1
|
Adsorption Kinetic Model Predicts and Improves Reliability of Electrochemical Serotonin Detection. Methods Protoc 2023; 6:mps6010006. [PMID: 36648955 PMCID: PMC9844352 DOI: 10.3390/mps6010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Serotonin (5-HT) is a neurotransmitter involved in many biophysiological processes in the brain and in the gastrointestinal tract. Electrochemical methods are commonly used to quantify 5-HT, but their reliability may suffer due to the time-dependent nature of adsorption-limited 5-HT detection, as well as electrode fouling over repeated measurements. Mathematical characterization and modeling of adsorption-based electrochemical signal generation would improve reliability of 5-HT measurement. Here, a model was developed to track 5-HT electrode adsorption and resulting current output by combining Langmuir adsorption kinetic equations and adsorption-limited electrochemical equations. 5-HT adsorption binding parameters were experimentally determined at a carbon-nanotube coated Au electrode: KD = 7 × 10-7 M, kon = 130 M-1 s-1, koff = 9.1 × 10-5 s-1. A computational model of 5-HT adsorption was then constructed, which could effectively predict 5-HT fouling over 50 measurements (R2 = 0.9947), as well as predict electrode responses over varying concentrations and measurement times. The model aided in optimizing the measurement of 5-HT secreted from a model enterochromaffin cell line-RIN14B-minimizing measurement time. The presented model simplified and improved the characterization of 5-HT detection at the selected electrode. This could be applied to many other adsorption-limited electrochemical analytes and electrode types, contributing to the improvement of application-specific modeling and optimization processes.
Collapse
|
2
|
Souza JB, Tsantarlis K, Tonelli RR. Oxygen-dependent regulation of permeability in low resistance intestinal epithelial cells infected with Giardia lamblia. Exp Parasitol 2022; 240:108329. [PMID: 35868574 DOI: 10.1016/j.exppara.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Intestinal epithelial cells (IECs) reside in a highly anaerobic environment that is subject to daily fluctuations in partial oxygen pressure (pO2), depending on intestinal tissue perfusion. This condition, known as physiological hypoxia, has a major impact on the maintenance of gut homeostasis, such as effects on the integrity and function of the intestinal epithelial barrier. Giardia lamblia is a microaerophilic protozoan parasite that infects and colonizes the small intestine of its host, causing watery diarrhea. The disease, known as giardiasis, is associated with enhanced intestinal permeability and disruption or reorganization of tight junction (TJ) proteins between IECs. Given the central role of oxygen in gut homeostasis, in this study, we aimed to evaluate whether pO2 affects intestinal permeability (flux of ions and macromolecules) and TJ protein expression in human IECs during G. lamblia infection. Using human cell lines HuTu-80 and Caco-2 as models of "loose" (low resistance) and "tight" (high resistance) intestines, respectively, we elucidated that low pO2 drives intestinal barrier dysfunction in IECs infected with trophozoites through dephosphorylation of protein kinase C (PKC α/β II). Additionally, we demonstrated that IECs infected with trophozoites in the presence of a pharmacological PKC activator (phorbol 12-myristate 13-acetate) partially restored the barrier function, which was correlated with increased protein expression levels of zonula occludens (ZO)-2 and occludin. Collectively, these results support the emerging theory that molecular oxygen impacts gut homeostasis during Giardia infection via direct host signaling pathways. These findings further our knowledge regarding Giardia-host interactions and the pathophysiological mechanisms of human giardiasis.
Collapse
Affiliation(s)
- Juliana Bizarri Souza
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil
| | - Katherine Tsantarlis
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil
| | - Renata Rosito Tonelli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, 04023-062, São Paulo, SP, Brazil; Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, 09913-030, Diadema, SP, Brazil.
| |
Collapse
|
3
|
Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ, Roma MG. Oxidative Stress and Localization Status of Hepatocellular Transporters: Impact on Bile Secretion and Role of Signaling Pathways. Antioxid Redox Signal 2021; 35:808-831. [PMID: 34293961 DOI: 10.1089/ars.2021.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Most hepatopathies are primarily or secondarily cholestatic in nature. Oxidative stress (OS) is a frequent trait among them, and impairs the machinery to generate bile by triggering endocytic internalization of hepatocellular transporters, thus causing cholestasis. This is critical, since it leads to accelerated transporter degradation, which could explain the common post-transcriptional downregulation of transporter expression in human cholestatic diseases. Recent Advances: The mechanisms involved in OS-induced hepatocellular transporter internalization are being revealed. Filamentous actin (F-actin) cytoskeleton disorganization and/or detachment of crosslinking actin proteins that afford transporter stability have been characterized as causal factors. Activation of redox-sensitive signaling pathways leading to changes in phosphorylation status of these structures is involved, including Ca2+-mediated activation of "classical" and "novel" protein kinase C (PKC) isoforms or redox-signaling cascades downstream of NADPH oxidase. Critical Issues: Despite the well-known occurrence of hepatocellular transporter internalization in human hepatopathies, the cholestatic implications of this phenomenon have been overlooked. Accordingly, no specific treatment has been established in the clinical practice for its prevention/reversion. Future Directions: We need to improve our knowledge on the pro-oxidant triggering factors and the multiple signaling pathways that mediate this oxidative injury in each cholestatic hepatopathy, so as to envisage tailor-made therapeutic strategies for each case. Meanwhile, administration of antioxidants or heme oxygenase-1 induction to elevate the hepatocellular levels of the endogenous scavenger bilirubin are promising alternatives that need to be re-evaluated and implemented. They may complement current treatments in cholestasis aimed to enhance transcriptional carrier expression, by providing membrane stability to the newly synthesized carriers. Antioxid. Redox Signal. 35, 808-831.
