1
|
Shengxiao X, Xinxin S, Yunxiang Z, Zhijie T, Xiaofei T. Identification of a basement membrane-related gene signature for predicting prognosis, immune infiltration, and drug sensitivity in colorectal cancer. Front Oncol 2024; 14:1428176. [PMID: 39011483 PMCID: PMC11246870 DOI: 10.3389/fonc.2024.1428176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Background Colorectal cancer (CRC) is the most common malignancy affecting the gastrointestinal tract. Extensive research indicates that basement membranes (BMs) may play a crucial role in the initiation and progression of the disease. Methods Data on the RNA expression patterns and clinicopathological information of patients with CRC were sourced from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. A BM-linked risk signature for the prediction of overall survival (OS) was formulated using univariate Cox regression and combined machine learning techniques. Survival outcomes, functional pathways, the tumor microenvironment (TME), and responses to both immunotherapy and chemotherapy within varying risk classifications were also investigated. The expression trends of the model genes were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and the Human Protein Atlas (HPA) database. Results A nine-gene risk signature containing UNC5C, TINAG, TIMP1, SPOCK3, MMP1, AGRN, UNC5A, ADAMTS4, and ITGA7 was constructed for the prediction of outcomes in patients with CRC. The expression profiles of these candidate genes were verified using RT-PCR and the HPA database and were found to be consistent with the findings on differential gene expression in the TCGA dataset. The validity of the signature was confirmed using the GEO cohort. The patients were stratified into different risk groups according to differences in clinicopathological characteristics, TME features, enrichment functions, and drug sensitivities. Lastly, the prognostic nomogram model based on the risk score was found to be effective in identifying high-risk patients and predicting OS. Conclusion A basement membrane-related risk signature was constructed and found to be effective for predicting the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Xiang Shengxiao
- Department of Science and Education, Suqian First Hospital, Suqian, Jiangsu, China
| | - Sun Xinxin
- Department of Science and Education, Yangzhou Maternal and Child Health Hospital, Yangzhou, Jiangsu, China
| | - Zhu Yunxiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Tang Zhijie
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Tang Xiaofei
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Gao X, Ye J, Huang X, Huang S, Luo W, Zeng D, Li S, Tang M, Mai R, Li Y, Lin Y, Liang R. Research progress of the netrins and their receptors in cancer. J Cell Mol Med 2024; 28:e18241. [PMID: 38546656 PMCID: PMC10977403 DOI: 10.1111/jcmm.18241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 11/12/2024] Open
Abstract
Netrins, a family of secreted and membrane-associated proteins, can regulate axonal guidance, morphogenesis, angiogenesis, cell migration, cell survival, and tumorigenesis. Four secreted netrins (netrin 1, 3, 4 and 5) and two glycosylphosphatidylinositols-anchored membrane proteins, netrin-G1 and G2, have been identified in mammals. Netrins and their receptors can serve as a biomarker and molecular therapeutic target for pathological differentiation, diagnosis and prognosis of malignant cancers. We review here the potential roles of the netrins family and their receptors in cancer.
Collapse
Affiliation(s)
- Xing Gao
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Jiazhou Ye
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Xi Huang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Shilin Huang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Wenfeng Luo
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Dandan Zeng
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Shizhou Li
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Minchao Tang
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Rongyun Mai
- Department of Hepatobiliary SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yongqiang Li
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yan Lin
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Rong Liang
- Department of Digestive OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| |
Collapse
|
3
|
Dong D, Zhang R, Shao J, Zhang A, Wang Y, Zhou Y, Li Y. Promoter methylation-mediated repression of UNC5 receptors and the associated clinical significance in human colorectal cancer. Clin Epigenetics 2021; 13:225. [PMID: 34922605 PMCID: PMC8684698 DOI: 10.1186/s13148-021-01211-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Deregulated methylation of tumor suppressor genes is a hallmark event in colorectal cancer (CRC) carcinogenesis. UNC5 receptors, down-regulated in various human malignancies due to epigenetic alterations, have been proposed as putative tumor suppressor genes. In this study, we focused on the methylation-mediated inhibition of UNC5 receptors and the associated clinical significance in CRC. Methods Methylation and expression analysis was performed in TCGA datasets. And the results were confirmed in vitro in CRC cell lines treated with 5-aza-deoxycytidine. Then, the expression and epigenetic alterations of UNC5 receptors were evaluated in clinical specimens. Moreover, the diagnostic and prognostic values of the methylation alterations were also analyzed. Results Methylation-mediated repression was observed in UNC5C and UNC5D, but not in UNC5A and UNC5B, which was confirmed in CRC cell lines. Except for UNC5B, significantly elevated methylation was observed in UNC5A, UNC5C, and UNC5D in CRC. The discrimination efficiency of the three receptors was comparable with that of SEPT9. Kaplan–Meier curve survival analysis showed that hypermethylation of UNC5A, UNC5C and UNC5D was associated with poor progression-free and overall survival. Moreover, methylation levels of UNC5C and UNC5D were independent predictors of CRC progression-free (P = 0.001, P = 0.003, respectively) and overall survival (P = 0.008, P = 0.004, respectively). Conclusions Hypermethylation of UNC5C and UNC5D mediates the repression and has promising diagnostic and prognostic values in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01211-5.
