1
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
2
|
Ohm B, Moneke I, Jungraithmayr W. Targeting cluster of differentiation 26 / dipeptidyl peptidase 4 (CD26/DPP4) in organ fibrosis. Br J Pharmacol 2023; 180:2846-2861. [PMID: 36196001 DOI: 10.1111/bph.15967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Cluster of differentiation 26 (CD26)/dipeptidyl peptidase 4 (DPP4) is an exopeptidase that is expressed as a transmembrane protein in many organs but also present in a circulating soluble form. Beyond its enzymatic and costimulatory activity, CD26/DPP4 is involved in the pathogenesis of chronic fibrotic diseases across many organ types, such as liver cirrhosis, kidney fibrosis and lung fibrosis. Organ fibrosis is associated with a high morbidity and mortality, and there are no causative therapies that can effectively attenuate the progress of the disease. Growing evidence suggests that inhibiting CD26/DPP4 can modulate the profibrotic tissue microenvironment and thus reduce fibrotic changes within affected organs. This review summarizes the role of CD26/DPP4 in fibroproliferative disorders and highlights new opportunities for an antifibrotic treatment by CD26/DPP4 inhibition. As a major advantage, CD26/DPP4 inhibitors have been in safe and routine clinical use in type 2 diabetes for many years and thus qualify for repurposing to repurpose as a promising therapeutic against fibrosis. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabelle Moneke
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Garbuzenko DV. Current strategies for targeted therapy of liver fibrosis. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-154-165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liver fibrosis (LF) is an unfavorable event in the natural course of chronic liver diseases (CLD), therefore, early implementation and widespread use of antifibrotic therapy methods is a pressing issue in hepatology. The aim of the review was to describe current approaches to targeted therapy of LF.PubMed database, Google Scholar search engine, Cochrane Database of Systematic Reviews, eLIBRARY.RU scientific electronic library, as well as reference lists of articles were used to search for scientific articles. The publications that corresponded to the aim of the study were selected for the period from 1998 to 2021 by the terms “liver fibrosis”, “pathogenesis”, and “treatment”. Inclusion criteria were restricted to targeted therapy of LF.Despite the growing evidence for reversibility of LF, there are currently no effective or clinically approved regimens for its specific therapy. However, taking into account the relevance of the issue, scientific research in this area is necessary. Multiple drugs with a good safety profile have been studied, which, though intended for other purposes, can have a positive effect on LF. In addition, a number of innovative approaches that differ from pharmacotherapy inspire optimism about finding a solution to this problem. It is obvious that studies focused on well-characterized groups of patients with confirmed histologic, elastography, clinical, and radiological parameters are required. This is a challenging task, since the key point will be stratification of risk based on ethnicity, etiology, and clinical status, and very large samples will be required for a reliable assessment. Nevertheless, the solution will increase efficiency of treatment for patients with CLD, improve their prognosis and quality of life, and significantly reduce the need for liver transplantation, a demand for which remains extremely high worldwide.
Collapse
|
5
|
Cenko E, Badimon L, Bugiardini R, Claeys MJ, De Luca G, de Wit C, Derumeaux G, Dorobantu M, Duncker DJ, Eringa EC, Gorog DA, Hassager C, Heinzel FR, Huber K, Manfrini O, Milicic D, Oikonomou E, Padro T, Trifunovic-Zamaklar D, Vasiljevic-Pokrajcic Z, Vavlukis M, Vilahur G, Tousoulis D. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res 2021; 117:2705-2729. [PMID: 34528075 PMCID: PMC8500019 DOI: 10.1093/cvr/cvab298] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
The cardiovascular system is significantly affected in coronavirus disease-19 (COVID-19). Microvascular injury, endothelial dysfunction, and thrombosis resulting from viral infection or indirectly related to the intense systemic inflammatory and immune responses are characteristic features of severe COVID-19. Pre-existing cardiovascular disease and viral load are linked to myocardial injury and worse outcomes. The vascular response to cytokine production and the interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and angiotensin-converting enzyme 2 receptor may lead to a significant reduction in cardiac contractility and subsequent myocardial dysfunction. In addition, a considerable proportion of patients who have been infected with SARS-CoV-2 do not fully recover and continue to experience a large number of symptoms and post-acute complications in the absence of a detectable viral infection. This conditions often referred to as 'post-acute COVID-19' may have multiple causes. Viral reservoirs or lingering fragments of viral RNA or proteins contribute to the condition. Systemic inflammatory response to COVID-19 has the potential to increase myocardial fibrosis which in turn may impair cardiac remodelling. Here, we summarize the current knowledge of cardiovascular injury and post-acute sequelae of COVID-19. As the pandemic continues and new variants emerge, we can advance our knowledge of the underlying mechanisms only by integrating our understanding of the pathophysiology with the corresponding clinical findings. Identification of new biomarkers of cardiovascular complications, and development of effective treatments for COVID-19 infection are of crucial importance.
Collapse
Affiliation(s)
- Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40134 Bologna, Italy
| | - Lina Badimon
- Cardiovascular Program ICCC-Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV, Barcelona, Spain
| | - Raffaele Bugiardini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40134 Bologna, Italy
| | - Marc J Claeys
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Giuseppe De Luca
- Cardiovascular Department of Cardiology, Ospedale “Maggiore della Carità”, Eastern Piedmont University, Novara, Italy
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Lübeck, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Geneviève Derumeaux
- IMRB U955, UPEC, Créteil, France
- Department of Physiology, AP-HP, Henri-Mondor Teaching Hospital, Créteil, France
- Fédération Hospitalo-Universitaire « SENEC », Créteil, France
| | - Maria Dorobantu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, Amsterdam Cardiovascular Science Institute, Amsterdam University Medical Centres, Amsterdam, The Netherlands
- Department of Physiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Diana A Gorog
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
- Department of Postgraduate Medicine, University of Hertfordshire, Hatfield, UK
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Frank R Heinzel
- Department of Cardiology, Charité-Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Kurt Huber
- 3rd Medical Department, Cardiology and Intensive Care Medicine, Wilhelminen Hospital, Vienna, Austria
- Medical School, Sigmund Freud University, Vienna, Austria
| | - Olivia Manfrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Giuseppe Massarenti 9, 40134 Bologna, Italy
| | - Davor Milicic
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Evangelos Oikonomou
- Department of Cardiology, ‘Hippokration’ General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Teresa Padro
- Cardiovascular Program ICCC-Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV, Barcelona, Spain
| | - Danijela Trifunovic-Zamaklar
- Cardiology Department, Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Marija Vavlukis
- University Clinic of Cardiology, Medical Faculty, Ss' Cyril and Methodius University in Skopje, Skopje, Republic of Macedonia
| | - Gemma Vilahur
- Cardiovascular Program ICCC-Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, CiberCV, Barcelona, Spain
| | - Dimitris Tousoulis
- Department of Cardiology, ‘Hippokration’ General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
6
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Cardiac fibrosis models using human induced pluripotent stem cell-derived cardiac tissues allow anti-fibrotic drug screening in vitro. Stem Cell Res 2021; 54:102420. [PMID: 34126557 DOI: 10.1016/j.scr.2021.102420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
Drug efficacy assessment without using animals is important for development of cardiac fibrosis treatment. In this study, potential anti-fibrotic drugs were screened in a model of diseased myocardium using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and non-CM in in vitro and in vivo heart failure models. Cardiomyogenic differentiation was induced in hiPSC to generate cardiac tissue, including both iPSC-CM and non-CM expressing fibroblast markers. Stimulation with TGF-β significantly increased cardiac fibrotic extracellular matrix (ECM) gene expression, and decreased cardiac contractile/relaxation velocity. Anti-fibrotic HGF significantly decreased fibrotic changes induced by TGF-β. A prostacyclin agonist, ONO-1301 (ONO), camostat mesilate (Cs), and pirfenidone (Pf) significantly decreased fibrotic ECM expression, and improved contraction/relaxation in the model stimulated with TGF-β. Consistent with the in vitro assay, the administration of ONO, Cs, or Pf for 8 weeks in J2N-k hamsters preserved the left ventricular ejection fraction and decreased cardiac fibrosis compared with the controls. The in vitro model simulating fibrotic cardiac tissue showed precise screening of anti-fibrotic drugs which indicated the expected therapeutic response in an in vivo heart failure model, suggesting that the in vitro model presented in this study is a useful tool for the screening of anti-fibrotic drugs.
Collapse
|
8
|
Breining P, Frølund AL, Højen JF, Gunst JD, Staerke NB, Saedder E, Cases-Thomas M, Little P, Nielsen LP, Søgaard OS, Kjolby M. Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety. Basic Clin Pharmacol Toxicol 2020; 128:204-212. [PMID: 33176395 DOI: 10.1111/bcpt.13533] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022]
Abstract
The coronavirus responsible for COVID-19, SARS-CoV-2, utilizes a viral membrane spike protein for host cell entry. For the virus to engage in host membrane fusion, SARS-CoV-2 utilizes the human transmembrane surface protease, TMPRSS2, to cleave and activate the spike protein. Camostat mesylate, an orally available well-known serine protease inhibitor, is a potent inhibitor of TMPRSS2 and has been hypothesized as a potential antiviral drug against COVID-19. In vitro human cell and animal studies have shown that camostat mesylate inhibits virus-cell membrane fusion and hence viral replication. In mice, camostat mesylate treatment during acute infection with influenza, also dependent on TMPRSS2, leads to a reduced viral load. The decreased viral load may be associated with an improved patient outcome. Because camostat mesylate is administered as an oral drug, it may be used in outpatients as well as inpatients at all disease stages of SARS-CoV-2 infection if it is shown to be an effective antiviral agent. Clinical trials are currently ongoing to test whether this well-known drug could be repurposed and utilized to combat the current pandemic. In the following, we will review current knowledge on camostat mesylate mode of action, potential benefits as an antiviral agent and ongoing clinical trials.
