1
|
Ding J, Liu Y, Li Y, Huang Y, Li S, Wang F, Chen D, Lu B, Lin N. Insights into the accumulation and hepatobiliary transport of bisphenols (BPs) in liver and bile. ENVIRONMENTAL RESEARCH 2024; 263:120251. [PMID: 39476930 DOI: 10.1016/j.envres.2024.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Bisphenols (BPs) are widely distributed in daily life as typical endocrine disruptors. In this study, we examined the distribution of bisphenol A (BPA) and BPA alternatives in liver (n = 149) and bile (n = 102) tissues from the patients with liver cancer, and calculated the hepatobiliary transport efficiency of BPs (TB-L). Seven BPs were detected in both liver (median: 0.859 ng/g; range: 0.0200-26.7 ng/g) and bile (median: 0.307 ng/mL; range: 0.0200-26.7 ng/mL), and BPA was the predominant in both liver (mean: 1.89 ng/g) and bile (mean: 1.65 ng/mL). The TB-L of BPs was reported for the first time and found to be negatively correlated with the molecular weight and Log Kow of BPs. Furthermore, BPA and ∑BPs in liver showed a significant negative correlation with age, and a significant difference was found in BPs in liver and bile in hepatocellular carcinoma patients with different genders (p < 0.05). For liver function indicators, levels of BPs showed significant positive correlation with γ-glutamyl transferase (GGT) and alanine aminotransferase (ALT), especially BPBP levels in bile. This suggests that BPs may have some correlation with hepatocellular carcinoma. This is the first report on distribution characteristics of BPs in the liver and bile of hepatocellular carcinoma patients, and is the first study to report the hepatobiliary transport efficiency of BPs. The results should contribute to the understanding of BPs accumulation in the liver and bile and further relationship with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Ding
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongheng Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shibo Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Bin Lu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
2
|
Liu Y, Peng L, Li Y, Lu X, Wang F, Chen D, Lin N. Effect of liver cancer on the accumulation and hepatobiliary transport of per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133743. [PMID: 38377901 DOI: 10.1016/j.jhazmat.2024.133743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
In this study, we examined the distribution of per- and polyfluoroalkyl substances (PFASs) in liver and bile tissues from the patients with liver cancer (n = 202) and healthy controls (n = 30), and calculated the hepatobiliary transport efficiency (TB-L) of PFASs. Among 21 PFASs, 13 PFASs were frequently detected in the liver (median: 8.80-16.3 ng/g) and bile (median: 11.03-14.26 ng/mL) samples. PFAS concentrations in liver were positively correlated with age, with higher levels of PFASs in the older. Variance analysis showed that gender and BMI (Body Mass Index) have an important impact on the distribution of PFASs. A U-shaped trend in TB-L of PFASs with the increasing of carbon chain length was found for the first time, and the TB-L of most PFASs in the control was higher than that of those in cases (p < 0.05), suggesting that hepatic injury would affect their transport. PFASs were positively associated with liver injury biomarkers, including γ-glutamyl transferase (GGT), alanine aminotransferase (ALT), and total bilirubin (TB) levels (p < 0.05). This is the first study on examining the hepatobiliary transport characteristics of PFASs, which may help understand the connection between PFAS accumulation and liver cancer risk.
Collapse
Affiliation(s)
- Ying Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, the Hong Kong Special Administrative Region of China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
3
|
Rodrigues MA, Gomes DA, Nathanson MH. Calcium Signaling in Cholangiocytes: Methods, Mechanisms, and Effects. Int J Mol Sci 2018; 19:ijms19123913. [PMID: 30563259 PMCID: PMC6321159 DOI: 10.3390/ijms19123913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Calcium (Ca2+) is a versatile second messenger that regulates a number of cellular processes in virtually every type of cell. The inositol 1,4,5-trisphosphate receptor (ITPR) is the only intracellular Ca2+ release channel in cholangiocytes, and is therefore responsible for Ca2+-mediated processes in these cells. This review will discuss the machinery responsible for Ca2+ signals in these cells, as well as experimental models used to investigate cholangiocyte Ca2+ signaling. We will also discuss the role of Ca2+ in the normal and abnormal regulation of secretion and apoptosis in cholangiocytes, two of the best characterized processes mediated by Ca2+ in this cell type.
Collapse
Affiliation(s)
- Michele Angela Rodrigues
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| | - Dawidson Assis Gomes
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
- Department of Biochemistry and Immunology, Federal University of Minas Gerais. Av. Antônio Carlos, 6627, Belo Horizonte-MG 31270-901, Brazil.
| | - Michael Harris Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
4
|
Gregoire F, Lucidi V, Zerrad-Saadi A, Virreira M, Bolaky N, Delforge V, Lemmers A, Donckier V, Devière J, Demetter P, Perret J, Delporte C. Analysis of aquaporin expression in liver with a focus on hepatocytes. Histochem Cell Biol 2015; 144:347-63. [PMID: 26126651 DOI: 10.1007/s00418-015-1341-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/30/2022]
Abstract
A deeper understanding of aquaporins (AQPs) expression and transcriptional regulation will provide useful information for liver pathophysiology. We established a complete AQPs mRNA expression profile in human and mouse liver, as well as protein localization of expressed AQPs. Additionally, the modulation of AQPs mRNA levels in response to various agents was determined in human HuH7 cells and in primary culture of mouse hepatocytes. AQP1, AQP3, AQP7, AQP8, and AQP9 mRNA and protein expressions were detected in human liver, while only AQP6 and AQP11 mRNAs were detected. We reported for the first time the localization of AQP3 in Kupffer cells, AQP7 in hepatocytes and endothelial cells, and AQP9 in cholangiocytes. In addition, we confirmed the localization of AQP1 in endothelial cells, and of AQP8 and AQP9 in hepatocytes. On HuH7 cells, we reported the presence of AQP4 mRNA, confirmed the presence of AQP3, AQP7, and AQP11 mRNAs, but not of AQP8 mRNA. On primary culture of murine hepatocytes, AQP1 and AQP7 mRNAs were identified, while the presence of AQP3, AQP8, AQP9, and AQP11 mRNAs was confirmed. At the protein level, murine endothelial liver cells expressed AQP1 and AQP9, while hepatocytes expressed AQP3, AQP7, AQP8, and AQP9, and macrophages expressed AQP3. Dexamethasone, forskolin, AICAR, rosiglitazone, octanoylated, and non-octanoylated ghrelin regulated some AQP expression in primary culture of murine hepatocytes and human HuH7 cells. Additional studies will be required to further assess the role of AQPs expression in human and murine liver and understand the transcriptional regulation of AQPs in hepatocytes under pathophysiological conditions.
