1
|
Gonciarz W, Płoszaj P, Chmiela M. Mycobacterium bovis BCG reverses deleterious effects of H. pylori components towards gastric barrier cells in vitro. Biomed Pharmacother 2024; 178:117193. [PMID: 39067167 DOI: 10.1016/j.biopha.2024.117193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Mycobacterium bovis (M. bovis) Bacillus Calmette-Guerin (BCG) strain used in immunotherapy of bladder cancer (onco-BCG) due to its acid tolerance can be a candidate for prevention or reversion of deleterious effects towards gastric cell barrier initiated by gastric pathogen Helicobacter pylori (Hp) with high resistance to commonly used antibiotics. Colonization of gastric mucosa by Hp promotes oxidative stress, apoptosis resulting in the gastric barrier damage. The aim of this study was to examine the ability of onco-BCG bacilli to control the Hp driven gastric damage using the model of Cavia porcellus primary gastric epithelial cells or fibroblasts in vitro. These cells were treated with Hp surface antigens (glycine acid extract-GE or lipopolysaccharide-LPS) alone or with onco-BCG bacilli and evaluated for cell apoptosis and proliferation in conjunction with the level of soluble lipid peroxidation marker (s4HNE). The cell migration was determined by "wound healing assay", while cytokine response of cells, including interleukin (IL)-33, IL-1β, IL-8 and tumor necrosis factor alpha (TNF-α), by the ELISA. The apoptosis of cells pulsed in vitro with Hp surface components present in GE or with LPS was reduced after exposure of cells to mycobacteria. Similarly, the cell regeneration which was diminished by Hp LPS has been improved in response to mycobacteria. This study reveals that vaccine mycobacteria may reduce gastric barrier damage induced by Hp infection.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Patrycja Płoszaj
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Wang X, Zhao G, Shao S, Yao Y. Helicobacter pylori triggers inflammation and oncogenic transformation by perturbing the immune microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189139. [PMID: 38897421 DOI: 10.1016/j.bbcan.2024.189139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The immune microenvironment plays a critical regulatory role in the pathogenesis of Helicobacter pylori (H. pylori). Understanding the mechanisms that drive the transition from chronic inflammation to cancer may provide new insights for early detection of gastric cancer. Although chronic inflammation is frequent in precancerous gastric conditions, the monitoring function of the inflammatory microenvironment in the progression from H. pylori-induced chronic inflammation to gastric cancer remains unclear. This literature review summarizes significant findings on how H. pylori triggers inflammatory responses and facilitates cancer development through the immune microenvironment. Furthermore, the implications for future research and clinical applications are also addressed. The review is divided into four main sections: inflammatory response and immune evasion mechanisms induced by H. pylori, immune dysregulation associated with gastric cancer, therapeutic implications, and future perspectives on H. pylori-induced gastric carcinogenesis with a focus on the immune microenvironment.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Guang Zhao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China; Department of Emergency Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China.
| |
Collapse
|
3
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024:10.1007/s10555-024-10197-4. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
4
|
Talayev V, Svetlova M, Zaichenko I, Voronina E, Babaykina O, Neumoina N, Perfilova K. CCR6 + T helper cells and regulatory T cells in the blood and gastric mucosa during Helicobacter pylori infection. Helicobacter 2024; 29:e13097. [PMID: 38819071 DOI: 10.1111/hel.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) can evade the host's immune response and persist for a long time on the gastric mucosa. T helper (Th) cells appear to be involved in the control of H. pylori bacteria but promote mucosal inflammation. In contrast, regulatory T cells (Tregs) may reduce inflammation but promote H. pylori persistence. CC motif chemokine receptor 6 (CCR6) is involved in the migration of various cells into inflamed gastric mucosa. In this study, we examined CCR6+ Th cells and CCR6+ Tregs during H. pylori infection in humans. MATERIALS AND METHODS Isolation of cells from blood and mucosal biopsies, magnetic separation of В cells, CD4+ and CD4+CCR6+CD45RO+ T cells, antigen-specific activation, B cell response in vitro, flow cytometry, determination of CD4+CD25hiFoxP3+ Tregs and various groups of Th cells. RESULTS CD4+CCR6+ blood lymphocytes from healthy donors included Th cells and Tregs. These CCR6+ Th cells produced proinflammatory cytokines and also stimulated plasma cell maturation and antibody production in vitro. H. pylori gastritis and peptic ulcer disease were associated with an increase in the number of circulate CD4+CCR6+CD45RO+ cells and the percentage of Th1, Th17 and Th1/17 cells in this lymphocyte subgroup. In H. pylori-positive patients, circulating CD4+CCR6+ cells contained a higher proportion of H. pylori-specific cells compared with their CD4+CCR6- counterparts. H. pylori infection strongly increased the content of CD4+ lymphocytes in the inflamed gastric mucosa, with the majority of these CD4+ lymphocytes expressing CCR6. CD4+CCR6+ lymphocytes from H. pylori-infected stomach included Tregs and in vivo activated T cells, some of which produced interferon-γ without ex vivo stimulation. CONCLUSION H. pylori infection causes an increase in the number of mature CD4+CCR6+ lymphocytes in the blood, with a pro-inflammatory shift in their composition and enrichment of the gastric mucosa with CD4+CCR6+ lymphocytes, including CCR6+ Th1 cells and Tregs.
Collapse
Affiliation(s)
- Vladimir Talayev
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Maria Svetlova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Irina Zaichenko
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Elena Voronina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Olga Babaykina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Natalia Neumoina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Ksenia Perfilova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Barrett KA, Kassama FJ, Surks W, Mulholland AJ, Moulton KD, Dube DH. Helicobacter pylori glycan biosynthesis modulates host immune cell recognition and response. Front Cell Infect Microbiol 2024; 14:1377077. [PMID: 38572314 PMCID: PMC10987845 DOI: 10.3389/fcimb.2024.1377077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The pathogenic bacterium Helicobacter pylori has evolved glycan-mediated mechanisms to evade host immune defenses. This study tests the hypothesis that genetic disruption of H. pylori glycan biosynthesis alters immune recognition and response by human gastric epithelial cells and monocyte-derived dendritic cells. Methods To test this hypothesis, human cell lines were challenged with wildtype H. pylori alongside an array of H. pylori glycosylation mutants. The relative levels of immune response were measured via immature dendritic cell maturation and cytokine secretion. Results Our findings indicate that disruption of lipopolysaccharide biosynthesis diminishes gastric cytokine production, without disrupting dendritic cell recognition and activation. In contrast, variable immune responses were observed in protein glycosylation mutants which prompted us to test the hypothesis that phase variation plays a role in regulating bacterial cell surface glycosylation and subsequent immune recognition. Lewis antigen presentation does not correlate with extent of immune response, while the extent of lipopolysaccharide O-antigen elaboration does. Discussion The outcomes of this study demonstrate that H. pylori glycans modulate the host immune response. This work provides a foundation to pursue immune-based tailoring of bacterial glycans towards modulating immunogenicity of microbial pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
6
|
Zhang X, He Y, Zhang X, Fu B, Song Z, Wang L, Fu R, Lu X, Xing J, Lv J, Guo M, Huo X, Liu X, Lu J, Du X, Ge Z, Chen Z, Li C. Sustained exposure to Helicobacter pylori induces immune tolerance by desensitizing TLR6. Gastric Cancer 2024; 27:324-342. [PMID: 38310631 PMCID: PMC10896808 DOI: 10.1007/s10120-023-01461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
Helicobacter pylori (H. pylori, Hp) has been designated a class I carcinogen and is closely associated with severe gastric diseases. During colonization in the gastric mucosa, H. pylori develops immune escape by inducing host immune tolerance. The gastric epithelium acts as the first line of defense against H. pylori, with Toll-like receptors (TLRs) in gastric epithelial cells being sensitive to H. pylori components and subsequently activating the innate immune system. However, the mechanism of immune tolerance induced by H. pylori through the TLR signalling pathway has not been fully elucidated. In this research, we detected the expression of TLRs and inflammatory cytokines in GES-1 cells upon sustained exposure to H. pylori or H. pylori lysate from 1 to 30 generations and in Mongolian gerbils infected with H. pylori for 5 to 90 weeks. We found that the levels of TLR6 and inflammatory cytokines first increased and then dropped during the course of H. pylori treatment in vitro and in vivo. The restoration of TLR6 potentiated the expression of IL-1β and IL-8 in GES-1 cells, which recruited neutrophils and reduced the colonization of H. pylori in the gastric mucosa of gerbils. Mechanistically, we found that persistent infection with H. pylori reduces the sensitivity of TLR6 to bacterial components and regulates the expression of inflammatory cytokines in GES-1 cells through TLR6/JNK signaling. The TLR6 agonist obviously alleviated inflammation in vitro and in vivo. Promising results suggest that TLR6 may be a potential candidate immunotherapy drug for H. pylori infection.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Yang He
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
- School of Nursing, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaolu Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Bo Fu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zidai Song
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Liang Wang
- Peking University Ninth School of Clinical Medicine, Beijing, People's Republic of China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Jianyi Lv
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Meng Guo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xueyun Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xin Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Jing Lu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Du
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, USA
| | - Zhenwen Chen
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Changlong Li
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Guo Y, Chen J, Huang Y, Ke S, Xie F, Li D, Li B, Lu H. Increased infiltration of CD4 + IL-17A + FOXP3 + T cells in Helicobacter pylori-induced gastritis. Eur J Immunol 2024; 54:e2350662. [PMID: 38366919 DOI: 10.1002/eji.202350662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Helicobacter pylori is one of the main predisposing factors for gastric cancer, causing chronic inflammation and proper glands atrophy in the gastric mucosa. Although H. pylori-induced inflammation is a key inducer of precancerous lesions in the gastric mucosa, it remains unclear which precise immune cell subsets are responsible for the progression of H. pylori-induced gastritis. Here, we observed an abundance of CD4+ IL-17A+ FOXP3+ T cells exhibiting a Th17-like phenotype within the microenvironment of H. pylori-induced gastritis. Mechanistically, H. pylori upregulated the expression of IL-6 in Dendritic cells and macrophages, by activating NF-κB signaling through the virulence factor CagA and thus, induced IL-17A expression in FOXP3+ T cells. Moreover, CD4+ IL-17A+ FOXP3+ T cells were positively associated with advanced precancerous lesions. Therefore, these findings offer essential insights into how FOXP3+ T cells sense inflammatory signals from the environment, such as IL-6, during H. pylori infections, thereby guiding the effector immune response and aggravating the gastritis.
