19+ leukemia and non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Alan D Guerrero
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
31
|
Abstract
The conceptual foundation and technical evolution of T-cell genetic engineering for the purpose of retargeting antigen specificity as a clinical immunotherapy modality in oncology have been decades in the making, with many laboratories providing important contributions to overall progress. The development of the component parts of this technology has required the amalgamation of divergent scientific disciplines including cellular immunology, lymphocyte signaling biology, molecular biology, vector virology, and practical improvements in T-cell culture systems. Together with advances in the understanding of clinical variables that facilitate persistent engraftment and expansion of adoptively transferred T cells, the field of CD19CAR research evolved as a logical venue for revealing proof-of-principle clinical antitumor activity. Indeed, the modality has definitively crossed the threshold from a preclinical model system to a therapeutic approach with demonstrable potent antileukemic efficacy in patients harboring advanced and refractory leukemias. The dramatic responses seen in CD19CAR T-cell clinical trials from multiple institutions does not signal an end to the evolution of CD19CAR T cells, as along with early clinical successes, new challenges have emerged that require further refinement of this nascent therapeutic platform.
Collapse
|
32
|
Shi H, Sun M, Liu L, Wang Z. Chimeric antigen receptor for adoptive immunotherapy of cancer: latest research and future prospects. Mol Cancer 2014; 13:219. [PMID: 25241075 PMCID: PMC4177696 DOI: 10.1186/1476-4598-13-219] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptors (CARs) are recombinant receptors that combine the specificity of an antigen-specific antibody with the T-cell’s activating functions. Initial clinical trials of genetically engineered CAR T cells have significantly raised the profile of T cell therapy, and great efforts have been made to improve this approach. In this review, we provide a structural overview of the development of CAR technology and highlight areas that require further refinement. We also discuss critical issues related to CAR therapy, including the optimization of CAR T cells, the route of administration, CAR toxicity and the blocking of inhibitory molecules.
Collapse
Affiliation(s)
| | | | - Lin Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, No, 440 Jiyan Road, Jinan, Shandong 250117, P,R, China.
| | | |
Collapse
|
33
|
Jensen MC, Riddell SR. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 2014; 257:127-44. [PMID: 24329794 DOI: 10.1111/imr.12139] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A major advance in adoptive T-cell therapy (ACT) is the ability to efficiently endow patient's T cells with reactivity for tumor antigens through the stable or regulated introduction of genes that encode high affinity tumor-targeting T-cell receptors (TCRs) or synthetic chimeric antigen receptors (CARs). Case reports and small series of patients treated with TCR- or CAR-modified T cells have shown durable responses in a subset of patients, particularly with B-cell malignancies treated with T cells modified to express a CAR that targets the CD19 molecule. However, many patients do not respond to therapy and serious on and off-target toxicities have been observed with TCR- and CAR-modified T cells. Thus, challenges remain to make ACT with gene-modified T cells a reproducibly effective and safe therapy and to expand the breadth of patients that can be treated to include those with common epithelial malignancies. This review discusses research topics in our laboratories that focus on the design and implementation of ACT with CAR-modified T cells. These include cell intrinsic properties of distinct T-cell subsets that may facilitate preparing therapeutic T-cell products of defined composition for reproducible efficacy and safety, the design of tumor targeting receptors that optimize signaling of T-cell effector functions and facilitate tracking of migration of CAR-modified T cells in vivo, and novel CAR designs that have alternative ligand binding domains or confer regulated function and/or survival of transduced T cells.