Collapse
Affiliation(s)
- Françoise Gregoire
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Valério Lucidi
- Digestive Oncology Department, Erasme Hospital, Brussels, Belgium
| | - Amal Zerrad-Saadi
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Myrna Virreira
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Nargis Bolaky
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Delforge
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaud Lemmers
- Gastroenterology Department, Erasme Hospital, Brussels, Belgium
| | - Vincent Donckier
- Digestive Oncology Department, Erasme Hospital, Brussels, Belgium
| | - Jacques Devière
- Gastroenterology Department, Erasme Hospital, Brussels, Belgium
| | - Pieter Demetter
- Anatomopathology Department, Erasme Hospital, Brussels, Belgium
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
5
|
Tabibian JH, Masyuk AI, Masyuk TV, O'Hara SP, LaRusso NF. Physiology of cholangiocytes. Compr Physiol 2013; 3:541-65. [PMID: 23720296 DOI: 10.1002/cphy.c120019] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic ducts of the biliary tree. The main physiologic function of cholangiocytes is modification of hepatocyte-derived bile, an intricate process regulated by hormones, peptides, nucleotides, neurotransmitters, and other molecules through intracellular signaling pathways and cascades. The mechanisms and regulation of bile modification are reviewed herein.
Collapse
|
6
|
Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TV, Gradilone SA, LaRusso NF. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1013-24. [PMID: 23578785 PMCID: PMC3680685 DOI: 10.1152/ajpgi.00383.2012] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
TGR5, the G protein-coupled bile acid receptor that transmits bile acid signaling into a cell functional response via the intracellular cAMP signaling pathway, is expressed in human and rodent cholangiocytes. However, detailed information on the localization and function of cholangiocyte TGR5 is limited. We demonstrated that in human (H69 cells) and rat cholangiocytes, TGR5 is localized to multiple, diverse subcellular compartments, with its strongest expression on the apical plasma, ciliary, and nuclear membranes. To evaluate the relationship between ciliary TGR5 and the cholangiocyte functional response to bile acid signaling, we used a model of ciliated and nonciliated H69 cells and demonstrated that TGR5 agonists induce opposite changes in cAMP and ERK levels in cells with and without primary cilia. The cAMP level was increased in nonciliated cholangiocytes but decreased in ciliated cells. In contrast, ERK signaling was induced in ciliated cholangiocytes but suppressed in cells without cilia. TGR5 agonists inhibited proliferation of ciliated cholangiocytes but activated proliferation of nonciliated cells. The observed differential effects of TGR5 agonists were associated with the coupling of TGR5 to Gαi protein in ciliated cells and Gαs protein in nonciliated cholangiocytes. The functional responses of nonciliated and ciliated cholangiocytes to TGR5-mediated bile acid signaling may have important pathophysiological significance in cilia-related liver disorders (i.e., cholangiociliopathies), such as polycystic liver disease. In summary, TGR5 is expressed on diverse cholangiocyte compartments, including a primary cilium, and its ciliary localization determines the cholangiocyte functional response to bile acid signaling.
Collapse
Affiliation(s)
- Anatoliy I. Masyuk
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Bing Q. Huang
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Brynn N. Radtke
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Gabriella B. Gajdos
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Patrick L. Splinter
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Tatyana V. Masyuk
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Sergio A. Gradilone
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| | - Nicholas F. LaRusso
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota
| |
Collapse
|
7
|
Hung KC, Hsieh PM, Hsu CY, Lin CW, Feng GM, Chen YS, Hung CH. Expression of aquaporins in rat liver regeneration. Scand J Gastroenterol 2012; 47:676-85. [PMID: 22486718 DOI: 10.3109/00365521.2012.674969] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The remarkable ability of liver to regenerate after insults has been harnessed by surgeons when designing techniques for liver resection or transplantation. However, the underlying mechanisms of liver regeneration are not fully clarified. On the other hand, aquaporins (AQPs) are small transmembrane proteins with unexpected physiological roles in addition to water transport. For example, they play pivotal roles in cell migration, angiogenesis, and cell proliferation, events that are also occurred during liver regeneration. We thus examined the possible involvement of AQPs in this regenerative process. MATERIAL AND METHODS A two-thirds partial hepatectomy (PH) rat model was employed. The temporal expression of various AQPs in the liver following PH was determined by semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. The localization of AQPs was evaluated by immunohistochemistry. RESULTS As anticipated, AQP0, 8, 9, and 11 were detected mainly in hepatocytes; unexpectedly, Kupffer cells were observed to express AQP8 during a specific period of time in the regenerative process. AQP9 protein was shown to be expressed in a progressively enhanced pattern at early time points after PH. A transient expression of AQP11 in the nucleus of hepatocytes was observed. CONCLUSION These findings suggest the possibility that AQP might be involved in the PH-induced liver regeneration.
Collapse
Affiliation(s)
- Kuo-Chen Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
8
|
Portincasa P, Calamita G. Water channel proteins in bile formation and flow in health and disease: when immiscible becomes miscible. Mol Aspects Med 2012; 33:651-64. [PMID: 22487565 DOI: 10.1016/j.mam.2012.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 12/19/2022]
Abstract
An essential function of the liver is the formation and secretion of bile, a complex aqueous solution of organic and inorganic compounds essential as route for the elimination of body cholesterol as unesterified cholesterol or as bile acids. In bile, a considerable amount of otherwise insoluble cholesterol is solubilized by carriers including two other classes of lipids, namely phospholipid and bile acids. Formation of bile and generation of bile flow are driven by the active secretion of bile acids, lipids and electrolytes into the canalicular and bile duct lumens followed by the parallel movement of water. Thus, water has to cross rapidly into and out of the cell interior driven by osmotic forces. Bile as a fluid, results from complicated interplay of hepatocyte and cholangiocyte uptake and secretion, concentration, by involving a number of transporters of lipids, anions, cations, and water. The discovery of the aquaporin water channels, has clarified the mechanisms by which water, the major component of bile (more than 95%), moves across the hepatobiliary epithelia. This review is focusing on novel acquisitions in liver membrane lipidic and water transport and functional participation of aquaporin water channels in multiple aspects of hepatobiliary fluid balance. Involvement of aquaporins in a series of clinically relevant hepatobiliary disorders are also discussed.
Collapse
Affiliation(s)
- Piero Portincasa
- University of Bari Medical School, Clinica Medica A. Murri, Department of Biomedical Sciences and Human Oncology, Policlinico Hospital, 70124 Bari, Italy.
| | | |
Collapse
|
9
|
|
10
|
Onori P, Franchitto A, Mancinelli R, Carpino G, Alvaro D, Francis H, Alpini G, Gaudio E. Polycystic liver diseases. Dig Liver Dis 2010; 42:261-71. [PMID: 20138815 PMCID: PMC2894157 DOI: 10.1016/j.dld.2010.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 12/11/2022]
Abstract
Polycystic liver diseases (PCLDs) are genetic disorders with heterogeneous etiologies and a range of phenotypic presentations. PCLD exhibits both autosomal or recessive dominant pattern of inheritance and is characterized by the progressive development of multiple cysts, isolated or associated with polycystic kidney disease, that appear more extensive in women. Cholangiocytes have primary cilia, functionally important organelles (act as mechanosensors) that are involved in both normal developmental and pathological processes. The absence of polycystin-1, 2, and fibrocystin/polyductin, normally localized to primary cilia, represent a potential mechanism leading to cyst formation, associated with increased cell proliferation and apoptosis, enhanced fluid secretion, abnormal cell-matrix interactions, and alterations in cell polarity. Proliferative and secretive activities of cystic epithelium can be regulated by estrogens either directly or by synergizing growth factors including nerve growth factor, IGF1, FSH and VEGF. The abnormalities of primary cilia and the sensitivity to proliferative effects of estrogens and different growth factors in PCLD cystic epithelium provide the morpho-functional basis for future treatment targets, based on the possible modulation of the formation and progression of hepatic cysts.
