1
|
Constantinescu C, Kegyes D, Tigu B, Moisoiu V, Grăjdieru O, Szekely A, Terpos E, Tomuleasa C. A hypothesis on treatment strategy of severe multicentric Castleman disease with continuous renal replacement therapy. J Cell Mol Med 2024; 28:e70026. [PMID: 39252436 PMCID: PMC11386254 DOI: 10.1111/jcmm.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Castleman disease (CD) is a rare lymphoproliferative disorder, with non-specific clinical manifestations, often delayed diagnosis and treatment, which pose a significant challenge in the present times. Patients diagnosed with this disease have poor prognosis due to the limited treatment options. Multicentric CD occurs at multiple lymph node stations and is associated with a proinflammatory response that leads to the development of the so-called 'B symptoms'. IL-6 seems to be a key cytokine involved in various manifestations such as lymphadenopathies, hepatosplenomegaly, and polyclonal hypergammaglobulinemia. Its levels correlate with the activity of the disease. Other consequences of MCD include increased fibrinogen levels leading to deep vein thrombosis and thromboembolic disorders, high hepcidin levels causing anaemia, elevated VEGF levels promoting angiogenesis and vascular permeability, which, along with hypoalbuminemia, induce oedema, ascites, pleural and pericardial effusions, and in severe cases, generalized anasarca. In extreme cases multiple organ failure can occur, often resulting in death. We propose the use of continuous renal replacement therapy (CRRT) in managing severe multicentric CD. Our arguments are based on the principles that CRRT is able to remove IL-6 from circulation thus attenuating the cytokine storm, can influence hepcidin levels, and reduction in oedema, and is often used in multiple organ failure to regain homeostasis control. Therefore, it could be used as a therapy or bridge therapy in severe cases. To sustain our hypothesis with evidence, we have gathered several studies from the literature confirming the successful removal of cytokines, especially IL-6 from circulation, which can be used as a starting point.
Collapse
Affiliation(s)
- Cătălin Constantinescu
- Department of HematologyIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Anesthesia and Intensive CareIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
- Intensive Care UnitEmergency HospitalCluj‐NapocaRomania
- MedFUTURE Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - David Kegyes
- MedFUTURE Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Bogdan Tigu
- MedFUTURE Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Vlad Moisoiu
- Department of HematologyIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Olga Grăjdieru
- Department of Anesthesia and Intensive CareIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
- Intensive Care UnitEmergency HospitalCluj‐NapocaRomania
| | - Andrea Szekely
- Department of Anaesthesiology and Intensive TherapySemmelweis UniversityBudapestHungary
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ciprian Tomuleasa
- Department of HematologyIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
- MedFUTURE Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and PharmacyCluj‐NapocaRomania
| |
Collapse
|
2
|
Sabatino A, Fiaccadori E, Barazzoni R, Carrero JJ, Cupisti A, De Waele E, Jonckheer J, Cuerda C, Bischoff SC. ESPEN practical guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2024; 43:2238-2254. [PMID: 39178492 DOI: 10.1016/j.clnu.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND AND AIMS Hospitalized patients often have acute kidney disease (AKD) or chronic kidney disease (CKD), with important metabolic and nutritional consequences. Moreover, in case kidney replacement therapy (KRT) is started, the possible impact on nutritional requirements cannot be neglected. On this regard, the present guideline aims to provide evidence-based recommendations for clinical nutrition in hospitalized patients with KD. METHODS The standard operating procedure for ESPEN guidelines was used. Clinical questions were defined in both the PICO format, and organized in subtopics when needed, and in non-PICO questions for the more general topics. The literature search was from January 1st, 1999 until January 1st, 2020. Each question led to one or more recommendation/statement and related commentaries. Existing evidence was graded, as well as recommendations and statements were developed and agreed upon in a multistage consensus process. RESULTS The present guideline provides 32 evidence-based recommendations and 8 statements, defining how to assess nutritional status, how to define patients at risk, how to choose the route of feeding, and how to integrate nutrition with KRT. In the final online voting, a strong consensus was reached in 84% at least of recommendations and 100% of statements. CONCLUSION The presence of KD in hospitalized patients identifies a highly heterogeneous group of subjects with widely varying nutrient needs and intakes. Considering the high nutritional risk related with this clinical condition, an individualized approach consisting of nutritional status evaluation and monitoring, frequent evaluation of nutritional requirements, and careful integration with KRT should be planned to avoid both underfeeding and overfeeding. Practical recommendations and statements were developed, aiming at defining suggestions for everyday clinical practice in the individualization of nutritional support in this patient setting. Literature areas with scarce or without evidence were also identified, thus requiring further basic or clinical research.
Collapse
Affiliation(s)
- Alice Sabatino
- Division of Renal Medicine, Baxter Novum. Department of Clinical Science, Intervention and Technology. Karolinska Institute, Stockholm, Sweden.
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rocco Barazzoni
- Internal Medicine, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabeth De Waele
- Department of Intensive Care Medicine, Universitair Ziekenhuis Brussel, Department of Clinical Nutrition, Vitality Research Group, Faculty of Medicine and Pharmacy, Vrije Unversiteit Brussel (VUB), Brussels, Belgium
| | - Joop Jonckheer
- Department of intensive Care Medicine, University Hospital Brussel (UZB), Brussels, Belgium; Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Medicine. Universidad Complutense. Madrid, Spain
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
3
|
Park CH, Koh HB, Lee JH, Jung HY, Ha J, Kim HW, Park JT, Han SH, Kang SW, Yoo TH. Volume control strategy and patient survival in sepsis-associated acute kidney injury receiving continuous renal replacement therapy: a randomized controlled trial with secondary analysis. Sci Rep 2024; 14:14284. [PMID: 38902283 PMCID: PMC11190228 DOI: 10.1038/s41598-024-64224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Optimal strategy for volume control and the clinical implication of achieved volume control are unknown in patients with sepsis-associated acute kidney injury (AKI) receiving continuous renal replacement therapy (CRRT). This randomized controlled trial aimed to compare the survival according to conventional or bioelectrical impedance analysis (BIA)-guided volume control strategy in patients with sepsis-associated AKI receiving CRRT. We also compared patient survival according to achieved volume accumulation rate ([cumulative fluid balance during 3 days × 100]/fluid overload measured by BIA at enrollment) as a post-hoc analysis. We randomly assigned patients to conventional volume control strategy (n = 39) or to BIA-guided volume control strategy (n = 34). There were no differences in 28-day mortality (HR, 1.19; 95% CI, 0.63-2.23) or 90-day mortality (HR, 0.99; 95% CI 0.57-1.75) between conventional and BIA-guided volume control group. In the secondary analysis, achieved volume accumulation rate was significantly associated with patient survival. Compared with the achieved volume accumulation rate of ≤ - 50%, the HRs (95% CIs) for the risk of 90-day mortality were 1.21 (0.29-5.01), 0.55 (0.12-2.48), and 7.18 (1.58-32.51) in that of - 50-0%, 1-50%, and > 50%, respectively. Hence, BIA-guided volume control in patients with sepsis-associated AKI receiving CRRT did not improve patient outcomes. In the secondary analysis, achieved volume accumulation rate was associated with patient survival.
Collapse
Affiliation(s)
- Cheol Ho Park
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Byung Koh
- Department of Internal Medicine, International Saint Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Jin Hyeog Lee
- Department of Internal Medicine, International Saint Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Hui-Yun Jung
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joohyung Ha
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Woo Kim
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Zhou J, Li H, Zhang L, Chen G, Wang G, Zhu H, Hao Y, Wu G. Removal of inflammatory factors and prognosis of patients with septic shock complicated with acute kidney injury by hemodiafiltration combined with HA330-II hemoperfusion. Ther Apher Dial 2024; 28:460-466. [PMID: 38317412 DOI: 10.1111/1744-9987.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION To explore the effect of CRRT using CVVHDF + HP on the removal of inflammatory mediators in patients with septic shock complicated with AKI. METHODS A total of 20 patients between January 1, 2018, and December 31, 2021, were included. The patients were randomly divided into the treatment group (CVVHDF + HP) and the control group (CVVHDF). Changes in inflammatory factors, including IL-1β, IL-6, IL-8, TNF-α, PCT, and CRP were compared. Other observed measures were also analyzed, for example, Lac, Scr, BUN, SOFA, and norepinephrine (NE) dosage. The clinical outcomes of both groups were followed up for 28 days. RESULTS The IL-6 and PCT levels in the treatment group were significantly lower (p = 0.005, 0.007). Although the IL-1β, TNFα, and CRP levels in the treatment group decreased, there were no statistical differences (p > 0.05). There were significant differences in Lac, SOFA, and NE dosage levels between both groups (p = 0.023, 0.01, 0.023). Survival analysis showed that the 28-day survival rate was significantly higher in the treatment group. CONCLUSION CRRT using CVVHDF+HP can effectively remove inflammatory factors and improve the prognosis of patients.
Collapse
Affiliation(s)
- Juan Zhou
- Department of ICU, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haopeng Li
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Zhang
- Department of ICU, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangjian Chen
- Department of ICU, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Wang
- Department of ICU, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - HuiHui Zhu
- Department of ICU, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingxin Hao
- Department of ICU, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gang Wu
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Pais T, Jorge S, Lopes JA. Acute Kidney Injury in Sepsis. Int J Mol Sci 2024; 25:5924. [PMID: 38892111 PMCID: PMC11172431 DOI: 10.3390/ijms25115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Sepsis-associated kidney injury is common in critically ill patients and significantly increases morbidity and mortality rates. Several complex pathophysiological factors contribute to its presentation and perpetuation, including macrocirculatory and microcirculatory changes, mitochondrial dysfunction, and metabolic reprogramming. Recovery from acute kidney injury (AKI) relies on the evolution towards adaptive mechanisms such as endothelial repair and tubular cell regeneration, while maladaptive repair increases the risk of progression to chronic kidney disease. Fundamental management strategies include early sepsis recognition and prompt treatment, through the administration of adequate antimicrobial agents, fluid resuscitation, and vasoactive agents as needed. In septic patients, organ-specific support is often required, particularly renal replacement therapy (RRT) in the setting of severe AKI, although ongoing debates persist regarding the ideal timing of initiation and dosing of RRT. A comprehensive approach integrating early recognition, targeted interventions, and close monitoring is essential to mitigate the burden of SA-AKI and improve patient outcomes in critical care settings.
Collapse
Affiliation(s)
| | | | - José António Lopes
- Nephrology and Renal Transplantation Department, Unidade Local de Saúde Santa Maria, 1649-028 Lisbon, Portugal; (T.P.)
| |
Collapse
|
6
|
Lin C, Wang J, Cai K, Luo Y, Wu W, Lin S, Lin Z, Feng S. Elevated Activated Partial Thromboplastin Time as a Predictor of 28-Day Mortality in Sepsis-Associated Acute Kidney Injury: A Retrospective Cohort Analysis. Int J Gen Med 2024; 17:1739-1753. [PMID: 38706747 PMCID: PMC11069355 DOI: 10.2147/ijgm.s459583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose To address the critical mortality rates among sepsis-associated acute kidney injury (SA-AKI) patients, early prognosis is vital. This study investigates the relationship between coagulation indices and the 28-day mortality rate in patients with SA-AKI. Patients and Methods This study was a retrospective cohort analysis including patients with SA-AKI admitted to the First Hospital of Fujian Medical University as a training cohort (n = 119) and patients admitted to the Third People's Hospital of Fujian University of Traditional Chinese Medicine as a validation cohort (n = 51). We examined the relationship between coagulation indices and 28-day mortality in SA-AKI, the cumulative mortality at different activated partial thromboplastin time (APTT) levels, and the nonlinear relationship between APTT and 28-day mortality. Receiver operating characteristic curves were plotted, and the area under the curve was calculated to assess the predictive power of APTT. Finally, subgroup analyses were performed to assess the robustness of the association. Results Overall, 119 participants with a mean±standard deviation age of 70.47±15.20 years were included in the training cohort: 54 died, 65 survived. According to univariate and multivariate COX regression analyses, APACHE II score, CRP level, Lac level, and APTT level were independent risk factors for 28-day adverse prognosis. After controlling for some variables, an elevated baseline APTT (≥ 37.7 s) was associated with an elevated risk of 28-day mortality (HR, 1.017; 95% CI, 1.001-1.032), and Kaplan-Meier analyses further confirmed the increased mortality in the group with a higher APTT. The same results were shown when the validation cohort was analyzed (HR, 1.024; 95% CI, 0.958-1.096). Subgroup analyses showed the stability of the association between APTT and poor prognosis in SA-AKI. Conclusion In essence, APTT elevation is synonymous with increased 28-day mortality rates, indicating a poor prognosis in SA-AKI scenarios.