Collapse
Affiliation(s)
- Michael C Jensen
- Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
34
|
Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014; 257:107-26. [PMID: 24329793 DOI: 10.1111/imr.12131] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Investigators developed chimeric antigen receptors (CARs) for expression on T cells more than 25 years ago. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize non-protein antigens) with the persistence, trafficking, and effector functions of a T cell. This article describes how the past two decades have seen a crescendo of research which has now begun to translate these potential benefits into effective treatments for patients with cancer. We describe the basic design of CARs, describe how antigenic targets are selected, and the initial clinical experience with CAR-T cells. Our review then describes our own and other investigators' work aimed at improving the function of CARs and reviews the clinical studies in hematological and solid malignancies that are beginning to exploit these approaches. Finally, we show the value of adding additional engineering features to CAR-T cells, irrespective of their target, to render them better suited to function in the tumor environment, and discuss how the safety of these heavily modified cells may be maintained.
Collapse
Affiliation(s)
- Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
35
|
Engineered T cells for cancer treatment. Cytotherapy 2013; 16:713-33. [PMID: 24239105 DOI: 10.1016/j.jcyt.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/08/2023]
Abstract
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality.
Collapse
|
36
|
Hoyos V, Savoldo B, Dotti G. Genetic modification of human T lymphocytes for the treatment of hematologic malignancies. Haematologica 2012; 97:1622-31. [PMID: 22929977 DOI: 10.3324/haematol.2012.064303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modern chemotherapy regimens and supportive care have produced remarkable improvements in the overall survival of patients with hematologic malignancies. However, the development of targeted small molecules, monoclonal antibodies, and biological therapies that demonstrate greater efficacy and lower toxicity remains highly desirable in hematology, and oncology in general. In the context of biological therapies, T-lymphocyte based treatments have enormous potential. Donor lymphocyte infusion in patients relapsed after allogeneic hematopoietic stem cell transplant pioneered the concept that T lymphocytes can effectively control tumor growth, and this was then followed by the development of cell culture strategies to generate T lymphocytes with selective activity against tumor cells. Over the past decade, it has become clear that the adoptive transfer of ex vivo expanded antigen-specific cytotoxic T lymphocytes promotes sustained antitumor effects in patients with virus-associated lymphomas, such as Epstein-Barr virus related post-transplant lymphomas and Hodgkin's lymphomas. Because of this compelling clinical evidence and the concomitant development of methodologies for robust gene transfer to human T lymphocytes, the field has rapidly evolved, offering new opportunities to extend T-cell based therapies. This review summarizes the most recent biological and clinical developments using genetically manipulated T cells for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
37
|
Boulassel MR, Galal A. Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors: From antigen choice to clinical implementation. Sultan Qaboos Univ Med J 2012; 12:273-85. [PMID: 23269948 DOI: 10.12816/0003140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/12/2012] [Accepted: 05/02/2012] [Indexed: 01/08/2023] Open
Abstract
Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets.
Collapse
Affiliation(s)
- Mohamed-Rachid Boulassel
- Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada; ; Department of Haematology, College of Medicine & Health Sciences, Sultan Qaboos University Hospital, Muscat, Oman
| | | |
Collapse
|
38
|
Adoptive T-cell therapy of B-cell malignancies: Conventional and physiological chimeric antigen receptors. Cancer Lett 2012; 316:1-5. [DOI: 10.1016/j.canlet.2011.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 01/10/2023]
|
39
|
CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 2012; 119:3940-50. [PMID: 22308288 DOI: 10.1182/blood-2011-10-387969] [Citation(s) in RCA: 416] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular immune responses have the potential to elicit dramatic and sustained clinical remissions in lymphoma patients. Recent clinical trial data demonstrate that modification of T cells with chimeric antigen receptors (CARs) is a promising strategy. T cells containing CARs with costimulatory domains exhibit improved activity against tumors. We conducted a pilot clinical trial testing a "third-generation" CD20-specific CAR with CD28 and 4-1BB costimulatory domains in patients with relapsed indolent B-cell and mantle cell lymphomas. Four patients were enrolled, and 3 received T-cell infusions after cyclophosphamide lymphodepletion. Treatment was well tolerated, although one patient developed transient infusional symptoms. Two patients without evaluable disease remained progression-free for 12 and 24 months. The third patient had an objective partial remission and relapsed at 12 months after infusions. Modified T cells were detected by quantitative PCR at tumor sites and up to 1 year in peripheral blood, albeit at low levels. No evidence of host immune responses against infused cells was detected. In conclusion, adoptive immunotherapy with CD20-specific T cells was well tolerated and was associated with antitumor activity. We will pursue alternative gene transfer technologies and culture conditions in future studies to improve CAR expression and cell production efficiency.