Collapse
Affiliation(s)
- Cecilia L Basiglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| |
Collapse
|
4
|
Park JB, Kim DW, Lim KT, Oh S, Lee SJ. A 75 kDa glycoprotein isolated from Cudrania tricuspidata Bureau induces colonic epithelial proliferation and ameliorates mouse colitis induced by dextran sulfate sodium. Chin J Nat Med 2021; 19:46-55. [PMID: 33516451 DOI: 10.1016/s1875-5364(21)60005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 10/22/2022]
Abstract
Cudrania tricuspidata Bureau (CTB), a species of the Moraceae plant, has been used as a bruise recovery treatment. This study aimed to determine whether the 75 kDa phytoglycoprotein extracted from CTB has a regulatory effect on the proliferation of human colon epithelial cells and the pathological process of inflammatory bowel disease (IBD). We found that CTB glycoprotein significantly induces the proliferation of human colon epithelial HT-29 cells by activating protein kinase C. CTB glycoprotein stimulated the phosphorylation of c-Jun N-terminal kinase and transcription factor nuclear factor-κB, which are responsible for the expression of cell-cycle-related proteins (CDK2, CDK4, cyclin D1 and cyclin E) during its promotion of cell proliferation. Experimental colitis was induced in mice by adding dextran sulfate sodium to their drinking water at a concentration of 4% (W/V) for seven days. We found that CTB glycoprotein ameliorates the pathological process of IBD and lowers the disease activity index score, which was composed of body weight change, diarrhea, and hematochezia in ICR mice treated with dextran sulfate sodium. Hence, we suggest that CTB glycoprotein has the ability to prevent IBD by promoting cell proliferation signaling events via the activation of PKC, JNK and NF-κB in colon epithelial cells.
Collapse
Affiliation(s)
- Jeong-Bae Park
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Do-Wan Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Kye-Taek Lim
- Division of Animal Science, Chonnam National University, Gwangju 61186, South Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju 61186, South Korea.
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, South Korea.
| |
Collapse
|
5
|
Shkodra B, Press AT, Vollrath A, Nischang I, Schubert S, Hoeppener S, Haas D, Enzensperger C, Lehmann M, Babic P, Benecke KJ, Traeger A, Bauer M, Schubert US. Formulation of Liver-Specific PLGA-DY-635 Nanoparticles Loaded with the Protein Kinase C Inhibitor Bisindolylmaleimide I. Pharmaceutics 2020; 12:pharmaceutics12111110. [PMID: 33218172 PMCID: PMC7698893 DOI: 10.3390/pharmaceutics12111110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Bisindolylmaleimide I (BIM-I) is a competitive pan protein kinase C inhibitor with anti-inflammatory and anti-metastatic properties, suggested to treat inflammatory diseases and various cancer entities. However, despite its therapeutic potential, BIM-I has two major drawbacks, i.e., it has a poor water solubility, and it binds the human ether-à-go-go-related gene (hERG) ion channels, potentially causing deadly arrhythmias. In this case, a targeted delivery of BIM-I is imperative to minimize peripheral side effects. To circumvent these drawbacks BIM-I was encapsulated into nanoparticles prepared from poly(lactic-co-glycolic acid) (PLGA) functionalized by the near-infrared dye DY-635. DY-635 served as an active targeting moiety since it selectively binds the OATP1B1 and OATP1B3 transporters that are highly expressed in liver and cancer cells. PLGA-DY-635 (BIM-I) nanoparticles were produced by nanoprecipitation and characterized using dynamic light scattering, analytical ultracentrifugation, and cryogenic transmission electron microscopy. Particle sizes were found to be in the range of 20 to 70 nm, while a difference in sizes between the drug-loaded and unloaded particles was observed by all analytical techniques. In vitro studies demonstrated that PLGA-DY-635 (BIM-I) NPs prevent the PKC activation efficiently, proving the efficacy of the inhibitor after its encapsulation, and suggesting that BIM-I is released from the PLGA-NPs. Ultimately, our results present a feasible formulation strategy that improved the cytotoxicity profile of BIM-I and showed a high cellular uptake in the liver as demonstrated in vivo by intravital microscopy investigations.
Collapse
Affiliation(s)
- Blerina Shkodra
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Adrian T. Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.T.P.); (P.B.); (K.J.B.)
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
- Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Dorothee Haas
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
| | | | - Marc Lehmann
- SmartDyeLivery GmbH, Botzstrasse 5, 07743 Jena, Germany; (C.E.); (M.L.)
| | - Petra Babic
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.T.P.); (P.B.); (K.J.B.)
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Kay Jovana Benecke
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.T.P.); (P.B.); (K.J.B.)
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
| | - Michael Bauer
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (A.T.P.); (P.B.); (K.J.B.)
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany; (B.S.); (A.V.); (I.N.); (S.H.); (D.H.); (A.T.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; (S.S.); (M.B.)