Collapse
Affiliation(s)
- Dong Dong
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Runshi Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.,Department of Clinical Laboratory, Xi'an No. 1 Hospital, Xi'an, 710002, Shaanxi, People's Republic of China
| | - Jie Shao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Aimin Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang Province, People's Republic of China.
| | - Yunli Zhou
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| | - Yueguo Li
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
4
|
A global integrated analysis of UNC5C down-regulation in cancers: insights from mechanism and combined treatment strategy. Biomed Pharmacother 2021; 138:111355. [DOI: 10.1016/j.biopha.2021.111355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
|
5
|
Zhu Y, Li Y, Nakagawara A. UNC5 dependence receptor family in human cancer: A controllable double-edged sword. Cancer Lett 2021; 516:28-35. [PMID: 34077783 DOI: 10.1016/j.canlet.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
UNC5 receptor family (UNC5A-D) have been identified as dependence receptors whose functions depend on the availability of their ligand netrin-1. Through binding to netrin-1, these receptors transmit signals for cell survival, migration and differentiation, and participate in diverse physiological and pathological processes. In the lack of netrin-1, however, these receptors initiate apoptosis-inducing signal. Accumulating evidence reveals that netrin-1 and its receptors play a role in tumorigenesis and tumor progression. The expression of UNC5 receptor family is down-regulated in a variety of human tumors. Expression aberrance of UNC5 receptor family in tumors is caused by diverse mechanisms including genomic, epigenetic, transcriptional and post-transcriptional regulation. Notably, blocking netrin-1 binding to its receptors induces apoptotic cell death in tumor cells. In this review, we describe the characters and roles of UNC5 family members in tumorigenesis and tumor progression, discussing the regulatory mechanisms underlying down-regulation of UNC5 family members as well as recent implications of targeting netrin-1/UNC5 on potential clinical application for cancer treatment.
Collapse
Affiliation(s)
- Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China.
| | - Yuanyuan Li
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Akira Nakagawara
- Kyushu International Heavy Particle Beam Cancer Radiotherapy Center (SAGA HIMAT Foundation), Tosu, Japan.
| |
Collapse
|
6
|
Bonjoch L, Franch-Expósito S, Garre P, Belhadj S, Muñoz J, Arnau-Collell C, Díaz-Gay M, Gratacós-Mulleras A, Raimondi G, Esteban-Jurado C, Soares de Lima Y, Herrera-Pariente C, Cuatrecasas M, Ocaña T, Castells A, Fillat C, Capellá G, Balaguer F, Caldés T, Valle L, Castellví-Bel S. Germline Mutations in FAF1 Are Associated With Hereditary Colorectal Cancer. Gastroenterology 2020; 159:227-240.e7. [PMID: 32179092 DOI: 10.1053/j.gastro.2020.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS A significant proportion of colorectal cancer (CRC) cases have familial aggregation but little is known about the genetic factors that contribute to these cases. We performed an exhaustive functional characterization of genetic variants associated with familial CRC. METHODS We performed whole-exome sequencing analyses of 75 patients from 40 families with a history of CRC (including early-onset cases) of an unknown germline basis (discovery cohort). We also sequenced specific genes in DNA from an external replication cohort of 473 families, including 488 patients with colorectal tumors that had normal expression of mismatch repair proteins (validation cohort). We disrupted the Fas-associated factor 1 gene (FAF1) in DLD-1 CRC cells using CRISPR/Cas9 gene editing; some cells were transfected with plasmids that express FAF1 missense variants. Cells were analyzed by immunoblots, quantitative real-time polymerase chain reaction, and functional assays monitoring apoptosis, proliferation, and assays for Wnt signaling or nuclear factor (NF)-kappa-B activity. RESULTS We identified predicted pathogenic variant in the FAF1 gene (c.1111G>A; p.Asp371Asn) in the discovery cohort; it was present in 4 patients of the same family. We identified a second variant in FAF1 in the validation cohort (c.254G>C; p.Arg85Pro). Both variants encoded unstable FAF1 proteins. Expression of these variants in CRC cells caused them to become resistant to apoptosis, accumulate beta-catenin in the cytoplasm, and translocate NF-kappa-B to the nucleus. CONCLUSIONS In whole-exome sequencing analyses of patients from families with a history of CRC, we identified variants in FAF1 that associate with development of CRC. These variants encode unstable forms of FAF1 that increase resistance of CRC cells to apoptosis and increase activity of beta-catenin and NF-kappa-B.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Sebastià Franch-Expósito
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Pilar Garre
- Molecular Oncology Laboratory, Centro Investigación Biomédica en Red de Cáncer (CIBERONC). Hospital Clínico San Carlos. Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Sami Belhadj
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Jenifer Muñoz
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Coral Arnau-Collell
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Marcos Díaz-Gay
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Anna Gratacós-Mulleras
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Giulia Raimondi
- Gene Therapy and Cancer, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, Barcelona, Spain
| | - Clara Esteban-Jurado
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yasmin Soares de Lima
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Herrera-Pariente
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) and Tumor Bank-Biobank, Hospital Clínic, Barcelona, Spain
| | - Teresa Ocaña
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Castells
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Fillat
- Gene Therapy and Cancer, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Trinidad Caldés
- Molecular Oncology Laboratory, Centro Investigación Biomédica en Red de Cáncer (CIBERONC). Hospital Clínico San Carlos. Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Terradas M, Capellá G, Valle L. Dominantly Inherited Hereditary Nonpolyposis Colorectal Cancer Not Caused by MMR Genes. J Clin Med 2020; 9:jcm9061954. [PMID: 32585810 PMCID: PMC7355797 DOI: 10.3390/jcm9061954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
In the past two decades, multiple studies have been undertaken to elucidate the genetic cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC). Here, we present the proposed candidate genes according to their involvement in specific pathways considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1, BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any, is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles, shared environmental exposures, and/or gene-environmental interactions, may explain the missing heritability in CRC.