Collapse
Affiliation(s)
- Peter Breining
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Lier Frølund
- Medical School, Faculty of health, Aarhus University, Aarhus, Denmark
| | - Jesper Falkesgaard Højen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Damsgaard Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nina B Staerke
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Eva Saedder
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Lars Peter Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,University of Dundee, Dundee, Scotland
| |
Collapse
|
9
|
Hushmandi K, Bokaie S, Hashemi M, Moghadam ER, Raei M, Hashemi F, Bagheri M, Habtemariam S, Nabavi SM. A review of medications used to control and improve the signs and symptoms of COVID-19 patients. Eur J Pharmacol 2020; 887:173568. [PMID: 32956644 PMCID: PMC7501068 DOI: 10.1016/j.ejphar.2020.173568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
In December 2019, an unprecedented outbreak of pneumonia associated with a novel coronavirus disease 2019 (COVID-19) emerged in Wuhan City, Hubei province, China. The virus that caused the disease was officially named by the World Health Organization (WHO) as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the high transmission rate of SARS-CoV-2, it became a global pandemic and public health emergency within few months. Since SARS-CoV-2 is genetically 80% homologous with the SARS-CoVs family, it is hypothesized that medications developed for the treatment of SARS-CoVs may be useful in the control and management of SARS-CoV-2. In this regard, some medication being tested in clinical trials and in vitro studies include anti-viral RNA polymerase inhibitors, HIV-protease inhibitors, anti-inflammatory agents, angiotensin converting enzyme type 2 (ACE 2) blockers, and some other novel medications. In this communication, we reviewed the general characteristics of medications, medical usage, mechanism of action, as well as SARS-CoV-2 related trials.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Farid Hashemi
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Bagheri
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, United Kingdom
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ahmad J, Ikram S, Hafeez AB, Durdagi S. Physics-driven identification of clinically approved and investigation drugs against human neutrophil serine protease 4 (NSP4): A virtual drug repurposing study. J Mol Graph Model 2020; 101:107744. [PMID: 33032202 DOI: 10.1016/j.jmgm.2020.107744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023]
Abstract
Neutrophils synthesize four immune associated serine proteases: Cathepsin G (CTSG), Elastase (ELANE), Proteinase 3 (PRTN3) and Neutrophil Serine Protease 4 (NSP4). While previously considered to be immune modulators, overexpression of neutrophil serine proteases correlates with various disease conditions. Therefore, identifying novel small molecules that can potentially control or inhibit the proteolytic activity of these proteases is crucial to revert or temper the aggravated disease phenotype. To the best of our knowledge, although there is limited data for inhibitors of other neutrophil protease members, there is no previous clinical study of a synthetic small molecule inhibitor targeting NSP4. In this study, an integrated molecular modeling algorithm was performed within a virtual drug repurposing study to identify novel inhibitors for NSP4, using clinically approved and investigation drugs library (∼8000 compounds). Based on our rigorous filtration, we found that following molecules Becatecarin, Iogulamide, Delprostenate and Iralukast are predicted to block the activity of NSP4 by interacting with core catalytic residues. The selected ligands were energetically more favorable compared to the reference molecule. The result of this study identifies promising molecules as potential lead candidates.
Collapse
Affiliation(s)
- Jamshaid Ahmad
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan.
| | - Saima Ikram
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Ahmer Bin Hafeez
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
11
|
Dawood RM, El-Meguid MA, Salum GM, El Awady MK. Key Players of Hepatic Fibrosis. J Interferon Cytokine Res 2020; 40:472-489. [PMID: 32845785 DOI: 10.1089/jir.2020.0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Reham M. Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A. El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K. El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
12
|
Xia SH. Prospect and clinical value of oxymatrine in prevention and treatment of pancreatic fibrosis. Shijie Huaren Xiaohua Zazhi 2020; 28:819-826. [DOI: 10.11569/wcjd.v28.i17.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies have confirmed that pancreatic stellate cell activation is the central event in the initiation and development of pancreatic fibrosis (PF), but the specific mechanism of PF is still unknown, and there is no specific treatment for PF. Some basic studies have confirmed that oxymatrine (OMT) has a certain therapeutic effect on PF, but further research is needed. It can be predicted that OMT has a far-reaching research prospect and good clinical application value for the prevention and treatment of PF, and is also conducive to the better development and utilization of traditional Chinese herbal medicine radix sophorae flavescentis.
Collapse
Affiliation(s)
- Shi-Hai Xia
- Gastroenterology Department of Medical Center of the Chinese People's Armed Police Force (Institute of Digestive Diseases of Medical Center), Medical Center for Hepatobiliary, Pancreatic and Splenic Disease of the Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin 300162, China
| |
Collapse
|
13
|
Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med 2020; 217:e20190103. [PMID: 32997468 PMCID: PMC7062524 DOI: 10.1084/jem.20190103] [Citation(s) in RCA: 659] [Impact Index Per Article: 131.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
TGF-β is extensively implicated in the pathogenesis of fibrosis. In fibrotic lesions, spatially restricted generation of bioactive TGF-β from latent stores requires the cooperation of proteases, integrins, and specialized extracellular matrix molecules. Although fibroblasts are major targets of TGF-β, some fibrogenic actions may reflect activation of other cell types, including macrophages, epithelial cells, and vascular cells. TGF-β–driven fibrosis is mediated through Smad-dependent or non-Smad pathways and is modulated by coreceptors and by interacting networks. This review discusses the role of TGF-β in fibrosis, highlighting mechanisms of TGF-β activation and signaling, the cellular targets of TGF-β actions, and the challenges of therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
14
|
Antifibrotics in liver disease: are we getting closer to clinical use? Hepatol Int 2018; 13:25-39. [PMID: 30302735 DOI: 10.1007/s12072-018-9897-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
The process of wound healing in response to chronic liver injury leads to the development of liver fibrosis. Regardless of etiology, the profound impact of the degree of liver fibrosis on the prognosis of chronic liver diseases has been well demonstrated. While disease-specific therapy, such as treatments for viral hepatitis, has been shown to reverse liver fibrosis and cirrhosis in both clinical trials and real-life practice, subsets of patients do not demonstrate fibrosis regression. Moreover, where disease-specific therapies are not available, the need for antifibrotics exists. Increased understanding into the pathogenesis of liver fibrosis sets the stage to focus on antifibrotic therapies attempting to: (1) Minimize liver injury and inflammation; (2) Inhibit liver fibrogenesis by enhancing or inhibiting target receptor-ligand interactions or intracellular signaling pathways; and (3) Promote fibrosis resolution. While no antifibrotic therapies are currently available, a number are now being evaluated in clinical trials, and their use is becoming closer to reality for select subsets of patients.
Collapse
|
15
|
Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine 2018; 124:154542. [PMID: 30241896 DOI: 10.1016/j.cyto.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
In their quiescent state, Hepatic stellate cells (HSCs), are present in the sub-endothelial space of Disse and have minimal interaction with immune cells. However, upon activation following injury, HSCs directly or indirectly interact with various immune cells that enter the space of Disse and thereby regulate diverse hepatic function and immune physiology. Other than the normal physiological functions of HSCs such as hepatic homeostasis, maturation and differentiation, they also participate in hepatic inflammation by releasing a battery of inflammatory cytokines and chemokines and interacting with other liver cells. Here, we have reviewed the role of HSC in the pathogenesis of liver inflammation and some infectious diseases in order to understand how the interplay between immune cells and HSCs regulates the overall outcome and disease pathology.