Collapse
Affiliation(s)
- Chen Lin
- Department of Emergency, The Third Affiliated People’s Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, People’s Republic of China
| | - Jing Wang
- Department of Emergency, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Kexin Cai
- Department of Emergency, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Yuqing Luo
- Department of Emergency, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Wensi Wu
- Department of Emergency, The Third Affiliated People’s Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, People’s Republic of China
| | - Siming Lin
- Department of Emergency, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Zhihong Lin
- Department of Emergency, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Shaodan Feng
- Department of Emergency, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| |
Collapse
|
7
|
Zarbock A, Koyner JL, Gomez H, Pickkers P, Forni L. Sepsis-associated acute kidney injury-treatment standard. Nephrol Dial Transplant 2023; 39:26-35. [PMID: 37401137 DOI: 10.1093/ndt/gfad142] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 07/05/2023] Open
Abstract
Sepsis is a host's deleterious response to infection, which could lead to life-threatening organ dysfunction. Sepsis-associated acute kidney injury (SA-AKI) is the most frequent organ dysfunction and is associated with increased morbidity and mortality. Sepsis contributes to ≈50% of all AKI in critically ill adult patients. A growing body of evidence has unveiled key aspects of the clinical risk factors, pathobiology, response to treatment and elements of renal recovery that have advanced our ability to detect, prevent and treat SA-AKI. Despite these advancements, SA-AKI remains a critical clinical condition and a major health burden, and further studies are needed to diminish the short and long-term consequences of SA-AKI. We review the current treatment standards and discuss novel developments in the pathophysiology, diagnosis, outcome prediction and management of SA-AKI.
Collapse
Affiliation(s)
- Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Münster, Münster, Germany and Outcomes Research Consortium, Cleveland, OH, USA
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Hernando Gomez
- Program for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Pickkers
- Department Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lui Forni
- Department of Critical Care, Royal Surrey Hospital Foundation Trust, Guildford, UK
- Faculty of Health Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
8
|
Chen JJ, Lai PC, Lee TH, Huang YT. Blood Purification for Adult Patients With Severe Infection or Sepsis/Septic Shock: A Network Meta-Analysis of Randomized Controlled Trials. Crit Care Med 2023; 51:1777-1789. [PMID: 37470680 PMCID: PMC10645104 DOI: 10.1097/ccm.0000000000005991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
OBJECTIVES This study aimed to conduct a comprehensive and updated systematic review with network meta-analysis (NMA) to assess the outcome benefits of various blood purification modalities for adult patients with severe infection or sepsis. DATA SOURCES We conducted a search of PubMed, MEDLINE, clinical trial registries, Cochrane Library, and Embase databases with no language restrictions. STUDY SELECTION Only randomized controlled trials (RCTs) were selected. DATA EXTRACTION The primary outcome was overall mortality. The secondary outcomes were the length of mechanical ventilation (MV) days and ICU stay, incidence of acute kidney injury (AKI), and kidney replacement therapy requirement. DATA SYNTHESIS We included a total of 60 RCTs with 4,595 participants, comparing 16 blood purification modalities with 17 interventions. Polymyxin-B hemoperfusion (relative risk [RR]: 0.70; 95% CI, 0.57-0.86) and plasma exchange (RR: 0.61; 95% CI, 0.42-0.91) were associated with low mortality (very low and low certainty of evidence, respectively). Because of the presence of high clinical heterogeneity and intransitivity, the potential benefit of polymyxin-B hemoperfusion remained inconclusive. The analysis of secondary outcomes was limited by the scarcity of available studies. HA330 with high-volume continuous venovenous hemofiltration (CVVH), HA330, and standard-volume CVVH were associated with shorter ICU stay. HA330 with high-volume CVVH, HA330, and standard-volume CVVH were beneficial in reducing MV days. None of the interventions showed a significant reduction in the incidence of AKI or the need for kidney replacement therapy. CONCLUSIONS Our NMA suggests that plasma exchange and polymyxin-B hemoperfusion may provide potential benefits for adult patients with severe infection or sepsis/septic shock when compared with standard care alone, but most comparisons were based on low or very low certainty evidence. The therapeutic effect of polymyxin-B hemoperfusion remains uncertain. Further RCTs are required to identify the specific patient population that may benefit from extracorporeal blood purification.
Collapse
Affiliation(s)
- Jia-Jin Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan City, Taiwan
| | - Pei-Chun Lai
- Education Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Yen-Ta Huang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Di Mario F, Sabatino A, Regolisti G, Pacchiarini MC, Greco P, Maccari C, Vizzini G, Italiano C, Pistolesi V, Morabito S, Fiaccadori E. Simplified regional citrate anticoagulation protocol for CVVH, CVVHDF and SLED focused on the prevention of KRT-related hypophosphatemia while optimizing acid-base balance. Nephrol Dial Transplant 2023; 38:2298-2309. [PMID: 37037771 PMCID: PMC10547235 DOI: 10.1093/ndt/gfad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Hypophosphatemia is a common electrolyte disorder in critically ill patients undergoing prolonged kidney replacement therapy (KRT). We evaluated the efficacy and safety of a simplified regional citrate anticoagulation (RCA) protocol for continuous venovenous hemofiltration (CVVH), continuous venovenous hemodiafiltration (CVVHDF) and sustained low-efficiency dialysis filtration (SLED-f). We aimed at preventing KRT-related hypophosphatemia while optimizing acid-base equilibrium. METHODS KRT was performed by the Prismax system (Baxter) and polyacrylonitrile AN69 filters (ST 150, 1.5 m2, Baxter), combining a 18 mmol/L pre-dilution citrate solution (Regiocit 18/0, Baxter) with a phosphate-containing solution (HPO42- 1.0 mmol/L, HCO3- 22.0 mmol/L; Biphozyl, Baxter). When needed, phosphate loss was replaced with sodium glycerophosphate pentahydrate (Glycophos™ 20 mmol/20 mL, Fresenius Kabi Norge AS, Halden, Norway). Serum citrate measurements were scheduled during each treatment. We analyzed data from three consecutive daily 8-h SLED-f sessions, as well as single 72-h CVVH or 72-h CVVHDF sessions. We used analysis of variance (ANOVA) for repeated measures to evaluate differences in variables means (i.e. serum phosphate, citrate). Because some patients received phosphate supplementation, we performed analysis of covariance (ANCOVA) for repeated measures modelling phosphate supplementation as a covariate. RESULTS Forty-seven patients with acute kidney injury (AKI) or end stage kidney disease (ESKD) requiring KRT were included [11 CVVH, 11 CVVHDF and 25 SLED-f sessions; mean Acute Physiology and Chronic Health Evaluation II (APACHE II) score 25 ± 7.0]. Interruptions for irreversible filter clotting were negligible. The overall incidence of hypophosphatemia (s-P levels <2.5 mg/dL) was 6.6%, and s-P levels were kept in the normality range irrespective of baseline values and the KRT modality. The acid-base balance was preserved, with no episode of citrate accumulation. CONCLUSIONS Our data obtained with a new simplified RCA protocol suggest that it is effective and safe for CVVH, CVVHDF and SLED, allowing to prevent KRT-related hypophosphatemia and maintain the acid-base balance without citrate accumulation. TRIAL REGISTRATION NCT03976440 (registered 6 June 2019).
Collapse
Affiliation(s)
- Francesca Di Mario
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università̀ di Parma, Parma, Italy
- Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Alice Sabatino
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università̀ di Parma, Parma, Italy
- Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Giuseppe Regolisti
- Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
- UO Clinica e Immunologia Medica, Azienda Ospedaliero-Universitaria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Maria Chiara Pacchiarini
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università̀ di Parma, Parma, Italy
- Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Paolo Greco
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università̀ di Parma, Parma, Italy
- Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Caterina Maccari
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università̀ di Parma, Parma, Italy
- Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Giuseppe Vizzini
- Laboratorio di Immunopatologia Renale “Luigi Migone”, Università degli Studi di Parma, Parma, Italy
| | - Chiara Italiano
- Laboratorio di Immunopatologia Renale “Luigi Migone”, Università degli Studi di Parma, Parma, Italy
| | - Valentina Pistolesi
- UOSD Dialisi, Azienda Ospedaliero-Universitaria Policlinico Umberto I, “Sapienza” Università̀ di Roma, Rome, Italy
| | - Santo Morabito
- UOSD Dialisi, Azienda Ospedaliero-Universitaria Policlinico Umberto I, “Sapienza” Università̀ di Roma, Rome, Italy
| | - Enrico Fiaccadori
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università̀ di Parma, Parma, Italy
- Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| |
Collapse
|
10
|
康 霞, 袁 远, 胥 志, 张 新, 范 江, 罗 海, 卢 秀, 肖 政. [Clinical application of plasma exchange combined with continuous veno-venous hemofiltration dialysis in children with refractory Kawasaki disease shock syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:566-571. [PMID: 37382124 PMCID: PMC10321425 DOI: 10.7499/j.issn.1008-8830.2302116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/23/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES To study the role of plasma exchange combined with continuous blood purification in the treatment of refractory Kawasaki disease shock syndrome (KDSS). METHODS A total of 35 children with KDSS who were hospitalized in the Department of Pediatric Intensive Care Unit, Hunan Children's Hospital, from January 2019 to August 2022 were included as subjects. According to whether plasma exchange combined with continuous veno-venous hemofiltration dialysis was performed, they were divided into a purification group with 12 patients and a conventional group with 23 patients. The two groups were compared in terms of clinical data, laboratory markers, and prognosis. RESULTS Compared with the conventional group, the purification group had significantly shorter time to recovery from shock and length of hospital stay in the pediatric intensive care unit, as well as a significantly lower number of organs involved during the course of the disease (P<0.05). After treatment, the purification group had significant reductions in the levels of interleukin-6, tumor necrosis factor-α, heparin-binding protein, and brain natriuretic peptide (P<0.05), while the conventional group had significant increases in these indices after treatment (P<0.05). After treatment, the children in the purification group tended to have reductions in stroke volume variation, thoracic fluid content, and systemic vascular resistance and an increase in cardiac output over the time of treatment. CONCLUSIONS Plasma exchange combined with continuous veno-venous hemofiltration dialysis for the treatment of KDSS can alleviate inflammation, maintain fluid balance inside and outside blood vessels, and shorten the course of disease, the duration of shock and the length of hospital stay in the pediatric intensive care unit.
Collapse
|
11
|
Niibe Y, Suzuki T, Yamazaki S, Suzuki T, Hattori N, Nakada TA, Ishii I. Pharmacokinetics of vancomycin and meropenem during continuous online hemodiafiltration: A case report. J Glob Antimicrob Resist 2023; 33:31-34. [PMID: 36871890 DOI: 10.1016/j.jgar.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
OBJECTIVES The pharmacokinetics of vancomycin and meropenem in patients treated with continuous online hemodiafiltration (OL-HDF) are not well understood. CASE We evaluated dialytic clearance and serum concentrations of vancomycin and meropenem by OL-HDF in a critically ill patient with soft tissue infection. The mean clearance of OL-HDF and mean serum concentrations during continuous OL-HDF were 155.2 mL/min and 23.1 µg/mL for vancomycin and 145.6 mL/min and 22.7 µg/mL for meropenem. CONCLUSION Vancomycin and meropenem showed high clearance rates during continuous OL-HDF. However, continuous infusion of these agents at high doses maintained therapeutic serum concentrations.
Collapse
Affiliation(s)
- Yoko Niibe
- Division of Pharmacy, Chiba University Hospital, Chiba, Japan.
| | - Tatsuya Suzuki
- Division of Pharmacy, Chiba University Hospital, Chiba, Japan
| | - Shingo Yamazaki
- Division of Pharmacy, Chiba University Hospital, Chiba, Japan
| | - Takaaki Suzuki
- Division of Pharmacy, Chiba University Hospital, Chiba, Japan; Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Noriyuki Hattori
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Itsuko Ishii
- Division of Pharmacy, Chiba University Hospital, Chiba, Japan; Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
12
|
Xanthi Z, Vasiliki P, Stavros A. Apheresis and COVID-19 in intensive care unit (ICU). Transfus Apher Sci 2022; 61:103593. [PMID: 36335074 PMCID: PMC9624107 DOI: 10.1016/j.transci.2022.103593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019. The disease has since spread worldwide, and on March 2020 the World Health Organization (WHO) declared it as pandemic, causing a public health crisis. Symptoms of COVID-19 are variable, ranging from mild symptoms like fever, cough, and fatigue to severe illness. Elderly patients and those with comorbidities like cardiovascular disease, diabetes, chronic respiratory disease, or cancer are more likely to develop severe forms of the disease. Asymptomatic infections have been well documented. Accumulating evidence suggests that the severity of COVID-19 is due to high levels of circulating inflammatory mediators including cytokines and chemokines leading to cytokine storm syndrome (CSS). Patients are admitted in ICU with severe respiratory failure, but can also develop acute renal failure and multi organ failure. Advances in science and technology have permitted the development of more sophisticated therapies such as extracorporeal organ support (ECOS) therapies that includes renal replacement therapies (RRTs), venoarterial (VA) or veno-venous (VV) extracorporeal membrane Oxygenation (ECMO), extracorporeal CO2 removal (ECCO2R), liver support systems, hemoperfusion, and various blood purification devices, for the treatment of ARDS and septic shock.