Collapse
Affiliation(s)
- P. Onori
- Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - A. Franchitto
- Dept Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - R. Mancinelli
- Dept Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - G. Carpino
- Dept Health Science, University of Rome “Foro Italico”, Italy
| | - D. Alvaro
- Gastroenterology, Polo Pontino, University of Rome “La Sapienza”, Rome, Italy
| | - H. Francis
- Research, Central Texas Veterans Health Care System, USA
| | - G. Alpini
- Research, Central Texas Veterans Health Care System, USA, Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, College of Medicine, USA
| | - E. Gaudio
- Dept Human Anatomy, University of Rome “La Sapienza”, Rome, Italy, Corresponding author. Tel.: +39 0649918060; fax: +39 0649918062. (E. Gaudio)
| |
Collapse
|
11
|
Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, Splinter PL, Stroope AJ, LaRusso NF. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 2008; 295:G725-34. [PMID: 18687752 PMCID: PMC2575915 DOI: 10.1152/ajpgi.90265.2008] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholangiocytes, the epithelial cells lining intrahepatic bile ducts, contain primary cilia, which are mechano- and osmosensory organelles detecting changes in bile flow and osmolality and transducing them into intracellular signals. Here, we asked whether cholangiocyte cilia are chemosensory organelles by testing the expression of P2Y purinergic receptors and components of the cAMP signaling cascade in cilia and their involvement in nucleotide-induced cAMP signaling in the cells. We found that P2Y(12) purinergic receptor, adenylyl cyclases (i.e., AC4, AC6, and AC8), and protein kinase A (i.e., PKA RI-beta and PKA RII-alpha regulatory subunits), exchange protein directly activated by cAMP (EPAC) isoform 2, and A-kinase anchoring proteins (i.e., AKAP150) are expressed in cholangiocyte cilia. ADP, an endogenous agonist of P2Y(12) receptors, perfused through the lumen of isolated rat intrahepatic bile ducts or applied to the ciliated apical surface of normal rat cholangiocytes (NRCs) in culture induced a 1.9- and 1.5-fold decrease of forskolin-induced cAMP levels, respectively. In NRCs, the forskolin-induced cAMP increase was also lowered by 1.3-fold in response to ATP-gammaS, a nonhydrolyzed analog of ATP but was not affected by UTP. The ADP-induced changes in cAMP levels in cholangiocytes were abolished by chloral hydrate (a reagent that removes cilia) and by P2Y(12) siRNAs, suggesting that cilia and ciliary P2Y(12) are involved in nucleotide-induced cAMP signaling. In conclusion, cholangiocyte cilia are chemosensory organelles that detect biliary nucleotides through ciliary P2Y(12) receptors and transduce corresponding signals into a cAMP response.
Collapse
Affiliation(s)
- Anatoliy I. Masyuk
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Sergio A. Gradilone
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Jesus M. Banales
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Bing Q. Huang
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Tatyana V. Masyuk
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Seung-Ok Lee
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Patrick L. Splinter
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Angela J. Stroope
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Nicholas F. LaRusso
- Mayo Clinic College of Medicine, Department of Internal Medicine, Rochester, Minnesota; Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clínica Universitaria and Centro de Investigación Médica Aplicada (CIMA), Centro de Investigación Biomédica en Red: Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
12
|
Liu JJ, Glickman JN, Masyuk AI, LaRusso NF. Cholangiocyte bile salt transporters in cholesterol gallstone-susceptible and resistant inbred mouse strains. J Gastroenterol Hepatol 2008; 23:1596-602. [PMID: 18717763 PMCID: PMC3205912 DOI: 10.1111/j.1440-1746.2008.05500.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM We investigated the dietary and gender influences on the expression and functionality of cholangiocyte bile salt transporters and development of biliary hyperplasia in cholesterol gallstone-susceptible C57L/J and resistant AKR/J mice. METHODS C57L and AKR mice were fed chow, a lithogenic diet, or a cholic acid-containing diet for 14 days. Expression of cholangiocyte bile salt transporter proteins ASBT (SLC10A2), ILBP (FABP6), and MRP3 (ABCC3) were studied by Western blot analysis. Taurocholate uptake studies were performed using microperfusion of isolated bile duct units. The pre- and post-perfusion taurocholate concentrations were analyzed by high performance liquid chromatography. Biliary proliferation in liver sections was scored. RESULTS The lithogenic diet induced ductular proliferation in C57L mice. On chow, SLC10A2 and ABCC3 were overexpressed in male and female C57L compared to AKR mice. A lithogenic diet reduced the expressions of FABP6 in both male and female C57L mice, SLC10A2 in female C57L mice, and ABCC3 in male C57L mice. These alterations in transporter expressions were not associated with changes in taurocholate uptake. The lithogenic diet induced biliary hyperplasia and reduced bile salt transporter expressions in C57L mice. CONCLUSIONS Although bile salt uptake was not increased in the bile duct unit, we speculate that the biliary hyperplasia on the lithogenic diet may lead to an increase in intrahepatic bile salt recycling during cholesterol cholelithogenesis.
Collapse
Affiliation(s)
- Julia J Liu
- Division of Gastroenterology, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Jonathan N Glickman
- Department of Pathology, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Anatoliy I Masyuk
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Lee SO. [Physiologic and pathologic experimental models for studying cholangiocytes]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 14:139-49. [PMID: 18617761 DOI: 10.3350/kjhep.2008.14.2.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholangiocytes (epithelial cells lining the intra- and extrahepatic bile ducts) and hepatocytes are two major components of liver epithelia. Although cholangiocytes are less numerous than hepatocytes, they are involved in both bile secretion and diverse cellular processes such as cell-cycle phenomena, cell signaling, and interactions with other cells, matrix components, foreign organisms, and xenobiotics. Cholangiocytes are also targets in several human diseases including cholangiocarcinoma, primary sclerosing cholangitis, autoimmune cholangitis, and vanishing bile-duct syndrome. The rapid advances in experimental biology technologies are greatly expanding interest in and knowledge of the physiology and pathophysiology of cholangiocytes. This review focuses on the progress of in vivo and in vitro experimental models in elucidating the physiologic functions of cholangiocytes and the pathophysiology of various cholangiopathies. The following aspects are reviewed: isolation of cholangiocytes from the liver and their heterogeneity, various culture systems, establishment of cholangiocyte cell lines, isolation and usage of intrahepatic bile-duct units, three-dimensional modeling of the bile duct, experimental models for inducing cholangiocyte proliferation, and various cholangiopathies such as cholangiocarcinoma, primary sclerosing cholangitis, and autoimmune cholangitis.