Collapse
Affiliation(s)
- Yixian Guo
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinnan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Huang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shouyu Ke
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Xie
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Engelsberger V, Gerhard M, Mejías-Luque R. Effects of Helicobacter pylori infection on intestinal microbiota, immunity and colorectal cancer risk. Front Cell Infect Microbiol 2024; 14:1339750. [PMID: 38343887 PMCID: PMC10853882 DOI: 10.3389/fcimb.2024.1339750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Infecting about half of the world´s population, Helicobacter pylori is one of the most prevalent bacterial infections worldwide and the strongest known risk factor for gastric cancer. Although H. pylori colonizes exclusively the gastric epithelium, the infection has also been associated with various extragastric diseases, including colorectal cancer (CRC). Epidemiological studies reported an almost two-fold increased risk for infected individuals to develop CRC, but only recently, direct causal and functional links between the chronic infection and CRC have been revealed. Besides modulating the host intestinal immune response, H. pylori is thought to increase CRC risk by inducing gut microbiota alterations. It is known that H. pylori infection not only impacts the gastric microbiota at the site of infection but also leads to changes in bacterial colonization in the distal large intestine. Considering that the gut microbiome plays a driving role in CRC, H. pylori infection emerges as a key factor responsible for promoting changes in microbiome signatures that could contribute to tumor development. Within this review, we want to focus on the interplay between H. pylori infection, changes in the intestinal microbiota, and intestinal immunity. In addition, the effects of H. pylori antibiotic eradication therapy will be discussed.
Collapse
Affiliation(s)
| | | | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Shaopeng Z, Yang Z, Yuan F, Chen H, Zhengjun Q. Regulation of regulatory T cells and tumor-associated macrophages in gastric cancer tumor microenvironment. Cancer Med 2024; 13:e6959. [PMID: 38349050 PMCID: PMC10839124 DOI: 10.1002/cam4.6959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION Despite advancements in the methods for prevention and early diagnosis of gastric cancer (GC), GC continues to be the fifth in incidence among major cancers and the third most common cause of cancer-related death. The therapeutic effects of surgery and drug treatment are still unsatisfied and show notable differences according to the tumor microenvironment (TME) of GC. METHODS Through screening Pubmed, Embase, and Web of Science, we identified and summarized the content of recent studies that focus on the investigation of Helicobacter pylori (Hp) infection, regulatory T cells (Tregs), and tumor-associated macrophages (TAMs) in the TME of GC. Furthermore, we searched and outlined the clinical research progress of various targeted drugs in GC treatment including CTLA-4, PD-1\PD-L1, and VEGF/VEGFR. RESULTS In this review, the findings indicate that Hp infection causes local inflammation and leads to immunosuppressive environment. High Tregs infiltration in the TME of GC is associated with increased induction and recruitment; the exact function of infiltrated Tregs in GC was also affected by phenotypes and immunosuppressive molecules. TAMs promote the development and metastasis of tumors, the induction, recruitment, and function of TAMs in the TME of gastric cancer are also regulated by various factors. CONCLUSION Discussing the distinct tumor immune microenvironment (TIME) of GC can deepen our understanding on the mechanism of cancer immune evasion, invasion, and metastasis, help us to reduce the incidence of GC, and guide the innovation of new therapeutic targets for GC eventually.
Collapse
Affiliation(s)
- Zhang Shaopeng
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zheng Yang
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Fang Yuan
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Huang Chen
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Qiu Zhengjun
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Jacob TV, Doshi GM. New Promising Routes in Peptic Ulcers: Toll-like Receptors and Semaphorins. Endocr Metab Immune Disord Drug Targets 2024; 24:865-878. [PMID: 37605412 DOI: 10.2174/1871530323666230821102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023]
Abstract
Peptic ulcers (PU) are one of the commonest yet problematic diseases found to be existing in the majority of the population. Today, drugs from a wide range of therapeutic classes are available for the management of the disease. Still, the complications of the condition are difficult to tackle and the side effect profile is quite a concern. The literature indicates that Toll-like receptors (TLRs) and Semaphorins (SEMAs) have been under study for their various pharmacological actions over the past few decades. Both these signalling pathways are found to regulate immunological and inflammatory responses. Moreover, receptors and signalling molecules from the family of TLRs and SEMAs are found to have bacterial recognition and antibacterial properties which are essential in eradicating Helicobacter pylori (H. pylori), one of the major causative agents of PU. Our understanding of SEMAs, a class of proteins involved in cell signalling, is relatively less developed compared to TLRs, another class of proteins involved in the immune response. SEMAs and TLRs play different roles in biological processes, with SEMAs primarily involved in guiding cell migration and axon guidance during development, while TLRs are responsible for recognizing pathogens and initiating an immune response. Here, in this review, we will discuss in detail the signalling cascade of TLRs and SEMAs and thereby understand its association with PU for future therapeutic targeting. The review also aims at providing an overview of the study that has been into exploring the role of these signalling pathways in the management of PU.
Collapse
Affiliation(s)
- Teresa V Jacob
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
12
|
Marzhoseyni Z, Mousavi MJ, Ghotloo S. Helicobacter pylori antigens as immunomodulators of immune system. Helicobacter 2024; 29:e13058. [PMID: 38380545 DOI: 10.1111/hel.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the most prevalent human pathogens and the leading cause of chronic infection in almost half of the population in the world (~59%). The bacterium is a major leading cause of chronic gastritis, gastric and duodenal ulcers, and two type of malignancies, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Despite the immune responses mounted by the host, the bacteria are not cleared from the body resulting in a chronic infection accompanied by a chronic inflammation. Herein, a review of the literature discussing H. pylori antigens modulating the immune responses is presented. The mechanisms that are involved in the modulation of innate immune response, include modulation of recognition by pattern recognition receptors (PRRs) such as modulation of recognition by toll like receptors (TLR)4 and TLR5, modulation of phagocytic function, and modulation of phagocytic killing mediated by reactive oxygen species (ROS) and nitric oxide (NO). On the other hands, H. pylori modulates acquired immune response by the induction of tolerogenic dendritic cells (DCs), modulation of apoptosis, induction of regulatory T cells, modulation of T helper (Th)1 response, and modulation of Th17 response.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Valadbeigi H, Khoshnood S, Negahdari B, Abdullah MA, Haddadi MH. Antibacterial and Immunoregulatory Effects of Metformin against Helicobacter pylori Infection in Rat Model. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5583286. [PMID: 38192437 PMCID: PMC10774005 DOI: 10.1155/2023/5583286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 01/10/2024]
Abstract
Introduction Helicobacter pylori (H. pylori) induces gastritis by stimulating Th17 cells and related cytokines. The aim of our study was to investigate the synergistic effect of metformin with amoxicillin as an antibiotic in inhibiting H. pylori and modulating the immune response in a rat model. Methods Forty-five male Sprague-Dawley rats were divided into seven groups and infected with H. pylori. Over the course of 14 days, all animals were treated with metformin and amoxicillin alone and in combination. The antibacterial activity of metformin was evaluated by growth curves and colony counts. The immunoregulatory effect on Treg/Th17 balance was assessed by flow cytometry, and the cytokine profile of IL-17A, IL-1β, IL-6, IL-8, TGF-β, and IL-10 was determined by ELISA. The effect of metformin on gene expression of cagA and IL-8 was investigated by RT-PCR. Pathological changes were assessed by hematoxylin and eosin (H&E) staining and immunohistochemical (IHC) staining. Results Metformin showed weak antibacterial activity against clinically isolated H. pylori. However, the combination of metformin and amoxicillin (AMX) showed strong synergistic antibacterial activity (ΣFIC = 0.24). Compared with AMX, metformin reduced inflammation and tissue damage but resulted in increased bacterial growth. During metformin administration, both TGF-β levels and Treg cells increased dramatically (P = 0.002). In synergy with AMX, metformin decreased the effective dose of antibiotic to eradicate H. pylori. Conclusions The combination of metformin with potential antibiotics such as AMX had a positive effect on the relief of H. pylori-related inflammation by inducing Treg cells while successfully eliminating H. pylori.