Collapse
|
13
|
Fayad AI, Buamscha DG, Ciapponi A. Timing of kidney replacement therapy initiation for acute kidney injury. Cochrane Database Syst Rev 2022; 11:CD010612. [PMID: 36416787 PMCID: PMC9683115 DOI: 10.1002/14651858.cd010612.pub3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common condition among patients in intensive care units (ICUs) and is associated with high numbers of deaths. Kidney replacement therapy (KRT) is a blood purification technique used to treat the most severe forms of AKI. The optimal time to initiate KRT so as to improve clinical outcomes remains uncertain. This is an update of a review first published in 2018. This review complements another Cochrane review by the same authors: Intensity of continuous renal replacement therapy for acute kidney injury. OBJECTIVES To assess the effects of different timing (early and standard) of KRT initiation on death and recovery of kidney function in critically ill patients with AKI. SEARCH METHODS We searched the Cochrane Kidney and Transplant's Specialised Register to 4 August 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, EMBASE, conference proceedings, the International Clinical Trials Register, ClinicalTrials and LILACS to 1 August 2022. SELECTION CRITERIA We included all randomised controlled trials (RCTs). We included all patients with AKI in the ICU regardless of age, comparing early versus standard KRT initiation. For safety and cost outcomes, we planned to include cohort studies and non-RCTs. DATA COLLECTION AND ANALYSIS Data were extracted independently by two authors. The random-effects model was used, and results were reported as risk ratios(RR) for dichotomous outcomes and mean difference(MD) for continuous outcomes, with 95% confidence intervals (CI). MAIN RESULTS We included 12 studies enrolling 4880 participants. Overall, most domains were assessed as being at low or unclear risk of bias. Compared to standard treatment, early KRT initiation may have little to no difference on the risk of death at day 30 (12 studies, 4826 participants: RR 0.97,95% CI 0.87 to 1.09; I²= 29%; low certainty evidence), and death after 30 days (7 studies, 4534 participants: RR 0.99, 95% CI 0.92 to 1.07; I² = 6%; moderate certainty evidence). Early KRT initiation may make little or no difference to the risk of death or non-recovery of kidney function at 90 days (6 studies, 4011 participants: RR 0.91, 95% CI 0.74 to 1.11; I² = 66%; low certainty evidence); CIs included both benefits and harms. Low certainty evidence showed early KRT initiation may make little or no difference to the number of patients who were free from KRT (10 studies, 4717 participants: RR 1.07, 95% CI 0.94 to1.22; I² = 55%) and recovery of kidney function among survivors who were free from KRT after day 30 (10 studies, 2510 participants: RR 1.02, 95% CI 0.97 to 1.07; I² = 69%) compared to standard treatment. High certainty evidence showed early KRT initiation increased the risk of hypophosphataemia (1 study, 2927 participants: RR 1.80, 95% CI 1.33 to 2.44), hypotension (5 studies, 3864 participants: RR 1.54, 95% CI 1.29 to 1.85; I² = 0%), cardiac-rhythm disorder (6 studies, 4483 participants: RR 1.35, 95% CI 1.04 to 1.75; I² = 16%), and infection (5 studies, 4252 participants: RR 1.33, 95% CI 1.00 to 1.77; I² = 0%); however, it is uncertain whether early KRT initiation increases or reduces the number of patients who experienced any adverse events (5 studies, 3983 participants: RR 1.23, 95% CI 0.90 to 1.68; I² = 91%; very low certainty evidence). Moderate certainty evidence showed early KRT initiation probably reduces the number of days in hospital (7 studies, 4589 participants: MD-2.45 days, 95% CI -4.75 to -0.14; I² = 10%) and length of stay in ICU (5 studies, 4240 participants: MD -1.01 days, 95% CI -1.60 to -0.42; I² = 0%). AUTHORS' CONCLUSIONS Based on mainly low to moderate certainty of the evidence, early KRT has no beneficial effect on death and may increase the recovery of kidney function. Earlier KRT probably reduces the length of ICU and hospital stay but increases the risk of adverse events. Further adequate-powered RCTs using robust and validated tools that complement clinical judgement are needed to define the optimal time of KRT in critical patients with AKI in order to improve their outcomes. The surgical AKI population should be considered in future research.
Collapse
Affiliation(s)
- Alicia Isabel Fayad
- Pediatric Nephrology, Ricardo Gutierrez Children's Hospital, Buenos Aires, Argentina
| | - Daniel G Buamscha
- Pediatric Critical Care Unit, Juan Garrahan Children's Hospital, Buenos Aires, Argentina
| | - Agustín Ciapponi
- Argentine Cochrane Centre, Institute for Clinical Effectiveness and Health Policy (IECS-CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Di Mario F, Regolisti G, Maggiore U, Pacchiarini MC, Menegazzo B, Greco P, Maccari C, Zambrano C, Cantarelli C, Pistolesi V, Morabito S, Fiaccadori E. Hypophosphatemia in critically ill patients undergoing Sustained Low-Efficiency Dialysis with standard dialysis solutions. Nephrol Dial Transplant 2022; 37:2505-2513. [PMID: 35481705 DOI: 10.1093/ndt/gfac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In patients admitted to the Intensive Care Unit (ICU), Kidney Replacement Therapy (KRT) is an important risk factor for hypophosphataemia. However, studies addressing the development of hypophosphatemia during prolonged intermittent KRT modalities are lacking. Thus, we evaluated the incidence of hypophosphatemia during Sustained Low-Efficiency Dialysis (SLED) in ICU patients; we also examined the determinants of post-SLED serum phosphate level (s-P) and the relation between s-P and phosphate supplementation and ICU mortality. METHODS We conducted a retrospective analysis on a cohort of critically ill patients with severe renal failure and KRT need, who underwent at least three consecutive SLED sessions at 24-72 h time intervals with daily monitoring of s-P concentration. SLED with Regional Citrate Anticoagulation (RCA) was performed with either conventional dialysis machines or continuous-KRT monitors and standard dialysis solutions. When deemed necessary by the attending physician, intravenous phosphate supplementation was provided by sodium glycerophosphate pentahydrate. We used mixed-effect models to examine the determinants of s-P and Cox proportional hazards regression models with time-varying covariates to examine the adjusted relation between s-P, intravenous phosphate supplementation and ICU mortality. RESULTS We included 65 patients [mean age 68 years (SD 10.0); mean Acute Physiology and Chronic Health Evaluation II score 25 (range 9-40)] who underwent 195 SLED sessions. The mean s-P before the start of the first SLED session (baseline s-P) was 5.6 ± 2.1 mg/dL (range 1.5-12.3). Serum phosphate levels at the end of each SLED decreased with increasing age, SLED duration and number of SLED sessions (P < .05 for all). The frequency of hypophosphatemia increased after the first through the third SLED session (P = .012). Intravenous phosphate supplementation was scheduled after 12/45 (26.7%) SLED sessions complicated by hypophosphataemia. The overall ICU mortality was 23.1% (15/65). In Cox regression models, after adjusting for potential confounders and for current s-P, intravenous phosphate supplementation was associated with a decrease in ICU mortality [adjusted hazard ratio: 0.24 (95% confidence interval: 0.06 to 0.89; P = 0.033)]. CONCLUSIONS Hypophosphatemia is a frequent complication in critically ill patients undergoing SLED with standard dialysis solutions, that worsens with increasing SLED treatment intensity. In patients undergoing daily SLED, phosphate supplementation is strongly associated with reduced ICU mortality.
Collapse
Affiliation(s)
- Francesca Di Mario
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Giuseppe Regolisti
- Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy.,UO Clinica e Immunologia Medica, Azienda Ospedaliero-Universitaria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Umberto Maggiore
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Maria Chiara Pacchiarini
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Brenda Menegazzo
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Paolo Greco
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Caterina Maccari
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Cristina Zambrano
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Valentina Pistolesi
- UOSD Dialisi, Azienda Ospedaliero-Universitaria Policlinico Umberto I, "Sapienza" Università di Roma, Rome, Italy
| | - Santo Morabito
- UOSD Dialisi, Azienda Ospedaliero-Universitaria Policlinico Umberto I, "Sapienza" Università di Roma, Rome, Italy
| | - Enrico Fiaccadori
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Scuola di Specializzazione in Nefrologia, Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, Italy
| |
Collapse
|
15
|
Early therapeutic plasma exchange may lead to complete neurological recovery in moderate to severe influenza-associated acute necrotizing encephalopathy. Brain Dev 2022; 44:492-497. [PMID: 35337691 DOI: 10.1016/j.braindev.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Acute necrotizing encephalopathy (ANE) is a pediatric neurological disease, presumably caused by cytokine storms, with a poor prognosis. Immunomodulatory therapy, including therapeutic plasma exchange (TPE), could be an effective treatment. CASES Two patients with influenza-associated ANE were treated. The ANE severity scores were 3 and 8 in case 1 (a 3-y-old boy) and case 2 (a 7-y-old boy), respectively. In case 1, intravenous methylprednisolone and TPE were initiated at 8 and 16 h, respectively, after the onset of impaired consciousness. In case 2, multiple organ failure and septic shock persisted even after infusion of fluids and inotropic agents. Intravenous methylprednisolone and TPE were started at 5 and 9 h, respectively, after the onset of impaired consciousness, which improved the inotrope-refractory septic shock. Patient 1 and 2 achieved complete neurological recovery within 4 weeks and after 3 months, respectively. In both patients, cytokine levels were serially measured. There were increased serum interleukin (IL)-6 and IL-10 levels in both patients; patient 1 showed increased IL-6 levels in the initial cerebrospinal fluid sample. There was a post-treatment decrease in serum IL-6 levels in both cases. DISCUSSION Early intensive immunomodulatory therapy with TPE may improve neurological outcomes in pediatric influenza-associated ANE. Further studies are required to establish the efficacy of TPE for ANE.
Collapse
|
16
|
Wang C, Zheng J, Wang J, Zou L, Zhang Y. Cox-LASSO Analysis for Hospital Mortality in Patients With Sepsis Received Continuous Renal Replacement Therapy: A MIMIC-III Database Study. Front Med (Lausanne) 2022; 8:778536. [PMID: 35223879 PMCID: PMC8866187 DOI: 10.3389/fmed.2021.778536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background Sepsis remains the leading cause of mortality in-hospital in the intensive care unit (ICU). Continuous renal replacement therapy (CRRT) is recommended as an adjuvant therapy for hemodynamics management in patients with sepsis. The aim of this study was to develop an adaptive least absolute shrinkage and selection operator (LASSO) for the Cox regression model to predict the hospital mortality in patients with Sepsis-3.0 undergoing CRRT using Medical Information Martin Intensive Care (MIMIC)-III v1.4. Methods Patients who met the Sepsis-3.0 definition were identified using the MIMIC-III v1.4. Among them, patients who received CRRT during ICU hospitalization were included in this study. According to the survival status, patients were split into death or survival group. Adaptive LASSO for the Cox regression model was constructed by STATA software. At last, nomogram and Kaplan-Meier curves were drawn to validate the model. Results A total of 181 patients who met Sepsis 3.0 criteria received CRRT were included in the study, in which, there were 31 deaths and 150 survivals during hospitalization, respectively. The overall in-hospital mortality was 17.1%. According to the results of multivariate Cox-LASSO regression analysis, use of vasopressor, international normalized ratio (INR) ≥1.5, and quick sequential organ failure assessment (qSOFA) score were associated with hospital mortality in patients with sepsis who underwent CRRT, but lactate level, mechanical ventilation (MV) support, PaO2/FiO2, platelet count, and indicators of acute kidney injury (AKI), such as blood urea nitrogen (BUN) and creatinine, were not independently associated with hospital mortality after adjusted by qSOFA. The risk nomogram and Kaplan-Meier curves verified that the use of vasopressor and INR ≥1.5 possess significant predictive value. Conclusions Using the Cox-LASSO regression model, use of vasopressor, INR ≥1.5, and qSOFA score are found to be associated with hospital mortality in patients with Sepsis-3.0 who received CRRT. This finding may assist clinicians in tailoring precise management and therapy for these patients who underwent CRRT.