Collapse
Affiliation(s)
- Seung-Ok Lee
- Division of Gatroenterology and Hepatology, Department of Internal Medicine, Chonbuk National University Hospital and Medical School, Jeonju, Korea.
| |
Collapse
|
14
|
Portincasa P, Palasciano G, Svelto M, Calamita G. Aquaporins in the hepatobiliary tract. Which, where and what they do in health and disease. Eur J Clin Invest 2008; 38:1-10. [PMID: 18173545 DOI: 10.1111/j.1365-2362.2007.01897.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The biological importance of the aquaporin family of water channels was recently acknowledged by the 2003 Nobel Prize for Chemistry awarded to the discovering scientist Peter Agre. Among the pleiotropic roles exerted by aquaporins in nature in both health and disease, the review addresses the latest acquisitions about the expression and regulation, as well as physiology and pathophysiology of aquaporins in the hepatobiliary tract. Of note, at least seven out of the thirteen mammalian aquaporins are expressed in the liver, bile ducts and gallbladder. Aquaporins are essential for bile water secretion and reabsorption, as well as for plasma glycerol uptake by the hepatocyte and its conversion to glucose during starvation. Novel data are emerging regarding the physio-pathological involvement of aquaporins in multiple diseases such as cholestases, liver cirrhosis, obesity and insulin resistance, fatty liver, gallstone formation and even microparasite invasion of intrahepatic bile ducts. This body of knowledge represents the mainstay of present and future research in a rapidly expanding field.
Collapse
Affiliation(s)
- P Portincasa
- Department of Internal Medicine & Public Medicine, University of Bari, Italy
| | | | | | | |
Collapse
|
15
|
Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 2007; 104:19138-43. [PMID: 18024594 DOI: 10.1073/pnas.0705964104] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cholangiocytes, epithelial cells lining the biliary tree, have primary cilia extending from their apical membrane into the ductal lumen. Although important in disease, cilia also play a vital role in normal cellular functions. We reported that cholangiocyte cilia are sensory organelles responding to mechanical stimuli (i.e., luminal fluid flow) by alterations in intracellular Ca(2+) and cAMP. Because cholangiocyte cilia are also ideally positioned to detect changes in composition and tonicity of bile, we hypothesized that cilia also function as osmosensors. TRPV4, a Ca(2+)-permeable ion channel, has been implicated in signal transduction of osmotic stimuli. Using purified rat cholangiocytes and perfused intrahepatic bile duct units (IBDUs), we found that TRPV4 is expressed on cholangiocyte cilia, and that hypotonicity induces an increase in intracellular Ca(2+) in a TRPV4-, ciliary-, and extracellular calcium-dependent manner. The osmosensation of luminal tonicity by ciliary TRPV4 induces bicarbonate secretion, the main determinant of ductal bile formation, by a mechanism involving apical ATP release. Furthermore, the activation of TRPV4 in vivo, by its specific agonist, 4alphaPDD, induces an increase in bile flow as well as ATP release and bicarbonate secretion. Our results suggest that cholangiocyte primary cilia play an important role in ductal bile formation by acting as osmosensors.
Collapse
|
16
|
Minagawa N, Nagata J, Shibao K, Masyuk AI, Gomes DA, Rodrigues MA, LeSage G, Akiba Y, Kaunitz JD, Ehrlich BE, LaRusso NF, Nathanson MH. Cyclic AMP regulates bicarbonate secretion in cholangiocytes through release of ATP into bile. Gastroenterology 2007; 133:1592-602. [PMID: 17916355 PMCID: PMC2128713 DOI: 10.1053/j.gastro.2007.08.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 07/02/2007] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Bicarbonate secretion is a primary function of cholangiocytes. Either adenosine 3',5'-cyclic monophosphate (cAMP) or cytosolic Ca(2+) can mediate bicarbonate secretion, but these are thought to act through separate pathways. We examined the role of the inositol 1,4,5-trisphosphate receptor (InsP3R) in mediating bicarbonate secretion because this is the only intracellular Ca(2+) release channel in cholangiocytes. METHODS Intrahepatic bile duct units (IBDUs) were microdissected from rat liver then luminal pH was examined by confocal microscopy during IBDU microperfusion. Cyclic AMP was increased using forskolin or secretin, and Ca(2+) was increased using acetylcholine (ACh) or adenosine triphosphate (ATP). Apyrase was used to hydrolyze extracellular ATP, and suramin was used to block apical P2Y ATP receptors. In selected experiments, IBDUs were pretreated with short interfering RNA (siRNA) to silence expression of specific InsP3R isoforms. RESULTS Both cAMP and Ca(2+) agonists increased luminal pH. The effect of ACh on luminal pH was reduced by siRNA for basolateral (types I and II) but not apical (type III) InsP3R isoforms. The effect of forskolin on luminal pH was reduced by a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor and by siRNA for the type III InsP3R. Luminal apyrase or suramin blocked the effects of forskolin but not ACh on luminal pH. CONCLUSIONS Cyclic AMP-induced ductular bicarbonate secretion depends on an autocrine signaling pathway that involves CFTR, apical release of ATP, stimulation of apical nucleotide receptors, and then activation of apical, type III InsP3Rs. The primary role of CFTR in bile duct secretion may be to regulate secretion of ATP rather than to secrete chloride and/or bicarbonate.
Collapse
Affiliation(s)
- Noritaka Minagawa
- Department of Medicine, Yale University School of Medicine, New Haven, CT, Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Jun Nagata
- Department of Medicine, Yale University School of Medicine, New Haven, CT, Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazunori Shibao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, Department of Surgery 1, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Dawidson A. Gomes
- Department of Medicine, Yale University School of Medicine, New Haven, CT
| | | | - Gene LeSage
- Department of Medicine, University of Texas, Houston, TX
| | - Yasutada Akiba
- Department of Medicine, University of California, Los Angeles, CA
| | | | - Barbara E. Ehrlich
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | | | - Michael H. Nathanson
- Department of Medicine, Yale University School of Medicine, New Haven, CT,7Address for correspondence: Michael H. Nathanson, Digestive Diseases, Room TAC S241D, Yale University School of Medicine, New Haven, CT 06520-8019, Phone 203-785-7312, FAX 203-785-4306,
| |
Collapse
|
17
|
Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 2006; 131:911-20. [PMID: 16952559 PMCID: PMC1866168 DOI: 10.1053/j.gastro.2006.07.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 06/08/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cholangiocytes have primary cilia extending from the apical plasma membrane into the ductal lumen. While the physiologic significance of cholangiocyte cilia is unknown, studies in renal epithelia suggest that primary cilia possess sensory functions. Here, we tested the hypothesis that cholangiocyte cilia are sensory organelles that detect and transmit luminal bile flow stimuli into intracellular Ca2+ ([Ca2+]i) and adenosine 3',5'-cyclic monophosphate (cAMP) signaling. METHODS Scanning electron microscopy, transmission electron microscopy, and immunofluorescent confocal microscopy of rat isolated intrahepatic bile duct units (IBDUs) were used to detect and characterize cholangiocyte cilia. The fluid flow-induced changes in Ca2+ and cAMP levels in cholangiocytes of microperfused IBDUs were detected by epifluorescence microscopy and a fluorescence assay, respectively. RESULTS In microperfused IBDUs, luminal fluid flow induced an increase in [Ca2+]i and caused suppression of the forskolin-stimulated cAMP increase. The fluid flow-induced changes in [Ca2+]i and cAMP levels were significantly reduced or abolished when cilia were removed by chloral hydrate or when ciliary-associated proteins polycystin-1 (a mechanoreceptor), polycystin-2 (a Ca2+ channel), and the Ca2+-inhibitable adenylyl cyclase isoform 6 were individually down-regulated by small interfering RNAs. CONCLUSIONS Cholangiocyte cilia are sensory organelles containing polycystin-1, polycystin-2, and adenylyl cyclase isoform 6 through which luminal fluid flow affects both [Ca2+]i and cAMP signaling in the cell. The data suggest a new model for regulation of ductal bile secretion involving cholangiocyte cilia.