Collapse
Affiliation(s)
- Hassan Valadbeigi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohd Azmuddin Abdullah
- SciCo Science and Technology Center, Mody Rd 62. Yau Tsim Mong District, Kowloon, Hong Kong SAR, China
| | | |
Collapse
|
14
|
Liu Q, Chen C, He Y, Mai W, Ruan S, Ning Y, Li Y. Notch Signaling Regulates the Function and Phenotype of Dendritic Cells in Helicobacter pylori Infection. Microorganisms 2023; 11:2818. [PMID: 38004829 PMCID: PMC10673485 DOI: 10.3390/microorganisms11112818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Notch signaling manipulates the function and phenotype of dendritic cells (DCs), as well as the interaction between DCs and CD4+ T cells. However, the role of Notch signaling in Helicobacter pylori (H. pylori) infection remains elusive. Murine bone marrow-derived dendritic cells (BMDCs) were pretreated in the absence or presence of Notch signaling inhibitor DAPT prior to H. pylori stimulation and the levels of Notch components, cytokines and surface markers as well as the differentiation of CD4+ T cells in co-culture were measured using quantitative real-time PCR (qRT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Compared with the control, the mRNA expression of all Notch receptors and Notch ligands Dll4 and Jagged1 was up-regulated in H. pylori-stimulated BMDCs. The blockade of Notch signaling by DAPT influenced the production of IL-1β and IL-10 in H. pylori-pulsed BMDCs, and reduced the expression of Notch1, Notch3, Notch4, Dll1, Dll3 and Jagged2. In addition, DAPT pretreatment decreased the expression of maturation markers CD80, CD83, CD86, and major histocompatibility complex class II (MHC-II) of BMDCs, and further skewed Th17/Treg balance toward Treg. Notch signaling regulates the function and phenotype of DCs, thus mediating the differentiation of CD4+ T cells during H. pylori infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| |
Collapse
|
15
|
Fadlallah S, Bitar ER, Hussein H, Jallad MA, Matar GM, Rahal EA. The interplay between Epstein-Barr virus DNA and gut microbiota in the development of arthritis in a mouse model. Microbiol Spectr 2023; 11:e0204223. [PMID: 37615438 PMCID: PMC10581075 DOI: 10.1128/spectrum.02042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/02/2023] [Indexed: 08/25/2023] Open
Abstract
Epstein-Barr virus (EBV) DNA may influence the development of autoimmune diseases by increasing the production of proinflammatory cytokines. Such cytokines have been associated with inducing the dysbiosis of colonic microbiota, which, in turn, is a risk factor for autoimmune diseases such as rheumatoid arthritis (RA). Therefore, we investigated the role that EBV DNA may play in modulating the intestinal microbiota and consequent exacerbation of arthritis in a mouse model. Mice were treated with collagen (arthritis-inducing agent), EBV DNA and collagen, EBV DNA, or water. Fecal samples were collected from arthritic and control mice, and 16S rRNA sequencing was performed to determine the effect of EBV DNA on the composition of colonic microbiota. EBV DNA causes a change in the alpha diversity of the microbiota resulting in an increased Chao1 microbial richness and decreased Shannon diversity index in the RA mouse model. In addition, the abundance of particular genera/genus clusters was significantly altered among the various groups, with the EBV DNA-exacerbated arthritic group having the highest number of altered genera/genus cluster abundances. This group also had the highest number of cells co-expressing IL-17A, FOXP3, and IFNγ in the colons. Antimicrobial-cleared mice transplanted with fecal samples from EBV DNA-exacerbated arthritic mice showed a higher incidence and enhanced severity of RA compared to those transplanted with fecal samples from water or collagen-treated mice. IMPORTANCE Epstein-Barr virus (EBV) DNA alters the composition and diversity of the gut microbiota in a rheumatoid arthritis (RA) mouse model. These induced changes are associated with enhanced severity of symptoms. This better understanding of the various factors involved in the development of RA will possibly help in creating individualized treatments for RA patients including target mediators triggered by viral DNA. Given that a large swathe of the population harbors EBV, a significant proportion of subjects with arthritis may benefit from possible approaches that target EBV or mediators triggered by this virus.
Collapse
Affiliation(s)
- Sukayna Fadlallah
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Elio R. Bitar
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hadi Hussein
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Mary-Ann Jallad
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Elias A. Rahal
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Teng Y, Xie R, Xu J, Wang P, Chen W, Shan Z, Yan Z, Mao F, Cheng P, Peng L, Zhang J, Tian W, Yang S, Zhao Y, Chen W, Zou Q, Zhuang Y. Tubulointerstitial nephritis antigen-like 1 is a novel matricellular protein that promotes gastric bacterial colonization and gastritis in the setting of Helicobacter pylori infection. Cell Mol Immunol 2023; 20:924-940. [PMID: 37336990 PMCID: PMC10387474 DOI: 10.1038/s41423-023-01055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
The interaction between the gastric epithelium and immune cells plays key roles in H. pylori-associated pathology. Here, we demonstrate a procolonization and proinflammatory role of tubulointerstitial nephritis antigen-like 1 (TINAGL1), a newly discovered matricellular protein, in H. pylori infection. Increased TINAGL1 production by gastric epithelial cells (GECs) in the infected gastric mucosa was synergistically induced by H. pylori and IL-1β via the ERK-SP1 pathway in a cagA-dependent manner. Elevated human gastric TINAGL1 correlated with H. pylori colonization and the severity of gastritis, and mouse TINAGL1 derived from non-bone marrow-derived cells promoted bacterial colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Tinagl1-/- and Tinagl1ΔGEC mice and were increased in mice injected with mouse TINAGL1. Mechanistically, TINAGL1 suppressed CCL21 expression and promoted CCL2 production in GECs by directly binding to integrin α5β1 to inhibit ERK and activate the NF-κB pathway, respectively, which not only led to decreased gastric influx of moDCs via CCL21-CCR7-dependent migration and, as a direct consequence, reduced the bacterial clearance capacity of the H. pylori-specific Th1 response, thereby promoting H. pylori colonization, but also resulted in increased gastric influx of Ly6Chigh monocytes via CCL2-CCR2-dependent migration. In turn, TINAGL1 induced the production of the proinflammatory protein S100A11 by Ly6Chigh monocytes, promoting H. pylori-associated gastritis. In summary, we identified a model in which TINAGL1 collectively ensures H. pylori persistence and promotes gastritis.
Collapse
Affiliation(s)
- Yongsheng Teng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Rui Xie
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingyu Xu
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Pan Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Wanyan Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Zhiguo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zongbao Yan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fangyuan Mao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Wenqing Tian
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongliang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yuan Zhuang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China.
| |
Collapse
|
17
|
Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol 2023; 14:1130001. [PMID: 37180252 PMCID: PMC10172576 DOI: 10.3389/fmicb.2023.1130001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with a high mortality rate. Many microbial factors influence GC, of which the most widely accepted one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, immune reactions and activation of multiple signaling pathways, leading to acid deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that complex microbial populations exist in the human stomach. H. pylori can affect the abundance and diversity of other bacteria. The interactions among gastric microbiota are collectively implicated in the onset of GC. Certain intervention strategies may regulate gastric homeostasis and mitigate gastric disorders. Probiotics, dietary fiber, and microbiota transplantation can potentially restore healthy microbiota. In this review, we elucidate the specific role of the gastric microbiota in GC and hope these data can facilitate the development of effective prevention and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chenxi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Ralser A, Dietl A, Jarosch S, Engelsberger V, Wanisch A, Janssen KP, Middelhoff M, Vieth M, Quante M, Haller D, Busch DH, Deng L, Mejías-Luque R, Gerhard M. Helicobacter pylori promotes colorectal carcinogenesis by deregulating intestinal immunity and inducing a mucus-degrading microbiota signature. Gut 2023:gutjnl-2022-328075. [PMID: 37015754 DOI: 10.1136/gutjnl-2022-328075] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVE Helicobacter pylori infection is the most prevalent bacterial infection worldwide. Besides being the most important risk factor for gastric cancer development, epidemiological data show that infected individuals harbour a nearly twofold increased risk to develop colorectal cancer (CRC). However, a direct causal and functional connection between H. pylori infection and colon cancer is lacking. DESIGN We infected two Apc-mutant mouse models and C57BL/6 mice with H. pylori and conducted a comprehensive analysis of H. pylori-induced changes in intestinal immune responses and epithelial signatures via flow cytometry, chip cytometry, immunohistochemistry and single cell RNA sequencing. Microbial signatures were characterised and evaluated in germ-free mice and via stool transfer experiments. RESULTS H. pylori infection accelerated tumour development in Apc-mutant mice. We identified a unique H. pylori-driven immune alteration signature characterised by a reduction in regulatory T cells and pro-inflammatory T cells. Furthermore, in the intestinal and colonic epithelium, H. pylori induced pro-carcinogenic STAT3 signalling and a loss of goblet cells, changes that have been shown to contribute-in combination with pro-inflammatory and mucus degrading microbial signatures-to tumour development. Similar immune and epithelial alterations were found in human colon biopsies from H. pylori-infected patients. Housing of Apc-mutant mice under germ-free conditions ameliorated, and early antibiotic eradication of H. pylori infection normalised the tumour incidence to the level of uninfected controls. CONCLUSIONS Our studies provide evidence that H. pylori infection is a strong causal promoter of colorectal carcinogenesis. Therefore, implementation of H. pylori status into preventive measures of CRC should be considered.
Collapse
Affiliation(s)
- Anna Ralser
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alisa Dietl
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Veronika Engelsberger
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen-Nuremberg, Bayreuth, Germany
| | - Michael Quante
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food & Health, Technical University of Munich, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Infection Research (DZIF), Munich, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Preventions of Microbial Diseases, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Infection Research (DZIF), Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
19
|
Shu C, Xu Z, He C, Xu X, Zhou Y, Cai B, Zhu Y. Application of biomaterials in the eradication of Helicobacter pylori: A bibliometric analysis and overview. Front Microbiol 2023; 14:1081271. [PMID: 37007524 PMCID: PMC10061102 DOI: 10.3389/fmicb.2023.1081271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Helicobacter pylori is a prominent cause of gastritis, peptic ulcer, and gastric cancer. It is naturally colonized on the surface of the mucus layer and mucosal epithelial cells of the gastric sinus, surrounded not only by mucus layer with high viscosity that prevents the contact of drug molecules with bacteria but also by multitudinous gastric acid and pepsin, inactivating the antibacterial drug. With high-performance biocompatibility and biological specificity, biomaterials emerge as promising prospects closely associated with H. pylori eradication recently. Aiming to thoroughly summarize the progressing research in this field, we have screened 101 publications from the web of science database and then a bibliometric investigation was performed on the research trends of the application of biomaterials in eradicating H. pylori over the last decade utilizing VOSviewer and CiteSpace to establish the relationship between the publications, countries, institutions, authors, and most relevant topics. Keyword analysis illustrates biomaterials including nanoparticles (NPs), metallic materials, liposomes, and polymers are employed most frequently. Depending on their constituent materials and characterized structures, biomaterials exhibit diverse prospects in eradicating H. pylori regarding extending drug delivery time, avoiding drug inactivation, target response, and addressing drug resistance. Furthermore, we overviewed the challenges and forthcoming research perspective of high-performance biomaterials in H. pylori eradication based on recent studies.