Collapse
Affiliation(s)
- Mariona Terradas
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.T.); (G.C.)
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-260-7145
| |
Collapse
|
8
|
Wang Y, Jin HY, Fang MZ, Wang XF, Chen H, Huang SL, Kong DS, Li M, Zhang X, Sun Y, Wang SM. Epigallocatechin gallate inhibits dimethylhydrazine-induced colorectal cancer in rats. World J Gastroenterol 2020; 26:2064-2081. [PMID: 32536775 PMCID: PMC7267698 DOI: 10.3748/wjg.v26.i17.2064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epigallocatechin gallate (EGCG) is a polyhydroxy phenolic compound extracted from tea and its antitumor effect has received widespread attention. We explored the inhibitory effect of EGCG on dimethylhydrazine (DMH)-induced colorectal cancer (CRC) using a rat model, predicted the interaction between EGCG and CRC target genes using a database, and explained the EGCG associated target pathways and mechanisms in CRC.
AIM To understand the inhibitory mechanisms of EGCG on CRC cell proliferation and identify its pharmacological targets by network pharmacology analysis.
METHODS DMH (40 mg/kg, s.c., twice weekly for eight weeks) was used to induce CRC in rats. After model establishment, the rats were administered with EGCG (50, 100, or 200 mg/kg, p.o., once daily for eight weeks) and killed 12 and 20 wk after the start of the experiment. Formation of aberrant crypt foci and tumor was studied by histological analysis. Using network pharmacology analysis, candidate and collective targets of EGCG and CRC were identified, and Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses were used to predict the pathways altered by EGCG.
RESULTS At week 12, high-dose EGCG treatment significantly reduced the tumor formation rate, total number of tumors, cancerous and non-cancerous tumors, tumor volume, ascites formation, and aberrant crypt foci count. At week 20, all three doses of EGCG were effective. Seventy-eight collective targets of EGCG and CRC were identified, of which 28 genes were dysregulated in CRC. Kyoto Encyclopedia of Genes and Genomes and GO analyses showed that the dysregulated genes were enriched in hsa05210 (CRC), hsa04115 (p53 signaling pathway), and hsa04151 (PI3K-Akt signaling pathway), GO:0043124 (negative regulation of I-kappaB kinase/NF-kappaB signaling pathway), GO:0043409 (negative regulation of mitogen-activated protein kinase cascade), and GO:2001244 (positive regulation of intrinsic apoptotic signaling pathway) respectively.
CONCLUSION EGCG inhibits the formation of DMH-induced CRC by regulating key pathways involved in tumorigenesis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu Province, China
| | - Hei-Ying Jin
- Department of Colorectal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Ming-Zhi Fang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu Province, China
| | - Xiao-Feng Wang
- National Center of Colorectal Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu Province, China
| | - Hao Chen
- National Center of Colorectal Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu Province, China
| | - Shu-Liang Huang
- Department of Pathology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, China
| | - De-Song Kong
- Scientific Research Administration Department, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu Province, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu Province, China
| | - Xiu Zhang
- Endoscopy Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu Province, China
| | - Yu Sun
- Origin Bioscience Inc, Nanjing 210000, Jiangsu Province, China
| | - Shui-Ming Wang
- National Center of Colorectal Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu Province, China
| |
Collapse
|
9
|
Aziz AUR, Yu X, Jiang Q, Zhao Y, Deng S, Qin K, Wang H, Liu B. Doxorubicin-induced toxicity to 3D-cultured rat ovarian follicles on a microfluidic chip. Toxicol In Vitro 2020; 62:104677. [DOI: 10.1016/j.tiv.2019.104677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022]
|
10
|
Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, Yuan L, Ye J. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol 2020; 56:139-150. [PMID: 31789389 PMCID: PMC6910211 DOI: 10.3892/ijo.2019.4931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Unc‑5 Netrin Receptor C (UNC5C) is a netrin‑1 dependence receptor that mediates the induction of apoptosis in the absence of netrin‑1. The present study found that UNC5C is heterogeneously expressed in breast cancer cell lines. By knocking down UNC5C in SK‑BR‑3 and ZR‑75‑30 cells and overexpressing UNC5c in MDA‑MB‑231 cells, it was demonstrated that UNC5C exerts an inhibitory effect on the growth and metastasis of breast cancer cells. The mechanism involved a UNC5C‑knockdown‑induced enhancement of matrix metalloproteinase (MMP)3, MMP7, MMP9 and MMP10 expression via activation of the PI3K/AKT, ERK and p38 MAPK signaling pathways. Notably, UNC5C directly interacted with integrin α6, which is involved in the growth and metastasis of breast cancer cells. Additionally, UNC5C‑knockdown enhanced the phosphorylation of FAK and SRC, which are key kinases in the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. This suggests that netrin‑1 functions as an integrator for both the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. UNC5C‑knockdown potentiated netrin‑1/integrin α6/β4 signaling. Given that UNC5C‑knockdown inhibited integrin‑liked protein kinase phosphorylation at Thr‑173, at least in SK‑BR‑3 cells, this may be an inhibitory phosphorylation site rather than activating phosphorylation site for relaying integrin signaling.