- Correspondence: ; Tel.: +49-(0)-3641-9482-00
| |
Collapse
|
6
|
Wojcik GL, Korpe P, Marie C, Mentzer AJ, Carstensen T, Mychaleckyj J, Kirkpatrick BD, Rich SS, Concannon P, Faruque ASG, Haque R, Petri WA, Duggal P. Genome-Wide Association Study of Cryptosporidiosis in Infants Implicates PRKCA. mBio 2020; 11:e03343-19. [PMID: 32019797 PMCID: PMC7002356 DOI: 10.1128/mbio.03343-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023] Open
Abstract
Diarrhea is a major cause of both morbidity and mortality worldwide, especially among young children. Cryptosporidiosis is a leading cause of diarrhea in children, particularly in South Asia and sub-Saharan Africa, where it is responsible for over 200,000 deaths per year. Beyond the initial clinical presentation of diarrhea, it is associated with long-term sequelae such as malnutrition and neurocognitive developmental deficits. Risk factors include poverty and overcrowding, and yet not all children with these risk factors and exposure are infected, nor do all infected children develop symptomatic disease. One potential risk factor to explain these differences is their human genome. To identify genetic variants associated with symptomatic cryptosporidiosis, we conducted a genome-wide association study (GWAS) examining 6.5 million single nucleotide polymorphisms (SNPs) in 873 children from three independent cohorts in Dhaka, Bangladesh, namely, the Dhaka Birth Cohort (DBC), the Performance of Rotavirus and Oral Polio Vaccines in Developing Countries (PROVIDE) study, and the Cryptosporidiosis Birth Cohort (CBC). Associations were estimated separately for each cohort under an additive model, adjusting for length-for-age Z-score at 12 months of age, the first two principal components to account for population substructure, and genotyping batch. The strongest meta-analytic association was with rs58296998 (P = 3.73 × 10-8), an intronic SNP and expression quantitative trait locus (eQTL) of protein kinase C alpha (PRKCA). Each additional risk allele conferred 2.4 times the odds of Cryptosporidium-associated diarrhea in the first year of life. This genetic association suggests a role for protein kinase C alpha in pediatric cryptosporidiosis and warrants further investigation.IMPORTANCE Globally, diarrhea remains one of the major causes of pediatric morbidity and mortality. The initial symptoms of diarrhea can often lead to long-term consequences for the health of young children, such as malnutrition and neurocognitive developmental deficits. Despite many children having similar exposures to infectious causes of diarrhea, not all develop symptomatic disease, indicating a possible role for human genetic variation. Here, we conducted a genetic study of susceptibility to symptomatic disease associated with Cryptosporidium infection (a leading cause of diarrhea) in three independent cohorts of infants from Dhaka, Bangladesh. We identified a genetic variant within protein kinase C alpha (PRKCA) associated with higher risk of cryptosporidiosis in the first year of life. These results indicate a role for human genetics in susceptibility to cryptosporidiosis and warrant further research to elucidate the mechanism.
Collapse
Affiliation(s)
- Genevieve L Wojcik
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Poonum Korpe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Chelsea Marie
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Alexander J Mentzer
- Wellcome Trust Sanger Institute, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Tommy Carstensen
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Josyf Mychaleckyj
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Beth D Kirkpatrick
- University of Vermont College of Medicine and Vaccine Testing Center, Burlington, Vermont, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Patrick Concannon
- Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - A S G Faruque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - William A Petri
- Department of Medicine, Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 2016; 45:89-108. [PMID: 27913853 DOI: 10.1007/s00240-016-0952-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022]
Abstract
The intestine exerts a considerable influence over urinary oxalate in two ways, through the absorption of dietary oxalate and by serving as an adaptive extra-renal pathway for elimination of this waste metabolite. Knowledge of the mechanisms responsible for oxalate absorption and secretion by the intestine therefore have significant implications for understanding the etiology of hyperoxaluria, as well as offering potential targets for future treatment strategies for calcium oxalate kidney stone disease. In this review, we present the recent developments and advances in this area over the past 10 years, and put to the test some of the new ideas that have emerged during this time, using human and mouse models. A key focus for our discussion are the membrane-bound anion exchangers, belonging to the SLC26 gene family, some of which have been shown to participate in transcellular oxalate absorption and secretion. This has offered the opportunity to not only examine the roles of these specific transporters, revealing their importance to oxalate homeostasis, but to also probe the relative contributions made by the active transcellular and passive paracellular components of oxalate transport across the intestine. We also discuss some of the various physiological stimuli and signaling pathways which have been suggested to participate in the adaptation and regulation of intestinal oxalate transport. Finally, we offer an update on research into Oxalobacter formigenes, alongside recent investigations of other oxalate-degrading gut bacteria, in both laboratory animals and humans.