Collapse
Affiliation(s)
- Anatoliy I Masyuk
- Miles and Shirley Fiterman Center for Digestive Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fabris L, Cadamuro M, Fiorotto R, Roskams T, Spirlì C, Melero S, Sonzogni A, Joplin RE, Okolicsanyi L, Strazzabosco M. Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases. Hepatology 2006; 43:1001-12. [PMID: 16628643 DOI: 10.1002/hep.21143] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Liver involvement in autosomal dominant polycystic kidney disease (ADPKD) is characterized by altered remodeling of the embryonic ductal plate (DP) with presence of biliary cysts and aberrant portal vasculature. The genetic defect causing ADPKD has been identified, but mechanisms of liver cyst growth remain uncertain. To investigate the possible role of angiogenic mechanisms, we have studied the immunohistochemical expression of vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2) and their receptors (VEGFR-1, VEGFR-2, Tie-2) in ADPKD, Caroli's disease, normal and fetal livers. In ADPKD and control livers Ang-1 and Ang-2 gene expression was studied by real-time-PCR. Effects of VEGF on cholangiocyte proliferation were studied by PCNA Western Blot in isolated rat cholangiocytes and by MTS assay in cultured cholangiocytes isolated from ADPKD patients and from an ADPKD mouse model (Pkd2(WS25/-)). Cholangiocytes were strongly positive for VEGF, VEGFR-1, VEGFR-2 and Ang-2 in ADPKD and Caroli, and also for Ang-1 and Tie-2 in ADPKD, similar to fetal ductal plate cells. VEGF stimulated proliferation in both normal and ADPKD cholangiocytes, but the effect was particularly evident in the latter. Ang-1 alone had no effect, but was synergic to VEGF. VEGF expression on cholangiocytes positively correlated with microvascular density. In conclusion, consistent with the immature phenotype of the cystic epithelium, expression of VEGF, VEGFRs, Ang-1 and Tie-2 is strongly upregulated in cholangiocytes from polycystic liver diseases. VEGF and Ang-1 have autocrine proliferative effect on cholangiocyte growth and paracrine effect on portal vasculature, thus promoting the growth of the cysts and their vascular supply. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).
Collapse
Affiliation(s)
- Luca Fabris
- Center for Liver Research, Gastroenterology Division, Ospedali Riuniti, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The review focuses on the potential physiological and pathophysiological roles of aquaporins (AQPs), a family of water channel proteins, in the hepatobiliary system. Among 13 aquaporins (AQP0-AQP12) cloned in mammals, seven AQPs have been identified in the liver and biliary tree. Accumulating evidence suggests that AQPs are likely involved in canalicular and ductal bile secretion, gluconeogenesis and microbial infection and may have other novel roles that affect liver function.
Collapse
|
20
|
Alpini G, Glaser S, Baiocchi L, Francis H, Xia X, Lesage G. Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. Hepatology 2005; 41:1037-45. [PMID: 15834929 DOI: 10.1002/hep.20653] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of the cholangiocyte apical Na(+)-dependent bile acid transporter (ASBT) in bile formation is unknown. Bile acid absorption by bile ducts results in cholehepatic shunting, a pathway that amplifies the canalicular osmotic effects of bile acids. We tested in isolated cholangiocytes if secretin enhances ASBT translocation to the apical membrane from latent preexisting intracellular stores. In vivo, in bile duct-ligated rats, we tested if increased ASBT activity (induced by secretin pretreatment) results in cholehepatic shunting of bile acids. We determined the increment in taurocholate-dependent bile flow and biliary lipid secretion and taurocholate (TC) biliary transit time during high ASBT activity. Secretin stimulated colchicine-sensitive ASBT translocation to the cholangiocyte plasma membrane and (3)H-TC uptake in purified cholangiocytes. Consistent with increased ASBT promoting cholehepatic shunting, with secretin pretreatment, we found TC induced greater-than-expected biliary lipid secretion and bile flow and there was a prolongation of the TC biliary transit time. Colchicine ablated secretin pretreatment-dependent bile acid-induced choleresis, increased biliary lipid secretion, and the prolongation of the TC biliary transit. In conclusion, secretin stimulates cholehepatic shunting of conjugated bile acids and is associated with increased cholangiocyte apical membrane ASBT. Bile acid transport by cholangiocyte ASBT can contribute to hepatobiliary secretion in vivo.
Collapse
Affiliation(s)
- Gianfranco Alpini
- Department of Internal Medicine, Scott & White Hospital and The Texas A&M University System Health Sciences Center, College of Medicine, Temple, TX, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abuladze N, Pushkin A, Tatishchev S, Newman D, Sassani P, Kurtz I. Expression and localization of rat NBC4c in liver and renal uroepithelium. Am J Physiol Cell Physiol 2004; 287:C781-9. [PMID: 15151908 DOI: 10.1152/ajpcell.00590.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies provided functional evidence for electrogenic Na(+)-HCO(3)(-) cotransport in hepatocytes and in intrahepatic bile duct cholangiocytes. The molecular identity of the transporters mediating electrogenic sodium-bicarbonate cotransport in the liver is currently unknown. Of the known electrogenic Na(+)-HCO(3)(-) cotransporters (NBC1 and NBC4), we previously showed that NBC4 mRNA is highly expressed in the liver. In the present study, we performed RT-PCR, immunoblotting, and immunohistochemistry to characterize the expression pattern of NBC4 in rat liver and kidney. For immunodetection, a polyclonal antibody against rat NBC4 was generated and affinity purified. Of the known human NBC4 variants, only the rat NBC4c ortholog was detected by RT-PCR in rat liver, and the molecular mass of the NBC4c protein was approximately 145 kDa. NBC4c protein was expressed in hepatocytes and in the cholangiocytes lining the intrahepatic bile ducts. In hepatocytes, NBC4c was localized to the basolateral plasma membrane, whereas intrahepatic cholangiocytes stained apically. The NBC1 electrogenic sodium cotransporter variants kNBC1 and pNBC1 were not detected by immunoblotting and immunohistochemistry in rat liver. The pattern of localization of NBC4c in the liver suggests that the cotransporter plays a role in mediating Na(+)-HCO(3)(-) cotransport in hepatocytes and intrahepatic cholangiocytes. Unlike the liver, the rat kidney expressed electrogenic sodium-bicarbonate cotransporter proteins kNBC1 and NBC4c. In kidney, NBC4c also had a molecular mass of approximately 145 kDa and was immunolocalized to uroepithelial cells lining the renal pelvis, where the cotransporter may play an important role in protecting the renal parenchyma from alterations in urine pH.