Collapse
Affiliation(s)
- Mingjing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Fuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102
| | - Xianyuan Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Kai Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Lanlan Lian
- Department of Laboratory Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361102
| | - Shihui Zhang
- School of Life Science, Central South University, Changsha, Hunan 410083, P.R. China
| | - Li Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Jun Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| |
Collapse
|
11
|
Bonjoch L, Mur P, Arnau-Collell C, Vargas-Parra G, Shamloo B, Franch-Expósito S, Pineda M, Capellà G, Erman B, Castellví-Bel S. Approaches to functionally validate candidate genetic variants involved in colorectal cancer predisposition. Mol Aspects Med 2019; 69:27-40. [PMID: 30935834 DOI: 10.1016/j.mam.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Most next generation sequencing (NGS) studies identified candidate genetic variants predisposing to colorectal cancer (CRC) but do not tackle its functional interpretation to unequivocally recognize a new hereditary CRC gene. Besides, germline variants in already established hereditary CRC-predisposing genes or somatic variants share the same need when trying to categorize those with relevant significance. Functional genomics approaches have an important role in identifying the causal links between genetic architecture and phenotypes, in order to decipher cellular function in health and disease. Therefore, functional interpretation of identified genetic variants by NGS platforms is now essential. Available approaches nowadays include bioinformatics, cell and molecular biology and animal models. Recent advances, such as the CRISPR-Cas9, ZFN and TALEN systems, have been already used as a powerful tool with this objective. However, the use of cell lines is of limited value due to the CRC heterogeneity and its close interaction with microenvironment. Access to tridimensional cultures or organoids and xenograft models that mimic the in vivo tissue architecture could revolutionize functional analysis. This review will focus on the application of state-of-the-art functional studies to better tackle new genes involved in germline predisposition to this neoplasm.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Coral Arnau-Collell
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Gardenia Vargas-Parra
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Bahar Shamloo
- Molecular Biology, Genetics, and Bioengineering Department, Legacy Research Institute, Portland, OR, USA
| | - Sebastià Franch-Expósito
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Gabriel Capellà
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Valle L, de Voer RM, Goldberg Y, Sjursen W, Försti A, Ruiz-Ponte C, Caldés T, Garré P, Olsen MF, Nordling M, Castellvi-Bel S, Hemminki K. Update on genetic predisposition to colorectal cancer and polyposis. Mol Aspects Med 2019; 69:10-26. [PMID: 30862463 DOI: 10.1016/j.mam.2019.03.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
The present article summarizes recent developments in the characterization of genetic predisposition to colorectal cancer (CRC). The main themes covered include new hereditary CRC and polyposis syndromes, non-CRC hereditary cancer genes found mutated in CRC patients, strategies used to identify novel causal genes, and review of candidate genes that have been proposed to predispose to CRC and/or colonic polyposis. We provide an overview of newly described genes and syndromes associated with predisposition to CRC and polyposis, including: polymerase proofreading-associated polyposis, NTHL1-associated polyposis, mismatch repair gene biallelic inactivation-related adenomatous polyposis (including MSH3- and MLH3-associated polyposes), GREM1-associated mixed polyposis, RNF43-associated serrated polyposis, and RPS20 mutations as a rare cause of hereditary nonpolyposis CRC. The implementation of next generation sequencing approaches for genetic testing has exposed the presence of pathogenic germline variants in genes associated with hereditary cancer syndromes not traditionally linked to CRC, which may have an impact on genetic testing, counseling and surveillance. The identification of new hereditary CRC and polyposis genes has not deemed an easy endeavor, even though known CRC-related genes explain a small proportion of the estimated familial risk. Whole-genome sequencing may offer a technology for increasing this proportion, particularly if applied on pedigree data allowing linkage type of analysis. The final section critically surveys the large number of candidate genes that have been recently proposed for CRC predisposition.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| | - Richarda M de Voer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yael Goldberg
- Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica, Grupo de Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Trinidad Caldés
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Garré
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; Oncology Molecular Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Maren F Olsen
- Department of Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Margareta Nordling
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sergi Castellvi-Bel
- Genetic Predisposition to Gastrointestinal Cancer Group, Gastrointestinal and Pancreatic Oncology Team, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Citation(s) in RCA: 3974] [Impact Index Per Article: 662.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
14
|
Recent Discoveries in the Genetics of Familial Colorectal Cancer and Polyposis. Clin Gastroenterol Hepatol 2017; 15:809-819. [PMID: 27712984 DOI: 10.1016/j.cgh.2016.09.148] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
The development of genome-wide massively parallel sequencing, ie, whole-genome and whole-exome sequencing, and copy number approaches has raised high expectations for the identification of novel hereditary colorectal cancer genes. Although relatively successful for genes causing adenomatous polyposis syndromes, both autosomal dominant and recessive, the identification of genes associated with hereditary non-polyposis colorectal cancer has proven extremely challenging, mainly because of the absence of major high-penetrance genes and the difficulty in demonstrating the functional impact of the identified variants and their causal association with tumor development. Indeed, most, if not all, novel candidate non-polyposis colorectal cancer genes identified so far lack corroborative data in independent studies. Here we review the novel hereditary colorectal cancer genes and syndromes identified and the candidate genes proposed in recent years as well as discuss the challenges we face.