Collapse
|
16
|
Li M, Qin XY, Furutani Y, Inoue I, Sekihara S, Kagechika H, Kojima S. Prevention of acute liver injury by suppressing plasma kallikrein-dependent activation of latent TGF-β. Biochem Biophys Res Commun 2018; 504:857-864. [PMID: 30219233 DOI: 10.1016/j.bbrc.2018.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 01/30/2023]
Abstract
Acute liver injury (ALI) is highly lethal acute liver failure caused by different etiologies. Transforming growth factor β (TGF-β) is a multifunctional cytokine and a well-recognized inducer of apoptotic and necrotic cell death in hepatocytes. Latent TGF-β is activated partly through proteolytic cleavage by a serine protease plasma kallikrein (PLK) between the R58 and L59 residues of its propeptide region. Recently, we developed a specific monoclonal antibody to detect the N-terminal side LAP degradation products ending at residue R58 (R58 LAP-DPs) that reflect PLK-dependent TGF-β activation. This study aimed to explore the potential roles of PLK-dependent TGF-β activation in the pathogenesis of ALI. We established a mouse ALI model via the injection of anti-Fas antibodies (Jo2) and observed increases in the TGF-β1 mRNA level, Smad3 phosphorylation, TUNEL-positive apoptotic hepatocytes and R58-positive cells in the liver tissues of Jo2-treated mice. The R58 LAP-DPs were observed in/around F4/80-positive macrophages, while macrophage depletion with clodronate liposomes partly alleviated the Jo2-induced liver injury. Blocking PLK-dependent TGF-β activation using either the serine proteinase inhibitor FOY305 or the selective PLK inhibitor PKSI-527 or blocking the TGF-β receptor-mediated signaling pathway using SB431542 significantly prevented Jo2-induced hepatic apoptosis and mortality. Furthermore, similar phenomena were observed in the mouse model of ALI with the administration of acetaminophen (APAP). In summary, R58 LAP-DPs reflecting PLK-dependent TGF-β activation may serve as a biomarker for ALI, and targeting PLK-dependent TGF-β activation has potential as a therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Mengqian Li
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Saitama, Japan; Graduate School of Medical & Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Saitama, Japan
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Saitama, Japan
| | - Ikuyo Inoue
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Saitama, Japan
| | - Sanae Sekihara
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Saitama, Japan
| | - Hiroyuki Kagechika
- Graduate School of Medical & Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Saitama, Japan; Graduate School of Medical & Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
17
|
Hammad S, Cavalcanti E, Werle J, Caruso ML, Dropmann A, Ignazzi A, Ebert MP, Dooley S, Giannelli G. Galunisertib modifies the liver fibrotic composition in the Abcb4Ko mouse model. Arch Toxicol 2018; 92:2297-2309. [PMID: 29808285 DOI: 10.1007/s00204-018-2231-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/23/2018] [Indexed: 01/06/2023]
Abstract
Transforming growth factor (TGF)-β stimulates extracellular matrix (ECM) deposition during development of liver fibrosis and cirrhosis, the most important risk factor for the onset of hepatocellular carcinoma. In liver cancer, TGF-β is responsible for a more aggressive and invasive phenotype, orchestrating remodeling of the tumor microenvironment and triggering epithelial-mesenchymal transition of cancer cells. This is the scientific rationale for targeting the TGF-β pathway via a small molecule, galunisertib (intracellular inhibitor of ALK5) in clinical trials to treat liver cancer patients at an advanced disease stage. In this study, the hypothesis that galunisertib modifies the tissue microenvironment via inhibition of the TGF-β pathway is tested in an experimental preclinical model. At the age of 6 months, Abcb4ko mice-a well-established model for chronic liver disease development and progression-are treated twice daily with galunisertib (150 mg/kg) via oral gavage for 14 consecutive days. Two days after the last treatment, blood plasma and livers are harvested for further assessment, including fibrosis scoring and ECM components. The reduction of Smad2 phosphorylation in both parenchymal and non-parenchymal liver cells following galunisertib administration confirms the treatment effectiveness. Damage-related galunisertib does not change cell proliferation, macrophage numbers and leucocyte recruitment. Furthermore, no clear impact on the amount of fibrosis is evident, as documented by PicroSirius red and Gomori-trichome scoring. On the other hand, several fibrogenic genes, e.g., collagens (Col1α1 and Col1α2), Tgf-β1 and Timp1, mRNA levels are significantly downregulated by galunisertib administration when compared to controls. Most interestingly, ECM/stromal components, fibronectin and laminin-332, as well as the carcinogenic β-catenin pathway, are remarkably reduced by galunisertib-treated Abcb5ko mice. In conclusion, TGF-β inhibition by galunisertib interferes, to some extent, with chronic liver progression, not by reducing the stage of liver fibrosis as measured by different scoring systems, but rather by modulating the biochemical composition of the deposited ECM, likely affecting the fate of non-parenchymal cells.
Collapse
Affiliation(s)
- Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Forensic and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| | - Elisabetta Cavalcanti
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Julia Werle
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria Lucia Caruso
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Anne Dropmann
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Ignazzi
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy.
| |
Collapse
|
18
|
Perumal N, Perumal M, Halagowder D, Sivasithamparam N. Morin attenuates diethylnitrosamine-induced rat liver fibrosis and hepatic stellate cell activation by co-ordinated regulation of Hippo/Yap and TGF-β1/Smad signaling. Biochimie 2017; 140:10-19. [PMID: 28552397 DOI: 10.1016/j.biochi.2017.05.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
Abstract
Despite great progress in understanding the activation of hepatic stellate cells (HSCs) during liver fibrosis, therapeutic approaches to inhibit HSC activation remain very limited. Recent reports highlight Yes-associated protein (Yap) and transforming growth factor-β1 (TGF-β1) as critical regulators of HSC activation and henceforth a compound targeting Hippo/Yap and TGF-β1/Smad pathways would be a potential anti-fibrotic candidate. Morin, a dietary flavonoid, was earlier reported to inhibit HSC proliferation and induction of apoptosis of cultured HSCs, mainly by suppressing Wnt/β-catenin and NF-κB signaling, but its effect on Hippo/Yap and TGF-β1/Smad pathways was not determined. To address this concern, this study was carried out in cultured LX-2 cells and diethylnitrosamine-induced fibrotic rats. Morin activated hippo signaling through significantly increased expression of Mst1 and Lats1 with decreased expression of transcriptional effectors Yap/TAZ, thereby prevented HSC activation and also suppressed the expression of exacerbated TGF-β/Smad signaling molecules such as TGF-β1, p-Smad2/3, collagen-I, MMP-2, MMP-9 and TIMP-1 in cultured LX-2 and DEN induced fibrotic rats. Both the in vitro and in vivo results clearly showed that, morin by acting on Hippo/Yap and TGF-β1/Smad pathways, ameliorated experimental liver fibrosis, indicating that morin has potential for effective treatment of liver fibrosis.
Collapse
Affiliation(s)
- NaveenKumar Perumal
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| | - MadanKumar Perumal
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, India; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Devaraj Halagowder
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | |
Collapse
|
19
|
Plasma Kallikrein-Dependent Transforming Growth Factor-β Activation in Patients With Chronic Pancreatitis and Pancreatic Cancer. Pancreas 2017; 46:e20-e22. [PMID: 28187111 DOI: 10.1097/mpa.0000000000000736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
20
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
21
|
Bardou O, Menou A, François C, Duitman JW, von der Thüsen JH, Borie R, Sales KU, Mutze K, Castier Y, Sage E, Liu L, Bugge TH, Fairlie DP, Königshoff M, Crestani B, Borensztajn KS. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis. Am J Respir Crit Care Med 2016; 193:847-60. [PMID: 26599507 DOI: 10.1164/rccm.201502-0299oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. OBJECTIVES To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis. METHODS Matriptase expression was assessed in tissue specimens from patients with IPF versus control subjects using quantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blotting, while matriptase activity was monitored by fluorogenic substrate cleavage. Matriptase-induced fibroproliferative responses and the receptor involved were characterized in human primary pulmonary fibroblasts by Western blot, viability, and migration assays. In the murine model of bleomycin-induced pulmonary fibrosis, the consequences of matriptase depletion, either by using the pharmacological inhibitor camostat mesilate (CM), or by genetic down-regulation using matriptase hypomorphic mice, were characterized by quantification of secreted collagen and immunostainings. MEASUREMENTS AND MAIN RESULTS Matriptase expression and activity were up-regulated in IPF and bleomycin-induced pulmonary fibrosis. In cultured human pulmonary fibroblasts, matriptase expression was significantly induced by transforming growth factor-β. Furthermore, matriptase elicited signaling via protease-activated receptor-2 (PAR-2), and promoted fibroblast activation, proliferation, and migration. In the experimental bleomycin model, matriptase depletion, by the pharmacological inhibitor CM or by genetic down-regulation, diminished lung injury, collagen production, and transforming growth factor-β expression and signaling. CONCLUSIONS These results implicate increased matriptase expression and activity in the pathogenesis of pulmonary fibrosis in human IPF and in an experimental mouse model. Overall, targeting matriptase, or treatment by CM, which is already in clinical use for other diseases, may represent potential therapies for IPF.
Collapse
Affiliation(s)
- Olivier Bardou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Awen Menou
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Charlène François
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - Jan Willem Duitman
- 3 Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Raphaël Borie
- 2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Katiuchia Uzzun Sales
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.,7 Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Kathrin Mutze
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Yves Castier
- 9 Assistance Publique-Hôpitaux de Paris, Department of Vascular and Thoracic Surgery, Bichat-Claude Bernard University Hospital, Denis Diderot University and Medical School Paris VII, France
| | - Edouard Sage
- 10 Department of Thoracic Surgery and Lung Transplantation, Hôpital Foch, Suresnes, France; and
| | - Ligong Liu
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Thomas H Bugge
- 6 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David P Fairlie
- 11 Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Mélanie Königshoff
- 8 Member of the German Center of Lung Research, Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Germany
| | - Bruno Crestani
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France.,5 Assistance Publique-Hôpitaux de Paris, Department of Pulmonology A, Competence Center for Rare Lung Diseases, Bichat-Claude Bernard University Hospital, Paris, France
| | - Keren S Borensztajn
- 1 Inserm UMR1152, Medical School Xavier Bichat, Paris, France.,2 Université Paris Diderot, Sorbonne Paris Cité, Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| |
Collapse
|
22
|
Hou F, Liu R, Liu X, Cui L, Wen Y, Yan S, Yin C. Attenuation of liver fibrosis by herbal compound 861 via upregulation of BMP-7/Smad signaling in the bile duct ligation model rat. Mol Med Rep 2016; 13:4335-42. [PMID: 27035233 DOI: 10.3892/mmr.2016.5071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 03/08/2016] [Indexed: 01/18/2023] Open
Abstract
Herbal compound 861 (Cpd 861) exerts an anti-fibrotic effect in patients with hepatic fibrosis; however, the anti-fibrotic mechanism has yet to be fully elucidated. The present study aimed to explore the mechanistic basis for the anti-fibrotic effect, with a focus on bone morphogenetic protein 7 (BMP-7)/Smad signaling in a bile duct ligation (BDL)-induced liver fibrosis rat model. Following the induction of hepatic fibrosis, rats induced by BDL were treated with 9 g/kg Cpd 861 daily or an equal volume of saline for 28 days. Serum samples were prepared for monitoring the levels of alanine transaminase, aspartate transaminase and total bilirubin, and direct bilirubin analyses and liver samples were used to investigate gene expression, protein localization and protein expression analysis using real‑time quantitative polymerase chain reaction, immunohistochemistry and western blotting. The results revealed the attenuation of liver fibrosis by Cpd 861 in the histological and biochemical experiments. BMP‑7 and phospho (p)‑Smad1/5/8 were localized predominantly in the cytoplasm of hepatocytes. In comparison with the saline‑treated BDL rats, Cpd 861 markedly upregulated the gene expression of BMP‑7 and Smad5, as well as the protein expression of BMP‑7 and Smad1/5. In addition, p-Smad1/5/8 protein expression was markedly increased by Cpd 861 in the BDL model. These results indicated that Cpd 861 alleviates hepatic fibrosis possibly via the upregulation and activation of BMP-7/Smad signaling in hepatic fibrotic rats.