Collapse
Affiliation(s)
- Natalia Abuladze
- Division of Nephrology, University of California-Los Angeles, 10833 Le Conte Avenue, Rm. 7-155 Factor Bldg., Los Angeles, CA 90095-1689, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kip NS, Lazaridis KN, Masyuk AI, Splinter PL, Huebert RC, LaRusso NF. Differential expression of cholangiocyte and ileal bile acid transporters following bile acid supplementation and depletion. World J Gastroenterol 2004; 10:1440-6. [PMID: 15133850 PMCID: PMC4656281 DOI: 10.3748/wjg.v10.i10.1440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: We have previously demonstrated that cholangiocytes, the epithelial cells lining intrahepatic bile ducts, encode two functional bile acid transporters via alternative splicing of a single gene to facilitate bile acid vectorial transport. Cholangiocytes possess ASBT, an apical sodium-dependent bile acid transporter to take up bile acids, and t-ASBT, a basolateral alternatively spliced and truncated form of ASBT to efflux bile acids. Though hepatocyte and ileal bile acid transporters are in part regulated by the flux of bile acids, the effect of alterations in bile acid flux on the expression of t-ASBT in terminal ileocytes remains unclear. Thus, we tested the hypothesis that expression of ASBT and t-ASBT in cholangiocytes and ileocytes was regulated by bile acid flux.
METHODS: Expression of ASBT and t-ASBT message and protein in cholangiocytes and ileocytes isolated from pair-fed rats given control (C) and 1% taurocholate (TCA) or 5% cholestyramine (CY) enriched diets, were assessed by both quantitative RNase protection assays and quantitative immunoblotting. The data obtained from each of the control groups were pooled to reflect the changes observed following TCA and CY treatments with respect to the control diets. Cholangiocyte taurocholate uptake was determined using a novel microperfusion technique on intrahepatic bile duct units (IBDUs) derived from C, TCA and CY fed rats.
RESULTS: In cholangiocytes, both ASBT and t-ASBT message RNA and protein were significantly decreased in response to TCA feeding compared to C diet. In contrast, message and protein of both bile acid transporters significantly increased following CY feeding compared to C diet. In the ileum, TCA feeding significantly up-regulated both ASBT and t-ASBT message and protein compared to C diet, while CY feeding significantly down-regulated message and protein of both bile acid transporters compared to C diet. As anticipated from alterations in cholangiocyte ASBT expression, the uptake of taurocholate in microperfused IBDUs derived from rats on TCA diet decreased 2.7-fold, whereas it increased 1.7-fold in those on CY diet compared to C diet fed groups.
CONCLUSION: These data demonstrate that expression of ASBT and t-ASBT in cholangiocytes is regulated by a negative feedback loop while the expression of these transporters in terminal ileum is modified via positive feedback. Thus, while transcriptional regulatory mechanisms in response to alterations in bile acid pool size are operative in both cholangiocytes and ileocytes, each cell type responds differently to bile acid supplementation and depletion.
Collapse
Affiliation(s)
- N-Sertac Kip
- Center for Basic Research in Digestive Diseases, Mayo Clinic, 200 First Street, SW Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
23
|
Portincasa P, Moschetta A, Mazzone A, Palasciano G, Svelto M, Calamita G. Water handling and aquaporins in bile formation: recent advances and research trends. J Hepatol 2003; 39:864-74. [PMID: 14568273 DOI: 10.1016/s0168-8278(03)00294-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Piero Portincasa
- Section of Internal Medicine, Department of Internal Medicine and Public Medicine, Medical School, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Splinter PL, Masyuk AI, LaRusso NF. Specific inhibition of AQP1 water channels in isolated rat intrahepatic bile duct units by small interfering RNAs. J Biol Chem 2003; 278:6268-74. [PMID: 12468529 DOI: 10.1074/jbc.m212079200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholangiocytes express water channels (i.e. aquaporins (AQPs)), proteins that are increasingly recognized as important in water transport by biliary epithelia. However, direct functional studies demonstrating AQP-mediated water transport in cholangiocytes are limited, in part because of the lack of specific AQP inhibitors. To address this issue, we designed, synthesized, and utilized small interfering RNAs (siRNAs) selective for AQP1 and investigated their effectiveness in altering AQP1-mediated water transport in intrahepatic bile duct units (IBDUs) isolated from rat liver. Twenty-four hours after transfection of IBDUs with siRNAs targeting two different regions of the AQP1 transcript, both AQP1 mRNA and protein expression were inhibited by 76.6-92.0 and 57.9-79.4%, respectively. siRNAs containing the same percent of base pairs as the AQP1-siRNAs but in random sequence (i.e. scrambled siRNAs) had no effect. Suppression of AQP1 expression in cholangiocytes resulted in a decrease in water transport by IBDUs in response to both an inward osmotic gradient (200 mosm) or a secretory agonist (forskolin), the osmotic water permeability coefficient (P(f)) decreasing up to 58.8% and net water secretion (J(v)) decreasing up to 87%. A strong correlation between AQP1 protein expression and water transport in IBDUs transfected with AQP1-siRNAs was consistent with the decrease in water transport by IBDUs resulting from AQP1 gene silencing by AQP1-siRNAs. This study is the first to demonstrate the feasibility of utilizing siRNAs to specifically reduce the expression of AQPs in epithelial cells and provides direct evidence of the contribution of AQP1 to water transport by biliary epithelia.