Collapse
|
15
|
Forrest CM, McNair K, Vincenten MCJ, Darlington LG, Stone TW. Selective depletion of tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin by environmental and endogenous serine proteases: linking diet and cancer. BMC Cancer 2016; 16:772. [PMID: 27716118 PMCID: PMC5054602 DOI: 10.1186/s12885-016-2795-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The related tumour suppressor proteins Deleted in Colorectal Cancer (DCC) and neogenin are absent or weakly expressed in many cancers, whereas their insertion into cells suppresses oncogenic behaviour. Serine proteases influence the initiation and progression of cancers although the mechanisms are unknown. METHODS The effects of environmental (bacterial subtilisin) and endogenous mammalian (chymotrypsin) serine proteases were examined on protein expression in fresh, normal tissue and human neuroblastoma and mammary adenocarcinoma lines. Cell proliferation and migration assays (chemoattraction and wound closure) were used to examine cell function. Cells lacking DCC were transfected with an ectopic dcc plasmid. RESULTS Subtilisin and chymotrypsin selectively depleted DCC and neogenin from cells at nanomolar concentrations without affecting related proteins. Cells showed reduced adherence and increased migration, but after washing they re-attached within 24 h, with recovery of protein expression. These effects are induced by chymotryptic activity as they are prevented by chymostatin and the soybean Bowman-Birk inhibitor typical of many plant protease inhibitors. CONCLUSIONS Bacillus subtilis, which secretes subtilisin is widely present in soil, the environment and the intestinal contents, while subtilisin itself is used in meat processing, animal feed probiotics and many household cleaning agents. With chymotrypsin present in chyme, blood and tissues, these proteases may contribute to cancer development by depleting DCC and neogenin. Blocking their activity by Bowman-Birk inhibitors may explain the protective effects of a plant diet. Our findings identify a potential non-genetic contribution to cancer cell behaviour which may explain both the association of processed meats and other factors with cancer incidence and the protection afforded by plant-rich diets, with significant implications for cancer prevention.
Collapse
Affiliation(s)
- Caroline M Forrest
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kara McNair
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria C J Vincenten
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Trevor W Stone
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
16
|
Plissonnier ML, Lahlali T, Michelet M, Lebossé F, Cottarel J, Beer M, Neveu G, Durantel D, Bartosch B, Accardi R, Clément S, Paradisi A, Devouassoux-Shisheboran M, Einav S, Mehlen P, Zoulim F, Parent R. Epidermal Growth Factor Receptor-Dependent Mutual Amplification between Netrin-1 and the Hepatitis C Virus. PLoS Biol 2016; 14:e1002421. [PMID: 27031829 PMCID: PMC4816328 DOI: 10.1371/journal.pbio.1002421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is an oncogenic virus associated with the onset of hepatocellular carcinoma (HCC). The present study investigated the possible link between HCV infection and Netrin-1, a ligand for dependence receptors that sustains tumorigenesis, in particular in inflammation-associated tumors. We show that Netrin-1 expression is significantly elevated in HCV+ liver biopsies compared to hepatitis B virus (HBV+) and uninfected samples. Furthermore, Netrin-1 was upregulated in all histological stages of HCV+ hepatic lesions, from minimal liver fibrosis to cirrhosis and HCC, compared to histologically matched HCV- tissues. Both cirrhosis and HCV contributed to the induction of Netrin-1 expression, whereas anti-HCV treatment resulted in a reduction of Netrin-1 expression. In vitro, HCV increased the level and translation of Netrin-1 in a NS5A-La-related protein 1 (LARP1)-dependent fashion. Knockdown and forced expression experiments identified the receptor uncoordinated receptor-5 (UNC5A) as an antagonist of the Netrin-1 signal, though it did not affect the death of HCV-infected cells. Netrin-1 enhanced infectivity of HCV particles and promoted viral entry by increasing the activation and decreasing the recycling of the epidermal growth factor receptor (EGFR), a protein that is dysregulated in HCC. Netrin-1 and HCV are, therefore, reciprocal inducers in vitro and in patients, as seen from the increase in viral morphogenesis and viral entry, both phenomena converging toward an increase in the level of infectivity of HCV virions. This functional association involving a cancer-related virus and Netrin-1 argues for evaluating the implication of UNC5 receptor ligands in other oncogenic microbial species.