Collapse
|
8
|
Garczarczyk D, Szeker K, Galfi P, Csordas A, Hofmann J. Protein kinase Cgamma in colon cancer cells: expression, Thr514 phosphorylation and sensitivity to butyrate-mediated upregulation as related to the degree of differentiation. Chem Biol Interact 2010; 185:25-32. [PMID: 20188713 DOI: 10.1016/j.cbi.2010.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
Protein kinase C (PKC) isoenzymes are expressed and activated in a cell type-specific manner, and play an essential role in tissue-specific signal transduction. The presence of butyrate at millimolar concentrations in the colon raises the question of whether it affects the expression of PKC isoenzymes in the different cell types of the colonic epithelium. We investigated the protein expression levels of PKCgamma, Thr(514)-phosphorylated PKCgamma (pPKCgamma-Thr(514)), and their subcellular distribution as affected by butyrate in a set of colon cancer cell lines. Thr(514)-phosphorylation of de novo synthesized PKCgamma is the first step in priming of the inactive PKCgamma before its release into the cytoplasm. For immunoblot analysis, we employed three antibodies, one against an unmodified sequence, mapping within 50 amino acids at its C-terminus, a second against pPKCgamma-Thr(514), and a third against pPKCgamma-pan-Thr(514). The antibody against an unmodified C-terminal peptide epitope did not recognize pPKCgamma-Thr(514), suggesting that phosphorylation at this site interferes with the binding of the antibody to the C-terminus. Marked butyrate-induced upregulation of PKCgamma occurred in HT29 cells (model for colonocyte stem cells) and HT29-derived cell lines. However, in Caco2 and IEC-18 cells (models for differentiated intestinal epithelial cells), PKCgamma was insensitive to upregulation, and present exclusively as pPKCgamma-Thr(514). Lovo and SW480 expressed higher levels of PKCgamma. In HT29 cells, butyrate-induced upregulation of the non-phosphorylated PKCgamma was observed in both the membrane and the cytosolic fraction. In Caco2 cells, the Thr(514)-phosphorylated form was present at high levels in both fractions. The presence of unphosphorylated PKCgamma in HT29 cells, and its complete absence in Caco2 cells demonstrates a cell type-dependent differential coupling of Thr(514)-phosphorylation with de novo synthesis of PKCgamma in colon cancer cells.
Collapse
Affiliation(s)
- Dorota Garczarczyk
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
9
|
PKCalpha tumor suppression in the intestine is associated with transcriptional and translational inhibition of cyclin D1. Exp Cell Res 2009; 315:1415-28. [PMID: 19232344 DOI: 10.1016/j.yexcr.2009.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 12/19/2008] [Accepted: 02/02/2009] [Indexed: 02/06/2023]
Abstract
Alterations in PKC isozyme expression and aberrant induction of cyclin D1 are early events in intestinal tumorigenesis. Previous studies have identified cyclin D1 as a major target in the antiproliferative effects of PKCalpha in non-transformed intestinal cells; however, a link between PKC signaling and cyclin D1 in colon cancer remained to be established. The current study further characterized PKC isozyme expression in intestinal neoplasms and explored the consequences of restoring PKCalpha or PKCdelta in a panel of colon carcinoma cell lines. Consistent with patterns of PKC expression in primary tumors, PKCalpha and delta levels were generally reduced in colon carcinoma cell lines, PKCbetaII was elevated and PKCepsilon showed variable expression, thus establishing the suitability of these models for analysis of PKC signaling. While colon cancer cells were insensitive to the effects of PKC agonists on cyclin D1 levels, restoration of PKCalpha downregulated cyclin D1 by two independent mechanisms. PKCalpha expression consistently (a) reduced steady-state levels of cyclin D1 by a novel transcriptional mechanism not previously seen in non-transformed cells, and (b) re-established the ability of PKC agonists to activate the translational repressor 4E-BP1 and inhibit cyclin D1 translation. In contrast, PKCdelta had modest and variable effects on cyclin D1 steady-state levels and failed to restore responsiveness to PKC agonists. Notably, PKCalpha expression blocked anchorage-independent growth in colon cancer cells via a mechanism partially dependent on cyclin D1 deficiency, while PKCdelta had only minor effects. Loss of PKCalpha and effects of its re-expression were independent of the status of the APC/beta-catenin signaling pathway or known genetic alterations, indicating that they are a general characteristic of colon tumors. Thus, PKCalpha is a potent negative regulator of cyclin D1 expression and anchorage-independent cell growth in colon tumor cells, findings that offer important perspectives on the frequent loss of this isozyme during intestinal carcinogenesis.
Collapse
|
10
|
Frankenberg T, Miloh T, Chen FY, Ananthanarayanan M, Sun AQ, Balasubramaniyan N, Arias I, Setchell KDR, Suchy FJ, Shneider BL. The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology 2008; 48:1896-905. [PMID: 18668687 PMCID: PMC2774894 DOI: 10.1002/hep.22431] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED Prior loss-of-function analyses revealed that ATPase class I type 8B member 1 [familial intrahepatic cholestasis 1 (FIC1)] posttranslationally activated the farnesoid X receptor (FXR). Mechanisms underlying this regulation were examined by gain-of-function studies in UPS cells, which lack endogenous FIC1 expression. FXR function was assayed in response to wild-type and mutated FIC1 expression constructs with a human bile salt export pump (BSEP) promoter and a variety of cellular localization techniques. FIC1 overexpression led to enhanced phosphorylation and nuclear localization of FXR that was associated with FXR-dependent activation of the BSEP promoter. The FIC1 effect was lost after mutation of the FXR response element in the BSEP promoter. Despite similar levels of FIC1 protein expression, Byler disease FIC1 mutants did not activate BSEP, whereas benign recurrent intrahepatic cholestasis mutants partially activated BSEP. The FIC1 effect was dependent on the presence of the FXR ligand, chenodeoxycholic acid. The effect of FIC1 on FXR phosphorylation and nuclear localization and its effects on BSEP promoter activity could be blocked with protein kinase C zeta (PKC zeta) inhibitors (pseudosubstrate or small interfering RNA silencing). Recombinant PKC zeta directly phosphorylated immunoprecipitated FXR. The mutation of threonine 442 of FXR to alanine yielded a dominant negative protein, whereas the phosphomimetic conversion to glutamate resulted in FXR with enhanced activity and nuclear localization. Inhibition of PKC zeta in Caco-2 cells resulted in activation of the human apical sodium-dependent bile acid transporter promoter. CONCLUSION These results demonstrate that FIC1 signals to FXR via PKC zeta. FIC1-related liver disease is likely related to downstream effects of FXR on bile acid homeostasis. Benign recurrent intrahepatic cholestasis emanates from a partially functional FIC1 protein. Phosphorylation of FXR is an important mechanism for regulating its activity.