Collapse
Affiliation(s)
- Patrick L Splinter
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
25
|
Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 2002; 41:751-90. [PMID: 12162761 DOI: 10.2165/00003088-200241100-00005] [Citation(s) in RCA: 450] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enterohepatic recycling occurs by biliary excretion and intestinal reabsorption of a solute, sometimes with hepatic conjugation and intestinal deconjugation. Cycling is often associated with multiple peaks and a longer apparent half-life in a plasma concentration-time profile. Factors affecting biliary excretion include drug characteristics (chemical structure, polarity and molecular size), transport across sinusoidal plasma membrane and canniculae membranes, biotransformation and possible reabsorption from intrahepatic bile ductules. Intestinal reabsorption to complete the enterohepatic cycle may depend on hydrolysis of a drug conjugate by gut bacteria. Bioavailability is also affected by the extent of intestinal absorption, gut-wall P-glycoprotein efflux and gut-wall metabolism. Recently, there has been a considerable increase in our understanding of the role of transporters, of gene expression of intestinal and hepatic enzymes, and of hepatic zonation. Drugs, disease and genetics may result in induced or inhibited activity of transporters and metabolising enzymes. Reduced expression of one transporter, for example hepatic canalicular multidrug resistance-associated protein (MRP) 2, is often associated with enhanced expression of others, for example the usually quiescent basolateral efflux MRP3, to limit hepatic toxicity. In addition, physiologically relevant pharmacokinetic models, which describe enterohepatic recirculation in terms of its determinants (such as sporadic gall bladder emptying), have been developed. In general, enterohepatic recirculation may prolong the pharmacological effect of certain drugs and drug metabolites. Of particular importance is the potential amplifying effect of enterohepatic variability in defining differences in the bioavailability, apparent volume of distribution and clearance of a given compound. Genetic abnormalities, disease states, orally administered adsorbents and certain coadministered drugs all affect enterohepatic recycling.
Collapse
Affiliation(s)
- Michael S Roberts
- Department of Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | | | | | |
Collapse
|
26
|
Masyuk AI, Masyuk TV, Tietz PS, Splinter PL, LaRusso NF. Intrahepatic bile ducts transport water in response to absorbed glucose. Am J Physiol Cell Physiol 2002; 283:C785-91. [PMID: 12176735 DOI: 10.1152/ajpcell.00118.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological relevance of the absorption of glucose from bile by cholangiocytes remains unclear. The aim of this study was to test the hypothesis that absorbed glucose drives aquaporin (AQP)-mediated water transport by biliary epithelia and is thus involved in ductal bile formation. Glucose absorption and water transport by biliary epithelia were studied in vitro by microperfusing intrahepatic bile duct units (IBDUs) isolated from rat liver. In a separate set of in vivo experiments, bile flow and absorption of biliary glucose were measured after intraportal infusion of D-glucose or phlorizin. IBDUs absorbed D-glucose in a dose- and phlorizin-dependent manner with an absorption maximum of 92.8 +/- 6.2 pmol. min(-1). mm(-1). Absorption of D-glucose by microperfused IBDUs resulted in an increase of water absorption (J(v) = 3-10 nl. min(-1). mm(-1), P(f) = 40 x 10(-3) cm/sec). Glucose-driven water absorption by IBDUs was inhibited by HgCl(2), suggesting that water passively follows absorbed D-glucose mainly transcellularly via mercury-sensitive AQPs. In vivo studies showed that as the amount of absorbed biliary glucose increased after intraportal infusion of D-glucose, bile flow decreased. In contrast, as the absorption of biliary glucose decreased after phlorizin, bile flow increased. Results support the hypothesis that the physiological significance of the absorption of biliary glucose by cholangiocytes is likely related to regulation of ductal bile formation.
Collapse
Affiliation(s)
- Anatoly I Masyuk
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
27
|
Gong AY, Masyuk AI, Splinter PL, Huebert RC, Tietz PS, LaRusso NF. Channel-mediated water movement across enclosed or perfused mouse intrahepatic bile duct units. Am J Physiol Cell Physiol 2002; 283:C338-46. [PMID: 12055103 DOI: 10.1152/ajpcell.00162.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We previously reported the development of reproducible techniques for isolating and perfusing intact intrahepatic bile duct units (IBDUs) from rats. Given the advantages of transgenic and knockout mice for exploring ductal bile formation, we report here the adaptation of those techniques to mice and their initial application to the study of water transport across mouse intrahepatic biliary epithelia. IBDUs were isolated from livers of normal mice by microdissection combined with enzymatic digestion. After culture, isolated IBDUs sealed to form intact, polarized compartments, and a microperfusion system employing those isolated IBDUs developed. A quantitative image analysis technique was used to observe a rapid increase of luminal area when sealed IBDUs were exposed to a series of inward osmotic gradients reflecting net water secretion; the choleretic agonists secretin and forskolin also induced water secretion into IBDUs. The increase of IBDU luminal area induced by inward osmotic gradients and choleretic agonists was reversibly inhibited by HgCl2, a water channel inhibitor. With the use of a quantitative epifluorescence technique in perfused mouse IBDUs, a high osmotic water permeability (P(f) = 2.5-5.6 x 10(-2) cm/s) was found in response to osmotic gradients, further supporting the presence of water channels. These findings suggest that, as in the rat, water transport across intrahepatic biliary epithelia in mice is water channel mediated.
Collapse
Affiliation(s)
- Ai-Yu Gong
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Due in part to the recent development of new experimental models, cholangiocytes--the epithelial cells that line the bile ducts--are increasingly recognized as important transporting epithelia actively involved in the absorption and secretion of water, ions, and solutes. New biologic concepts have emerged including the identification and topography of receptors and flux proteins involved in the molecular mechanisms of ductal bile secretion. Individually isolated or perfused bile duct units from livers of rats and mice serve as new, physiologically relevant in vitro models to study cholangiocyte transport. Biliary tree dimensions and novel insights into anatomic remodeling of proliferating bile ducts have emerged from three-dimensional reconstruction using computed tomographic scanning and sophisticated software. Moreover, new pathologic concepts have arisen regarding the interaction of cholangiocytes with pathogens. These concepts may provide the framework for new therapies for the cholangiopathies, a group of important hepatobiliary diseases in which cholangiocytes are the target cell.
Collapse
Affiliation(s)
- Pamela Tietz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Medical School, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
29
|
Ko SBH, Naruse S, Kitagawa M, Ishiguro H, Furuya S, Mizuno N, Wang Y, Yoshikawa T, Suzuki A, Shimano S, Hayakawa T. Aquaporins in rat pancreatic interlobular ducts. Am J Physiol Gastrointest Liver Physiol 2002; 282:G324-31. [PMID: 11804854 DOI: 10.1152/ajpgi.00198.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aquaporin (AQP) family of water channels is distributed ubiquitously in many epithelia and plays a fundamental role in transmembrane water transport. The aim of this study is to identify the water transport pathway in pancreatic duct cells where most of the HCO-rich fluid originates. Using digital videomicroscopy, we measured the osmotic water permeability (P(f)) of pancreatic duct epithelium by exposing isolated rat interlobular ducts to the hypotonic solution (145 mosM). To identify mRNA and protein of AQPs expressed in duct cells, we conducted RT-PCR analysis and immunohistochemistry of the isolated duct and pancreas. The calculated P(f) (160-230 microm/s) of the isolated ducts was significantly reduced to 16-35 microm/s by 80-90% with either basolateral or luminal applications of HgCl(2). Fluid secretion evoked by secretin was almost completely abolished by a basolateral or luminal application of HgCl(2). A large amount of AQP1 and small amounts of AQP5 transcripts were detected in the isolated duct cells by RT-PCR. AQP1, but not AQP5, immunoreactivity was present in both luminal and basolateral membranes of the interlobular duct cells. Mercury-sensitive water channels are present in both luminal and basolateral membranes of rat pancreatic ducts. AQP1 of the known AQPs appears to be the main water pathway in interlobular ducts.