Collapse
Affiliation(s)
- Fei Hou
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ruixia Liu
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiaoya Liu
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lijian Cui
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yan Wen
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Songbiao Yan
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, P.R. China
| | - Chenghong Yin
- Department of Infection, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
23
|
Hatori A, Yui J, Xie L, Kumata K, Yamasaki T, Fujinaga M, Wakizaka H, Ogawa M, Nengaki N, Kawamura K, Wang F, Zhang MR. Utility of Translocator Protein (18 kDa) as a Molecular Imaging Biomarker to Monitor the Progression of Liver Fibrosis. Sci Rep 2015; 5:17327. [PMID: 26612465 PMCID: PMC4661446 DOI: 10.1038/srep17327] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatic fibrosis is the wound healing response to chronic hepatic injury caused by various factors. In this study, we aimed to evaluate the utility of translocator protein (18 kDa) (TSPO) as a molecular imaging biomarker for monitoring the progression of hepatic fibrosis to cirrhosis. Model rats were induced by carbon tetrachloride (CCl4), and liver fibrosis was assessed. Positron emission tomography (PET) with N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-[18F]fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]-acetamide ([18F]FEDAC), a radioprobe specific for TSPO, was used for noninvasive visualisation in vivo. PET scanning, immunohistochemical staining, ex vivo autoradiography, and quantitative reverse-transcription polymerase chain reaction were performed to elucidate the relationships among radioactivity uptake, TSPO levels, and cellular sources enriching TSPO expression in damaged livers. PET showed that uptake of radioactivity in livers increased significantly after 2, 4, 6, and 8 weeks of CCl4 treatment. Immunohistochemistry demonstrated that TSPO was mainly expressed in macrophages and hepatic stellate cells (HSCs). TSPO-expressing macrophages and HSCs increased with the progression of liver fibrosis. Interestingly, the distribution of radioactivity from [18F]FEDAC was well correlated with TSPO expression, and TSPO mRNA levels increased with the severity of liver damage. TSPO was a useful molecular imaging biomarker and could be used to track the progression of hepatic fibrosis to cirrhosis with PET.
Collapse
Affiliation(s)
- Akiko Hatori
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanao Ogawa
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Affiliated to Nanjing Medical University, 68 Chanle Road, Nanjing 210006, China
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
24
|
Li T, Niu L, Li M, Liu Y, Xu Z, Gao X, Liu D. Effects of small interfering RNA-mediated downregulation of the Krüppel-like factor 4 gene on collagen metabolism in human hepatic stellate cells. Mol Med Rep 2015; 12:3972-3978. [PMID: 26018498 DOI: 10.3892/mmr.2015.3848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 05/01/2015] [Indexed: 11/06/2022] Open
Abstract
The nuclear transcription factor Krüppel-like factor 4 (KLF4) has an important role in cellular biological processes. However, the influence of KLF4 on collagen metabolism remains to be elucidated. In the present study, the effects and underlying mechanism of action of KLF4 on collagen metabolism was investigated in human hepatic stellate cells (HSC), by downregulating KLF4 expression using small interfering RNA (siRNA). The effects of KLF4 silencing by three predesigned siRNAs (siRNA1‑3) were evaluated using both reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting in the human LX2 HSC line. The mRNA expression levels of KLF4 were decreased by ~34, 40, and 69% in the siRNA1, siRNA2, and siRNA3 groups, respectively, as compared with the control group. These results were concordant with the protein expression levels of KLF4, as determined by western blot analysis. In the siRNA3 group, the quantity of type Ⅰ and type III collagen, and the expression levels of collagen metabolism proteins including matrix metalloproteinase‑1 (MMP‑1) and tissue inhibitors of metalloproteinases‑1 (TIMP‑1), were determined using both RT‑qPCR and western blotting. Both the mRNA and protein expression levels of type I and type III collagen were significantly decreased in the siRNA3 group, as compared with the control group. The mRNA and protein expression levels of TIMP‑1 were also significantly reduced in the siRNA3‑treated cells, whereas the mRNA and protein expression levels of MMP‑1 were significantly upregulated. Furthermore, KLF4 gene silencing significantly decreased the expression levels of numerous cytokines, including transforming grow factor‑β1, tumor necrosis factor‑α, and interleukin‑1β. The results of the present study provide evidence of siRNA‑mediated silencing of KLF4 expression, which may promote extracellular matrix (ECM) degradation, and inhibition of ECM synthesis. Therefore, KLF4 may be a promising target for the development of novel antifibrotic therapies.
Collapse
Affiliation(s)
- Tao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lijuan Niu
- Department of Oncology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050000, P.R. China
| | - Man Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ying Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhengrong Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xia Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Dianwu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
25
|
Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice. PLoS One 2015; 10:e0121528. [PMID: 25816330 PMCID: PMC4376873 DOI: 10.1371/journal.pone.0121528] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023] Open
Abstract
Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.
Collapse
|
26
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with uncertain pathogenesis. Endoplasmic reticulum (ER) stress has close correlations with inflammation and/or immune diseases. However, it is unknown whether aberrant ER stress is involved in SLE pathogenesis. We aimed to characterize the ER stress-related genes in patients with SLE and analyzed their correlations with the disease. Peripheral blood leucocytes were isolated from 76 well-characterized patients with SLE and 69 healthy controls. ER stress-related genes were determined at transcription level by absolute quantitative real-time polymerase chain reaction. Stepwise regression and correlation analysis were used to analyze the relationships between SLE disease and ER stress. Abnormal unfolded protein responses were found in patients with SLE with the downregulation of inositol-requiring enzyme 1 (IRE1), pancreatic ER kinase (PERK) and CCAAT/enhancer-binding protein homologous protein (CHOP) and upregulation of XBP1, XBP1s and MANF. In the patients with SLE disease activity index (SLEDAI) <12, PERK and MANF expressions were significantly decreased, compared with the patients with severe SLE (SLEDAI ≥ 12). However, there was no significant change in ATF6 mRNA expression in the patients with SLE. Negative correlation between IRE1/XBP1 and SLEDAI was observed in lower SLEDAI score group. Negative correlations between CHOP and anti-dsDNA antibody, MANF and antinuclear antibody were observed in high-SLEDAI score group. We also found that antinuclear antibody and anti-dsDNA antibodies correlated with SLEDAI in a weak positive manner. SLEDAI was negatively related with C3 level. SLEDAI and anti-dsDNA antibody showed modestly positive correlation with urine protein. These findings suggest that the abnormal unfolded protein responses, especially IRE1/XBP1 and PERK/CHOP axes, may contribute to SLE pathogenesis, which may be potential diagnosis indicators or treatment targets.
Collapse
|
27
|
Beghini M, Montes JMC, Rodrigues DBR, Teixeira VPA, Pereira SADL. Reduction of immunity in HIV-infected individuals: can fibrosis induce hypoplasia in palatine and lingual tonsils of individuals with HIV infection? Pathol Res Pract 2014; 211:27-35. [PMID: 25441659 DOI: 10.1016/j.prp.2014.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022]
Abstract
The role of tonsils in oral immunity has been described. However, the pathogenesis of HIV infection in these organs is still unclear. The aim of this study is to perform histological and immunohistochemical analysis of the palatine and lingual tonsils of autopsied individuals with or without HIV infection. Twenty-six autopsied individuals with HIV infection (HI) (n=13) and without HIV infection (CO) (n=13) were selected. Palatine and lingual tonsil fragments were collected for histological and immunohistochemical analysis. We found in the HI group a higher frequency of hyaline degeneration in both palatine and lingual tonsils; smaller follicle areas, and a higher percentage of collagen in comparison with the CO group. In the HI group, there was higher density of blood vessels in palatine tonsils than in the CO group. In the HI group, there were significant positive correlations between palatine and lingual tonsils and the area of lymphoid follicles, and between the percentage of blood vessels and collagen in palatine tonsils. In addition, there was a significant negative correlation between the percentage of collagen and lymphoid follicle area in both palatine and lingual tonsils in the HI group. These findings suggest that the immune functions of these tonsils are prejudiced by fibrosis. Therapies to reduce the neoformation of collagen are required to improve immune function of organs against pathogens.
Collapse
Affiliation(s)
- Marcela Beghini
- General Pathology Division, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Jean M C Montes
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil
| | - Denise B R Rodrigues
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Cefores, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Vicente P A Teixeira
- General Pathology Division, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Sanívia A de Lima Pereira
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Cefores, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil.
| |
Collapse
|
28
|
Hara M, Kirita A, Kondo W, Matsuura T, Nagatsuma K, Dohmae N, Ogawa S, Imajoh-Ohmi S, Friedman SL, Rifkin DB, Kojima S. LAP degradation product reflects plasma kallikrein-dependent TGF-β activation in patients with hepatic fibrosis. SPRINGERPLUS 2014; 3:221. [PMID: 24877031 PMCID: PMC4033717 DOI: 10.1186/2193-1801-3-221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/08/2014] [Indexed: 01/08/2023]
Abstract
Byproducts of cytokine activation are sometimes useful as surrogate biomarkers for monitoring cytokine generation in patients. Transforming growth factor (TGF)-β plays a pivotal role in pathogenesis of hepatic fibrosis. TGF-β is produced as part of an inactive latent complex, in which the cytokine is trapped by its propeptide, the latency-associated protein (LAP). Therefore, to exert its biological activity, TGF-β must be released from the latent complex. Several proteases activate latent TGF-β by cutting LAP. We previously reported that Camostat Mesilate, a broad spectrum protease inhibitor, which is especially potent at inhibiting plasma kallikrein (PLK), prevented liver fibrosis in the porcine serum-induced liver fibrosis model in rats. We suggested that PLK may work as an activator of latent TGF-β during the pathogenesis of liver diseases in the animal models. However, it remained to be elucidated whether this activation mechanism also functions in fibrotic liver in patients. Here, we report that PLK cleaves LAP between R58 and L59 residues. We have produced monoclonal antibodies against two degradation products of LAP (LAP-DP) by PLK, and we have used these specific antibodies to immunostain LAP-DP in liver tissues from both fibrotic animals and patients. The N-terminal side LAP-DP ending at R58 (R58 LAP-DP) was detected in liver tissues, while the C-terminal side LAP-DP beginning at L59 (L59 LAP-DP) was not detectable. The R58 LAP-DP was seen mostly in α-smooth muscle actin-positive activated stellate cells. These data suggest for the first time that the occurrence of a PLK-dependent TGF-β activation reaction in patients and indicates that the LAP-DP may be useful as a surrogate marker reflecting PLK-dependent TGF-β activation in fibrotic liver both in animal models and in patients.