Collapse
Affiliation(s)
- Chunxi Shu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanan Zhou
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Baihui Cai
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Yin Zhu,
| |
Collapse
|
20
|
Sorini C, Tripathi KP, Wu S, Higdon SM, Wang J, Cheng L, Banerjee S, Reinhardt A, Kreslavsky T, Thorell A, Engstrand L, Du J, Villablanca EJ. Metagenomic and single-cell RNA-Seq survey of the Helicobacter pylori-infected stomach in asymptomatic individuals. JCI Insight 2023; 8:161042. [PMID: 36810249 PMCID: PMC9977493 DOI: 10.1172/jci.insight.161042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/11/2023] [Indexed: 02/23/2023] Open
Abstract
Helicobacter pylori colonization of the gastric niche can persist for years in asymptomatic individuals. To deeply characterize the host-microbiota environment in H. pylori-infected (HPI) stomachs, we collected human gastric tissues and performed metagenomic sequencing, single-cell RNA-Seq (scRNA-Seq), flow cytometry, and fluorescent microscopy. HPI asymptomatic individuals had dramatic changes in the composition of gastric microbiome and immune cells compared with noninfected individuals. Metagenomic analysis uncovered pathway alterations related to metabolism and immune response. scRNA-Seq and flow cytometry data revealed that, in contrast to murine stomachs, ILC2s are virtually absent in the human gastric mucosa, whereas ILC3s are the dominant population. Specifically, proportion of NKp44+ ILC3s out of total ILCs were highly increased in the gastric mucosa of asymptomatic HPI individuals, and correlated with the abundance of selected microbial taxa. In addition, CD11c+ myeloid cells and activated CD4+ T cells and B cells were expanded in HPI individuals. B cells of HPI individuals acquired an activated phenotype and progressed into a highly proliferating germinal-center stage and plasmablast maturation, which correlated with the presence of tertiary lymphoid structures within the gastric lamina propria. Our study provides a comprehensive atlas of the gastric mucosa-associated microbiome and immune cell landscape when comparing asymptomatic HPI and uninfected individuals.
Collapse
Affiliation(s)
- Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Shawn M Higdon
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jing Wang
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Sanghita Banerjee
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Taras Kreslavsky
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | | | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
21
|
Yip S, Wang N, Sugimura R. Give Them Vasculature and Immune Cells: How to Fill the Gap of Organoids. Cells Tissues Organs 2023; 212:369-382. [PMID: 36716724 PMCID: PMC10711768 DOI: 10.1159/000529431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Valid and relevant models are critical for research to have biological relevance or to proceed in the right path. As well-established two-dimensional cell cultures lack niches and cues and rodent models differ in species, three-dimensional organoids emerged as a powerful platform for research. Cultured in vitro from stem cells, organoids are heterogeneous in cells and closely resemble the in vivo settings. Organoids also recapitulate the unique human features if cultured from a human source and are subjected to genetic modification. However, one type of organoid possesses only a limited selection of cells. In particular, the absence of vasculature and immune cells restricts the organoids from nutrition, cues, or critical interactions, undermining the validity of organoids as physiological or pathological models. To fill the current gap, there is an urgent need to provide organoids with vasculature and immune cells. In this paper, we review the methods to generate physiological and pathological organoid models and summarize ways to vascularize or immunize them. Our discussion continues with some advantages and disadvantages of each method and some emerging solutions to current problems.
Collapse
Affiliation(s)
- Sophronia Yip
- Faculty of Science, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Centre for Translational Stem Cell Biology, Hong Kong, Hong Kong SAR
| | - Nan Wang
- Faculty of Science, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, Hong Kong, Hong Kong SAR
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
22
|
Potts C, Schearer J, Sebrell TA, Bair D, Ayler B, Love J, Dankoff J, Harris PR, Zosso D, Bimczok D. MNPmApp: An image analysis tool to quantify mononuclear phagocyte distribution in mucosal tissues. Cytometry A 2022; 101:1012-1026. [PMID: 35569131 PMCID: PMC9663762 DOI: 10.1002/cyto.a.24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/27/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023]
Abstract
Mononuclear phagocytes (MNPs) such as dendritic cells and macrophages perform key sentinel functions in mucosal tissues and are responsible for inducing and maintaining adaptive immune responses to mucosal pathogens. Positioning of MNPs at the epithelial interface facilitates their access to luminally-derived antigens and regulates MNP function through soluble mediators or surface receptor interactions. Therefore, accurately quantifying the distribution of MNPs within mucosal tissues as well as their spatial relationship with other cells is important to infer functional cellular interactions in health and disease. In this study, we developed and validated a MATLAB-based tissue cytometry platform, termed "MNP mapping application" (MNPmApp), that performs high throughput analyses of MNP density and distribution in the gastrointestinal mucosa based on digital multicolor fluorescence microscopy images and that integrates a Monte Carlo modeling feature to assess randomness of MNP distribution. MNPmApp identified MNPs in tissue sections of the human gastric mucosa with 98 ± 2% specificity and 76 ± 15% sensitivity for HLA-DR+ MNPs and 98 ± 1% specificity and 85 ± 12% sensitivity for CD11c+ MNPs. Monte Carlo modeling revealed that mean MNP-MNP distances for both HLA-DR+ and CD11c+ MNPs were significantly lower than anticipated based on random cell placement, whereas MNP-epithelial distances were similar to randomly placed cells. Surprisingly, H. pylori infection had no significant impact on the number of HLA-DR and CD11c MNPs or their distribution within the gastric lamina propria. However, our study demonstrated that MNPmApp is a reliable and user-friendly tool for unbiased quantitation of MNPs and their distribution at mucosal sites.
Collapse
Affiliation(s)
- Catherine Potts
- Department of Mathematical Sciences, Montana State University, Bozeman, MT
| | - Julia Schearer
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - Thomas A Sebrell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - Dominic Bair
- Department of Mathematical Sciences, Montana State University, Bozeman, MT
| | | | - Jordan Love
- Department of Mathematical Sciences, Montana State University, Bozeman, MT
| | - Jennifer Dankoff
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - Paul R. Harris
- Division of Pediatrics, Department of Pediatric Gastroenterology and Nutrition, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dominique Zosso
- Department of Mathematical Sciences, Montana State University, Bozeman, MT
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| |
Collapse
|
23
|
Ding L, Chakrabarti J, Sheriff S, Li Q, Hong HNT, Sontz RA, Mendoza ZE, Schreibeis A, Helmrath MA, Zavros Y, Merchant JL. Toll-like Receptor 9 Pathway Mediates Schlafen +-MDSC Polarization During Helicobacter-induced Gastric Metaplasias. Gastroenterology 2022; 163:411-425.e4. [PMID: 35487288 PMCID: PMC9329252 DOI: 10.1053/j.gastro.2022.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS A subset of myeloid-derived suppressor cells (MDSCs) that express murine Schlafen4 (SLFN4) or its human ortholog SLFN12L polarize in the Helicobacter-inflamed stomach coincident with intestinal or spasmolytic polypeptide-expressing metaplasia. We propose that individuals with a more robust response to damage-activated molecular patterns and increased Toll-like receptor 9 (TLR9) expression are predisposed to the neoplastic complications of Helicobacter infection. METHODS A mouse or human Transwell co-culture system composed of dendritic cells (DCs), 2-dimensional gastric epithelial monolayers, and Helicobacter were used to dissect the cellular source of interferon-α (IFNα) in the stomach by flow cytometry. Conditioned media from the co-cultures polarized primary myeloid cells. MDSC activity was determined by T-cell suppression assays. In human subjects with intestinal metaplasia or gastric cancer, the rs5743836 TLR9T>C variant was genotyped and linked to TLR9, IFNα, and SLFN12L expression by immunohistochemistry. Nuclear factor-κB binding to the TLR9 C allele was determined by electrophoretic mobility shift assays. RESULTS Helicobacter infection induced gastric epithelial and plasmacytoid DC expression of TLR9 and IFNα. Co-culturing primary mouse or human cells with DCs and Helicobacter induced TLR9, IFNα secretion, and SLFN+-MDSC polarization. Neutralizing IFNα in vivo mitigated Helicobacter-induced spasmolytic polypeptide-expressing metaplasia. The TLR9 minor C allele creates a nuclear factor-κB binding site associated with higher levels of TLR9, IFNα, and SLFN12L in Helicobacter-infected stomachs that correlated with a greater incidence of metaplasias and cancer. CONCLUSIONS TLR9 plays an essential role in the production of IFNα and polarization of SLFN+ MDSCs on Helicobacter infection. Subjects carrying the rs5743836 TLR9 minor C allele are predisposed to neoplastic complications if chronically infected.