Collapse
Affiliation(s)
- Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianli Zheng
- Institute of Medical Information Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Jin B, Cao D, Yang N, Wang L, Li R, Liu X, Gong P. Early High-dose Continuous Veno-venous Hemofiltration Alleviates the Alterations of CD4+ T Lymphocyte Subsets in Septic Patients Combined with Acute Kidney Injury. Artif Organs 2022; 46:1415-1424. [PMID: 35132659 DOI: 10.1111/aor.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND This study aims to determine whether early high-dose continuous venous-venous hemofiltration (CVVH) alleviates the alterations in CD4+ T lymphocyte subsets in septic patients combined with acute kidney injury. METHODS Enrolled septic patients combined with acute kidney injury were randomized into CVVH (n = 50) and conventional treatment (non-CVVH, n = 53) groups. Healthy volunteers (n = 21) were enrolled. CVVH was initiated within 12 h of intensive care unit (ICU) admission with the doses of 35 ~ 60 mL/kg/h and maintained for at least 72 h. Th1, Th2, Th17 and Treg were measured by flow cytometry on days 1, 3 and 7 of ICU admission. Sequential organ failure assessment (SOFA) scores were calculated. RESULTS Th1 percentages and Th1/Th2 ratios were lower, and Th2, Th17 and Treg percentages and Th17/Treg ratios were higher in septic patients compared to healthy volunteers. CVVH significantly increased Th1 percentages and Th1/Th2 ratios, and significantly decreased Th2, Th17 and Treg percentages and Th17/Treg ratios compared to non-CVVH. Th1 percentages and Th1/Th2 ratios were negatively correlated with SOFA scores, while Th2, Th17 and Treg percentages and Th17/Treg ratios were positively correlated with SOFA scores. Patients with CVVH had significantly lower SOFA scores on day 7 of ICU admission and a shorter ICU stay compared to those with non-CVVH. CONCLUSIONS Septic patients combined with acute kidney injury exhibit different alterations of CD4+ T lymphocyte subsets. Early high-dose CVVH alleviates the alterations, which may be one of factors associated with improved sepsis severity.
Collapse
Affiliation(s)
- Beibei Jin
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China.,Department of Emergency, First Affiliated Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Da Cao
- Department of Emergency, Southeast University Zhongda Hospital, 210009, Jiangsu, China
| | - Ning Yang
- Department of Nephrology, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Ling Wang
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Ruifang Li
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Xiumei Liu
- Department of Intensive Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| | - Ping Gong
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China
| |
Collapse
|
18
|
Kang K, Luo Y, Gao Y, Zhang J, Wang C, Fei D, Yang W, Meng X, Ye M, Gao Y, Liu H, Du X, Ji Y, Wei J, Xie W, Wang J, Zhao M, Yu K. Continuous Renal Replacement Therapy With oXiris Filter May Not be an Effective Resolution to Alleviate Cytokine Release Syndrome in Non-AKI Patients With Severe and Critical COVID-19. Front Pharmacol 2022; 13:817793. [PMID: 35185571 PMCID: PMC8854969 DOI: 10.3389/fphar.2022.817793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
In this study, we aimed to determine whether continuous renal replacement therapy (CRRT) with oXiris filter may alleviate cytokine release syndrome (CRS) in non-AKI patients with severe and critical coronavirus disease 2019 (COVID-19). A total of 17 non-AKI patients with severe and critical COVID-19 treated between February 14 and March 26, 2020 were included and randomly divided into intervention group and control group according to the random number table. Patients in the intervention group immediately received CRRT with oXiris filter plus conventional treatment, while those in the control group only received conventional treatment. Demographic data were collected and collated at admission. During ICU hospitalization, the concentrations of circulating cytokines and inflammatory chemokines, including IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ, were quantitatively measured daily to reflect the degree of CRS induced by SARS-CoV-2 infection. Clinical data, including the severity of COVID-19 white blood cell count (WBC), neutrophil proportion (NEUT%), lymphocyte count (LYMPH), lymphocyte percentage (LYM%), platelet (PLT), C-reaction protein (CRP), high sensitivity C-reactive protein (hs-CRP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), albumin (ALB), serum creatinine (SCr), D-Dimer, fibrinogen (FIB), IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, number of hospital days and sequential organ failure assessment (SOFA) score were obtained and collated from medical records, and then compared between the two groups. Age, and SCr significantly differed between the two groups. Besides the IL-2 concentration that was significantly lower on day 2 than that on day 1 in the intervention group, and the IL-6 concentrations that were significantly higher on day 1, and day 2 in the intervention group compared to the control group, similar to the IL-10 concentration on day 5, there were no significant differences between the two groups. To sum up, CRRT with oXiris filter may not effectively alleviate CRS in non-AKI patients with severe and critical COVID-19. Thus, its application in these patients should be considered with caution to avoid increasing the unnecessary burden on society and individuals and making the already overwhelmed medical system even more strained (IRB number: IRB-AF/SC-04).
Collapse
Affiliation(s)
- Kai Kang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yunpeng Luo
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Critical Care Medicine, the Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Institute of Critical Care Medicine, the Sino Russian Medical Research Center of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jiannan Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Changsong Wang
- Institute of Critical Care Medicine, the Sino Russian Medical Research Center of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Dongsheng Fei
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xianglin Meng
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Ming Ye
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yan Gao
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xue Du
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yuanyuan Ji
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jieling Wei
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Wanqiu Xie
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- *Correspondence: Mingyan Zhao, ; Kaijiang Yu,
| | - Kaijiang Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Institute of Critical Care Medicine, the Sino Russian Medical Research Center of Harbin Medical University, Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin, China
- *Correspondence: Mingyan Zhao, ; Kaijiang Yu,
| |
Collapse
|
19
|
Jang SM, Shaw AR, Mueller BA. Size Matters: The Influence of Patient Size on Antibiotics Exposure Profiles in Critically Ill Patients on Continuous Renal Replacement Therapy. Antibiotics (Basel) 2021; 10:antibiotics10111390. [PMID: 34827327 PMCID: PMC8615189 DOI: 10.3390/antibiotics10111390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
(1) Purpose of this study: To determine whether patient weight influences the probability of target attainment (PTA) over 72 h of initial therapy with beta-lactam (cefepime, ceftazidime, piperacillin/tazobactam) and carbapenem (imipenem, ertapenem, meropenem) antibiotics in the critical care setting. This is the first paper to address the question of whether patient size affects antibiotic PTA in the ICU. (2) Methods: We performed a post hoc analysis of Monte Carlo simulations conducted in virtual critically ill patients receiving antibiotics and continuous renal replacement therapy. The PTA was calculated for each antibiotic on the following pharmacodynamic (PD) targets: (a) were above the target organism’s minimum inhibitory concentration (≥%fT≥1×MIC), (b) were above four times the MIC (≥%fT≥4×MIC), and (c) were always above the MIC (≥100%fT≥MIC) for the first 72 h of antibiotic therapy. The PTA was analyzed in patient weight quartiles [Q1 (lightest)-Q4 (heaviest)]. Optimal doses were defined as the lowest dose achieving ≥90% PTA. (3) Results: The PTA for fT≥1×MIC led to similarly high rates regardless of weight quartiles. Yet, patient weight influenced the PTA for higher PD targets (100%fT≥MIC and fT≥4×MIC) with commonly used beta-lactams and carbapenems. Reaching the optimal PTA was more difficult with a PD target of 100%fT≥MIC compared to fT≥4×MIC. (4) Conclusions: The Monte Carlo simulations showed patients in lower weight quartiles tended to achieve higher antibiotic pharmacodynamic target attainment compared to heavier patients.
Collapse
Affiliation(s)
- Soo-Min Jang
- Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, CA 92350, USA
- Correspondence:
| | - Alex R. Shaw
- Medical Strategist, Ironwood Pharmaceuticals, Boston, MA 02110, USA;
| | - Bruce A. Mueller
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA;
| |
Collapse
|
20
|
AN69 Filter Membranes with High Ultrafiltration Rates during Continuous Venovenous Hemofiltration Reduce Mortality in Patients with Sepsis-Induced Multiorgan Dysfunction Syndrome. MEMBRANES 2021; 11:membranes11110837. [PMID: 34832066 PMCID: PMC8618352 DOI: 10.3390/membranes11110837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
Polyacrylonitrile (AN69) filter membranes adsorb cytokines during continuous venovenous hemofiltration (CVVH). Although high-volume hemofiltration has shown limited benefits, the dose-effect relationship in CVVH with AN69 membranes on severe sepsis remains undetermined. This multi-centered study enrolled 266 patients with sepsis-induced multiorgan dysfunction syndrome (MODS) who underwent CVVH with AN69 membranes between 2014 and 2015. We investigated the effects of ultrafiltration rates (UFR) on mortality. We categorized patients that were treated with UFR of 20-25 mL/kg/h as the standard UFR group (n = 124) and those that were treated with a UFR >25 mL/kg/h as the high UFR group (n = 142). Among the patient characteristics, the baseline estimated glomerular filtration rates (eGFR) <60 mL/min/1.73 m2, hemoglobin levels <10 g/dL, and a sequential organ failure assessment (SOFA) score ≥15 at CVVH initiation were independently associated with in-hospital mortality. In the subgroup analysis, for patients with SOFA scores that were ≥15, the 90-day survival rate was higher in the high UFR group than in the standard UFR group (HR 0.54, CI: 0.36-0.79, p = 0.005). We concluded that in patients with sepsis-induced MODS, SOFA scores ≥15 predicted a poor rate of survival. High UFR setting >25 mL/kg/h in CVVH with AN69 membranes may reduce the mortality risk in these high-risk patients.
Collapse
|
21
|
Hellman T, Uusalo P, Järvisalo MJ. Renal Replacement Techniques in Septic Shock. Int J Mol Sci 2021; 22:10238. [PMID: 34638575 PMCID: PMC8508758 DOI: 10.3390/ijms221910238] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to an infection; it carries a risk for mortality, considerably exceeding that of a mere infection. Sepsis is the leading cause for acute kidney injury (AKI) and the requirement for renal replacement therapy (RRT) in intensive care unit (ICU) patients. Almost every second critically ill patient with sepsis will develop AKI. In septic shock, the dysregulated host response to infectious pathogens leads to a cytokine storm with uncontrolled production and release of humoral proinflammatory mediators that evoke cellular toxicity and promote the development of organ dysfunction and increased mortality. In addition to treating AKI, RRT techniques can be employed for extracorporeal adsorption of inflammatory mediators using specifically developed adsorption membranes, hemoperfusion sorbent cartridges or columns; these techniques are intended to decrease the level and early deleterious effects of circulating proinflammatory cytokines and endotoxins during the first hours and days of septic shock treatment, in order to improve patient outcomes. Several methods and devices, such as high cut-off membranes, the Oxiris®-AN69 membrane, CytoSorb® and HA380 cytokine hemoadsorption, polymyxin B endotoxin adsorption, and plasmapheresis have been examined in small study series or are under evaluation as ways of improving patient outcomes in septic shock. However, to date, the data on actual outcome benefits have remained controversial, as discussed in this review.