Collapse
Affiliation(s)
- Tamara Frankenberg
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Tamir Miloh
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Frank Y. Chen
- Division of Gastroenterology, Children’s Hospital of Pittsburgh of The University of Pittsburgh Medical Center, and the Department of Pediatrics, University of Pittsburgh School of Medicine, 3705 Fifth Avenue, Pittsburgh, PA 15213
| | - Meena Ananthanarayanan
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - An-Qiang Sun
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | | | - Irwin Arias
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Kenneth D. R. Setchell
- Department of Pathology, Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Frederick J. Suchy
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Benjamin L. Shneider
- Division of Gastroenterology, Children’s Hospital of Pittsburgh of The University of Pittsburgh Medical Center, and the Department of Pediatrics, University of Pittsburgh School of Medicine, 3705 Fifth Avenue, Pittsburgh, PA 15213
| |
Collapse
|
11
|
Baiocchi L, Tisone G, Russo MA, Longhi C, Palmieri G, Volpe A, Almerighi C, Telesca C, Carbone M, Toti L, De Leonardis F, Angelico M. TUDCA prevents cholestasis and canalicular damage induced by ischemia-reperfusion injury in the rat, modulating PKCalpha-ezrin pathway. Transpl Int 2008; 21:792-800. [PMID: 18435680 DOI: 10.1111/j.1432-2277.2008.00682.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cholestasis, induced by liver ischemia-reperfusion injury (IRI), is characterized by dilatation of bile canaliculi and loss of microvilli. Tauroursodeoxycholic acid (TUDCA) is an anti-cholestatic agent, modulating protein kinase C (PKC) alpha pathway. PKC reduces ischemic damage in several organs, its isoform alpha modulates ezrin, a key protein in the maintenance of cell lamellipoidal extensions. We evaluated the effects of TUDCA on cholestasis, canalicular changes and PKCalpha-ezrin expression in a rat model of liver IRI. Livers flushed and stored with Belzer solution or Belzer + 10 mm TUDCA (4 degrees C for 6 h) were reperfused (37 degrees C with O(2)) with Krebs-Ringer bicarbonate + 2.5 micromol/min of Taurocholate or TUDCA. Bile was harvested for bile flow assessment. Liver tissue was employed for Electron Microscopy (EM) and for PKCalpha and ezrin immunoblot and immunofluorescence. The same experiments were conducted with the PKCalpha inhibitor Go-6976. TUDCA-treated livers showed increased bile flow (0.25+/-0.17 vs. 0.042+/-0.02 microl/min/g liver, P<0.05) and better preservation of microvilli and bile canalicular area at EM. These effects were associated with increased PKCalpha and ezrin expression (P=0.03 and P=0.04 vs. control respectively), as also confirmed by immunofluorescence data. PKCalpha inhibition abolished these TUDCA effects. TUDCA administration during IRI reduces cholestasis and canalicular damage in the liver modulating PKCalpha-ezrin pathway.
Collapse
|
12
|
Abstract
G protein-coupled receptor (GPCR) agonists, including neurotransmitters, hormones, chemokines, and bioactive lipids, act as potent cellular growth factors and have been implicated in a variety of normal and abnormal processes, including development, inflammation, and malignant transformation. Typically, the binding of an agonistic ligand to its cognate GPCR triggers the activation of multiple signal transduction pathways that act in a synergistic and combinatorial fashion to relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the activity of phospholipases C, D, and A2 leading to the synthesis of lipid-derived second messengers, Ca2+ fluxes and subsequent activation of protein phosphorylation cascades, including PKC/PKD, Raf/MEK/ERK, and Akt/mTOR/p70S6K is an important early response to mitogenic GPCR agonists. The EGF receptor (EGFR) tyrosine kinase has emerged as a transducer in the signaling by GPCRs, a process termed transactivation. GPCR signal transduction also induces striking morphological changes and rapid tyrosine phosphorylation of multiple cellular proteins, including the non-receptor tyrosine kinases Src, focal adhesion kinase (FAK), and the adaptor proteins CAS and paxillin. The pathways stimulated by GPCRs are extensively interconnected by synergistic and antagonistic crosstalks that play a critical role in signal transmission, integration, and dissemination. The purpose of this article is to review recent advances in defining the pathways that play a role in transducing mitogenic responses induced by GPCR agonists.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1786, USA.