Collapse
Affiliation(s)
- Lin Ding
- Dept. of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson
| | | | - Sulaiman Sheriff
- Dept. of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson
| | - Qian Li
- Dept. of Gastroenterology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hahn Nguyen Thi Hong
- Dinh Tien Hoang Institute of Medicine, Vietnam Union of Science and Technology Association, Institute of Biotechnology, Hanoi, Vietnam
| | - Ricky A Sontz
- Dept. of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson
| | - Zoe E Mendoza
- Dept. of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson
| | - Amanda Schreibeis
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Michael A. Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Yana Zavros
- Dept. of Cellular & Molecular Medicine, University of Arizona, Tucson
| | - Juanita L Merchant
- Department of Medicine-Gastroenterology & Hepatology, University of Arizona, Tucson, Arizona.
| |
Collapse
|
24
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
25
|
Li Z, Zhang W, Bai J, Li J, Li H. Emerging Role of Helicobacter pylori in the Immune Evasion Mechanism of Gastric Cancer: An Insight Into Tumor Microenvironment-Pathogen Interaction. Front Oncol 2022; 12:862462. [PMID: 35795038 PMCID: PMC9252590 DOI: 10.3389/fonc.2022.862462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is the strongest causative factor of gastric cancer. Growing evidence suggests that the complex crosstalk of H. pylori and the tumor microenvironment (TME) exerts a profound influence on gastric cancer progression. Hence, there is emerging interest to in-depth comprehension of the mechanisms of interplay between H. pylori and the TME. This review discusses the regulatory mechanisms underlying the crosstalk between H. pylori infection and immune and stromal cells, including tumor-associated macrophages (TAMs), neutrophils, dendritic cells, myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, B and T cells, cancer associated fibroblasts (CAFs), and mesenchymal stem cells (MSCs), within the TME. Such knowledge will deepen the understanding about the roles of H. pylori in the immune evasion mechanism in gastric cancer and contribute to the development of more effective treatment regimens against H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Zhifang Li
- Shanxi Medical University, Taiyuan, China
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenqing Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinyang Bai
- Shanxi Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Jing Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Hong Li,
| |
Collapse
|
26
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
27
|
Koizumi Y, Ahmad S, Ikeda M, Yashima-Abo A, Espina G, Sugimoto R, Sugai T, Iwaya T, Tamura G, Koeda K, Liotta LA, Takahashi F, Nishizuka SS. Helicobacter pylori modulated host immunity in gastric cancer patients with S-1 adjuvant chemotherapy. J Natl Cancer Inst 2022; 114:1149-1158. [PMID: 35437596 PMCID: PMC9360472 DOI: 10.1093/jnci/djac085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Paradoxically, Helicobacter pylori-positive (HP+) advanced gastric cancer patients have a better prognosis than those who are HP-negative (HP-). Immunologic and statistical analyses can be used to verify whether systemic mechanisms modulated by HP are involved in this more favorable outcome. METHODS A total of 658 advanced gastric cancer patients who underwent gastrectomy were enrolled. HP infection, mismatch repair, programmed death-ligand 1 (PD-L1), and CD4/CD8 proteins, and microsatellite instability were analyzed. Overall survival (OS) and relapse free survival (RFS) rates were analyzed after stratifying clinicopathological factors. Cox proportional hazards regression analysis was performed to identify independent prognostic factors. RESULTS Among 491 cases that were analyzed, 175 (36%) and 316 (64%) cases were HP+ and HP⁻, respectively. Analysis of RFS indicated an interaction of HP status among the subgroups for S-1 dose (Pinteraction=0.0487) and PD-L1 (P = .016). HP+ patients in the PD-L1⁻ group had significantly higher five-year OS and RFS than HP- patients (81% vs. 68%; P = .0011; HR 0.477; 95% CI, 0.303-0.751 and 76% vs. 63% P = .0011; HR 0.508; 95% CI, 0.335-0.771, respectively). The five-year OS and RFS was also significantly higher for HP+ compared to HP- patients in the PD-L1-/S-1-reduced group (86% vs. 46%; P = .0014; HR 0.205; 95% CI, 0.07-0.602 and 83% vs. 34%; P = .001; HR 0.190; 95% CI, 0.072-0.498, respectively). Thus, HP status was identified as one of the most potentially important independent factors to predict prolonged survival. CONCLUSION This retrospective study suggests that an HP-modulated host immune system may contribute to prolonged survival in the absence of immune escape mechanisms of gastric cancer.
Collapse
Affiliation(s)
- Yuka Koizumi
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Sheny Ahmad
- Aspirating Scientists Summer Internship Program, George Mason University, Manassas, VA USA.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Miyuki Ikeda
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Akiko Yashima-Abo
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Ginny Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine,Yahaba, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine,Yahaba, Japan
| | - Takeshi Iwaya
- Molecular Therapeutics Laboratory, Department of Surgery, Iwate Medical University School of Medicine
| | - Gen Tamura
- Department of Laboratory Medicine, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Keisuke Koeda
- Department of Medical Safety Science, Iwate Medical University School of Medicine,Yahaba, Japan
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Fumiaki Takahashi
- Division of Medical Engineering, Department of Information Science, Iwate Medical University, Yahaba, Japan
| | - Satoshi S Nishizuka
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | | |
Collapse
|
28
|
Wang Z, Wei Y, An L, Wang K, Hong D, Shi Y, Zang A, Su S, Li W. SEMA3D Plays a Critical Role in Peptic Ulcer Disease-Related Carcinogenesis Induced by H. pylori Infection. Int J Gen Med 2022; 15:1239-1260. [PMID: 35173464 PMCID: PMC8841493 DOI: 10.2147/ijgm.s343635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhiyu Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Yaning Wei
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - lin An
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Kunjie Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Dan Hong
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Shenyong Su
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Wenwen Li
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
- Correspondence: Wenwen Li, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People’s Republic of China, Email
| |
Collapse
|
29
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Yang H, Hu B. Immunological Perspective: Helicobacter pylori Infection and Gastritis. Mediators Inflamm 2022; 2022:2944156. [PMID: 35300405 PMCID: PMC8923794 DOI: 10.1155/2022/2944156] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a spiral-shaped gram-negative bacterium. Its infection is mainly transmitted via oral-oral and fecal-oral routes usually during early childhood. It can achieve persistent colonization by manipulating the host immune responses, which also causes mucosal damage and inflammation. H. pylori gastritis is an infectious disease and results in chronic gastritis of different severity in near all patients with infection. It may develop from acute/chronic inflammation, chronic atrophic gastritis, intestinal metaplasia, dysplasia, and intraepithelial neoplasia, eventually to gastric cancer. This review attempts to cover recent studies which provide important insights into how H. pylori causes chronic inflammation and what the characteristic is, which will immunologically explain H. pylori gastritis.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Cheok YY, Lee CYQ, Cheong HC, Vadivelu J, Looi CY, Abdullah S, Wong WF. An Overview of Helicobacter pylori Survival Tactics in the Hostile Human Stomach Environment. Microorganisms 2021; 9:microorganisms9122502. [PMID: 34946105 PMCID: PMC8705132 DOI: 10.3390/microorganisms9122502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is well established as a causative agent for gastritis, peptic ulcer, and gastric cancer. Armed with various inimitable virulence factors, this Gram-negative bacterium is one of few microorganisms that is capable of circumventing the harsh environment of the stomach. The unique spiral structure, flagella, and outer membrane proteins accelerate H. pylori movement within the viscous gastric mucosal layers while facilitating its attachment to the epithelial cells. Furthermore, secretion of urease from H. pylori eases the acidic pH within the stomach, thus creating a niche for bacteria survival and replication. Upon gaining a foothold in the gastric epithelial lining, bacterial protein CagA is injected into host cells through a type IV secretion system (T4SS), which together with VacA, damage the gastric epithelial cells. H. pylori does not only establishes colonization in the stomach, but also manipulates the host immune system to permit long-term persistence. Prolonged H. pylori infection causes chronic inflammation that precedes gastric cancer. The current review provides a brief outlook on H. pylori survival tactics, bacterial-host interaction and their importance in therapeutic intervention as well as vaccine development.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (C.Y.Q.L.); (H.C.C.); (J.V.)
- Correspondence:
| |
Collapse
|
32
|
Etchegaray-Morales I, Jiménez-Herrera EA, Mendoza-Pinto C, Rojas-Villarraga A, Macías-Díaz S, Osorio-Peña ÁD, Munguía-Realpozo P, García-Carrasco M. Helicobacter pylori and its association with autoimmune diseases: systemic lupus erythematosus, rheumatoid arthritis and Sjögren syndrome. J Transl Autoimmun 2021; 4:100135. [PMID: 34825158 PMCID: PMC8605081 DOI: 10.1016/j.jtauto.2021.100135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative bacterium that adapts to the gastric mucosa and provokes symptoms associated with gastritis. Chronic H. pylori infection in patients with a genetic predisposition can trigger autoimmune diseases due to the immune interaction of cellular and humoral responses. Infections are a triggering factor for systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjögren syndrome (SS), although the association between H. pylori and these diseases is unclear. Therefore, we reviewed this interaction and its clinical importance.