Collapse
Affiliation(s)
- Mitsuko Hara
- Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Wako, Saitama, 351-0918 Japan
| | - Akiko Kirita
- Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Wako, Saitama, 351-0918 Japan
| | - Wakako Kondo
- Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Wako, Saitama, 351-0918 Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003 Japan
| | - Keisuke Nagatsuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-0003 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Team, Chemical Biology Core Facility, Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama, 351-0918 Japan
| | - Shinji Ogawa
- St. Louis Laboratories, Pfizer Worldwide Research & Development, Chesterfield, MO 63166 U.S.A
| | - Shinobu Imajoh-Ohmi
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639 Japan
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029 U.S.A
| | - Daniel B Rifkin
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016 U.S.A
| | - Soichi Kojima
- Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Wako, Saitama, 351-0918 Japan
| |
Collapse
|
29
|
Sira MM, Behairy BE, Abd-Elaziz AM, Abd Elnaby SA, Eltahan EE. Serum Inter-Alpha-Trypsin Inhibitor Heavy Chain 4 (ITIH4) in Children with Chronic Hepatitis C: Relation to Liver Fibrosis and Viremia. HEPATITIS RESEARCH AND TREATMENT 2014; 2014:307942. [PMID: 25295185 PMCID: PMC4177773 DOI: 10.1155/2014/307942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
Abstract
Liver fibrosis and viremia are determinant factors for the treatment policy and its outcome in chronic hepatitis C virus (HCV) infection. We aimed to investigate serum level of inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) and its relation to liver fibrosis and viremia in children with chronic HCV. ITIH4 was measured by ELISA in 33 treatment-naive children with proved chronic HCV and compared according to different clinical, laboratory and histopathological parameters. Liver histopathological changes were assessed using Ishak score and compared with aspartate transaminase-to-platelet ratio (APRI) and FIB-4 indices as simple noninvasive markers of fibrosis. ITIH4 was measured in a group of 30 age- and sex-matched healthy controls. ITIH4 was significantly higher in patients than in controls (54.2 ± 30.78 pg/mL versus 37.21 ± 5.39 pg/mL; P = 0.021). ITIH4, but not APRI or FIB-4, had a significant direct correlation with fibrosis stage (P = 0.015, 0.961, and 0.389, resp.), whereas, the negative correlation of ITIH4 with HCV viremia was of marginal significance (P = 0.071). In conclusion, ITIH4 significantly correlated with higher stages of fibrosis indicating a possible relation to liver fibrogenesis. The trend of higher ITIH4 with lower viremia points out a potential antiviral properties and further studies in this regard are worthwhile.
Collapse
Affiliation(s)
- Mostafa M. Sira
- 1Department of Pediatric Hepatology, National Liver Institute, Menofiya University, Shebin El-koom, Menofiya 32511, Egypt
- *Mostafa M. Sira:
| | - Behairy E. Behairy
- 1Department of Pediatric Hepatology, National Liver Institute, Menofiya University, Shebin El-koom, Menofiya 32511, Egypt
| | - Azza M. Abd-Elaziz
- 2Department of Microbiology and Immunology, National Liver Institute, Menofiya University, Shebin El-koom, Menofiya 32511, Egypt
| | - Sameh A. Abd Elnaby
- 3Department of Pediatrics, Faculty of Medicine, Menofiya University, Shebin El-koom, Menofiya 32511, Egypt
| | - Ehab E. Eltahan
- 3Department of Pediatrics, Faculty of Medicine, Menofiya University, Shebin El-koom, Menofiya 32511, Egypt
| |
Collapse
|
30
|
Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1. PLoS One 2013; 8:e82190. [PMID: 24349218 PMCID: PMC3859579 DOI: 10.1371/journal.pone.0082190] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/31/2013] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor β1 (TGF-β1) is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25)-[41-65] and TGF-β1(30)-[83-112]) to keyhole limpet hemocyanin (KLH). Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu) and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2), plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression in the rat hepatic stellate cell (HSC) line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.
Collapse
|
31
|
Sakata K, Hara M, Terada T, Watanabe N, Takaya D, Yaguchi SI, Matsumoto T, Matsuura T, Shirouzu M, Yokoyama S, Yamaguchi T, Miyazawa K, Aizaki H, Suzuki T, Wakita T, Imoto M, Kojima S. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor. Sci Rep 2013; 3:3243. [PMID: 24263861 PMCID: PMC3837337 DOI: 10.1038/srep03243] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/31/2013] [Indexed: 01/16/2023] Open
Abstract
Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.
Collapse
Affiliation(s)
- Kotaro Sakata
- 1] Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Saitama 351-0198, Japan [2] Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa 223-8522, Japan [3] Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chung H, Ramachandran R, Hollenberg MD, Muruve DA. Proteinase-activated receptor-2 transactivation of epidermal growth factor receptor and transforming growth factor-β receptor signaling pathways contributes to renal fibrosis. J Biol Chem 2013; 288:37319-31. [PMID: 24253040 DOI: 10.1074/jbc.m113.492793] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic kidney diseases cause significant morbidity and mortality in the population. During renal injury, kidney-localized proteinases can signal by cleaving and activating proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor involved in inflammation and fibrosis that is highly expressed in renal tubular cells. Following unilateral ureteric obstruction, PAR2-deficient mice displayed reduced renal tubular injury, fibrosis, collagen synthesis, connective tissue growth factor (CTGF), and α-smooth muscle actin gene expression at 7 days, compared with wild-type controls. In human proximal tubular epithelial cells in vitro, PAR2 stimulation with PAR2-activating peptide (PAR2-AP) alone significantly up-regulated the expression of CTGF, a potent profibrotic cytokine. The induction of CTGF by PAR2-AP was synergistically increased when combined with transforming growth factor-β (TGF-β). Consistent with these findings, treating human proximal tubular epithelial cells with PAR2-AP induced Smad2/3 phosphorylation in the canonical TGF-β signaling pathway. The Smad2 phosphorylation and CTGF induction required signaling via both the TGFβ-receptor and EGF receptor suggesting that PAR2 utilizes transactivation mechanisms to initiate fibrogenic signaling. Taken together, our data support the hypothesis that PAR2 synergizes with the TGFβ signaling pathway to contribute to renal injury and fibrosis.