Collapse
Affiliation(s)
- Tapio Hellman
- Kidney Center, Turku University Hospital and University of Turku, Building 4, AA7, Kiinanmyllynkatu 4-8, FIN-20521 Turku, Finland;
| | - Panu Uusalo
- Department of Anaesthesiology and Intensive Care, Turku University Hospital and University of Turku, Building 18, TG3B, Hämeentie 11, FIN-20521 Turku, Finland;
- Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital and University of Turku, Building 18, TG3B, Hämeentie 11, FIN-20521 Turku, Finland
| | - Mikko J. Järvisalo
- Kidney Center, Turku University Hospital and University of Turku, Building 4, AA7, Kiinanmyllynkatu 4-8, FIN-20521 Turku, Finland;
- Department of Anaesthesiology and Intensive Care, Turku University Hospital and University of Turku, Building 18, TG3B, Hämeentie 11, FIN-20521 Turku, Finland;
- Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital and University of Turku, Building 18, TG3B, Hämeentie 11, FIN-20521 Turku, Finland
| |
Collapse
|
22
|
Tsujimoto Y, Miki S, Shimada H, Tsujimoto H, Yasuda H, Kataoka Y, Fujii T. Non-pharmacological interventions for preventing clotting of extracorporeal circuits during continuous renal replacement therapy. Cochrane Database Syst Rev 2021; 9:CD013330. [PMID: 34519356 PMCID: PMC8438600 DOI: 10.1002/14651858.cd013330.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication amongst people who are critically ill, and it is associated with an increased risk of death. For people with severe AKI, continuous kidney replacement therapy (CKRT), which is delivered over 24 hours, is needed when they become haemodynamically unstable. When CKRT is interrupted due to clotting of the extracorporeal circuit, the delivered dose is decreased and thus leading to undertreatment. OBJECTIVES This review assessed the efficacy of non-pharmacological measures to maintain circuit patency in CKRT. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 25 January 2021 which includes records identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA We included all randomised controlled trials (RCTs) (parallel-group and cross-over studies), cluster RCTs and quasi-RCTs that examined non-pharmacological interventions to prevent clotting of extracorporeal circuits during CKRT. DATA COLLECTION AND ANALYSIS: Three pairs of review authors independently extracted information including participants, interventions/comparators, outcomes, study methods, and risk of bias. The primary outcomes were circuit lifespan and death due to any cause at day 28. We used a random-effects model to perform quantitative synthesis (meta-analysis). We assessed risk of bias in included studies using the Cochrane Collaboration's tool for assessing risk of bias. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS A total of 20 studies involving 1143 randomised participants were included in the review. The methodological quality of the included studies was low, mainly due to the unclear randomisation process and blinding of the intervention. We found evidence on the following 11 comparisons: (i) continuous venovenous haemodialysis (CVVHD) versus continuous venovenous haemofiltration (CVVH) or continuous venovenous haemodiafiltration (CVVHDF); (ii) CVVHDF versus CVVH; (iii) higher blood flow (≥ 250 mL/minute) versus standard blood flow (< 250 mL/minute); (iv) AN69 membrane (AN69ST) versus other membranes; (v) pre-dilution versus post-dilution; (vi) a longer catheter (> 20 cm) placing the tip targeting the right atrium versus a shorter catheter (≤ 20 cm) placing the tip in the superior vena cava; (vii) surface-modified double-lumen catheter versus standard double-lumen catheter with identical geometry and flow design; (viii) single-site infusion anticoagulation versus double-site infusion anticoagulation; (ix) flat plate filter versus hollow fibre filter of the same membrane type; (x) a filter with a larger membrane surface area versus a smaller one; and (xi) a filter with more and shorter hollow fibre versus a standard filter of the same membrane type. Circuit lifespan was reported in 9 comparisons. Low certainty evidence indicated that CVVHDF (versus CVVH: MD 10.15 hours, 95% CI 5.15 to 15.15; 1 study, 62 circuits), pre-dilution haemofiltration (versus post-dilution haemofiltration: MD 9.34 hours, 95% CI -2.60 to 21.29; 2 studies, 47 circuits; I² = 13%), placing the tip of a longer catheter targeting the right atrium (versus placing a shorter catheter targeting the tip in the superior vena cava: MD 6.50 hours, 95% CI 1.48 to 11.52; 1 study, 420 circuits), and surface-modified double-lumen catheter (versus standard double-lumen catheter: MD 16.00 hours, 95% CI 13.49 to 18.51; 1 study, 262 circuits) may prolong circuit lifespan. However, higher blood flow may not increase circuit lifespan (versus standard blood flow: MD 0.64, 95% CI -3.37 to 4.64; 2 studies, 499 circuits; I² = 70%). More and shorter hollow fibre filters (versus standard filters: MD -5.87 hours, 95% CI -10.18 to -1.56; 1 study, 6 circuits) may reduce circuit lifespan. Death from any cause was reported in four comparisons We are uncertain whether CVVHDF versus CVVH, CVVHD versus CVVH or CVVHDF, longer versus a shorter catheter, or surface-modified double-lumen catheters versus standard double-lumen catheters reduced death due to any cause, in very low certainty evidence. Recovery of kidney function was reported in three comparisons. We are uncertain whether CVVHDF versus CVVH, CVVHDF versus CVVH, or surface-modified double-lumen catheters versus standard double-lumen catheters increased recovery of kidney function. Vascular access complications were reported in two comparisons. Low certainty evidence indicated using a longer catheter (versus a shorter catheter: RR 0.40, 95% CI 0.22 to 0.74) may reduce vascular access complications, however the use of surface-modified double lumen catheters versus standard double-lumen catheters may make little or no difference to vascular access complications. AUTHORS' CONCLUSIONS The use of CVVHDF as compared with CVVH, pre-dilution haemofiltration, a longer catheter, and surface-modified double-lumen catheter may be useful in prolonging the circuit lifespan, while higher blood flow and more and shorter hollow fibre filter may reduce circuit life. The Overall, the certainty of evidence was assessed to be low to very low due to the small sample size of the included studies. Data from future rigorous and transparent research are much needed in order to fully understand the effects of non-pharmacological interventions in preventing circuit coagulation amongst people with AKI receiving CKRT.
Collapse
Affiliation(s)
- Yasushi Tsujimoto
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine / School of Public Health, Kyoto, Japan
- Department of Nephrology and Dialysis, Kyoritsu Hospital, Kawanishi, Japan
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
| | - Sho Miki
- Department of Nephrology, Sumitomo Hospital, Osaka, Japan
| | - Hiroki Shimada
- Department of Nephrology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Hiraku Tsujimoto
- Hospital Care Research Unit, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Hideto Yasuda
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama-shi, Japan
| | - Yuki Kataoka
- Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
- Department of Internal Medicine, Kyoto Min-Iren Asukai Hospital, Kyoto, Japan
- Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine / School of Public Health, Kyoto, Japan
- Section of Clinical Epidemiology, Department of Community Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Fujii
- Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine / School of Public Health, Kyoto, Japan
- Intensive Care Unit, Jikei University Hospital, Tokyo, Japan
- ANZIC-RC, Monash University School of Public Health and Preventive Medicine, Melbourne, Australia
| |
Collapse
|
23
|
Satoh K, Nomura K, Nakae H, Kudo D, Kushimoto S, Hasegawa M, Ito F, Yamanouchi S, Honda H, Andoh K, Furukawa H, Yamada Y, Tsujimoto Y, Okuyama M. Blood purification therapy for severe sepsis: a multicenter, observational cohort study in northern Japan. RENAL REPLACEMENT THERAPY 2021. [DOI: 10.1186/s41100-021-00366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sepsis is associated with life-threatening organ dysfunction caused by a dysregulated host response to infection. However, no specific therapy has been shown to improve mortality in patients with sepsis. We conducted a study to clarify the utilization status of various BPTs and the clinical characteristics of patients who received BPTs in northern Japan. In addition, the association of various BPTs with clinical outcomes was examined.
Methods
This is a sub-analysis of the Tohoku Sepsis Registry, a multicenter, prospective, observational cohort study. To determine whether BPT was independently associated with in-hospital mortality in patients with severe sepsis, the following analyses were performed. Differences between survivors and non-survivors were assessed using Wilcoxon rank sum tests for continuous variables and Chi-square tests for categorical variables. Univariate logistic regression analysis was used to evaluate the factors associated with in-hospital mortality. In the multivariate logistic regression analysis, adjustments were made for the variables that were significant in the univariate logistic regression analysis. Clinical factors associated with mortality were analyzed.
Results
We enrolled 616 consecutive patients (≥ 18 years) with median Sequential Organ Failure Assessment scores of 8.0. During median of 22 days hospitalization, 139 patients died (mortality 22.6%). 20.7% of patients with severe sepsis received any type of BPT (mortality 38.6%). BPT consisted of 65.1% continuous renal replacement therapy (CRRT) with renal indication (mortality 48.8%), 26.0% CRRT with non-renal indication (mortality 21.2%), 22.2% intermittent renal replacement therapy (mortality 32.1%), and 33.1% polymyxin B-immobilized fiber column-direct hemoperfusion (mortality 42.9%). Meanwhile, no BPT group (mortality 18.5%) showed a significantly lower mortality than any BPT group. Besides, in multivariate analyses, all BPT modes were not independently associated with all-cause mortality.
Conclusions
This study suggested the clinical status of BPTs for severe sepsis patients in northern Japan. Among all types of BPT, continuous renal replacement therapy (CRRT) for renal indication was most frequently selected. Severe sepsis patients received BPT had a higher mortality and severity; however, the BPT implementation may not be associated with mortality.
Trial registration UMIN-CTR, UMIN000010297, Registered on 22 March 2013, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000012055).
Collapse
|
24
|
Kelly YP, Sharma S, Mothi SS, McCausland FR, Mendu ML, McMahon GM, Palevsky PM, Waikar SS. Hypocalcemia is associated with hypotension during CRRT: A secondary analysis of the Acute Renal Failure Trial Network Study. J Crit Care 2021; 65:261-267. [PMID: 34274834 DOI: 10.1016/j.jcrc.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated the effect of potentially modifiable continuous renal replacement therapy (CRRT)-related treatment factors on the risk of severe hypotension. MATERIALS AND METHODS We carried out a secondary statistical analysis of the Acute Renal Failure Trial Network (ATN) trial. The primary exposures of interest were CRRT treatment dose, ultrafiltration rate, blood flow rate, ionized calcium level and type of anti-coagulation used. The primary outcome was severe hypotension, defined as vasopressor-inotropic score > 18 and calculated based on treatment doses of vasopressor and inotropic agents. RESULTS Of 1124 individuals enrolled in the ATN Trial, 786 were managed with CRRT. 265/786 (33.7%) patients experienced severe hypotension during the trial. A serum ionized calcium <1.02 mmol/l was associated with a higher risk of severe hypotension compared to a serum calcium >1.02 mmol/l (hazard ratio 2.9; 95% CI 1.5-5.7). There was no significant difference in the risk of hypotension associated with other CRRT treatment factors. CONCLUSIONS Of the CRRT treatment factors studied, hypocalcemia with a serum ionized calcium <1.02 mmol/l was associated with a significantly increased risk of treatment-associated hypotension. Further studies will be required to assess whether treatment targets for serum calcium improve the risk of hypotension during CRRT.
Collapse
Affiliation(s)
- Yvelynne P Kelly
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America; Department of Critical Care Medicine, St. James's Hospital, James's Street, Dublin 8, Ireland.
| | - Shilpa Sharma
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America
| | - Suraj S Mothi
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America
| | - Finnian R McCausland
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America
| | - Mallika L Mendu
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America
| | - Gearoid M McMahon
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, United States of America
| | - Paul M Palevsky
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine and Kidney Medicine Section, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America
| | - Sushrut S Waikar
- Section of Nephrology, Boston University School of Medicine and Boston Medical Center, 650 Albany Street, EBRC 526, Boston, MA 02118, United States of America
| |
Collapse
|
25
|
Neyra JA, Tolwani A. CRRT prescription and delivery of dose. Semin Dial 2021; 34:432-439. [PMID: 33909931 DOI: 10.1111/sdi.12974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Continuous renal replacement therapy (CRRT) is the preferred modality of extracorporeal renal support for critically ill patients with acute kidney injury (AKI). The dose of CRRT is reported as effluent flow in ml/kg body weight per hour (ml/kg/h). Solid evidence supports that the delivered CRRT effluent dose for critically ill patients with AKI should be 20-25 ml/kg/h on average. To account for treatment interruptions and the natural decline in filter efficiency over time, it is recommended to prescribe 25-30 ml/kg/h of effluent dose. However, transient higher doses of CRRT in specific clinical scenarios may be needed to accommodate specific solute control needs of a particular patient at a given time. Consequently, there should be consideration of the potential adverse consequences of non-selective clearance such as undesired antimicrobials and nutrients removal. In this manuscript, we provide a summary of evidence related to CRRT dose, practical aspects for its calculation at the time of prescribing CRRT, and considerations for addressing the expected gap between prescribed and delivered CRRT dose. We also provide a framework for monitoring and implementation of CRRT dose as a quality indicator of CRRT delivery.
Collapse
Affiliation(s)
- Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY, USA
| | - Ashita Tolwani
- Department of Internal Medicine, Division of Nephrology, University of Alabama, Birmingham, AL, USA
| |
Collapse
|
26
|
Wu X, Wu J, Wang P, Fang X, Yu Y, Tang J, Xiao Y, Wang M, Li S, Zhang Y, Hu B, Ma T, Li Q, Wang Z, Wu A, Liu C, Dai M, Ma X, Yi H, Kang Y, Wang D, Han G, Zhang P, Wang J, Yuan Y, Wang D, Wang J, Zhou Z, Ren Z, Liu Y, Guan X, Ren J. Diagnosis and Management of Intraabdominal Infection: Guidelines by the Chinese Society of Surgical Infection and Intensive Care and the Chinese College of Gastrointestinal Fistula Surgeons. Clin Infect Dis 2021; 71:S337-S362. [PMID: 33367581 DOI: 10.1093/cid/ciaa1513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Chinese guidelines for IAI presented here were developed by a panel that included experts from the fields of surgery, critical care, microbiology, infection control, pharmacology, and evidence-based medicine. All questions were structured in population, intervention, comparison, and outcomes format, and evidence profiles were generated. Recommendations were generated following the principles of the Grading of Recommendations Assessment, Development, and Evaluation system or Best Practice Statement (BPS), when applicable. The final guidelines include 45 graded recommendations and 17 BPSs, including the classification of disease severity, diagnosis, source control, antimicrobial therapy, microbiologic evaluation, nutritional therapy, other supportive therapies, diagnosis and management of specific IAIs, and recognition and management of source control failure. Recommendations on fluid resuscitation and organ support therapy could not be formulated and thus were not included. Accordingly, additional high-quality clinical studies should be performed in the future to address the clinicians' concerns.
Collapse
Affiliation(s)
- Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,BenQ Medical Center, Nanjing Medical University, Nanjing, China
| | - Peige Wang
- Department of Emergency Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueling Fang
- Department of Critical Care Medicine, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Tang
- Department of Emergency Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yonghong Xiao
- Department of Infectious Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shikuan Li
- Department of Emergency Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Li
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Menghua Dai
- Department of Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huimin Yi
- Department of Critical Care Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Gang Han
- Department of Gastroenterology, Second Hospital of Jilin University, Changchun, China
| | - Ping Zhang
- Department of General Surgery, First Hospital of Jilin University, Changchun, China
| | - Jianzhong Wang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yufeng Yuan
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Wang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Jian Wang
- Department of Biliary and Pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zheng Zhou
- Department of General Surgery, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuxiu Liu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Elbahlawan L, Bissler J, Morrison RR. Continuous Renal Replacement Therapy: A Review of Use and Application in Pediatric Hematopoietic Stem Cell Transplant Recipients. Front Oncol 2021; 11:632263. [PMID: 33718216 PMCID: PMC7953134 DOI: 10.3389/fonc.2021.632263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cell transplant (HSCT) is a curative therapy for malignant and non-malignant conditions. However, complications post-HSCT contribute to significant morbidity and mortality in this population. Acute kidney injury (AKI) is common in the post-allogeneic transplant phase and contributes to morbidity in this population. Continuous renal replacement therapy (CRRT) is used often in the setting of AKI or multiorgan dysfunction in critically ill children. In addition, CRRT can be useful in many disease processes related to transplant and can potentially improve outcomes in this population. This review will focus on the use of CRRT in critically ill children in the post-HSCT setting outside the realm of acute renal failure and highlight the benefits and applications of this modality in this high-risk population.