Collapse
|
40
|
Ramos CA, Dotti G. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther 2011; 11:855-73. [PMID: 21463133 DOI: 10.1517/14712598.2011.573476] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Chimeric antigen receptors (CARs) usually combine the antigen binding site of a monoclonal antibody with the signal activating machinery of a T cell, freeing antigen recognition from MHC restriction and thus breaking one of the barriers to more widespread application of cellular therapy. Similar to treatment strategies employing monoclonal antibodies, T cells expressing CARs are highly targeted, but additionally offer the potential benefits of active trafficking to tumor sites, in vivo expansion and long-term persistence. Furthermore, gene transfer allows the introduction of countermeasures to tumor immune evasion and of safety mechanisms. AREAS COVERED The basic structure of so-called first and later generation CARs and their potential advantages over other immune therapy systems. How these molecules can be grafted into immune cells (including retroviral and non-retroviral transduction methods) and strategies to improve the in vivo persistence and function of immune cells expressing CARs. Examples of tumor-associated antigens that have been targeted in preclinical models and clinical experience with these modified cells. Safety issues surrounding CAR gene transfer into T cells and potential solutions to them. EXPERT OPINION Because of recent advances in immunology, genetics and cell processing, CAR-modified T cells will likely play an increasing role in the cellular therapy of cancer, chronic infections and autoimmune disorders.
Collapse
Affiliation(s)
- Carlos A Ramos
- Center for Cell and Gene Therapy, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
41
|
Turtle CJ, Riddell SR. Genetically retargeting CD8+ lymphocyte subsets for cancer immunotherapy. Curr Opin Immunol 2011; 23:299-305. [PMID: 21237630 DOI: 10.1016/j.coi.2010.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 02/07/2023]
Abstract
The extraordinary sensitivity and specificity of T cells for their cognate antigen make them a highly attractive cancer therapeutic. However, the rarity of tumor-reactive T cells in cancer patients, the difficulty isolating them in sufficient numbers for adoptive immunotherapy, and the unpredictable persistence of transferred cells have been significant obstacles to broad application. Technologies that enable genetic modification of T cells have been refined and are being used to redirect the specificity of T cells to tumor antigens. An issue the field is now grappling with is how the diverse phenotypic and functional heterogeneity in T cells that could potentially be genetically modified can be capitalized upon to enhance the efficacy, safety, and reproducibility of cancer immunotherapy.
Collapse
Affiliation(s)
- Cameron J Turtle
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | | |
Collapse
|
42
|
Davies DM, Maher J. Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T cells. Arch Immunol Ther Exp (Warsz) 2010; 58:165-78. [PMID: 20373147 DOI: 10.1007/s00005-010-0074-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/27/2009] [Indexed: 12/25/2022]
Abstract
Harnessing the power of the immune system to target cancer has long been a goal of tumor immunologists. One avenue under investigation is the modification of T cells to express a chimeric antigen receptor (CAR). Expression of such a receptor enables T-cell specificity to be redirected against a chosen tumor antigen. Substantial research in this field has been carried out, incorporating a wide variety of malignancies and tumor-associated antigens. Ongoing investigations will ensure this area continues to expand at a rapid pace. This review will explain the evolution of CAR technology over the last two decades in addition to detailing the associated benefits and disadvantages. The outcome of recent phase I clinical trials and the impact that these have had upon the direction of future research in this field will also be addressed.