| |
Collapse
|
13
|
Poole DP, Matsuyama H, Nguyen TV, Eriksson EMY, Fowler CJ, Furness JB. Inflammation and inflammatory agents activate protein kinase C epsilon translocation and excite guinea-pig submucosal neurons. Gastroenterology 2007; 133:1229-39. [PMID: 17765238 DOI: 10.1053/j.gastro.2007.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Accepted: 05/17/2007] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Properties of enteric neurons are transformed by inflammation and protein kinase C (PKC) isoforms are involved both in long-term changes in enteric neurons, and in transducing the effects of substances released during inflammation. We investigated roles of PKCepsilon in submucosal neurons by studying translocation in response to inflammatory mediators, effects on neuron excitability, and the changes in PKCepsilon distribution in a trinitrobenzene sulphonate model of ileitis. METHODS Immunohistochemical detection and analysis of association with membrane and cytosolic fractions, and Western blot analysis of cytosolic and particulate fractions were used to quantify translocation. Electrophysiology methods were used to measure effects on neuron excitability. RESULTS All submucosal neurons were immunoreactive for the novel PKC, PKCepsilon, and direct PKC activators, phorbol 12,13-dibutyrate, ingenol 3,20-dibenzoate, and the PKCepsilon-specific activator, transactivator of transduction-Psiepsilon receptor for activated C kinase, all caused PKCepsilon translocation from cytoplasm to surfaces of the neurons. Electrophysiologic studies showed that the stimulant of novel PKCs, ingenol (1 micromol/L), increased excitability of all neurons. Stimulation of protease-activated receptors caused PKCepsilon translocation selectively in vasoactive intestinal peptide secretomotor neurons, whereas a neurokinin 3 tachykinin receptor agonist caused translocation in neuropeptide Y and calretinin neurons. In all cases translocation was reduced significantly by a PKCepsilon-specific translocation inhibitor peptide. Increased PKCepsilon at the plasma membrane occurred in all neurons 6-7 days after an inflammatory stimulus. CONCLUSIONS Major targets for PKCepsilon include ion channels near the plasma membrane. PKCepsilon is likely to have a significant role in controlling the excitability of submucosal neurons and is probably an intermediate in causing hyperexcitability after inflammation.
Collapse
Affiliation(s)
- Daniel P Poole
- Department of Anatomy and Cell Biology, Centre for Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
14
|
O'Mahony F, Alzamora R, Betts V, LaPaix F, Carter D, Irnaten M, Harvey BJ. Female gender-specific inhibition of KCNQ1 channels and chloride secretion by 17beta-estradiol in rat distal colonic crypts. J Biol Chem 2007; 282:24563-73. [PMID: 17556370 DOI: 10.1074/jbc.m611682200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The estrogen sex steroid 17beta-estradiol rapidly inhibits secretagogue-stimulated cAMP-dependent Cl(-) secretion in the female rat distal colonic crypt by the inhibition of basolateral K(+) channels. In Ussing chamber studies, both the anti-secretory response and inhibition of basolateral K(+) current was shown to be attenuated by pretreatment with rottlerin, a PKCdelta-specific inhibitor. In whole cell patch-clamp analysis, 17beta-estradiol inhibited a chromanol 293B-sensitive KCNQ1 channel current in isolated female rat distal colonic crypts. Estrogen had no effect on KCNQ1 channel currents in colonic crypts isolated from male rats. Female distal colonic crypts expressed a significantly higher amount of PKCdelta in comparison to male tissue. PKCdelta and PKA were activated at 5 min in response to 17beta-estradiol in female distal colonic crypts only. Both PKCdelta- and PKA-associated with the KCNQ1 channel in response to 17beta-estradiol in female distal colonic crypts, and no associations were observed in crypts from males. PKA activation, association with KCNQ1, and phosphorylation of the channel were regulated by PKCdelta as the responses were blocked by pretreatment with rottlerin. Taken together, our experiments have identified the molecular targets underlying the anti-secretory response to estrogen involving the inhibition of KCNQ1 channel activity via PKCdelta- and PKA-dependent signaling pathways. This is a novel gender-specific mechanism of regulation of an ion channel by estrogen. The anti-secretory response described in this study provides molecular insights whereby estrogen causes fluid retention effects in the female during periods of high circulating plasma estrogen levels.
Collapse
Affiliation(s)
- Fiona O'Mahony
- Department of Molecular Medicine, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin 9, Ireland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Guan L, Song K, Pysz MA, Curry KJ, Hizli AA, Danielpour D, Black AR, Black JD. Protein kinase C-mediated down-regulation of cyclin D1 involves activation of the translational repressor 4E-BP1 via a phosphoinositide 3-kinase/Akt-independent, protein phosphatase 2A-dependent mechanism in intestinal epithelial cells. J Biol Chem 2007; 282:14213-25. [PMID: 17360714 DOI: 10.1074/jbc.m610513200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We reported previously that protein kinase Calpha (PKCalpha), a negative regulator of cell growth in the intestinal epithelium, inhibits cyclin D1 translation by inducing hypophosphorylation/activation of the translational repressor 4E-BP1. The current study explores the molecular mechanisms underlying PKC/PKCalpha-induced activation of 4E-BP1 in IEC-18 nontransformed rat ileal crypt cells. PKC signaling is shown to promote dephosphorylation of Thr(45) and Ser(64) on 4E-BP1, residues directly involved in its association with eIF4E. Consistent with the known role of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway in regulation of 4E-BP1, PKC signaling transiently inhibited PI3K activity and Akt phosphorylation in IEC-18 cells. However, PKC/PKCalpha-induced activation of 4E-BP1 was not prevented by constitutively active mutants of PI3K or Akt, indicating that blockade of PI3K/Akt signaling is not the primary effector of 4E-BP1 activation. This idea is supported by the fact that PKC activation did not alter S6 kinase activity in these cells. Further analysis indicated that PKC-mediated 4E-BP1 hypophosphorylation is dependent on the activity of protein phosphatase 2A (PP2A). PKC signaling induced an approximately 2-fold increase in PP2A activity, and phosphatase inhibition blocked the effects of PKC agonists on 4E-BP1 phosphorylation and cyclin D1 expression. H(2)O(2) and ceramide, two naturally occurring PKCalpha agonists that promote growth arrest in intestinal cells, activate 4E-BP1 in PKC/PKCalpha-dependent manner, supporting the physiological significance of the findings. Together, our studies indicate that activation of PP2A is an important mechanism underlying PKC/PKCalpha-induced inhibition of cap-dependent translation and growth suppression in intestinal epithelial cells.