Collapse
Affiliation(s)
- Marie-Laure Plissonnier
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Thomas Lahlali
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Maud Michelet
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Fanny Lebossé
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
- Hospices Civils de Lyon, Service d’Hépatogastroentérologie, F-69001 Lyon, France
| | - Jessica Cottarel
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Melanie Beer
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Grégory Neveu
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - David Durantel
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Birke Bartosch
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| | - Rosita Accardi
- International Agency for Research on Cancer, F-69424 Lyon, France
| | - Sophie Clément
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Andrea Paradisi
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France, Université de Lyon F-69003 Lyon, Centre Léon Bérard, F-69008 Lyon, France
| | | | - Shirit Einav
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory - Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France, Université de Lyon F-69003 Lyon, Centre Léon Bérard, F-69008 Lyon, France
| | - Fabien Zoulim
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
- Hospices Civils de Lyon, Service d’Hépatogastroentérologie, F-69001 Lyon, France
| | - Romain Parent
- Pathogenesis of Hepatitis B and C - Equipe labellisée LabEx DEVweCAN, INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69003 Lyon, France, Université de Lyon, F-69003 Lyon, Université Lyon 1, ISPB, Lyon, F-69622, France, CNRS UMR5286, F-69083 Lyon, France, Centre Léon Bérard, F-69008 Lyon, France
| |
Collapse
|
17
|
Mur P, Sánchez-Cuartielles E, Aussó S, Aiza G, Valdés-Mas R, Pineda M, Navarro M, Brunet J, Urioste M, Lázaro C, Moreno V, Capellá G, Puente XS, Valle L. Scarce evidence of the causal role of germline mutations in UNC5C in hereditary colorectal cancer and polyposis. Sci Rep 2016; 6:20697. [PMID: 26852919 PMCID: PMC4745060 DOI: 10.1038/srep20697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
Germline mutations in UNC5C have been suggested to increase colorectal cancer (CRC) risk, thus causing hereditary CRC. However, the evidence gathered thus far is insufficient to include the study of the UNC5C gene in the routine genetic testing of familial CRC. Here we aim at providing a more conclusive answer about the contribution of germline UNC5C mutations to genetically unexplained hereditary CRC and/or polyposis cases. To achieve this goal we sequenced the coding region and exon-intron boundaries of UNC5C in 544 familial CRC or polyposis patients (529 families), using a technique that combines pooled DNA amplification and massively parallel sequencing. A total of eight novel or rare variants, all missense, were identified in eight families. Co-segregation data in the families and association results in case-control series are not consistent with a causal effect for 7 of the 8 identified variants, including c.1882_1883delinsAA (p.A628K), previously described as a disease-causing mutation. One variant, c.2210G > A (p.S737N), remained unclassified. In conclusion, our results suggest that the contribution of germline mutations in UNC5C to hereditary colorectal cancer and to polyposis cases is negligible.
Collapse
Affiliation(s)
- Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Elena Sánchez-Cuartielles
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Susanna Aussó
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, IDIBELL and CIBERESP, 08908 Hospitalet de Llobregat, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Rafael Valdés-Mas
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, 17007 Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, 17071 Girona, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO) and Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology, IDIBELL and CIBERESP, 08908 Hospitalet de Llobregat, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, 08907 Hospitalet de Llobregat, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| | - Xose S Puente
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
18
|
The Impact of UNC5C Genetic Variations on Neuroimaging in Alzheimer’s Disease. Mol Neurobiol 2015; 53:6759-6767. [DOI: 10.1007/s12035-015-9589-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
|
19
|
Gibert B, Mehlen P. Dependence Receptors and Cancer: Addiction to Trophic Ligands. Cancer Res 2015; 75:5171-5. [DOI: 10.1158/0008-5472.can-14-3652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/11/2015] [Indexed: 11/16/2022]
|
20
|
Abstract
The research on colorectal cancer (CRC) biology has been leading the oncology field since the early 1990s. The search for genetic alterations has allowed the identification of the main tumour suppressors or oncogenes. Recent work obtained in CRC has unexpectedly proposed the existence of novel category of tumour suppressors, the so-called 'dependence receptors'. These transmembrane receptors behave as Dr Jekyll and Mr Hyde with two opposite sides: they induce a positive signalling (survival, proliferation, differentiation) in presence of their ligand, but are not inactive in the absence of their ligand and rather trigger apoptosis when unbound. This trait confers them a conditional tumour suppressor activity: they eliminate cells that grow abnormally in an environment offering a limited quantity of ligand. This review will describe how receptors such as deleted in colorectal carcinoma (DCC), uncoordinated 5 (UNC5), rearranged during transfection (RET) or TrkC constrain CRC progression and how this dependence receptor paradigm may open up therapeutical perspectives.