Collapse
|
33
|
Sun WY, Song Y, Hu SS, Wang QT, Wu HX, Chen JY, Wei W. Depletion of β-arrestin2 in hepatic stellate cells reduces cell proliferation via ERK pathway. J Cell Biochem 2013. [PMID: 23192415 DOI: 10.1002/jcb.24458] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
β-Arrestins are multifunctional adaptor proteins. Recently, some new roles of β-arrestins in regulating intracellular signaling networks have been discovered, which regulate cell growth, proliferation, and apoptosis. Though, the role of β-arrestins expression in the pathology of hepatic fibrosis remains unclear. In this study, the possible relationship between the expression of β-arrestins with the experimental hepatic fibrosis and the proliferation of hepatic stellate cells (HSCs) were investigated. Porcine serum induced liver fibrosis was established in this study. At five time points, the dynamic expression of β-arrestin1, β-arrestin2, and α-smooth muscle actin (α-SMA) in rat liver tissues, was measured by immunohistochemical staining, double immunofluorescent staining, and Western blotting. This study showed that aggravation of hepatic fibrosis with gradually increasing expression of β-arrestin2 in the hepatic tissues, but not β-arrestin1. Further, as hepatic fibrosis worsens, β-arrestin2-expressing activated HSCs accounts for an increasingly larger percentage of all activated HSCs. And the expression of β-arrestin2 had a significant positive correlation with the expression of α-SMA, an activated HSCs marker. In vitro studies, the dynamic expression of β-arrestin1 and β-arrestin2 in platelet derived growth factor-BB (PDGF-BB) stimulated HSCs was assessed by Western blotting. The expression of β-arrestin2 was remarkably increased in PDGF-BB stimulated HSCs. Furthermore, the small interfering RNA (siRNA) technique was used to explore the effect of β-arrestins on the proliferation of HSCs and the activation of ERK1/2. Transfection of siRNA targeting β-arrestin2 mRNA (siβ-arrestin2) into HSCs led to a 68% and 70% reduction of β-arrestin2 mRNA and protein expression, respectively. siβ-arrestin2 abolished the effect of PDGF-BB on the proliferation of HSCs. In addition, siβ-arrestin2 exerted the inhibition of the activation of ERK1/2 in HSCs. The present study provided strong evidence for the participation of the β-arrestin2 in the pathogenesis of hepatic fibrosis. The β-arrestin2 depletion diminishes HSCs ERK1/2 signaling and proliferation stimulated by PDGF-BB. Selective targeting of β-arrestin2 inhibitors to HSCs might present as a novel strategy for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Engineering Technology Research Center of Anti-inflammatory and Immunodrugs in Anhui Province, Hefei, Anhui Province 230032, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Kawao N, Tamura Y, Okumoto K, Yano M, Okada K, Matsuo O, Kaji H. Plasminogen plays a crucial role in bone repair. J Bone Miner Res 2013; 28:1561-74. [PMID: 23456978 DOI: 10.1002/jbmr.1921] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/02/2013] [Accepted: 02/21/2013] [Indexed: 12/15/2022]
Abstract
The further development in research of bone regeneration is necessary to meet the clinical demand for bone reconstruction. Plasminogen is a critical factor of the tissue fibrinolytic system, which mediates tissue repair in the skin and liver. However, the role of the fibrinolytic system in bone regeneration remains unknown. Herein, we investigated bone repair and ectopic bone formation using plasminogen-deficient (Plg⁻/⁻) mice. Bone repair of the femur is delayed in Plg⁻/⁻ mice, unlike that in the wild-type (Plg⁺/⁺) mice. The deposition of cartilage matrix and osteoblast formation were both decreased in Plg⁻/⁻ mice. Vessel formation, macrophage accumulation, and the levels of vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) were decreased at the site of bone damage in Plg⁻/⁻ mice. Conversely, heterotopic ossification was not significantly different between Plg⁺/⁺ and Plg⁻/⁻ mice. Moreover, angiogenesis, macrophage accumulation, and the levels of VEGF and TGF-β were comparable between Plg⁺/⁺ and Plg⁻/⁻ mice in heterotopic ossification. Our data provide novel evidence that plasminogen is essential for bone repair. The present study indicates that plasminogen contributes to angiogenesis related to macrophage accumulation, TGF-β, and VEGF, thereby leading to the enhancement of bone repair.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Morinaga J, Kakizoe Y, Miyoshi T, Onoue T, Ueda M, Mizumoto T, Yamazoe R, Uchimura K, Hayata M, Shiraishi N, Adachi M, Sakai Y, Tomita K, Kitamura K. The antifibrotic effect of a serine protease inhibitor in the kidney. Am J Physiol Renal Physiol 2013; 305:F173-81. [PMID: 23698112 DOI: 10.1152/ajprenal.00586.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interstitial fibrosis is a final common pathway for the progression of chronic kidney diseases. Activated fibroblasts have an extremely important role in the progression of renal fibrosis, and transforming growth factor (TGF)-β₁ is a major activator of fibroblasts. Since previous reports have indicated that serine protease inhibitors have a potential to inhibit TGF-β₁ signaling in vitro, we hypothesized that a synthetic serine protease inhibitor, camostat mesilate (CM), could slow the progression of renal fibrosis. TGF-β₁ markedly increased the phosphorylation of TGF-β type I receptor, ERK 1/2, and Smad2/3 and the levels of profibrotic markers, such as α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), and plasminogen activator inhibitor-1, in renal fibroblasts (NRK-49F cells), and they were all significantly reduced by CM. In protocol 1, 8-wk-old male Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO) and were concurrently treated with a slow-release pellet of CM or vehicle for 14 days. Protocol 2 was similar to protocol 1 except that CM was administered 7 days after UUO. CM substantially improved renal fibrosis as determined by sirius red staining, collagen expression, and hydroxyproline levels. The phosphorylation of ERK1/2 and Smad2/3 and the levels of α-SMA, CTGF, promatrix metalloproteinase-2, and matrix metalloproteinase-2 were substantially increased by UUO, and they were all significantly attenuated by CM. These antifibrotic effects of CM were also observed in protocol 2. Our present results suggest the possibility that CM might represent a new class of therapeutic drugs for the treatment of renal fibrosis through the suppression of TGF-β₁ signaling.
Collapse
Affiliation(s)
- Jun Morinaga
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li C, Xu YM, Li HB. Preliminary experimental study of urethral reconstruction with tissue engineering and RNA interference techniques. Asian J Androl 2013; 15:430-3. [PMID: 23542139 PMCID: PMC3739635 DOI: 10.1038/aja.2013.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/19/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022] Open
Abstract
This study investigated the feasibility of replacing urinary epithelial cells with oral keratinocytes and transforming growth factor-β1 (TGF-β1) small interfering RNA (siRNA)-transfected fibroblasts seeded on bladder acellular matrix graft (BAMG) in order to reconstruct tissue-engineered urethra. Constructed siRNAs, which expressed plasmids targeting TGF-β1, were transfected into rabbit fibroblasts. The effective siRNA was screened out by RT-PCR and was transfected into rabbit fibroblasts again. Synthesis of type I collagen in culture medium was measured by enzyme-linked immuno sorbent assay (ELISA). Autologous oral keratinocytes and TGF-β1 siRNA-transfected fibroblasts were seeded onto BAMGs to obtain a tissue-engineered mucosa. The tissue-engineered mucosa was assessed morphologically and with the help of scanning electron microscopy. The TGF-β1 siRNA decreased the expression of fibroblasts synthesis type I collagen. Oral keratinocytes and TGF-β1 siRNA-transfected fibroblasts were seeded onto sterilized BAMG to obtain a tissue-engineered mucosa for urethral reconstruction. The compound graft was assessed using scanning electron microscope. Oral keratinocytes and TGF-β1 siRNA-transfected fibroblasts had a good compatibility with BAMG. The downregulation of fibroblasts synthesis type I collagen expression by constructed siRNA interfering TGF-β1 provided a potential basis for genetic therapy of urethral scar. Oral keratinocytes and TGF-β1 siRNA-transfected fibroblasts had good compatibility with BAMG and the compound graft could be a new choice for urethral reconstruction.
Collapse
Affiliation(s)
- Chao Li
- Department of Urology, Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai 200233, China.
| | | | | |
Collapse
|
37
|
Li C, Xu YM, Liu ZS, Li HB. Urethral reconstruction with tissue engineering and RNA interference techniques in rabbits. Urology 2013; 81:1075-80. [PMID: 23490528 DOI: 10.1016/j.urology.2013.01.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the feasibility of replacing urinary epithelial cells with oral keratinocytes and transforming growth factor β (TGF-β)1 siRNA transfected fibroblasts seeded on bladder acellular matrix graft (BAMG) to reconstruct urethra. METHODS Autologous oral keratinocytes and TGF-β1 siRNA transfected fibroblasts were seeded onto BAMGs to obtain a tissue-engineered mucosa. The tissue-engineered mucosa was assessed using morphology and scanning electron microscopy. In 27 male rabbits, a ventral urethral mucosal defect was created. Urethroplasty was performed with autogenic oral keratinocyte and TGF-β1 siRNA transfected fibroblast-seeded BAMGs (9 rabbits, group 1), with autogenic oral keratinocyte-seeded BAMGs (9 rabbits, group 2) or with BAMGs with no cell seeding (9 rabbits, group 3). Retrograde urethrography and histological analyses were performed to evaluate the results of urethroplasty. RESULTS In vitro, oral keratinocytes and TGF-β1 siRNA transfected fibroblasts had good biocompatibility with BAMGs. In vivo, the urethra kept a wide caliber in groups 1 and 2. Strictures were observed in group 3. Histologically, the retrieved urethra in group 3 showed fibrosis and inflammation during 6 months. Stratified epithelial layer regenerated in group 2, whereas there was no evidence of formation of capillary in the epithelial lower layer during the study period. Stratified epithelial layer and formation of capillary in the epithelial lower layer were evident after 6 months in group 1. CONCLUSION Our study suggested that oral keratinocytes and TGF-β1 siRNA transfected fibroblasts could be used as a source of seed cells for urethral tissue engineering.
Collapse
Affiliation(s)
- Chao Li
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | | | | | | |
Collapse
|
38
|
Zhong L, Wang X, Wang S, Yang L, Gao H, Yang C. The anti-fibrotic effect of bone morphogenic protein-7(BMP-7) on liver fibrosis. Int J Med Sci 2013; 10:441-50. [PMID: 23471555 PMCID: PMC3590605 DOI: 10.7150/ijms.5765] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
Background/Aims : Transforming growth factor-β1 (TGF-β1) plays an important role in the pathogenesis of liver fibrosis and cirrhosis. Recombinant human bone morphogenic protein-7 (rhBMP-7) alleviates renal fibrosis and improves kidney function. However, the beneficial effect of BMP-7 on hepatic fibrosis and cirrhosis remains unknown. The purpose of this study was to investigate the prophylactic and therapeutic effects of rhBMP-7 on liver fibrosis and the underlying mechanisms. Methods : Liver fibrosis in the rat model was induced by peritoneal injection of porcine-serum (0.5ml/kg body weight) twice a week over 8 weeks. The effect of rhBMP-7 on hepatic fibrosis was monitored in rhBMP-7 pre-treated and non-treated rats. Pathologic changes were determined by immunohistolocial staining. TGF-β1 expression was investigated by immunohistolocial staining, western blotting, and real-time PCR. Collagen secretion was measured by enzyme-linked immunosorbent assay. Results : Liver fibrosis was significantly reduced by rhBMP-7. The secretion of collagen type-I and -III was decreased by rhBMP-7 in hepatic stellate cells (HSCs) but not in hepatocytes. The anti-fibrotic effect of rhBMP-7 on liver fibrosis was resulted by blocking the nuclear accumulation of Smad2/3 or by inhibiting TGF-β1 expression in HSCs or hepatocytes. Conclusions : The anti-fibrogenic mechanism of rhBMP-7 in the rat liver fibrosis was depended on the reduction of TGF-β1 overexpression and the inhibition of TGF-β1 triggered intracellular signalling in hepatic cells.