Collapse
Affiliation(s)
- David Marc Davies
- King's College London School of Medicine, Research Oncology Section, Division of Cancer Studies, Third Floor Bermondsey Wing, Guy's Hospital Campus, St Thomas Street, London SE1 9RT, UK
| | | |
Collapse
|
43
|
Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 2010; 24:1160-70. [PMID: 20428207 PMCID: PMC2888148 DOI: 10.1038/leu.2010.75] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T lymphocytes expressing a chimeric antigen receptor (CAR) targeting the CD19 antigen (CAR.19) may be of value for the therapy of B-cell malignancies. Because the in vivo survival, expansion and anti-lymphoma activity of CAR.19+ T cells remain suboptimal even when the CAR contains a CD28 costimulatory endodomain, we generated a novel construct that also incorporates the interleukin-15 (IL15) gene and an inducible caspase-9-based suicide gene (iC9/CAR.19/IL15). We found that compared to CAR.19+ T cells, iC9/CAR.19/IL15+ T cells had: (i) greater numeric expansion upon antigen stimulation (10-fold greater expansion in vitro, and 3 to 15 fold greater expansion in vivo) and reduced cell death rate (Annexin-V+/7-AAD+ cells 10% ± 6% for iC9/CAR.19/IL15+ T cells and 32% ± 19% CAR.19+ T cells); (ii) reduced expression of the programmed death 1 (PD-1) receptor upon antigen stimulation (PD-1+ cells <15% for iC9/CAR.19/IL15+ T cells versus >40% for CAR.19+ T cells); (iii) improved anti-tumor effects in vivo (from 4.7 to 5.4-fold reduced tumor growth). In addition, iC9/CAR.19/IL15+ T cells were efficiently eliminated upon pharmacologic activation of the suicide gene. In summary, this strategy safely increases the anti-lymphoma/leukemia effects of CAR.19-redirected T lymphocytes and may be a useful approach for treatment of patients with B-cell malignancies.
Collapse
|
44
|
Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, Forman SJ. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 2010; 16:1245-56. [PMID: 20304086 DOI: 10.1016/j.bbmt.2010.03.014] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/11/2010] [Indexed: 12/11/2022]
Abstract
Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody-derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR(+) CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8(+) CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10(8)cells/m(2), 7 at 10(9)cells/m(2), and 3 at 2 x 10(9)cells/m(2)) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Antigens, CD19/biosynthesis
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Antigens, CD20/biosynthesis
- Antigens, CD20/genetics
- Antigens, CD20/immunology
- Humans
- Immune Tolerance
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/physiology
- T-Lymphocytes, Cytotoxic/transplantation
- Transfection
- Transgenes/immunology
Collapse
Affiliation(s)
- Michael C Jensen
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010-3000, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
James SE, Greenberg PD, Jensen MC, Lin Y, Wang J, Budde LE, Till BG, Raubitschek AA, Forman SJ, Press OW. Mathematical modeling of chimeric TCR triggering predicts the magnitude of target lysis and its impairment by TCR downmodulation. THE JOURNAL OF IMMUNOLOGY 2010; 184:4284-94. [PMID: 20220093 DOI: 10.4049/jimmunol.0903701] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated relationships among chimeric TCR (cTCR) expression density, target Ag density, and cTCR triggering to predict lysis of target cells by cTCR(+) CD8(+) T human cells as a function of Ag density. Triggering of cTCR and canonical TCR by Ag could be quantified by the same mathematical equation, but cTCR represented a special case in which serial triggering was abrogated. The magnitude of target lysis could be predicted as a function of cTCR triggering, and the predicted minimum cTCR density required for maximal target lysis by CD20-specific cTCR was experimentally tested. cTCR density below approximately 20,000 cTCR/cell impaired target lysis, but increasing cTCR expression above this density did not improve target lysis or Ag sensitivity. cTCR downmodulation to densities below this critical minimum by interaction with Ag-expressing targets limited the sequential lysis of targets in a manner that could be predicted based on the number of cTCRs remaining. In contrast, acute inhibition of lysis of primary, intended targets (e.g., leukemic B cells) due to the presence of an excess of secondary targets (e.g., normal B cells) was dependent on the Ag density of the secondary target but occurred at Ag densities insufficient to promote significant cTCR downmodulation, suggesting a role for functional exhaustion rather than insufficient cTCR density. This suggests increasing cTCR density above a critical threshold may enhance sequential lysis of intended targets in isolation, but will not overcome the functional exhaustion of cTCR(+) T cells encountered in the presence of secondary targets with high Ag density.