Collapse
Affiliation(s)
- Ivet Etchegaray-Morales
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
| | | | - Claudia Mendoza-Pinto
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
- Systemic Autoimmune Diseases Research, Unit of Specialties, Hospital UMAE, Mexican Social Security Institute, 2 Norte 2004, 72000, Puebla, Mexico
| | - Adriana Rojas-Villarraga
- Research Institute, Fundación Universitaria De Ciencias De La Salud, University of Health Sciences, Cra. 19 N 8a-32, Bogota, Colombia
| | - Salvador Macías-Díaz
- Internal Medicine Service, Hospital General de Zona N°1, Instituto Mexicano del Seguro Social, Avenida Francisco I. Madero 407, 42070, Hidalgo, Mexico
- Department of Medical Oncology. Medicine School. Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
| | - Ángel David Osorio-Peña
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
| | - Pamela Munguía-Realpozo
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
| | - Mario García-Carrasco
- Department of Rheumatology, Medicine School, Meritorious Autonomous University of Puebla, 13 Sur 2702, 72420, Puebla, Mexico
- Corresponding author.
| |
Collapse
|
33
|
Kang HM, Kang JH. Effects of nasopharyngeal microbiota in respiratory infections and allergies. Clin Exp Pediatr 2021; 64:543-551. [PMID: 33872488 PMCID: PMC8566799 DOI: 10.3345/cep.2020.01452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/02/2021] [Indexed: 11/27/2022] Open
Abstract
The human microbiome, which consists of a collective cluster of commensal, symbiotic, and pathogenic microorganisms living in the human body, plays a key role in host health and immunity. The human nasal cavity harbors commensal bacteria that suppress the colonization of opportunistic pathogens. However, dysbiosis of the nasal microbial community is associated with many diseases, such as acute respiratory infections including otitis media, sinusitis and bronchitis and allergic respiratory diseases including asthma. The nasopharyngeal acquisition of pneumococcus, which exists as a pathobiont in the nasal cavity, is the initial step in virtually all pneumococcal diseases. Although the factors influencing nasal colonization and elimination are not fully understood, the adhesion of opportunistic pathogens to nasopharyngeal mucosa receptors and the eliciting of immune responses in the host are implicated in addition to bacterial microbiota properties and colonization resistance dynamics. Probiotics or synbiotic interventions may show promising and effective roles in the adjunctive treatment of dysbiosis; however, more studies are needed to characterize how these interventions can be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Han Kang
- Division of Pediatric Infectious Diseases, Departments of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
34
|
Zhang Z, Chen S, Fan M, Ruan G, Xi T, Zheng L, Guo L, Ye F, Xing Y. Helicobacter pylori induces gastric cancer via down-regulating miR-375 to inhibit dendritic cell maturation. Helicobacter 2021; 26:e12813. [PMID: 33938607 DOI: 10.1111/hel.12813] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent studies and clinical samples have demonstrated that Helicobacter pylori could induce the downregulation of miR-375 in the stomach and promote gastric carcinogenesis. However, whether the immune cells are affected by Helicobacter pylori due to the downregulation of miR-375 is unclear. MATERIALS AND METHODS In this study, we constructed an overexpression and knockdown of miR-375 and Helicobacter pylori infection cell models in vitro. In addition, the maturity of dendritic cells (DCs) and the expression of IL-6, IL-10, and VEGF at the transcriptional and translational levels were analyzed. Changes in the JAK2-STAT3 signaling pathway were detected. In vivo, the number changes in CD4+ T and CD8+ T cells and the size changes of tumors via models of transplantable subcutaneous tumors were also analyzed. RESULTS A cell model of Helicobacter pylori and gastric cancer was used to identify the expression of miR-375 and the maturity of dendritic cells. This study found that Helicobacter pylori could downregulate miR-375, which regulates the expression of cytokines IL-6, IL-10, and VEGF in the stomach. MiR-375 regulated the expression of cytokines IL-6, IL-10, and VEGF through the JAK2-STAT3 signaling pathway in vitro. In addition, we found that Helicobacter pylori regulates the maturation of dendritic cells through miR-375. These results were further verified in vivo, and miR-375 diminishes tumor size was also demonstrated. This study showed that immature DCs caused a decrease in the number of CD4+ and CD8+ T cells. CONCLUSIONS This study demonstrated that Helicobacter pylori can inhibit miRNA-375 expression in the stomach. Downregulated miR-375 activates the JAK2-STAT3 pathway. Activating the JAK2-STAT3 signaling pathway promotes the secretion of IL-6, IL-10, and VEGF, leading to immature differentiation of DCs and induction of gastric cancer.
Collapse
Affiliation(s)
- Zhenxing Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Menghui Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Le Guo
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
35
|
The Roles of IL-17, IL-21, and IL-23 in the Helicobacter pylori Infection and Gastrointestinal Inflammation: A Review. Toxins (Basel) 2021; 13:toxins13050315. [PMID: 33924897 PMCID: PMC8147029 DOI: 10.3390/toxins13050315] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Although millions of people have been infected by Helicobacter pylori (H. pylori), only a small proportion of infected individuals will develop adverse outcomes, ranging from chronic gastritis to gastric cancer. Advanced development of the disease has been well-linked with chronic inflammation, which is significantly impacted by the adaptive and humoral immunity response. From the perspective of cellular immunity, this review aims to clarify the intricate axis between IL-17, IL-21, and IL-23 in H. pylori-related diseases and the pathogenesis of inflammatory gastrointestinal diseases. CD4+ helper T (Th)-17 cells, with the hallmark pleiotropic cytokine IL-17, can affect antimicrobial activity and the pathogenic immune response in the gut environment. These circumstances cannot be separated, as the existence of affiliated cytokines, including IL-21 and IL-23, help maintain Th17 and accommodate humoral immune cells. Comprehensive understanding of the dynamic interaction between molecular host responses in H. pylori-related diseases and the inflammation process may facilitate further development of immune-based therapy.
Collapse
|
36
|
Altunöz D, Sayi Yazgan A. Helicobacter-stimulated IL-10-producing B cells suppress differentiation of lipopolysaccharide/Helicobacter felis-activated stimulatory dendritic cells. ACTA ACUST UNITED AC 2021; 45:214-224. [PMID: 33907502 PMCID: PMC8068769 DOI: 10.3906/biy-2012-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/24/2021] [Indexed: 01/09/2023]
Abstract
Regulatory B cells (Bregs) produce antiinflammatory cytokines and inhibits proinflammatory response. Recently, immunosuppressive roles of Bregs in the effector functions of dendritic cells (DCs) were demonstrated. However, cross talk between Bregs and DCs in Helicobacter infection remains unknown. Here, we showed that direct stimulation of bone marrow-derived DCs (BM-DCs) with Helicobacter felis (H. felis) antigen upregulates their CD86 surface expression and causes the production of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and interleukin-10 (IL-10). Furthermore, prestimulation of DCs with supernatants derived from both Helicobacter-stimulated IL-10– B (Hfstim-IL-10– B) or IL-10+ B (Hfstim-IL-10+) cells suppresses the secretion of TNF-α and IL-6, but does not affect the expression of CD86 and secretion of IL-12 by lipopolysaccharide (LPS) or H. felis-activated BM-DCs. Remarkably, soluble factors secreted by Hfstim-IL-10– B cells, but not by Hfstim-IL-10+ B cells, suppress the secretion of IL-10 by BM-DCs upon subsequent LPS stimulation. In contrast, prestimulation with BM-DCs with supernatants of Hfstim-IL-10+ B cells before H. felis antigen stimulation induces significantly their IL-10 production. Collectively, our data indicated that prestimulation with soluble factors secreted by Hfstim-IL-10+ B cells, DCs exhibit a tolerogenic phenotype in response to LPS or Helicobacter antigen by secreting high levels of IL-10, but decreased levels of IL-6 and TNF-α.
Collapse
Affiliation(s)
- Doğuş Altunöz
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Technical University, İstanbul Turkey
| | - Ayça Sayi Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, İstanbul Technical University, İstanbul Turkey
| |
Collapse
|
37
|
Xue Q, Li X, Li Y, Xu J, Wu Z, Wang J. Dialogue between gastrointestinal tract and skin: New insights into the Helicobacter pylori and atopic dermatitis. Helicobacter 2021; 26:e12771. [PMID: 33368906 DOI: 10.1111/hel.12771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although many studies have focused on the protective function of H pylori in some allergic diseases, it remains unknown as whether H pylori infection exerts a similar protective effect on atopic dermatitis(AD). Thus, the aim of this study was to evaluate the association between H pylori infection and AD. MATERIALS AND METHODS An animal model of H pylori infection-AD was established by epicutaneous sensitization with calcipotriol after infection with H pylori by gavage. The Treg cells were analyzed by flow cytometry and immunohistochemistry. The expression of key inflammatory cytokines in dermal tissues was investigated at the mRNA level by real-time PCR. RESULTS Compared with that in the H pylori-negative AD group, the severity of skin lesions, such as hyperemia, erythema, and swelling, was lower in the H pylori-positive AD group, while the serum IgE level decreased significantly in the H pylori-positive AD group. The percentage of CD4+ CD25+ Foxp3+ Treg cells in the peripheral blood and the number of Foxp3+ cells in dermal tissues increased significantly in the H pylori-positive AD group. The expression of IL-10 and TGF-β was upregulated, while the expression of IL-4 mRNA was downregulated in dermal tissues in the H pylori-positive AD group. The adoptive transfer assay showed that the number of CFSE+ Treg cells in the cervical lymph nodes of AD mice was significantly higher than that in normal mice, indicating the Tregs in H pylori-positive mice had a tendency to migrate to the skin tissue. It was also found that H pylori infection induced CCR4+ Treg cells expansion synchronously in gastric lymph nodes, spleen, blood, mesenteric lymph node (MLN), and cervical lymph nodes by the time of H pylori infection. CONCLUSIONS H pylori infection alleviated calcipotriol-inducing AD manifestations by inducing the amplification of CD4+ CD25+ Foxp3+ Treg cells in the peripheral blood. H pylori showed possible protection against atopic dermatitis, suggesting an immune dialogue between gastrointestinal tract and skin.
Collapse
Affiliation(s)
- Qian Xue
- Department of Gerontology, Peking University People's Hospital, Beijing, China
| | - Xia Li
- Department of Gerontology, Peking University People's Hospital, Beijing, China
| | - Yuchen Li
- Department of Gerontology, Peking University People's Hospital, Beijing, China
| | - Jun Xu
- Institute of Clinical Molecular Biology and Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Jingtong Wang
- Department of Gerontology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
38
|
Banga Ndzouboukou JL, Lei Q, Ullah N, Zhang Y, Hao L, Fan X. Helicobacter pylori adhesins: HpaA a potential antigen in experimental vaccines for H. pylori. Helicobacter 2021; 26:e12758. [PMID: 33259676 DOI: 10.1111/hel.12758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Helicobacter pylori is a gram-negative bacterium involved in many gastric pathologies such as ulcers and cancers. Although the treatment for this infection has existed for several years, the development of a vaccine is nevertheless necessary to reduce the severe forms of the disease. For more than three decades, many advances have been made particularly in the understanding of virulence factors as well as the pathogenesis of gastric diseases caused by H. pylori. Among these key virulence factors, specific antigens have been identified: Urease, Vacuolating cytotoxin A (VacA), Cytotoxin-associated gene A (CagA), Blood group antigen-binding adhesin (BabA), H. pylori adhesin A (HpaA), and others. OBJECTIVES This review will focus on H. pylori adhesins, in particular, on HpaA and on the current knowledge of H. pylori vaccines. METHODS All of the information included in this review was retrieved from published studies on H. pylori adhesins in H. pylori infections. RESULTS These proteins, used in their native or recombinant forms, induce protection against H. pylori in experimental animal models. CONCLUSION H. pylori adhesins are known to be promising candidate vaccines against H. pylori. Future research should be carried out on adhesins, in particular, on HpaA.