Collapse
Affiliation(s)
- Lingjie Guan
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bachmann O, Reichelt D, Tuo B, Manns MP, Seidler U. Carbachol increases Na+-HCO3- cotransport activity in murine colonic crypts in a M3-, Ca2+/calmodulin-, and PKC-dependent manner. Am J Physiol Gastrointest Liver Physiol 2006; 291:G650-7. [PMID: 16675744 DOI: 10.1152/ajpgi.00376.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Na(+)-HCO(3)(-) cotransporter (NBC) mediates HCO(3)(-) import into the colonocyte via its pNBC1 isoform. Whereas renal kNBC1 is inhibited by increased cAMP levels, pNBC1 is stimulated. Cholinergic stimulation activates renal NBC, but the effect on intestinal NBC is unknown. Therefore, crypts were isolated from the murine proximal colon by Ca(2+) chelation and loaded with the pH-sensitive dye 2',7'-bis-carboxyethyl-5,6-carboxyfluorescein. Na(+)-HCO(3)(-) cotransport activity was calculated from the dimethylamiloride-insensitive (500 microM) intracellular pH recovery from an acid load in the presence of CO(2)-HCO(3)(-) and the intracellular buffering capacity. Carbachol strongly increased Na(+)-HCO(3)(-) cotransport activity compared with control rates. Ca(2+) chelation with BAPTA-AM, blockade of the M(3) subtype of muscarinergic receptors with 4-diphenylacetoxy-N-methylpiperidine methiodide, and inhibition of Ca(2+)/calmodulin kinase II with KN-62 all caused significant inhibition of the carbachol-induced NBC activity increase. Furthermore, PKC inhibition with Gö-6976 and Gö-6850 significantly reduced the carbachol effect, which may be related to the unique NH(2)-terminal consensus site for PKC-dependent phosphorylation of pNBC1. We conclude that NBC in the murine colon is thus activated by carbachol, consistent with its presumed function as an anion uptake pathway during intestinal anion secretion, but that the signal transductions pathways are distinct from those involved in the cholinergic activation of renal NBC1.
Collapse
Affiliation(s)
- O Bachmann
- Dept. of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | | | | | | | | |
Collapse
|
17
|
Chiu TT, Leung WY, Moyer MP, Strieter RM, Rozengurt E. Protein kinase D2 mediates lysophosphatidic acid-induced interleukin 8 production in nontransformed human colonic epithelial cells through NF-kappaB. Am J Physiol Cell Physiol 2006; 292:C767-77. [PMID: 16928771 DOI: 10.1152/ajpcell.00308.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signaling pathways mediating lysophosphatidic acid (LPA)-stimulated PKD(2) activation and the potential contribution of PKD(2) in regulating LPA-induced interleukin 8 (IL-8) secretion in nontransformed, human colonic epithelial NCM460 cells were examined. Treatment of serum-deprived NCM460 cells with LPA led to a rapid and striking activation of PKD(2), as measured by in vitro kinase assay and phosphorylation at the activation loop (Ser706/710) and autophosphorylation site (Ser876). PKD(2) activation induced by LPA was abrogated by preincubation with selective PKC inhibitors GF-I and Ro-31-8220 in a dose-dependent manner. These inhibitors did not have any direct inhibitory effect on PKD(2) activity. LPA induced a striking increase in IL-8 production and stimulated NF-kappaB activation, as measured by NF-kappaB-DNA binding, NF-kappaB-driven luciferase reporter activity, and IkappaBalpha phosphorylation. PKD(2) gene silencing utilizing small interfering RNAs targeting distinct PKD(2) sequences dramatically reduced LPA-stimulated NF-kappaB promoter activity and IL-8 production. PKD(2) activation is a novel early event in the biological action of LPA and mediates LPA-stimulated IL-8 secretion in NCM460 cells through a NF-kappaB-dependent pathway. Our results demonstrate, for the first time, the involvement of a member of the PKD family in the production of IL-8, a potent proinflammatory chemokine, by epithelial cells.