Collapse
Affiliation(s)
- Lan Zhong
- Division of Gastroenterology, East Hospital of Tongji University School of Medicine, Shanghai 200120, China
| | | | | | | | | | | |
Collapse
|
39
|
Ahmad A, Ahmad R. Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches. Saudi J Gastroenterol 2012. [PMID: 22626794 DOI: 10.4103/1319-3767.96445]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis (HF) is a progressive condition with serious clinical complications arising from abnormal proliferation and amassing of tough fibrous scar tissue. This defiance of collagen fibers becomes fatal due to ultimate failure of liver functions. Participation of various cell types, interlinked cellular events, and large number of mediator molecules make the fibrotic process enormously complex and dynamic. However, with better appreciation of underlying cellular and molecular mechanisms of fibrosis, the assumption that HF cannot be cured is gradually changing. Recent findings have underlined the therapeutic potential of a number of synthetic compounds as well as plant derivatives for cessation or even the reversal of the processes that transforms the liver into fibrotic tissue. It is expected that future inputs will provide a conceptual framework to develop more specific strategies that would facilitate the assessment of risk factors, shortlist early diagnosis biomarkers, and eventually guide development of effective therapeutic alternatives.
Collapse
Affiliation(s)
- Areeba Ahmad
- Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | |
Collapse
|
40
|
Jia YH, Wang RQ, Mi HM, Kong LB, Ren WG, Li WC, Zhao SX, Zhang YG, Wu WJ, Nan YM, Yu J. Fuzheng Huayu recipe prevents nutritional fibrosing steatohepatitis in mice. Lipids Health Dis 2012; 11:45. [PMID: 22452814 PMCID: PMC3359233 DOI: 10.1186/1476-511x-11-45] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 03/28/2012] [Indexed: 01/21/2023] Open
Abstract
Background Fuzheng Huayu recipe (FZHY), a compound of Chinese herbal medicine, was reported to improve liver function and fibrosis in patients with hepatitis B virus infection. However, its effect on nutritional fibrosing steatohepatitis is unclear. We aimed to elucidate the role and molecular mechanism of FZHY on this disorder in mice. Methods C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 8 weeks to induce fibrosing steatohepatitis. FZHY and/or heme oxygenase-1 (HO-1) chemical inducer (hemin) were administered to mice, respectively. The effect of FZHY was assessed by comparing the severity of hepatic injury, levels of hepatic lipid peroxides, activation of hepatic stellate cells (HSCs) and the expression of oxidative stress, inflammatory and fibrogenic related genes. Results Mice fed with MCD diet for 8 weeks showed severe hepatic injury including hepatic steatosis, necro-inflammation and fibrosis. Administration of FZHY or hemin significantly lowered serum levels of alanine aminotransferase, aspartate aminotransferase, reduced hepatic oxidative stress and ameliorated hepatic inflammation and fibrosis. An additive effect was observed in mice fed MCD supplemented with FZHY or/and hemin. These effects were associated with down-regulation of pro-oxidative stress gene cytochrome P450 2E1, up-regulation of anti-oxidative gene HO-1; suppression of pro-inflammation genes tumor necrosis factor alpha and interleukin-6; and inhibition of pro-fibrotic genes including α-smooth muscle actin, transforming growth factor beta 1, collagen type I (Col-1) and Col-3. Conclusions Our study demonstrated the protective role of FZHY in ameliorating nutritional fibrosing steatohepatitis. The effect was mediated through regulating key genes related to oxidative stress, inflammation and fibrogenesis.
Collapse
Affiliation(s)
- Yan-Hong Jia
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hayashi H, Sakai T. Biological Significance of Local TGF-β Activation in Liver Diseases. Front Physiol 2012; 3:12. [PMID: 22363291 PMCID: PMC3277268 DOI: 10.3389/fphys.2012.00012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/17/2012] [Indexed: 12/20/2022] Open
Abstract
The cytokine transforming growth factor-β (TGF-β) plays a pivotal role in a diverse range of cellular responses, including cell proliferation, apoptosis, differentiation, migration, adhesion, angiogenesis, stimulation of extracellular matrix (ECM) synthesis, and downregulation of ECM degradation. TGF-β and its receptors are ubiquitously expressed by most cell types and tissues in vivo. In intact adult tissues and organs, TGF-β is secreted in a biologically inactive (latent) form associated in a non-covalent complex with the ECM. In response to injury, local latent TGF-β complexes are converted into active TGF-β according to a tissue- and injury type-specific activation mechanism. Such a well and tightly orchestrated regulation in TGF-β activity enables an immediate, highly localized response to type-specific tissue injury. In the pathological process of liver fibrosis, TGF-β plays as a master profibrogenic cytokine in promoting activation and myofibroblastic differentiation of hepatic stellate cells, a central event in liver fibrogenesis. Continuous and/or persistent TGF-β signaling induces sustained production of ECM components and of tissue inhibitor of metalloproteinase synthesis. Therefore, the regulation of locally activated TGF-β levels is increasingly recognized as a therapeutic target for liver fibrogenesis. This review summarizes our present knowledge of the activation mechanisms and bioavailability of latent TGF-β in biological and pathological processes in the liver.
Collapse
Affiliation(s)
- Hiromitsu Hayashi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA
| | | |
Collapse
|
42
|
Abstract
Hepatic fibrosis (HF) is a progressive condition with serious clinical complications arising from abnormal proliferation and amassing of tough fibrous scar tissue. This defiance of collagen fibers becomes fatal due to ultimate failure of liver functions. Participation of various cell types, interlinked cellular events, and large number of mediator molecules make the fibrotic process enormously complex and dynamic. However, with better appreciation of underlying cellular and molecular mechanisms of fibrosis, the assumption that HF cannot be cured is gradually changing. Recent findings have underlined the therapeutic potential of a number of synthetic compounds as well as plant derivatives for cessation or even the reversal of the processes that transforms the liver into fibrotic tissue. It is expected that future inputs will provide a conceptual framework to develop more specific strategies that would facilitate the assessment of risk factors, shortlist early diagnosis biomarkers, and eventually guide development of effective therapeutic alternatives.
Collapse
Affiliation(s)
- Areeba Ahmad
- Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Riaz Ahmad
- Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India,Address for correspondence: Dr. Riaz Ahmad, Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh- 202 002, Uttar Pradesh, India. E-mail:
| |
Collapse
|
43
|
Bourd-Boittin K, Bonnier D, Leyme A, Mari B, Tuffery P, Samson M, Ezan F, Baffet G, Theret N. Protease profiling of liver fibrosis reveals the ADAM metallopeptidase with thrombospondin type 1 motif, 1 as a central activator of transforming growth factor beta. Hepatology 2011; 54:2173-84. [PMID: 21826695 DOI: 10.1002/hep.24598] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED During chronic liver disease, tissue remodeling leads to dramatic changes and accumulation of matrix components. Matrix metalloproteases and their inhibitors have been involved in the regulation of matrix degradation. However, the role of other proteases remains incompletely defined. We undertook a gene-expression screen of human liver fibrosis samples using a dedicated gene array selected for relevance to protease activities, identifying the ADAMTS1 (A Disintegrin And Metalloproteinase [ADAM] with thrombospondin type 1 motif, 1) gene as an important node of the protease network. Up-regulation of ADAMTS1 in fibrosis was found to be associated with hepatic stellate cell (HSC) activation. ADAMTS1 is synthesized as 110-kDa latent forms and is processed by HSCs to accumulate as 87-kDa mature forms in fibrotic tissues. Structural evidence has suggested that the thrombospondin motif-containing domain from ADAMTS1 may be involved in interactions with, and activation of, the major fibrogenic cytokine, transforming growth factor beta (TGF-β). Indeed, we observed direct interactions between ADAMTS1 and latency-associated peptide-TGF-β (LAP-TGF-β). ADAMTS1 induces TGF-β activation through the interaction of the ADAMTS1 KTFR peptide with the LAP-TGF-β LKSL peptide. Down-regulation of ADAMTS1 in HSCs decreases the release of TGF-β competent for transcriptional activation, and KTFR competitor peptides directed against ADAMTS1 block the HSC-mediated release of active TGF-β. Using a mouse liver fibrosis model, we show that carbon tetrachloride treatment induces ADAMTS1 expression in parallel to that of type I collagen. Importantly, concurrent injection of the KTFR peptide prevents liver damage. CONCLUSION Our results indicate that up-regulation of ADAMTS1 in HSCs constitutes a new mechanism for control of TGF-β activation in chronic liver disease.
Collapse
Affiliation(s)
- Katia Bourd-Boittin
- Institut de Recherche en Santé, Environnement et Travail EA4427 SeRAIC, Université de Rennes 1, IFR14, Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cohen-Naftaly M, Friedman SL. Current status of novel antifibrotic therapies in patients with chronic liver disease. Therap Adv Gastroenterol 2011; 4:391-417. [PMID: 22043231 PMCID: PMC3187682 DOI: 10.1177/1756283x11413002] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fibrosis accumulation is a dynamic process resulting from a wound-healing response to acute or chronic liver injury of all causes. The cascade starts with hepatocyte necrosis and apoptosis, which instigate inflammatory signaling by chemokines and cytokines, recruitment of immune cell populations, and activation of fibrogenic cells, culminating in the deposition of extracellular matrix. These key elements, along with pathways of transcriptional and epigenetic regulation, represent fertile therapeutic targets. New therapies include drugs specifically designed as antifibrotics, as well as drugs already available with well-established safety profiles, whose mechanism of action may also be antifibrotic. At the same time, the development of noninvasive fibrogenic markers, and techniques (e.g. fibroscan), as well as combined scoring systems incorporating serum and clinical features will allow improved assessment of therapy response. In aggregate, the advances in the elucidation of the biology of fibrosis, combined with improved technologies for assessment will provide a comprehensive framework for design of antifibrotics and their analysis in well-designed clinical trials. These efforts may ultimately yield success in halting the progression of, or reversing, liver fibrosis.