Collapse
Affiliation(s)
- Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Servane Tauszig-Delamasure
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
21
|
Yap KL, Kiyotani K, Tamura K, Antic T, Jang M, Montoya M, Campanile A, Yew PY, Ganshert C, Fujioka T, Steinberg GD, O'Donnell PH, Nakamura Y. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival. Clin Cancer Res 2014; 20:6605-17. [PMID: 25316812 DOI: 10.1158/1078-0432.ccr-14-0257] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. EXPERIMENTAL DESIGN Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. RESULTS We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. CONCLUSION Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted.
Collapse
Affiliation(s)
- Kai Lee Yap
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Kazuma Kiyotani
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Kenji Tamura
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Tatjana Antic
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Miran Jang
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Magdeline Montoya
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Alexa Campanile
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Poh Yin Yew
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Cory Ganshert
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois
| | - Tomoaki Fujioka
- Department of Urology, Iwate Medical University, Morioka, Japan
| | - Gary D Steinberg
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois
| | - Peter H O'Donnell
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois.
| | - Yusuke Nakamura
- Department of Medicine, Section of Hematology-Oncology, The University of Chicago, Chicago, Illinois. Department of Surgery, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
22
|
Valle L. Genetic predisposition to colorectal cancer: Where we stand and future perspectives. World J Gastroenterol 2014; 20:9828-9849. [PMID: 25110415 PMCID: PMC4123366 DOI: 10.3748/wjg.v20.i29.9828] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/10/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
The development of colorectal cancer (CRC) can be influenced by genetic factors in both familial cases and sporadic cases. Familial CRC has been associated with genetic changes in high-, moderate- and low-penetrance susceptibility genes. However, despite the availability of current gene-identification techniques, the genetic causes of a considerable proportion of hereditary cases remain unknown. Genome-wide association studies of CRC have identified a number of common low-penetrance alleles associated with a slightly increased or decreased risk of CRC. The accumulation of low-risk variants may partly explain the familial risk of CRC, and some of these variants may modify the risk of cancer in patients with mutations in high-penetrance genes. Understanding the predisposition to develop CRC will require investigators to address the following challenges: the identification of genes that cause uncharacterized hereditary cases of CRC such as familial CRC type X and serrated polyposis; the classification of variants of unknown significance in known CRC-predisposing genes; and the identification of additional cancer risk modifiers that can be used to perform risk assessments for individual mutation carriers. We performed a comprehensive review of the genetically characterized and uncharacterized hereditary CRC syndromes and of low- and moderate-penetrance loci and variants identified through genome-wide association studies and candidate-gene approaches. Current challenges and future perspectives in the field of CRC predisposition are also discussed.
Collapse
|
23
|
Bellido F, Pineda M, Sanz-Pamplona R, Navarro M, Nadal M, Lázaro C, Blanco I, Moreno V, Capellá G, Valle L. Comprehensive molecular characterisation of hereditary non-polyposis colorectal tumours with mismatch repair proficiency. Eur J Cancer 2014; 50:1964-72. [PMID: 24841217 DOI: 10.1016/j.ejca.2014.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/12/2014] [Accepted: 04/23/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hereditary non-polyposis colorectal cancer (CRC) without mismatch repair (MMR) defects occurs in almost half of high-risk CRC families, but its genetic cause(s) is(are) still unknown. We aimed to identify unique molecular features that differentiate hereditary from sporadic MMR-proficient colorectal tumours. METHODS Genomic alterations in 16 tumours from 14 Amsterdam I-II families were studied using the genome-wide copy number OncoScan™ FFPE microarray. Somatic mutation hotspots in BRAF, KRAS, PIK3CA and TP53 were analysed in 37 colorectal tumours from 26 families and in 99 sporadic MMR-proficient CRCs, using direct automated sequencing and KASPar genotyping assays. CpG methylation index was studied in 25 tumours from 19 families by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). RESULTS Our findings indicate that hereditary MMR-proficient tumours have overlapping genomic profiles to those obtained in sporadic cases, both suggestive of high chromosomal instability, and no high CpG methylation index. Nevertheless, we identified a significant increase in the frequency of chromosome 2p and 2q gains, and of 10 q loss in Amsterdam I families, as well as low frequency of >2 Mb copy-neutral or -gained loss of heterozygosity (LOH). No statistically significant differences in the frequency of BRAF, KRAS, PIK3CA and TP53 mutations or in the gene mutation patterns were observed. However, TP53 mutations appeared almost twice more frequently in sporadic tumours. CONCLUSIONS Overall, hereditary MMR-proficient CRCs display similar molecular characteristics than their sporadic counterparts. However, the differences identified, such as the chromosome 2 gain, 10 q loss, or the under-representation of TP53 mutations, if validated in larger series, might be of relevance in the clinical setting and/or in the identification of germline defects underlying some of these familial cases.