Collapse
Affiliation(s)
- Jo-Lewis Banga Ndzouboukou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nadeem Ullah
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Chen CC, Liou JM, Lee YC, Hong TC, El-Omar EM, Wu MS. The interplay between Helicobacter pylori and gastrointestinal microbiota. Gut Microbes 2021; 13:1-22. [PMID: 33938378 PMCID: PMC8096336 DOI: 10.1080/19490976.2021.1909459] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
The complex population of microbes in the human gastrointestinal (GI) tract interacts with itself and with the host, exerting a deep influence on health and disease development. The development of modern sequencing technology has enabled us to gain insight into GI microbes. Helicobacter pylori colonization significantly affects the gastric microenvironment, which in turn affects gastric microbiota and may be correlated with colonic microbiota changes. Crosstalk between H. pylori and GI commensal flora may play a role in H. pylori-related carcinogenicity and extragastric manifestations. We review current knowledge on how H. pylori shapes GI microbiota with a specific focus on its impact on the stomach and colon. We also review current evidence on colonic microbiota changes attributed to eradication therapy based on the clinical studies performed to date.
Collapse
Affiliation(s)
- Chieh-Chang Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chia Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Chan Hong
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Emad M El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
40
|
Owyang SY, Zhang M, El-Zaatari M, Eaton KA, Bishu S, Hou G, Grasberger H, Kao JY. Dendritic cell-derived TGF-β mediates the induction of mucosal regulatory T-cell response to Helicobacter infection essential for maintenance of immune tolerance in mice. Helicobacter 2020; 25:e12763. [PMID: 33025641 PMCID: PMC7885176 DOI: 10.1111/hel.12763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori infection leads to regulatory T-cell (Treg) induction in infected mice, which contributes to H. pylori immune escape. However, the mechanisms responsible for H. pylori induction of Treg and immune tolerance remain unclear. We hypothesized DC-produced TGF-β may be responsible for Treg induction and immune tolerance. MATERIALS AND METHODS To test this hypothesis, we generated TGF-β∆DC mice (CD11c+ DC-specific TGF-β deletion) and assessed the impact of DC-specific TGF-β deletion on DC function during Helicobacter infection in vitro and in vivo. To examine the T cell-independent DC function, we crossed TGF-β∆DC mice onto Rag1KO background to generate TGF-β∆DC xRag1KO mice. RESULTS When stimulated with H. pylori, TGF-β∆DC BMDC/splenocyte cocultures showed increased levels of proinflammatory cytokines and decreased levels of anti-inflammatory cytokines compared to control, indicating a proinflammatory DC phenotype. Following 6 months of H. felis infection, TGF-β∆DC mice developed more severe gastritis and a trend toward more metaplasia compared to TGF-βfl/fl with increased levels of inflammatory Th1 cytokine mRNA and lower gastric H. felis colonization compared to infected TGF-βfl/fl mice. In a T cell-deficient background using TGF-β∆DC xRag1KO mice, H. felis colonization was significantly lower when DC-derived TGF-β was absent, revealing a direct, innate function of DC in controlling H. felis infection independent of Treg induction. CONCLUSIONS Our findings indicate that DC-derived TGF-β mediates Helicobacter-induced Treg response and attenuates the inflammatory Th1 response. We also demonstrated a previously unrecognized innate role of DC controlling Helicobacter colonization via a Treg-independent mechanism. DC TGF-β signaling may represent an important target in the management of H. pylori.
Collapse
Affiliation(s)
- Stephanie Y. Owyang
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Min Zhang
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Mohamad El-Zaatari
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Kathryn A. Eaton
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, 48109 USA
| | - Shrinivas Bishu
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Guoqing Hou
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Helmut Grasberger
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - John Y. Kao
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| |
Collapse
|
41
|
Robinson K, Atherton JC. The Spectrum of Helicobacter-Mediated Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:123-144. [PMID: 33197219 DOI: 10.1146/annurev-pathol-032520-024949] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helicobacter pylori is the leading cause of peptic ulcer disease. The infection has been implicated in more than 75% of duodenal ulcer cases and 17% of gastric ulcer cases. H. pylori has been classified as a human carcinogen, since it is the main cause of distal gastric adenocarcinoma and B cell mucosa-associated lymphoid tissue lymphoma. Evidence also links H. pylori with extragastric conditions including iron deficiency anemia, idiopathic thrombocytopenic purpura, and vitamin B12 deficiency. Studies indicate that H. pylori may be protective against other conditions of the gastrointestinal tract (e.g., reflux esophagitis and related pathologies) and elsewhere in the body (e.g., asthma). The infection is asymptomatic in the vast majority of cases; more serious outcomes occur in only 10-15% of infected individuals. Despite extensive research over the past 3 decades, there is no effective vaccine, and the circumstances leading to disease development remain unclear. In addition, there is now a growing prevalence of antimicrobial resistance in H. pylori. This review discusses these important issues.
Collapse
Affiliation(s)
- Karen Robinson
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, United Kingdom.,Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham NG7 2RD United Kingdom;
| | - John C Atherton
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, United Kingdom.,Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham NG7 2RD United Kingdom;
| |
Collapse
|
42
|
Chen Y, Huang J, Xu C. Lipopolysaccharide-induced DC-SIGN/TLR4 crosstalk activates NLRP3 inflammasomes via MyD88-independent signaling in gastric epithelial cells. Exp Cell Res 2020; 396:112292. [PMID: 32961144 DOI: 10.1016/j.yexcr.2020.112292] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
Abnormal pattern recognition receptor (PRR) signaling plays an important role in gastric mucosal damage caused by stomach microbiota; however, the underlying molecular mechanisms remain obscure. Here, we show that DC-SIGN, a surface phenotype marker of dendritic cells, is overexpressed in gastric epithelial cells facing LPS stimulation. NLRP3 expression in gastric epithelial cells are significantly increased and related to the degree of LPS stimulation. Furthermore, DC-SIGN could interact with TLR4, promote NLRP3 and related genes expression via MyD88-independent signaling pathway and regulate the secretion of IL-1β and IL-18 in gastric epithelial cells. The results of flow cytometry analysis show that DC-SIGN primarily mediates Th1 differentiation when co-cultured with gastric epithelial cells. These results reveal that LPS-induced DC-SIGN expression modulates NLRP3 inflammasomes formation via MyD88-independent TLR4 signaling in gastric epithelial cell, and induces a Th1-predominant host immune response,these findings may indicate a new function of DC-SIGN in non-immune cells, and elucidate the diversity role of gastric epithelial cells in mechanism of immune damage caused by microbial flora.
Collapse
Affiliation(s)
- Yufan Chen
- Department of Pediatric Neurosurgery, Children's Hospital of Fudan University, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Jiebin Huang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Rd. II, Shanghai, 200025, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Rd. II, Shanghai, 200025, China.
| |
Collapse
|
43
|
Holbrook BC, Alexander-Miller MA. Higher Frequency and Increased Expression of Molecules Associated with Suppression on T Regulatory Cells from Newborn Compared with Adult Nonhuman Primates. THE JOURNAL OF IMMUNOLOGY 2020; 205:2128-2136. [PMID: 32878911 DOI: 10.4049/jimmunol.2000461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023]
Abstract
T regulatory cells (Tregs) play a critical role in controlling the immune response, often limiting pathogen-specific cells to curb immune-mediated damage. Studies in human infants have reported an increased representation of Tregs in these individuals. However, how these cells differ from those in adults at various sites and how they respond to activation signals is relatively unknown. In this study, we used a newborn nonhuman primate model to assess Treg populations present at multiple sites with regard to frequency and phenotype in comparison with those present in adult animals. We found that Foxp3+ cells were more highly represented in the T cell compartment of newborn nonhuman primates for all sites examined (i.e., the spleen, lung, and circulation). In the spleen and circulation, newborn-derived Tregs expressed significantly higher levels of Foxp3 and CD25 compared with adults, consistent with an effector phenotype. Strikingly, the phenotype of Tregs in the lungs of adult and infant animals was relatively similar, with both adult and newborn Tregs exhibiting a more uniform PD-1+CD39+ phenotype. Finally, in vitro, newborn Tregs exhibited an increased requirement for TCR engagement for survival. Further, these cells upregulated CD39 more robustly than their adult counterpart. Together, these data provide new insights into the quantity of Tregs in newborns, their activation state, and their potential to respond to activation signals.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101
| | | |
Collapse
|
44
|
Chen Z, Chen H, Yu L, Xin H, Kong J, Bai Y, Zeng W, Zhang J, Wu Q, Fan H. Bioinformatic identification of key pathways, hub genes, and microbiota for therapeutic intervention in Helicobacter pylori infection. J Cell Physiol 2020; 236:1158-1183. [PMID: 32710499 DOI: 10.1002/jcp.29925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 11/11/2022]
Abstract
The pathogenic mechanisms of Helicobacter pylori infection remain to be defined, and potential interventional microbiota are just beginning to be identified. In this study, gene-set enrichment analysis (GSEA) was used to integrate three H. pylori infection microarray data sets from the gene expression omnibus database and identified ten hallmark gene sets and 35 Kyoto encyclopedia of genes and genomes (KEGG) pathways that differed between healthy and Helicobacter pylori-infected individuals. Weighted gene co-expression network analysis (WGCNA) performed on two of the data sets identified three key gene coexpression modules. These modules contained 54 enriched KEGG pathways, 25 of which overlapped with the GSEA analysis, suggesting potentially important roles in H. pylori-infection. We selected 116 hub genes from the three key modules for in vitro validation at the transcriptional level using H. pylori Sydney Strain 1 and verified the upregulation of 80. WGCNA of the microbiomes based on 20 mucosal samples and a sequence read archive data set revealed four microbiota modules correlated with H. pylori infection. The negatively correlated modules contained 11 microbiome families. These findings provide new insight into the pathogenesis of H. pylori infection and systematically identify 25 key pathways, 80 upregulated hub genes, and 11 families of candidate interventional microbiota for further research.