Collapse
Affiliation(s)
| | - Scott L. Friedman
- Fishberg Professor of Medicine, Division of Liver Diseases, Box 1123, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 11-70C, New York, NY 10029-6574, USA
| |
Collapse
|
45
|
Kono T, Kashiwade Y, Asama T, Chisato N, Ebisawa Y, Yoneda M, Kasai S. Preventive effect of urinary trypsin inhibitor on the development of liver fibrosis in mice. Exp Biol Med (Maywood) 2011; 236:1314-21. [PMID: 22016396 DOI: 10.1258/ebm.2011.011173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Urinary trypsin inhibitor (UTI) is a serine protease inhibitor produced in the liver that inhibits the production and activation of various cytokines, notably transforming growth factor-β (TGF-β), which are associated with the progression of liver fibrosis. However, the various roles of endogenous UTI in liver fibrosis have not been examined. This study, therefore, examined the long-term effects of UTI deficiency during both steady-state conditions and thioacetamide (TA)-induced liver fibrosis. Furthermore, the effects of continuous exogenous UTI administration were examined. Analyses of liver fibrosis marker, hyaluronic acid (HA), TGF-β concentrations and histological findings at 30 weeks of age showed that homozygous UTI-knockout (KO) mice had higher HA and TGF-β concentrations than did heterozygous UTI-KO mice and wild-type mice, although there was no histological evidence of liver fibrosis in these mice. TA treatment for 20 weeks also resulted in greater HA and TGF-β levels in homozygous mice than in heterozygous and wild-type mice. Furthermore, homozygous mice had more severe liver fibrosis based on histological analyses. HA and TGF-β levels were lower in homozygous UTI-KO mice that were continuously administered UTI versus those given distilled water. These findings indicate that UTI deficiency leads to the production of HA and hepatic TGF-β and that administering exogenous UTI can ameliorate these changes. We conclude that endogenous UTI is produced in the liver to suppress the production and activation of TGF-β and that administering exogenous UTI may be therapeutically beneficial for preventing liver fibrosis.
Collapse
Affiliation(s)
- Toru Kono
- Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, 2-1 Midorigaoka-Higashi, Hokkaido 078-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kwon SH, Shin HJ, Park JM, Lee KR, Kim YJ, Lee SH. Electrospray ionization tandem mass fragmentation pattern of camostat and its degradation product, 4-(4-guanidinobenzoyloxy)phenylacetic acid. ANALYTICAL SCIENCE AND TECHNOLOGY 2011. [DOI: 10.5806/ast.2011.24.2.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Yang N, Mahato RI. GFAP promoter-driven RNA interference on TGF-β1 to treat liver fibrosis. Pharm Res 2011; 28:752-61. [PMID: 21347569 DOI: 10.1007/s11095-011-0384-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/27/2011] [Indexed: 01/21/2023]
Abstract
PURPOSE The objective was to determine the role of promoters and miRNA backbone in shRNA-based hepatic stellate cell (HSC)-specific transforming growth factor (TGF)-β1 gene silencing. This is expected to avoid the side effect of non-specific TGF-β1 gene silencing. METHODS Two most potent shRNAs targeting 769 and 1033 start sites of rat TGF-β1 mRNA were cloned into pSilencer 1.0 vector for enhanced TGF-β1 gene silencing. We then constructed HSC-specific pri-miRNA mimic and pri-miRNA cluster mimic expression plasmids in which shRNA expression was driven by a glial fibrillary acidic protein (GFAP) promoter to achieve HSC-specific TGF-β1 gene silencing to avoid nonspecific inhibition of TGF-β1 expression in other cells and organs. RESULTS These TGF-β1 pri-miRNA-producing plasmids showed the inhibition of proliferation and induced apoptosis of activated HSC-T6 cells. TGF-β1 pri-miRNA cluster mimic plasmids decreased TGF-β1 and collagen gene expression at both mRNA and protein levels. CONCLUSIONS GFAP promoter driven TGF-β1 pri-miRNA producing plasmids have the potential to be used for site-specific gene therapeutics to treat liver fibrosis.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 South Manassas, Memphis, Tennessee 38103-3308, USA
| | | |
Collapse
|
48
|
Wang JJ, Li J, Shi L, Lv XW, Cheng WM, Chen YY. Preventive effects of a fractioned polysaccharide from a traditional Chinese herbal medical formula (Yu Ping Feng San) on carbon tetrachloride-induced hepatic fibrosis. J Pharm Pharmacol 2011; 62:935-42. [PMID: 20636883 DOI: 10.1211/jpp.62.07.0016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The study was to investigate the prevention effects and possible mechanism of Yu Ping Feng San fractioned polysaccharide (YPF-P) on CCl(4)-induced liver fibrosis in rats. METHODS YPF-P was prepared from root of Astragalus membranaceus, rhizome of Atractylodes macrocephaia and root of Raidix saposhnikoviae, and compared with polysaccharide from root of Astragalus membranaceus (AP). Hepatic fibrosis was induced by subcutaneous injection with carbon tetrachloride twice weekly for 12 weeks in Sprague-Dawley rats. YPF-P, AP and colchicine were administered intragastrically daily to carbon tetrachloride-treated rats. Histopathological changes of the liver and hepatic stellate cells were evaluated by Masson staining and transmission electron microscopy, respectively. Markers of fibrosis were determined by radioimmunoassay, biochemistry assay and ELISA. The mRNA expressions of tissue inhibitor of metalloproteinase-1 (TIMP-1), matrix metalloproteinase-13 (MMP-13), procollagen I and collagen III were detected by RT-PCR. KEY FINDINGS YPF-P dose-dependently alleviated the degree of liver fibrosis and inhibited hepatic stellate cell transformation into myofibroblast-like cells, markedly reduced the elevated levels of hyaluronic acid, laminin, type IV collagen, type III procollagen, hydroxyproline and transforming growth factor beta-1, suppressed procollagen I, collagen III and TIMP-1 expression, and improved the TIMP-1/MMP-13 ratio. MMP-13 expression was only promoted moderately by YPF-P. Compared with AP, YPF-P showed more potency on most markers except laminin, type IV collagen and MMP-13 mRNA. CONCLUSIONS YPF-P prevented the progress of rat liver fibrosis induced by carbon tetrachloride and had a more potent preventative effect. The preventative effect may be associated with the ability of YPF-P to inhibit the synthesis of matrix collagen and balance the TIMP/MMP system.
Collapse
|
49
|
Abstract
Small interfering RNA (siRNA) and short hairpin RNA (shRNA) targeting different regions of transforming growth factor beta1 (TGF-beta1) mRNA were designed and the silencing effect was determined after transfection into immortalized rat liver stellate cells (HSC-T6). There was not only significant decrease in TGF-beta1, tissue inhibitor of metalloproteinase 1 (TIMP-1), alpha-smooth muscle actin (alpha-SMA) and type I collagen after transfection with TGF-beta1 siRNAs, but also synergism in gene silencing when siRNAs targeting two different start sites were used as a pool for transfection. The two siRNA sequences which efficiently inhibited TGF-beta1 gene expression were converted to shRNAs via cloning into the pSilencer1.0. There was significant decrease in TGF-beta1 and TIMP-1 when HSC-T6 cells were transfected with pshRNA targeting the same regions of TGF-beta1 mRNA as siRNAs. Furthermore, TGF-beta1 gene silencing in HSC-T6 cells significantly decreased the levels of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta). In conclusion, both siRNA and shRNA showed sequence-specific and dose dependent TGF-beta1 gene silencing and have the potential to treat liver fibrosis.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38103, USA
| | | | | |
Collapse
|
50
|
Tsai PC, Fu TW, Chen YMA, Ko TL, Chen TH, Shih YH, Hung SC, Fu YS. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat liver fibrosis. Liver Transpl 2009; 15:484-95. [PMID: 19399744 DOI: 10.1002/lt.21715] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated the effect of human umbilical mesenchymal stem cells (HUMSCs) from Wharton's jelly on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were treated with CCl4 for 4 weeks, and this was followed by a direct injection of HUMSCs into their livers. After 4 more weeks of CCl4 treatment (8 weeks in all), rats with HUMSC transplants [CCl4 (8W)+HUMSC liver] exhibited a significant reduction in liver fibrosis, as evidenced by Sirius red staining and a collagen content assay, in comparison with rats treated with CCl4 for 8 weeks without HUMSC transplants [CCl4 (8W)]. Moreover, rats in the CCl4 (8W)+HUMSC (liver) group had significantly lower levels of serum glutamic oxaloacetic transaminase, glutamic pyruvate transaminase, alpha-smooth muscle actin, and transforming growth factor-beta1 in the liver, whereas the expression of hepatic mesenchymal epithelial transition factor-phosphorylated type (Met-P) and hepatocyte growth factor was up-regulated, in comparison with the CCl4 (8W) group. Notably, engrafted HUMSCs scattered mostly in the hepatic connective tissue but did not differentiate into hepatocytes expressing human albumin or alpha-fetoprotein. Instead, these engrafted, undifferentiated HUMSCs secreted a variety of bioactive cytokines that may restore liver function and promote regeneration. Human cytokine assay revealed that the amounts of human cutaneous T cell-attracting chemokine, leukemia inhibitory factor, and prolactin were substantially greater in the livers of the CCl4 (8W)+HUMSC (liver) group, with considerably reduced hepatic inflammation manifested by a micro positron emission tomography scan. Our findings suggest that xenogeneic transplantation of HUMSCs is a novel approach for treating liver fibrosis and may be a promising therapeutic intervention in the future.
Collapse
Affiliation(s)
- Pei-Chun Tsai
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|