Collapse
Affiliation(s)
- Lama Elbahlawan
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children’s Hospital, Memphis, TN, United States
- Department of Pediatrics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - R. Ray Morrison
- Division of Critical Care Medicine, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
28
|
Uncertain Clinical Effect of Polymyxin B Hemoperfusion in Patients with Septic Acute Kidney Injury Requiring Continuous Renal Replacement Therapy. Shock 2021; 56:551-556. [PMID: 33606479 DOI: 10.1097/shk.0000000000001752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Polymyxin B hemoperfusion (PMX-HP) may improve the clinical outcomes of patients with sepsis and gram-negative bacteremia by reducing endotoxin levels. However, the recent studies with the variable degree of renal support have shown that the improvement of survival rate by PMX-HP remains unclear in such patients. Therefore, we investigated whether the addition of PMX-HP to continuous renal replacement therapy (CRRT) could improve the survival rate than CRRT alone. This study included 231 patients with sepsis undergoing CRRT alone or PMX-HP with CRRT. Primary outcomes were 28-day and 90-day all-cause mortality. Urine output, ventilator support, and Sequential Organ Failure Assessment (SOFA) score were not significantly different between the two groups. Crude 28-day and 90-day mortality rates were higher in the PMX-HP with CRRT group than in the CRRT alone group. To correct for disease severity, propensity score (PS) matching was performed with acute respiratory distress syndrome, mechanical ventilation support, extracorporeal membrane oxygenation, infection source (abdomen), age, inotropic score, SOFA score, C-reactive protein, and procalcitonin levels. Sixty-six PS-matched pairs revealed significantly higher 28-day and 90-day mortality rates in the PMX-HP with CRRT group than in the CRRT alone group. Considering the mortality rates after PS matching, the additional use of PMX-HP does not improve the clinical outcomes of patients with sepsis and acute kidney injury requiring CRRT.
Collapse
|
29
|
Fiaccadori E, Sabatino A, Barazzoni R, Carrero JJ, Cupisti A, De Waele E, Jonckheer J, Singer P, Cuerda C. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2021; 40:1644-1668. [PMID: 33640205 DOI: 10.1016/j.clnu.2021.01.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute kidney disease (AKD) - which includes acute kidney injury (AKI) - and chronic kidney disease (CKD) are highly prevalent among hospitalized patients, including those in nephrology and medicine wards, surgical wards, and intensive care units (ICU), and they have important metabolic and nutritional consequences. Moreover, in case kidney replacement therapy (KRT) is started, whatever is the modality used, the possible impact on nutritional profiles, substrate balance, and nutritional treatment processes cannot be neglected. The present guideline is aimed at providing evidence-based recommendations for clinical nutrition in hospitalized patients with AKD and CKD. Due to the significant heterogeneity of this patient population as well as the paucity of high-quality evidence data, the present guideline is to be intended as a basic framework of both evidence and - in most cases - expert opinions, aggregated in a structured consensus process, in order to update the two previous ESPEN Guidelines on Enteral (2006) and Parenteral (2009) Nutrition in Adult Renal Failure. Nutritional care for patients with stable CKD (i.e., controlled protein content diets/low protein diets with or without amino acid/ketoanalogue integration in outpatients up to CKD stages four and five), nutrition in kidney transplantation, and pediatric kidney disease will not be addressed in the present guideline.
Collapse
Affiliation(s)
- Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Alice Sabatino
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rocco Barazzoni
- Internal Medicine, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Adamasco Cupisti
- Nephrology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabeth De Waele
- Intensive Care, University Hospital Brussels (UZB), Department of Nutrition, UZ Brussel, Faculty of Medicine and Pharmacy, Vrije Unversiteit Brussel (VUB), Bruxelles, Belgium
| | | | - Pierre Singer
- General Intensive Care Department and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañon, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
30
|
Vásquez Jiménez E, Anumudu SJ, Neyra JA. Dose of Continuous Renal Replacement Therapy in Critically Ill Patients: A Bona Fide Quality Indicator. Nephron Clin Pract 2021; 145:91-98. [PMID: 33540417 DOI: 10.1159/000512846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/24/2020] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is common in critically ill patients, and renal replacement therapy (RRT) constitutes an important aspect of acute management during critical illness. Continuous RRT (CRRT) is frequently utilized in intensive care unit settings, particularly in patients with severe AKI, fluid overload, and hemodynamic instability. The main goal of CRRT is to timely optimize solute control, acid-base, and volume status. Total effluent dose of CRRT is a deliverable that depends on multiple factors and therefore should be systematically monitored (prescribed vs. delivered) and iteratively adjusted in a sustainable mode. In this manuscript, we review current evidence of CRRT dosing and provide recommendations for its implementation as a quality indicator of CRRT delivery.
Collapse
Affiliation(s)
- Enzo Vásquez Jiménez
- Department of Nephrology, National Institute of Cardiology Mexico, Mexico City, Mexico
| | - Samaya J Anumudu
- Division of Nephrology, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Javier A Neyra
- Division of Nephrology, Department of Internal Medicine, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA,
| |
Collapse
|
31
|
Gao YM, Xu G, Wang B, Liu BC. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J Intern Med 2021; 289:147-161. [PMID: 32696489 PMCID: PMC7404514 DOI: 10.1111/joim.13144] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Abstract
Cytokine storm syndrome (CSS) is a critical clinical condition induced by a cascade of cytokine activation, characterized by overwhelming systemic inflammation, hyperferritinaemia, haemodynamic instability and multiple organ failure (MOF). At the end of 2019, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, and rapidly developed into a global pandemic. More and more evidence shows that there is a dramatic increase of inflammatory cytokines in patients with COVID-19, suggesting the existence of cytokine storm in some critical illness patients. Here, we summarize the pathogenesis, clinical manifestation of CSS, and highlight the current understanding about the recognition and potential therapeutic options of CSS in COVID-19.
Collapse
Affiliation(s)
- Y-M Gao
- From the, Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - G Xu
- Department of Nephrology, Tongji Hospital, University of HuaZhong Science and Technology, Wuhan, China
| | - B Wang
- From the, Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - B-C Liu
- From the, Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
32
|
Precision renal replacement therapy. Curr Opin Crit Care 2021; 26:574-580. [PMID: 33002973 DOI: 10.1097/mcc.0000000000000776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This article reviews the current evidence supporting the use of precision medicine in the delivery of acute renal replacement therapy (RRT) to critically ill patients, focusing on timing, solute control, anticoagulation and technologic innovation. RECENT FINDINGS Precision medicine is most applicable to the timing of RRT in critically ill patients. As recent randomized controlled trials have failed to provide consensus on when to initiate acute RRT, the decision to start acute RRT should be based on individual patient clinical characteristics (e.g. severity of the disease, evolution of clinical parameters) and logistic considerations (e.g. organizational issues, availability of machines and disposables). The delivery of a dynamic dialytic dose is another application of precision medicine, as patients may require different and varying dialysis doses depending on individual patient factors and clinical course. Although regional citrate anticoagulation (RCA) is recommended as first-line anticoagulation for continuous RRT, modifications to RCA protocols and consideration of other anticoagulants should be individualized to the patient's clinical condition. Finally, the evolution of RRT technology has improved precision in dialysis delivery through increased machine accuracy, connectivity to the electronic medical record and automated reduction of downtime. SUMMARY RRT has become a complex treatment for critically ill patients, which allows for the prescription to be precisely tailored to the different clinical requirements.
Collapse
|
33
|
Burmeister DM, Smith SL, Muthumalaiappan K, Hill DM, Moffatt LT, Carlson DL, Kubasiak JC, Chung KK, Wade CE, Cancio LC, Shupp JW. An Assessment of Research Priorities to Dampen the Pendulum Swing of Burn Resuscitation. J Burn Care Res 2020; 42:113-125. [PMID: 33306095 DOI: 10.1093/jbcr/iraa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
On June 17 to 18, 2019, the American Burn Association, in conjunction with Underwriters Laboratories, convened a group of experts on burn resuscitation in Washington, DC. The goal of the meeting was to identify and discuss novel research and strategies to optimize the process of burn resuscitation. Patients who sustain a large thermal injury (involving >20% of the total body surface area [TBSA]) face a sequence of challenges, beginning with burn shock. Over the last century, research has helped elucidate much of the underlying pathophysiology of burn shock, which places multiple organ systems at risk of damage or dysfunction. These studies advanced the understanding of the need for fluids for resuscitation. The resultant practice of judicious and timely infusion of crystalloids has improved mortality after major thermal injury. However, much remains unclear about how to further improve and customize resuscitation practice to limit the morbidities associated with edema and volume overload. Herein, we review the history and pathophysiology of shock following thermal injury, and propose some of the priorities for resuscitation research. Recommendations include: studying the utility of alternative endpoints to resuscitation, reexamining plasma as a primary or adjunctive resuscitation fluid, and applying information about inflammation and endotheliopathy to target the underlying causes of burn shock. Undoubtedly, these future research efforts will require a concerted effort from the burn and research communities.
Collapse
Affiliation(s)
- David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Susan L Smith
- The Warden Burn Center, Orlando Regional Medical Center, Orlando, Florida
| | | | - David M Hill
- Firefighters' Burn Center, Regional One Health, Memphis, Tennessee
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,The Burn Center, MedStar Washington Hospital Center; Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| | - Deborah L Carlson
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John C Kubasiak
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Charles E Wade
- Center for Translational Injury Research, and Department of Surgery, McGovern School of Medicine and The John S. Dunn Burn Center, Memorial Herman Hospital, Houston, Texas
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia.,The Burn Center, MedStar Washington Hospital Center; Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
34
|
Hill DM, Rizzo JA, Aden JK, Hickerson WL, Chung KK. Continuous Venovenous Hemofiltration is Associated with Improved Survival in Burn Patients with Shock: A Subset Analysis of a Multicenter Observational Study. Blood Purif 2020; 50:473-480. [PMID: 33264769 DOI: 10.1159/000512101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Acute kidney injury (AKI) is associated with high mortality in burn patients. Previously, we reported that timely initiation of renal replacement therapy (RRT) with an individualized preference toward continuous modes at relatively higher than recommended doses has become standard practice in critically ill burn patients with AKI and is associated with a historically low mortality. The purpose of this cohort analysis was to determine if modality choice impacted survival in burn patients. METHODS After Institutional Review Board approval, a subset analysis was performed on de-identified data collected during a multicenter, observational study. All patients (n = 170) were 18 years or older, admitted with severe burn injuries and started on RRT. Comparisons were made utilizing χ2 or Fisher's exact test. Kaplan-Meier plots were utilized to assess survival. Sample size determinations to aid future research were calculated utilizing χ2 test with a Yates Correction Factor. RESULTS Demographics and revised Baux were similar between groups. When continuous venovenous hemofiltration (CVVH) was compared to all other modalities, there was no statistically significant difference in survival (56 vs. 43%, p = 0.124). However, survival was significantly improved (54 vs. 37%, p = 0.032) in the subset of patients requiring vasopressors (n = 77). There was no statistically significant survival difference in patients with inhalation injury (38 vs. 29%, p = 0.638) or acute lung injury/acute respiratory distress syndrome (51 vs. 33%, p = 0.11). DISCUSSION/CONCLUSION Survival may be improved if CVVH is chosen as the preferred modality in burn patients with shock and requiring RRT. Differences in other subsets were promising, but analysis was underpowered. Further research should determine if modality choice provides survival benefit in any other subset of burn injury.