Collapse
Affiliation(s)
- Scott E James
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Marcu-Malina V, van Dorp S, Kuball J. Re-targeting T-cells against cancer by gene-transfer of tumor-reactive receptors. Expert Opin Biol Ther 2010; 9:579-91. [PMID: 19368527 DOI: 10.1517/14712590902887018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adoptive transfer of T-lymphocytes is a promising treatment for a variety of malignancies, but is often not feasible due to difficulties in generating T-cells reactive with the targeted antigen from patients. To facilitate rapid generation of cells for therapy, T-cells can be programmed with genes encoding for an antigen-specific T-cell receptor (TCR) or chimeric receptors. OBJECTIVE To discuss the molecular design and selected pitfalls of TCR gene modified T-cells and T-cells expressing chimeric receptors, so called T-bodies. METHODS A selected review of the recent literature. CONCLUSION Clinical trials report so far only limited efficacy of adoptively transferred genetically modified T-cells. However, the recent progress in engineering tumor-reactive T cells is providing a promising basis to further explore this treatment modality.
Collapse
Affiliation(s)
- Victoria Marcu-Malina
- Department of Hematology and VanCreveld Clinic, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Chemotherapy-resistant lymphomas can be cured with allogeneic hematopoietic cell transplantation, demonstrating the susceptibility of these tumors to T cell mediated immune responses. However, high rates of transplant-related morbidity and mortality limit this approach. Efforts have, therefore, been made to develop alternative T cell based therapies, and there is growing evidence that adoptive therapy with T cells targeted to lymphoma-associated antigens may be a safe and effective new method for treating this group of diseases. OBJECTIVE/METHODS We review publications on adoptive therapy with ex vivo expanded T cells targeting viral antigens, as well as genetically modified autologous T cells, as strategies for the treatment of lymphoma, with the goal of providing an overview of these approaches. RESULTS/CONCLUSIONS Epstein-Barr virus specific T cell therapy is an effective and safe method of treating Epstein-Barr virus associated lymphomas; however, most lymphoma subtypes do not express EBV antigens. For these diseases, adoptive immunotherapy with genetically modified T cells expressing chimeric T cell receptors targeting lymphoma-associated antigens such as CD19 and CD20 appears to be a promising alternative. Recent innovations including enhanced co-stimulation, exogenous cytokine administration and use of memory T cells promise to overcome many of the limitations and pitfalls initially encountered with this approach.
Collapse
Affiliation(s)
- Brian G Till
- Research Associate, Acting Instructor, University of Washington, Fred Hutchinson Cancer Research Center, Department of Medicine, Seattle, WA 98109, USA.