Collapse
Affiliation(s)
- Terence T Chiu
- Dept. of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1786, USA
| | | | | | | | | |
Collapse
|
18
|
Cerda SR, Mustafi R, Little H, Cohen G, Khare S, Moore C, Majumder P, Bissonnette M. Protein kinase C delta inhibits Caco-2 cell proliferation by selective changes in cell cycle and cell death regulators. Oncogene 2006; 25:3123-38. [PMID: 16434969 DOI: 10.1038/sj.onc.1209360] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PKC-delta is a serine/threonine kinase that mediates diverse signal transduction pathways. We previously demonstrated that overexpression of PKC-delta slowed the G1 progression of Caco-2 colon cancer cells, accelerated apoptosis, and induced cellular differentiation. In this study, we further characterized the PKC-delta dependent signaling pathways involved in these tumor suppressor actions in Caco-2 cells overexpressing PKC-delta using a Zn2+ inducible expression vector. Consistent with a G1 arrest, increased expression of PKC-delta caused rapid and significant downregulation of cyclin D1 and cyclin E proteins (50% decreases, P<0.05), while mRNA levels remained unchanged. The PKC agonist, phorbol 12-myristate 13-acetate (TPA, 100 nM, 4 h), induced two-fold higher protein and mRNA levels of p21(Waf1), a cyclin-dependent kinase (cdk) inhibitor in PKC-delta transfectants compared with empty vector (EV) transfected cells, whereas the PKC-delta specific inhibitor rottlerin (3 microM) or knockdown of this isoenzyme with specific siRNA oligonucleotides blocked p21(Waf1) expression. Concomitantly, compared to EV control cells, PKC-delta upregulation decreased cyclin D1 and cyclin E proteins co-immunoprecipitating with cdk6 and cdk2, respectively. In addition, overexpression of PKC-delta increased binding of cdk inhibitor p27(Kip1) to cdk4. These alterations in cyclin-cdks and their inhibitors are predicted to decrease G1 cyclin kinase activity. As an independent confirmation of the direct role PKC-delta plays in cell growth and cell cycle regulation, we knocked down PKC-delta using specific siRNA oligonucleotides. PKC-delta specific siRNA oligonucleotides, but not irrelevant control oligonucleotides, inhibited PKC-delta protein by more than 80% in Caco-2 cells. Moreover, PKC-delta knockdown enhanced cell proliferation ( approximately 1.4-2-fold, P<0.05) and concomitantly increased cyclin D1 and cyclin E expression ( approximately 1.7-fold, P<0.05). This was a specific effect, as nontargeted PKC-zeta was not changed by PKC-delta siRNA oligonucleotides. Consistent with accelerated apoptosis in PKC-delta transfectants, compared to EV cells, PKC-delta upregulation increased proapoptotic regulator Bax two-fold at mRNA and protein levels, while antiapoptotic Bcl-2 protein was decreased by 50% at a post-transcriptional level. PKC-delta specific siRNA oligonucleotides inhibited Bax protein expression by more than 50%, indicating that PKC-delta regulates apoptosis through Bax. Taken together, these results elucidate two critical mechanisms regulated by PKC-delta that inhibit cell cycle progression and enhance apoptosis in colon cancer cells. We postulate these antiproliferative pathways mediate an important tumor suppressor function for PKC-delta in colonic carcinogenesis.
Collapse
Affiliation(s)
- S R Cerda
- Department of Medicine, Division of Gastroenterology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hizli AA, Black AR, Pysz MA, Black JD. Protein kinase C alpha signaling inhibits cyclin D1 translation in intestinal epithelial cells. J Biol Chem 2006; 281:14596-603. [PMID: 16556598 DOI: 10.1074/jbc.m601959200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cyclin D1 is a key regulator of cell proliferation, acting as a mitogen sensor and linking extracellular signaling to the cell cycle machinery. Strict control of cyclin D1 levels is critical for maintenance of tissue homeostasis. We have reported previously that protein kinase C alpha (PKCalpha), a negative regulator of cell growth in the intestinal epithelium, promotes rapid down-regulation of cyclin D1 (Frey, M. R., Clark, J. A., Leontieva, O., Uronis, J. M., Black, A. R., and Black, J. D. (2000) J. Cell Biol. 151, 763-778). The current study explores the mechanisms underlying PKCalpha-induced loss of cyclin D1 protein in non-transformed intestinal epithelial cells. Our findings exclude several mechanisms previously implicated in down-regulation of cyclin D1 during cell cycle exit/differentiation, including alterations in cyclin D1 mRNA expression and protein turnover. Instead, we identify PKCalpha as a novel repressor of cyclin D1 translation, acting at the level of cap-dependent initiation. Inhibition of cyclin D1 translation initiation is mediated by PKCalpha-induced hypophosphorylation/activation of the translational suppressor 4E-BP1, association of 4E-BP1 with the mRNA cap-binding protein eIF4E, and sequestration of cyclin D1 mRNA in 4E-BP1-associated complexes. Together, these post-transcriptional effects ensure rapid disappearance of the potent mitogenic molecule cyclin D1 during PKCalpha-induced cell cycle withdrawal in the intestinal epithelium.
Collapse
Affiliation(s)
- A Asli Hizli
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
20
|
Petersen OH, Sutton R. Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends Pharmacol Sci 2006; 27:113-20. [PMID: 16406087 DOI: 10.1016/j.tips.2005.12.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/09/2005] [Accepted: 12/15/2005] [Indexed: 01/11/2023]
Abstract
Ca2+ is a universal intracellular messenger that controls a wide range of cellular processes. In pancreatic acinar cells, acetylcholine and cholecystokinin regulate secretion via generation of repetitive local cytosolic Ca2+ signals in the apical pole. Bile acids and non-oxidative alcohol metabolites can elicit abnormal cytosolic Ca2+ signals that are global and sustained and result in necrosis. Necrosis results from excessive loss of Ca2+ from the endoplasmic reticulum, which is mediated by Ca2+ release through specific channels and inhibition of Ca2+ pumps in intracellular stores, followed by entry of extracellular Ca2+. Reduction of the cellular ATP level has a major role in this process. These abnormal Ca2+ signals, which can be inhibited by caffeine, explain how excessive alcohol intake and biliary disease cause acute pancreatitis, an often-fatal human disease in which the pancreas digests itself and its surroundings.
Collapse
Affiliation(s)
- Ole H Petersen
- MRC Group, Physiological Laboratory and Division of Surgery and Oncology, University of Liverpool, Liverpool L69 3BX, UK.
| | | |
Collapse
|