Collapse
Affiliation(s)
- David M Hill
- Firefighters Burn Center, Regional One Health, Memphis, Tennessee, USA,
| | - Julie A Rizzo
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - James K Aden
- Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | | | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | |
Collapse
|
35
|
Murao A, Brenner M, Aziz M, Wang P. Exosomes in Sepsis. Front Immunol 2020; 11:2140. [PMID: 33013905 PMCID: PMC7509534 DOI: 10.3389/fimmu.2020.02140] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a severe state of infection with high mortality. Pathogen-associated molecular patterns and damage-associated molecular patterns (DAMPs) initiate dysregulated systemic inflammation upon binding to pattern recognition receptors. Exosomes are endosome-derived vesicles, which carry proteins, lipids and nucleic acids, and facilitate intercellular communications. Studies have shown altered contents and function of exosomes during sepsis. In sepsis, exosomes carry increased levels of cytokines and DAMPs to induce inflammation. Exosomal DAMPs include, but are not limited to, high mobility group box 1, heat shock proteins, histones, adenosine triphosphate, and extracellular RNA. Exosomes released during sepsis have impact on multiple organs, including the lungs, kidneys, liver, cardiovascular system, and central nervous system. Here, we review the mechanisms of inflammation caused by exosomes, and their contribution to multiple organ dysfunction in sepsis.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
36
|
Badel JC, Garcia LA, Soto-Doria MJ, Musso CG. Dialysis prescription in acute kidney injury: when and how much? Int Urol Nephrol 2020; 53:489-496. [PMID: 32803563 DOI: 10.1007/s11255-020-02601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) constitutes a serious public health problem because of its very high cost and mortality rate, with an increasing incidence, phenomenon which is explained by the increasingly number of older patients suffering from several comorbidities admitted in the intensive care units. Despite the new AKI definition and classification, the use of novel AKI biomarkers and modern technologies, as an attempt to achieve an early AKI detection and treatment, and consequently to better clinical outcomes, AKI mortality particularly in ICU patients remains persistently high. In the present article, the currently accepted concepts regarding dose and time of hemodialysis and peritoneal dialysis prescription in AKI patients have been reviewed.
Collapse
Affiliation(s)
- Juan C Badel
- Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Lautaro A Garcia
- Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Manuel J Soto-Doria
- Clínica IMAT Oncomédica, Montería, Colombia.,Universidad del Sinú, Montería, Colombia
| | - Carlos G Musso
- Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina. .,Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia.
| |
Collapse
|
37
|
Impact of the intensity of intermittent renal replacement therapy in critically ill patients. J Nephrol 2020; 34:105-112. [PMID: 32495232 DOI: 10.1007/s40620-020-00760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Intermittent renal replacement therapy (IRRT) is prescribed across intensive care units (ICU) worldwide. While research regarding the prescribed dialysis dose has not yielded results concerning mortality, it is still unknown whether the same applies to the actual delivered dose. METHODS We retrospectively analyzed two different cohorts of patients (562 IRRT sessions) who were admitted to the intensive care units at Hospital Clínic of Barcelona and required renal replacement therapy with IRRT. The first cohort included patients with acute kidney injury (AKI) (n = 42) and the second included patients already on chronic hemodialysis (CKD 5D) (n = 47). Only patients who had at least 3 recorded hemodialysis sessions in the ICU and with no previous continuous renal replacement therapy (CRRT) were included. The achieved dose was measured as Kt (L) by ionic dialysance and the primary endpoint was 90-day mortality. RESULTS Ninety-day mortality was 40.5% (n = 17) in the AKI cohort and 23.9% (n = 11) in the CKD 5D cohort with mean Kt of 43 ± 8.27 L and 47 ± 9.65 L respectively. Kt dose of IRRT was associated with 90-day mortality in the AKI cohort in a multivariate surveillance analysis adjusted for confounding factors (HR 0.935 [0.88-0.99], p = 0.02). Only the Kt dose and age remained statistically associated with the outcome in the AKI cohort. CONCLUSIONS Delivered dialysis dose as measured by ionic-dialysance Kt may be associated with survival in critically-ill patients with AKI, while it does not seem to affect outcomes in critically-ill CKD 5D patients. This exploratory analysis will need confirmation in larger prospective studies.
Collapse
|
38
|
Qian JY, Wang B, Liu BC. Acute Kidney Injury in the 2019 Novel Coronavirus Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2020; 323:1-6. [PMID: 32742978 PMCID: PMC7360511 DOI: 10.1159/000509086] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/31/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The 2019 novel coronavirus disease (CO-VID-19) is a newly defined serious infectious disease caused by the SARS-CoV-2 virus. The epidemic started in Wuhan, China, in December of 2019 and quickly spread to over 200 countries. It has affected 4,258,666 people, with 294,190 deaths worldwide by May 15, 2020. COVID-19 is characterized by acute respiratory disease, with 80% of patients presenting mild like flu-like symptoms; however, 20% of patients may have a severe or critical clinical presentation, which likely causes multiple organ injuries (e.g., kidney, heart, blood, and nervous system). Among them, acute kidney injury (AKI) is a critical complication due to its high incidence and mortality rate. Here we present a review of the current understanding of AKI in COVID-19. SUMMARY CO-VID-19 is a catastrophic contagious disease caused by the coronavirus, and the AKI induced by COVID-19 significantly increases the mortality rate. In this review, we summarize the clinical characteristics of COVID-19 induced AKI by focusing on its epidemiology, pathogenesis, clinical diagnosis, and treatment. KEY MESSAGES Multiple studies have shown that COVID-19 may involve the kidneys and cause AKI. This article reviews the characteristics of COVID-19-induced AKI largely based on up-to-date studies in the hope that it will be helpful in the current global fight against and treatment of COVID-19.
Collapse
Affiliation(s)
| | | | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
39
|
Antibiotic Exposure Profiles in Trials Comparing Intensity of Continuous Renal Replacement Therapy. Crit Care Med 2020; 47:e863-e871. [PMID: 31397714 DOI: 10.1097/ccm.0000000000003955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine whether the probability of target attainment over 72 hours of initial therapy with beta-lactam (cefepime, ceftazidime, piperacillin/tazobactam) and carbapenem (imipenem, meropenem) antibiotics were substantially influenced between intensive and less-intensive continuous renal replacement therapy groups in the Acute Renal Failure Trial Network trial and The RENAL Replacement Therapy Study trial. DESIGN The probability of target attainment was calculated using pharmacodynamic targets of percentage of time that free serum concentrations (fT): 1) were above the target organism's minimum inhibitory concentration (≥ fT > 1 × minimum inhibitory concentration); 2) were above four times the minimum inhibitory concentration (≥ % fT > 4 × minimum inhibitory concentration); and 3) were always above the minimum inhibitory concentration (≥ 100% fT > minimum inhibitory concentration) for the first 72 hours of antibiotic therapy. Demographic data and effluent rates from the Acute Renal Failure Trial Network and RENAL Replacement Therapy Study trials were used. Optimal doses were defined as the dose achieving greater than or equal to 90% probability of target attainment. SETTING Monte Carlo simulations using demographic data from Acute Renal Failure Trial Network and RENAL Replacement Therapy Study trials. PATIENTS Virtual critically ill patients requiring continuous renal replacement therapy. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The pharmacodynamic target of fT greater than 1 × minimum inhibitory concentration led to similarly high rates of predicted response with antibiotic doses often used in continuous renal replacement therapy. Achieving 100% fT greater than minimum inhibitory concentration is a more stringent benchmark compared with T greater than 4 × minimum inhibitory concentration with standard antibiotic dosing. The intensity of effluent flow rates (less intensive vs intensive) did not substantially influence the probability of target attainment of antibiotic dosing regimens regardless of pharmacodynamic target. CONCLUSIONS Antibiotic pharmacodynamic target attainment rates likely were not meaningfully different in the low- and high-intensity treatment arms of the Acute Renal Failure Trial Network and RENAL Replacement Therapy Study Investigators trials.
Collapse
|
40
|
Krenzien F, Katou S, Papa A, Sinn B, Benzing C, Feldbrügge L, Kamali C, Brunnbauer P, Splith K, Lorenz RR, Ritschl P, Wiering L, Öllinger R, Schöning W, Pratschke J, Schmelzle M. Increased Cell-Free DNA Plasma Concentration Following Liver Transplantation Is Linked to Portal Hepatitis and Inferior Survival. J Clin Med 2020; 9:jcm9051543. [PMID: 32443763 PMCID: PMC7291032 DOI: 10.3390/jcm9051543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Donor organ quality is crucial for transplant survival and long-term survival of patients after liver transplantation. Besides bacterial and viral infections, endogenous damage-associated molecular patterns (DAMPs) can stimulate immune responses. Cell-free DNA (cfDNA) is one such DAMP that exhibits highly proinflammatory effects via DNA sensors. Herein, we measured cfDNA after liver transplantation and found elevated levels when organs from resuscitated donors were transplanted. High levels of cfDNA were associated with high C-reactive protein, leukocytosis as well as granulocytosis in the recipient. In addition to increased systemic immune responses, portal hepatitis was observed, which was associated with increased interface activity and a higher numbers of infiltrating neutrophils and eosinophils in the graft. In fact, the cfDNA was an independent significant factor in multivariate analysis and increased concentration of cfDNA was associated with inferior 1-year survival. Moreover, cfDNA levels were found to be decreased significantly during the postoperative course when patients underwent continuous veno-venous haemofiltration. In conclusion, patients receiving livers from resuscitated donors were characterised by high postoperative cfDNA levels. Those patients showed pronounced portal hepatitis and systemic inflammatory responses in the short term leading to a high mortality. Further studies are needed to evaluate the clinical relevance of cfDNA clearance by haemoadsorption and haemofiltration in vitro and in vivo.
Collapse
Affiliation(s)
- Felix Krenzien
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Shadi Katou
- Department of General, Visceral and Transplantation Surgery, Universitätsklinikum Münster, 48149 Münster, Germany;
| | - Alba Papa
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Bruno Sinn
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
- Institute of Pathology, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Linda Feldbrügge
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Can Kamali
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Philipp Brunnbauer
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Katrin Splith
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Ralf Roland Lorenz
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Paul Ritschl
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Leke Wiering
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Robert Öllinger
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (F.K.); (A.P.); (C.B.); (L.F.); (C.K.); (P.B.); (K.S.); (R.R.L.); (P.R.); (L.W.); (R.Ö.); (W.S.); (J.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany;
- Correspondence:
| |
Collapse
|
41
|
Continuous Renal Replacement Therapy in Pediatric Severe Sepsis: A Propensity Score-Matched Prospective Multicenter Cohort Study in the PICU. Crit Care Med 2020; 47:e806-e813. [PMID: 31369427 PMCID: PMC6750150 DOI: 10.1097/ccm.0000000000003901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is available in the text. Continuous renal replacement therapy becomes available utilization for pediatric critically ill, but the impact of mortality rate in severe sepsis remains no consistent conclusion. The aim of the study is to assess the effect of continuous renal replacement therapy in pediatric patients with severe sepsis and the impact this therapy may have on their mortality.
Collapse
|
42
|
Schopka S, Philipp A, Müller T, Lubnow M, Lunz D, Unterbuchner C, Rupprecht L, Keyser A, Schmid C. The impact of interleukin serum levels on the prognosis of patients undergoing venoarterial extracorporeal membrane oxygenation. Artif Organs 2020; 44:837-845. [PMID: 32043591 DOI: 10.1111/aor.13666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/31/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Extracorporeal life support is increasingly used in the treatment of patients presenting with cardiogenic shock or in need of cardiopulmonary resuscitation. Identifying therapeutic targets and factors associated with the prognosis are highly desirable. The present study analyzed the impact of interleukin 6 and 8 on the outcome of patients undergoing venoarterial extracorporeal membrane oxygenation (VA ECMO). Interleukin 6 and 8 serum levels of 329 patients were analyzed prior to, on days 1 and 5 of VA ECMO therapy. Interleukin 6 and 8 serum levels of surviving and nonsurviving patients were compared. At time points with significant differences, receiver operating characteristics and cutoff levels were analyzed to determine the prognostic value of interleukin serum levels. Survival analysis was performed to compare patients above and below cutoff levels. Interleukin 6 serum levels were significantly elevated in nonsurviving patients prior to VA ECMO initiation. Interleukin 6 and 8 serum levels in nonsurviving patients were significantly elevated on day 1 of VA ECMO. Receiver operating characteristics analysis revealed significant prognostic impact of interleukin 6 and 8 on day 1 of VA ECMO (AUC 0.70 and 0.72). Survival analysis comparing patients above and below the cutoff showed a 1-year survival of 32.6% for IL6 and 20.8% for IL8 above, as well as 66.9% for IL6 and 61.9% for IL8 below the cutoff (P < .05). Interleukin 6 and 8 serum levels demonstrated prognostic value early in VA ECMO therapy. The technical applicability of interleukin reduction raises interest in interleukins 6 and 8 as therapeutic targets.