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huijuan Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongjie Xin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Kong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weisen Zeng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Yamamoto-Furusho JK, Fonseca-Camarillo G, Barrera-Ochoa CA, Furuzawa-Carballeda J. Synthesis of Interleukin-10 in Patients with Ulcerative Colitis and Helicobacter pylori Infection. Gastroenterol Res Pract 2020; 2020:4171083. [PMID: 32695157 PMCID: PMC7362266 DOI: 10.1155/2020/4171083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/25/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
METHODS Detection of H. pylori infection was performed by a 13C-urea breath test in 31 patients with UC. In each patient, a serum sample was drawn to measure IL-10 by the ELISA technique. Based on the primary breath test result, two groups were formed and serum IL-10 was measured. RESULTS Serological IL-10 levels in patients with UC and negative 13C-urea breath test was 10.28 pg/ml whereas in patients with UC and positive 13C-urea breath test was 5.5 pg/ml (P = 0.035). IL-10 levels were higher in the inflammatory endoscopic and histological active groups which tested positive in the 13C-urea breath tests for H. pylori (P < 0.05). CONCLUSIONS The role of IL-10 secretion in patients with UC in determining the clinicopathological outcome of infection merits further study. This study suggests an association between serum IL-10 and disease severity in patients with UC and HP infection.
Collapse
Affiliation(s)
- Jesús K. Yamamoto-Furusho
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Mexico City, Mexico
| | - Gabriela Fonseca-Camarillo
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Mexico City, Mexico
| | - Carlos A. Barrera-Ochoa
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Mexico City, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
46
|
Papaefthymiou A, Doulberis M, Katsinelos P, Liatsos C, Polyzos SA, Kotronis G, Papanikolaou K, Kountouras J. Impact of nitric oxide's bidirectional role on glaucoma: focus onHelicobacter pylori–related nitrosative stress. Ann N Y Acad Sci 2020; 1465:10-28. [DOI: 10.1111/nyas.14253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Michael Doulberis
- Department of Gastroenterology and HepatologyUniversity of Zurich Zurich Switzerland
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Christos Liatsos
- Department of Gastroenterology401 General Military Hospital of Athens Athens Greece
| | - Stergios A. Polyzos
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
- First Department of Pharmacology, School of MedicineAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Georgios Kotronis
- Department of Internal MedicineAgios Pavlos General Hospital Thessaloniki Macedonia Greece
| | - Katerina Papanikolaou
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration HospitalAristotle University of Thessaloniki Thessaloniki Macedonia Greece
| |
Collapse
|
47
|
The Antitumor Efficacy of β-Elemene by Changing Tumor Inflammatory Environment and Tumor Microenvironment. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6892961. [PMID: 32149121 PMCID: PMC7054771 DOI: 10.1155/2020/6892961] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory mediators and inflammatory cells in the inflammatory microenvironment promote the transformation of normal cells to cancer cells in the early stage of cancer, promote the growth and development of cancer cells, and induce tumor immune escape. The monomeric active ingredient β-elemene is extracted from the traditional Chinese medicine Curcuma wenyujin and has been proven to have good anti-inflammatory and antitumor activities in clinical applications for more than 20 years in China. Recent studies have found that this traditional Chinese medicine plays a vital role in macrophage infiltration and M2 polarization, as well as in regulating immune disorders, and it even regulates the transcription factors NF-κB and STAT3 to alter inflammation, tumorigenesis, and development. In addition, β-elemene regulates not only different inflammatory factors (such as TNF-α, IFN, TGF-β, and IL-6/10) but also oxidative stress in vivo and in vitro. The excellent anti-inflammatory and antitumor effects of β-elemene and its ability to alter the inflammatory microenvironment of tumors have been gradually elaborated. Although the study of monomeric active ingredients in traditional Chinese medicines is insufficient in terms of quality and quantity, the pharmacological effects of more active ingredients of traditional Chinese medicines will be revealed after β-elemene.
Collapse
|
48
|
H.pylori Infection Alleviates Acute and Chronic Colitis with the Expansion of Regulatory B Cells in Mice. Inflammation 2020; 42:1611-1621. [PMID: 31377948 DOI: 10.1007/s10753-019-01022-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidemiological studies showed that there was an inverse relationship between Helicobacter pylori (H. pylori) infection and the incidence of inflammatory bowel diseases (IBD). Our previous research indicated that the regulatory immune responses induced by H. pylori infection were not limited to gastric mucosa, and the balance of intestinal mucosal immunity was influenced. In this study, mice were infected with H. pylori SS1, and then colitis was induced by 3% dextran sulphate sodium (DSS), to investigate the role of the regulatory B cells in the effects of H. pylori infection on acute and chronic colitis. In acute and chronic colitis groups, DAI and colonic histological scores reduced significantly and colon length shorted less, the proinflammatory cytokines mRNA expression downregulated in colonic mucosa, and the percentages of CD19+IL-10+Breg cells were higher in the H. pylori/DSS co-treated groups compared with the DSS-treated groups. Our study suggests that H. pylori infection can alleviate the acute and chronic colitis induced by DSS, and CD19+IL-10+Breg cells may play a critical role in the alleviation of acute and chronic colitis following H. pylori infection.
Collapse
|
49
|
Nemattalab M, Shenagari M, Taheri M, Mahjoob M, Nazari Chamaki F, Mojtahedi A, Hasan-Alizadeh E, Ashrafkhani B, Mousavi Niri N. Co-expression of Interleukin-17A molecular adjuvant and prophylactic Helicobacter pylori genetic vaccine could cause sterile immunity in Treg suppressed mice. Cytokine 2020; 126:154866. [PMID: 31629103 DOI: 10.1016/j.cyto.2019.154866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
The increasing clinical significance of Helicobacter pylori (H. pylori) in human stomach cancer has led to global efforts to eradicate this pathogen. Recent studies have confirmed the importance of some cytokines such as Interleukin-18 (IL-18), Interleukin-8 (IL-8), Interleukin-17A (IL-17A) and Interleukin-22 (IL-22) in the pathogenesis of the so-called bacterium. This study was designed to compare the effects of Type 1T helper (Th1), Type 2T helper (Th2) cells, Regulatory T cells (Treg) and T helper 17 (Th17) modulatory effects on the efficacy of designed H. pylori vaccine by incorporating some molecular adjuvants in Treg competent and Treg suppressed groups. A bicistronic vector was used for simultaneous expression of codon-optimized Outer inflammatory protein a (OipA) gene and modified mice IL-18, IL-17A, IL-22 and Foxp3 (forkhead box P3) cytokines from four cassettes. Immunization of mice groups was performed using produced plasmids intradermally. Specific IgG1 and IgG2 and IgA antibody titers produced in mice were confirmed by enzyme-linked immunosorbent assay (ELISA) in sera and intestine obtained four weeks after the last immunization. After being stimulated with a mixture of both anti-CD28 mAb and H. pylori lysate, frequencies of single Interferon-Gamma (IFN-γ), single IL-17 and dual IFN-γ/IL-17-secreting T-cells were documented using dual-color FluoroSpot. The kinetics of Th1, Th2 and Th17 in the immunized animals was determined by relative quantification of IL-17A, IL-22, IFN-γ, IL-8, IL-2 and IL-4 specific mRNAs. Four weeks after bacterial challenge, quantitative colony count in the isolated and homogenized stomachs was utilized to assess the level of protective immunity among all groups. The results of immunologic assays showed that the highest cell-mediated immunity cytokines were produced in IL-17 receiving group in which the Treg responses were suppressed previously by the administration of the Foxp3 as an immunogen. In addition, potent clearance of Helicobacter pylori infection was seen in this group as well.
Collapse
Affiliation(s)
- Mehran Nemattalab
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mojtaba Taheri
- Department of Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahjoob
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Ali Mojtahedi
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Babak Ashrafkhani
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Neda Mousavi Niri
- Department of Biotechnology, Faculty of Advanced Medical Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
50
|
Min S, Kim S, Cho SW. Gastrointestinal tract modeling using organoids engineered with cellular and microbiota niches. Exp Mol Med 2020; 52:227-237. [PMID: 32103122 PMCID: PMC7062772 DOI: 10.1038/s12276-020-0386-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023] Open
Abstract
The recent emergence of organoid technology has attracted great attention in gastroenterology because the gastrointestinal (GI) tract can be recapitulated in vitro using organoids, enabling disease modeling and mechanistic studies. However, to more precisely emulate the GI microenvironment in vivo, several neighboring cell types and types of microbiota need to be integrated into GI organoids. This article reviews the recent progress made in elucidating the crosstalk between GI organoids and components of their microenvironment. We outline the effects of stromal cells (such as fibroblasts, neural cells, immune cells, and vascular cells) on the gastric and intestinal epithelia of organoids. Because of the important roles that microbiota play in the physiology and function of the GI tract, we also highlight interactions between organoids and commensal, symbiotic, and pathogenic microorganisms and viruses. GI organoid models that contain niche components will provide new insight into gastroenterological pathophysiology and disease mechanisms.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suran Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|