Collapse
Affiliation(s)
- Shigeru B H Ko
- Internal Medicine II, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Anatoly I Masyuk
- The Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
31
|
Tietz PS, Chen XM, Gong AY, Huebert RC, Masyuk A, Masyuk T, Splinter PL, LaRusso NF. Experimental models to study cholangiocyte biology. World J Gastroenterol 2002; 8:1-4. [PMID: 11833061 PMCID: PMC4656596 DOI: 10.3748/wjg.v8.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2002] [Revised: 01/17/2002] [Accepted: 01/18/2002] [Indexed: 02/06/2023] Open
Abstract
Cholangiocytes-the epithelial cells which line the bile ducts-are increasingly recognized as important transporting epithelia actively involved in the absorption and secretion of water, ions, and solutes. This recognition is due in part to the recent development of new experimental models. New biologic concepts have emerged including the identification and topography of receptors and flux proteins on the apical and/or basolateral membrane which are involved in the molecular mechanisms of ductal bile secretion. Individually isolated and/or perfused bile duct units from livers of rats and mice serve as new,physiologically relevant in vitro models to study cholangiocyte transport. Biliary tree dimensions and novel insights into anatomic remodeling of proliferating bile ducts have emerged from three-dimensional reconstruction using CT scanning and sophisticated software. Moreover, new pathologic concepts have arisen regarding the interaction of cholangiocytes with pathogens such as Cryptosporidium parvum. These concepts and associated methodologies may provide the framework to develop new therapies for the cholangiopathies, a group of important hepatobiliary diseases in which cholangiocytes are the target cell.
Collapse
Affiliation(s)
- Pamela S Tietz
- Center for Basic Research in Digestive Diseases, Mayo Medical School, Clinic and Foundation, 200 First Street, SW Rochester, MN 55905 USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dranoff JA, Masyuk AI, Kruglov EA, LaRusso NF, Nathanson MH. Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1059-67. [PMID: 11557527 DOI: 10.1152/ajpgi.2001.281.4.g1059] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides may be important regulators of bile ductular secretion, because cholangiocytes express P2Y ATP receptors and nucleotides are found in bile. However, the expression, distribution, and function of specific P2Y receptor subtypes in cholangiocytes are unknown. Thus our aim was to determine the subtypes, distribution, and role in secretion of P2Y receptors expressed by cholangiocytes. The molecular subtypes of P2Y receptors were determined by RT-PCR. Functional studies measuring cytosolic Ca2+ (Ca) signals and bile ductular pH were performed in isolated, microperfused intrahepatic bile duct units (IBDUs). PCR products corresponding to P2Y1, P2Y2, P2Y4, P2Y6, and P2X4 receptor subtypes were identified. Luminal perfusion of ATP into IBDUs induced increases in Ca that were inhibited by apyrase and suramin. Luminal ATP, ADP, 2-methylthioadenosine 5'-triphosphate, UTP, and UDP each increased Ca. Basolateral addition of adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), but not ATP, to the perifusing bath increased Ca. IBDU perfusion with ATP-gamma-S induced net bile ductular alkalization. Cholangiocytes express multiple P2Y receptor subtypes that are expressed at the apical plasma membrane domain. P2Y receptors are also expressed on the basolateral domain, but their activation is attenuated by nucleotide hydrolysis. Activation of ductular P2Y receptors induces net ductular alkalization, suggesting that nucleotide signaling may be an important regulator of bile secretion by the liver.
Collapse
Affiliation(s)
- J A Dranoff
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut 06520-8019, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The objective of this review article is to discuss the role of secretin and its receptor in the regulation of the secretory activity of intrahepatic bile duct epithelial cells (i.e., cholangiocytes). After a brief overview of cholangiocyte functions, we provide an historical background for the role of secretin and its receptor in the regulation of ductal secretion. We review the newly developed experimental in vivo and in vitro tools, which lead to understanding of the mechanisms of secretin regulation of cholangiocyte functions. After a description of the intracellular mechanisms by which secretin stimulates ductal secretion, we discuss the heterogeneous responses of different-sized intrahepatic bile ducts to gastrointestinal hormones. Furthermore, we outline the role of a number of cooperative factors (e.g., nerves, alkaline phosphatase, gastrointestinal hormones, neuropeptides, and bile acids) in the regulation of secretin-stimulated ductal secretion. Finally, we discuss other factors that may also play an important role in the regulation of secretin-stimulated ductal secretion.
Collapse
Affiliation(s)
- N Kanno
- Department of Internal Medicine, Scott & White Hospital and Texas A&M University System Health Science Center, College of Medicine, TX 76504, USA
| | | | | | | |
Collapse
|
34
|
Nathanson MH, Burgstahler AD, Masyuk A, Larusso NF. Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochem J 2001; 358:1-5. [PMID: 11485545 PMCID: PMC1222025 DOI: 10.1042/0264-6021:3580001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATP receptors are ubiquitously expressed and are potential targets for the therapy of a number of disorders. However, delivery of ATP or other nucleotides to specific tissues is problematic, and no pharmacological means to stimulate the release of endogenous ATP has been described. We examined the effects of the bile acid ursodeoxycholic acid (UDCA) on ATP release into bile, since this bile acid is the only agent known to be of therapeutic benefit in secretory disorders of the liver, and since its mechanism of action is not established. Both UDCA and its taurine conjugate stimulated secretion of ATP by isolated rat hepatocytes, and produced measurable increases in ATP in bile of isolated rat liver. Perfusion of ATP into microdissected bile-duct segments induced Ca(2+) signalling in bile-duct epithelia, while perfusion of bile acid did not. Thus UDCA may promote bile flow by inducing hepatocytes to release ATP into bile, which then stimulates fluid and electrolyte secretion by bile-duct epithelia downstream via changes in cytosolic Ca(2+). Moreover, these findings demonstrate the feasibility of using pharmacological means to induce secretion of endogenous ATP. Since the liver and other epithelial organs express luminal ATP receptors, these findings more generally suggest that a mechanism exists for pharmacological activation of this paracrine signalling pathway. This strategy may be useful for treatment of cystic fibrosis and other secretory disorders of the liver and other epithelial tissues.
Collapse
Affiliation(s)
- M H Nathanson
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520-8019, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
New insights into the regulation of hepatobiliary transport proteins have provided the basis for a better understanding of the pathogenesis of cholestatic liver diseases. Mutations of transporter genes can cause hereditary cholestatic syndromes, the study of which has shed much light on the basic mechanisms of bile secretion and cholestasis. Important new studies have been published about the pathogenesis, clinical features, and treatment of primary biliary cirrhosis, primary sclerosing cholangitis, cholestasis of pregnancy, total parenteral nutrition-induced cholestasis, and drug-induced cholestasis.
Collapse
Affiliation(s)
- M Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl Franzens University School of Medicine, Graz, Austria
| | | |
Collapse
|