| | | |
Collapse
|
48
|
Antibody-mediated B-cell depletion before adoptive immunotherapy with T cells expressing CD20-specific chimeric T-cell receptors facilitates eradication of leukemia in immunocompetent mice. Blood 2009; 114:5454-63. [PMID: 19880489 DOI: 10.1182/blood-2009-08-232967] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have established a model of leukemia immunotherapy using T cells expressing chimeric T-cell receptors (cTCRs) targeting the CD20 molecule expressed on normal and neoplastic B cells. After transfer into human CD20 (hCD20) transgenic mice, cTCR(+) T cells showed antigen-specific delayed egress from the lungs, concomitant with T-cell deletion. Few cTCR(+) T cells reached the bone marrow (BM) in hCD20 transgenic mice, precluding effectiveness against leukemia. Anti-hCD20 antibody-mediated B-cell depletion before adoptive T-cell therapy permitted egress of mouse CD20-specific cTCR(+) T cells from the lungs, enhanced T-cell survival, and promoted cTCR(+) T cell-dependent elimination of established mouse CD20(+) leukemia. Furthermore, CD20-specific cTCR(+) T cells eliminated residual B cells refractory to depletion with monoclonal antibodies. These findings suggest that combination of antibody therapy that depletes antigen-expressing normal tissues with adoptive T-cell immunotherapy enhances the ability of cTCR(+) T cells to survive and control tumors.
Collapse
|
49
|
Abstract
Adoptive T cell therapies can produce objective clinical responses in patients with hematologic and solid malignancies. Genetic manipulation of T lymphocytes has been proposed as a means of increasing the potency and range of this anti-tumor activity. We now review how coupling expression of transgenic receptors with countermeasures against potent tumor immune evasion strategies is proving highly effective in pre-clinical models and describe how these approaches are being evaluated in human subjects.
Collapse
Affiliation(s)
- Juan F. Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
- Department of Immunology, Baylor College of Medicine, The Methodist Hospital and Texas Children’s Hospital, Houston, TX, 77030, USA
| |
Collapse
|
50
|
Wei LH, Olafsen T, Radu C, Hildebrandt IJ, McCoy MR, Phelps ME, Meares C, Wu AM, Czernin J, Weber WA. Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J Nucl Med 2008; 49:1828-35. [PMID: 18927335 DOI: 10.2967/jnumed.108.054452] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Reporter gene imaging has great potential for many clinical applications including the tracking of transplanted cells and monitoring of gene therapy. However, currently available reporter gene-reporter probe combinations have significant limitations with the biodistribution of the reporter probe and the specificity and immunogenicity of the reporter gene. The objective of the present study was to evaluate a new approach for reporter gene imaging based on cell surface expression of antibody fragments that can irreversibly bind to radiometal chelates. METHODS We developed a new reporter gene, designated 1,4,7,10-tetraazacyclodocecane-N,N',N'',N'''-tetraacetic acid (DOTA) antibody reporter 1 (DAbR1), which consists of the single-chain Fv (scFv) fragment of the anti-Y-DOTA antibody 2D12.5/G54C fused to the human T cell CD4 transmembrane domain. The corresponding reporter probe is yttrium-(S)-2-(4-acrylamidobenzyl)-DOTA (*Y-AABD), a DOTA complex that binds irreversibly to a cysteine residue in the 2D12.5/G54C antibody. U-87 glioma cells were stably transfected with a DAbR1 expression vector. Binding of *Y-AABD to transfected and wild-type cells was studied in vitro and in vivo. RESULTS Flow cytometry revealed high expression of the DAbR1 protein on the cell surface of tumor cells. Uptake of 90Y-AABD in DAbR1-expressing human U-87 glioma xenografts was 6.2 (+/-1.3) percentage injected dose per gram (%ID/g) at 1 h and 4.9 (+/-0.62) %ID/g at 24 h after injection. The corresponding tumor-to-plasma ratios were 45:1 and 428:1, respectively. Uptake by U-87 tumors without the DAbR1 gene was 0.16 (+/-0.02) %ID/g at 1 h and 0.05 (+/-0.03) %ID/g at 24 h. PET images in mice with 86Y-AABD demonstrated intense uptake in DAbR1-positive tumors and low background activity in the liver. CONCLUSION These findings indicate that cell surface expression of radiometal chelate binding antibodies such as 2D12.5/G54C is a promising strategy for reporter gene imaging.
Collapse
Affiliation(s)
- Liu H Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|