Collapse
Affiliation(s)
- Simon Schopka
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Alois Philipp
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Thomas Müller
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Dirk Lunz
- Department of Anaesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Christoph Unterbuchner
- Department of Anaesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Leopold Rupprecht
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Andreas Keyser
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Chu L, Li G, Yu Y, Bao X, Wei H, Hu M. Clinical effects of hemoperfusion combined with pulse high-volume hemofiltration on septic shock. Medicine (Baltimore) 2020; 99:e19058. [PMID: 32118713 PMCID: PMC7478611 DOI: 10.1097/md.0000000000019058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sepsis can cause septic shock, multiple organ dysfunction and even death. The combination of different blood purification would be the certain trend in the treatment of sepsis.This study was to evaluate the clinical effects of hemoperfusion (HP) combined with pulse high volume hemofiltration (PHVHF) on septic shock.Thirty cases were involved in this study and were randomly divided into two groups: HP and PHVHF group (n = 15) and CVVH (continuous veno-venous hemofiltration) group (n = 15). Acute physiology and chronic health evaluation (APACHE) II scores, sequential organ failure assessment (SOFA) scores as well as biochemical changes were measured before and after the treatment. The levels of IL-6, IL-10, and TNF-α in plasma were assessed by ELISA before and after treatment for 2 and 24 h. The norepinephrine doses were also analyzed. The 28-day mortalities in both groups were also compared.In both groups, body temperature (BT), respiratory rate (RR), white blood cells (WBC), C-reactive protein (CRP), Procalcitonin (PCT), lactic acid, serum creatinine, APACHE II scores and SOFA scores decreased after hemofiltration (P < .05). The HP&PHVHF group was superior to the CVVH group in CRP, APACHE II score (P < .01), and heart rate (HR), WBC, PCT, SOFA (P < .05). The doses of norepinephrine were also decreased after treatment (P < .01), with more reduction in the HP&PHVHF group (P < .05). After 24 h of treatment, the levels of IL-6, IL-10, and TNF-α decreased in both groups (P < .05), and the decrease was more significant in HP&PHVHF group (P < .05). In combined group, after 2 h of hemoperfison, there was a significant reduction in these inflammatory factors (P < .01). Combined therapy group's mortality was 26.7%, while CVVH group's was 40%.HP combined with PHVHF has a significant effect on septic shock and can be an important therapy for septic shock.
Collapse
Affiliation(s)
- Laping Chu
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Wuxi
| | - Guangyao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing
| | - Yafen Yu
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Wuxi
| | - Xiaoyan Bao
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Wuxi
| | - Hongyi Wei
- Department of Intensive Care Unit, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Minhong Hu
- Department of Intensive Care Unit, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
44
|
Pharmacokinetics of Micafungin in Critically Ill Patients Receiving Continuous Venovenous Hemodialysis With High Cutoff Membranes. Ther Drug Monit 2020; 41:376-382. [PMID: 30633087 DOI: 10.1097/ftd.0000000000000595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND An optimal antifungal therapy for invasive candidiasis in critically ill patients is essential to reduce the high mortality rates. Acute kidney injury is common, and continuous renal replacement therapies are frequently used. Previous studies have demonstrated a lack of effect from different continuous renal replacement techniques on micafungin clearance. However, the use of high cutoff pore size membranes could potentially allow for the loss of albumin and alter micafungin pharmacokinetics. The objective was to explore the pharmacokinetics of micafungin in critically ill patients undergoing continuous venovenous high cutoff membrane hemodialysis (CVVHD-HCO). METHODS Prospective observational study performed in critically ill patients treated with 100 mg/d of micafungin and undergoing CVVHD-HCO. CVVHD-HCO sessions were performed using Prisma-Flex monitors and dialyzers with a membrane of polyarylethersulfone of 1.1-m surface area and 45-kDa pore size. Blood samples were collected from arterial prefilter, venous postfilter, and the drainage line ports at 0 (predose), 1, 4, 12, 24 hours after dose, and micafungin concentrations were determined using HPLC-UV. RESULTS Nine patients (55.6% male; age: 28-80 years) were included. Median (range) of micafungin concentrations in the effluent were <0.2 (<0.2-0.4) mg/L at low (predose) and 0.4 (<0.2-0.7) mg/L at high (1 h) concentrations. The extraction ratio was <12% at each time point. A 2-compartment model best described the time course of plasma concentrations, and body weight was the only covariate that improved the model. CONCLUSIONS This is the first study demonstrating that CVVHD-HCO does not alter the pharmacokinetics of micafungin, and that standard doses of this antifungal can be used.
Collapse
|
45
|
Which Multicenter Randomized Controlled Trials in Critical Care Medicine Have Shown Reduced Mortality? A Systematic Review. Crit Care Med 2019; 47:1680-1691. [DOI: 10.1097/ccm.0000000000004000] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Kim Y, Park N, Kim J, Kim DK, Chin HJ, Na KY, Joo KW, Kim YS, Kim S, Han SS. Development of a new mortality scoring system for acute kidney injury with continuous renal replacement therapy. Nephrology (Carlton) 2019; 24:1233-1240. [PMID: 31487094 DOI: 10.1111/nep.13661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2019] [Indexed: 11/27/2022]
Abstract
AIM On the basis of the worst outcomes of patients undergoing continuous renal replacement therapy (CRRT) in intensive care unit, previously developed mortality prediction model, Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) needs to be modified. METHODS A total of 828 patients who underwent CRRT were recruited. Mortality prediction model was developed for the prediction of death within 7 days after starting the CRRT. Based on regression analysis, modified scores were assigned to each variable which were originally used in the APACHE II and SOFA scoring models. Additionally, a new abbreviated Mortality Scoring system for AKI with CRRT (MOSAIC) was developed after stepwise selection analysis. RESULTS We used all the variables included in the APACHE II and SOFA scoring models. The prediction powers indicated by C-statistics were 0.686 and 0.683 for 7-day mortality by the APACHE II and SOFA systems, respectively. After modification of these models, the prediction powers increased up to 0.752 for the APACHE II and 0.724 for the SOFA systems. Using multivariate analysis, seven significant variables were selected in the MOSAIC model wherein its C-statistic value was 0.772. These models also showed good performance with 0.720, 0.734 and 0.773 of C-statistics in the modified APACHE II, modified SOFA and MOSAIC scoring models in the external validation cohort (n = 497). CONCLUSION The modified APACHE II/SOFA and newly developed MOSAIC models could be more useful tool for predicting mortality for patients receiving CRRT.
Collapse
Affiliation(s)
- Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea.,Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Nanhee Park
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Korea
| | - Jayoun Kim
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Korea
| | - Dong Ki Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Jun Chin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Kwon Wook Joo
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Seung Seok Han
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Pistolesi V, Zeppilli L, Fiaccadori E, Regolisti G, Tritapepe L, Morabito S. Hypophosphatemia in critically ill patients with acute kidney injury on renal replacement therapies. J Nephrol 2019; 32:895-908. [PMID: 31515724 DOI: 10.1007/s40620-019-00648-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
Abstract
Hypophosphatemia is a common but often underestimated electrolyte derangement among intensive care unit (ICU) patients. Low phosphate levels can lead to cellular dysfunction with potentially relevant clinical manifestations (e.g., muscle weakness, respiratory failure, lethargy, confusion, arrhythmias). In critically ill patients with severe acute kidney injury (AKI) renal replacement therapies (RRTs) represent a well-known risk factor for hypophosphatemia, especially if the most intensive and prolonged modalities of RRT, such as continuous RRT or prolonged intermittent RRT, are used. Currently, no evidence-based specific guidelines are available for the treatment of hypophosphatemia in the critically ill; however, considering the potentially negative impact of hypophosphatemia on morbidity and mortality, strategies aimed at reducing its incidence and severity should be timely implemented in the ICUs. In the clinical setting of critically ill patients on RRT, the most appropriate strategy could be to anticipate the onset of RRT-related hypophosphatemia by implementing the use of phosphate-containing solutions for RRT through specifically designed protocols. The present review is aimed at summarizing the most relevant evidence concerning epidemiology, prognostic impact, prevention and treatment of hypophosphatemia in critically ill patients with AKI on RRT, with a specific focus on RRT-induced hypophosphatemia.
Collapse
Affiliation(s)
- Valentina Pistolesi
- UO Dialisi, Azienda Ospedaliero-Universitaria Policlinico Umberto I, "Sapienza" Università di Roma, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Laura Zeppilli
- UO Dialisi, Azienda Ospedaliero-Universitaria Policlinico Umberto I, "Sapienza" Università di Roma, Viale del Policlinico, 155, 00161, Rome, Italy.,UOC Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico Fiaccadori
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Giuseppe Regolisti
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Luigi Tritapepe
- UO Anestesia e Terapia Intensiva in Cardiochirurgia, Azienda Ospedaliero-Universitaria Policlinico Umberto I, "Sapienza" Università di Roma, Rome, Italy
| | - Santo Morabito
- UO Dialisi, Azienda Ospedaliero-Universitaria Policlinico Umberto I, "Sapienza" Università di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Continuous renal replacement therapy (CRRT) is now the mainstay of renal organ support in the critically ill. As our understanding of CRRT delivery and its impact on patient outcomes improves there is a focus on researching the potential benefits of tailored, patient-specific treatments to meet dynamic needs. RECENT FINDINGS The most up-to-date studies investigating aspects of CRRT prescription that can be individualized: CRRT dose, timing, fluid management, membrane selection, anticoagulation and vascular access are reviewed. The use of different doses of CRRT lack conventional high-quality evidence and importantly studies reveal variation in assessment of dose delivery. Research reveals conflicting evidence for clinicians in distinguishing which patients will benefit from 'watchful waiting' vs. early initiation of CRRT. Both dynamic CRRT dosing and precision fluid management using CRRT are difficult to investigate and currently only observational data supports individualization of prescriptions. Similarly, individualization of membrane choice is largely experimental. SUMMARY Clinicians have limited evidence to individualize the prescription of CRRT. To develop this, we need to understand the requirements for renal support for individual patients, such as electrolyte imbalance, fluid overload or clearance of systemic inflammatory mediators to allow us to target these abnormalities in appropriately designed randomized trials.
Collapse
|
49
|
Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96:1083-1099. [PMID: 31443997 DOI: 10.1016/j.kint.2019.05.026] [Citation(s) in RCA: 752] [Impact Index Per Article: 150.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a frequent complication of the critically ill patient and is associated with unacceptable morbidity and mortality. Prevention of S-AKI is difficult because by the time patients seek medical attention, most have already developed acute kidney injury. Thus, early recognition is crucial to provide supportive treatment and limit further insults. Current diagnostic criteria for acute kidney injury has limited early detection; however, novel biomarkers of kidney stress and damage have been recently validated for risk prediction and early diagnosis of acute kidney injury in the setting of sepsis. Recent evidence shows that microvascular dysfunction, inflammation, and metabolic reprogramming are 3 fundamental mechanisms that may play a role in the development of S-AKI. However, more mechanistic studies are needed to better understand the convoluted pathophysiology of S-AKI and to translate these findings into potential treatment strategies and add to the promising pharmacologic approaches being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Sadudee Peerapornratana
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Laboratory Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Carlos L Manrique-Caballero
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
50
|
García-Hernández R, Espigares-López MI, García-Palacios MV, Gámiz Sánchez R, Miralles-Aguiar F, Calderón Seoane E, Pernia Romero A, Torres LM. A pilot study into the use of Continuous Venous Hyperfiltration to manage patients in a critical state with dysregulated inflammation. ACTA ACUST UNITED AC 2019; 66:370-380. [PMID: 31084978 DOI: 10.1016/j.redar.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Haemofiltration paradigms used to manage critically ill patients with a dysregulated inflammatory response (DIR) assess kidney function to monitor its onset, adaptation, and completion. A Continuous Venous Hyperfiltration (CONVEHY) protocol is presented, in which a non-specific adsorption membrane (AN69-ST-Heparin Grafted) is used with citrate as an anticoagulant and substitution fluid. CONVEHY uses tools readily available to achieve kidney related and non-related objectives, and it is guided by the monitoring of pathophysiological responses. OBJECTIVES To compare the response to an AN69-ST-HG membrane when heparin (He, n=5: Standard protocol) or citrate (Ci, n=6: CONVEHY protocol) was used to evaluate whether a larger study into the benefits of this protocol would be feasible. MATERIALS AND METHODS In a retrospective pilot study, the benefits of the CONVEHY protocol to manage patients with a DIR in a surgical critical care unit (CCUs) were assessed by evaluating the SOFA (Sequential Organ Failure Assessment) (He 11 ± 2.35; Ci 11 ± 3.63: p=0.54) and APACHE II (He 28.60 ± 9.40; Ci 24 ± 8.46: p=0.93) scores. RESULTS Nights in hospital (He 35.2 ± 16.3 nights; Ci 9 ± 2.53: p=0.004), hospital admission after discharge from the CCUs (He 40.25 ± 21.82; Ci 13.2 ± 4.09: p=0.063), patients hospitalised >20 days (He 80%; Ci 0%: p=0.048), days requiring mechanical ventilation (He 16 ± 5.66; Ci 4 ± 1.72: p=0.004), and the predicted (55.39 ± 26.13%) versus real mortality in both groups (9.1%: p=0.004). CONCLUSIONS The CONVEHY protocol improves the clinical responses of patients with DIR, highlighting the potential value of performing larger and confirmatory studies.
Collapse
Affiliation(s)
- R García-Hernández
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España.
| | - M I Espigares-López
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | - M V García-Palacios
- Facultativo especialista de Área de Medicina Preventiva, H.U. Puerta del Mar, Cádiz, España
| | - R Gámiz Sánchez
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | - F Miralles-Aguiar
- Residente de Anestesiología y Reanimación. Médico especialista en Medicina Intensiva. H.U. Puerta del Mar, Cádiz, España
| | - E Calderón Seoane
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | - A Pernia Romero
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | - L M Torres
- Facultativo especialista de Área de Anestesiología y Reanimación, H.U. Puerta del Mar, Cádiz, España
| | | | | |
Collapse
|