Collapse
Affiliation(s)
- Fernando Bellido
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Marga Nadal
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Ignacio Blanco
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain.
| |
Collapse
|
24
|
Harter PN, Zinke J, Scholz A, Tichy J, Zachskorn C, Kvasnicka HM, Goeppert B, Delloye-Bourgeois C, Hattingen E, Senft C, Steinbach JP, Plate KH, Mehlen P, Schulte D, Mittelbronn M. Netrin-1 expression is an independent prognostic factor for poor patient survival in brain metastases. PLoS One 2014; 9:e92311. [PMID: 24647424 PMCID: PMC3960244 DOI: 10.1371/journal.pone.0092311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
The multifunctional molecule netrin-1 is upregulated in various malignancies and has recently been presented as a major general player in tumorigenesis leading to tumor progression and maintenance in various animal models. However, there is still a lack of clinico-epidemiological data related to netrin-1 expression. Therefore, the aim of our study was to elucidate the association of netrin-1 expression and patient survival in brain metastases since those constitute one of the most limiting factors for patient prognosis. We investigated 104 brain metastases cases for netrin-1 expression using in-situ hybridization and immunohistochemistry with regard to clinical parameters such as patient survival and MRI data. Our data show that netrin-1 is strongly upregulated in most cancer subtypes. Univariate analyses revealed netrin-1 expression as a significant factor associated with poor patient survival in the total cohort of brain metastasis patients and in sub-entities such as non-small cell lung carcinomas. Interestingly, many cancer samples showed a strong nuclear netrin-1 signal which was recently linked to a truncated netrin-1 variant that enhances tumor growth. Nuclear netrin-1 expression was associated with poor patient survival in univariate as well as in multivariate analyses. Our data indicate both total and nuclear netrin-1 expression as prognostic factors in brain metastases patients in contrast to other prognostic markers in oncology such as patient age, number of brain metastases or Ki67 proliferation index. Therefore, nuclear netrin-1 expression constitutes one of the first reported molecular biomarkers for patient survival in brain metastases. Furthermore, netrin-1 may constitute a promising target for future anti-cancer treatment approaches in brain metastases.
Collapse
Affiliation(s)
- Patrick N. Harter
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Zinke
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Scholz
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Julia Tichy
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Cornelia Zachskorn
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans M. Kvasnicka
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Senckenberg Institute of Pathology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Benjamin Goeppert
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Céline Delloye-Bourgeois
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Elke Hattingen
- Institute of Neuroradiology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Joachim P. Steinbach
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Karl H. Plate
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Dorothea Schulte
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
25
|
Abstract
Whereas the classic dogma postulates that transmembrane receptors remain inactive at the plasma membrane unless bound by their specific ligand, it was suggested that some receptors may actually be active not only in the presence of their ligand, but also in their absence. In this latter case, the signaling downstream of these unbound receptors leads to apoptosis. These receptors were consequently named dependence receptors, as their cell expression renders the survival of the cell dependent on the presence in the cell environment of its respective ligand. This dual function - positive in the presence of ligand, negative in the absence of ligand - is hypothesized to lead these receptors to have key roles both during embryonic development and in the regulation of tumorigenesis. In the context of cancer, the hypothesis is that these receptors are tumor suppressors that would limit tumor progression by inducing apoptosis of tumor cells outside of settings of ligand accessibility/availability. This was recently formally demonstrated for the prototypical dependence receptors that bind netrin-1- i.e., DCC and UNC5H. Because expression of DCC and UNC5H is a constraint for tumor progression, their expression is often lost in many aggressive cancers. However, a loss of dependence receptors is not always the selective advantage used by tumor cells to escape this survival dependence on the presence of the ligand. Indeed, it was shown that in many cancers, tumor cells acquire the preferred autocrine expression of ligands of dependence receptor. This selective advantage for the tumor is much more appealing in terms of therapeutic opportunities. Drugs based on the interference on the interaction between dependence receptors and their ligands allow tumor cell death in vitro and trigger tumor growth and metastases inhibition in mice. This review describes how a basic cell biology concept has provided in a near future new tools to fight cancer.
Collapse
|
26
|
Küry S, Garrec C, Airaud F, Breheret F, Guibert V, Frenard C, Jiao S, Bonneau D, Berthet P, Bossard C, Ingster O, Cauchin E, Bezieau S. Evaluation of the colorectal cancer risk conferred by rare UNC5C alleles. World J Gastroenterol 2014; 20:204-213. [PMID: 24415873 PMCID: PMC3886009 DOI: 10.3748/wjg.v20.i1.204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/07/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the risk associated with variants of the UNC5C gene recently suspected to predispose to familial colorectal cancer (CRC).
METHODS: We screened patients with familial CRC forms as well as patients with sporadic CRCs. In a first time, we analyzed exon 11 of the UNC5C gene in 120 unrelated patients with suspected hereditary CRC, 58 patients with suspected Lynch-associated cancer or polyposis, and 132 index cases of Lynch syndrome families with a characterized mutation in a DNA mismatch repair (MMR). Next, 1023 patients with sporadic CRC and 1121 healthy individuals were screened for the variants identified in patients with familial cancer.
RESULTS: Of 120 patients with familial CRC of unknown etiology, one carried the previously reported mis-sense mutation p.Arg603Cys (R603C) and another exhibited the unreported variant of unknown significance p.Thr617Ile (T617I). The p.Ala628Lys (A628K) mutation previously described as the main UNC5C risk variant for familial CRC was not detected in any cases of familial CRC of unknown etiology, but was present in a patient with familial gastric cancer and in two Lynch syndrome patients in co-occurrence with MMR mutations. A statistically non-significant increase in cancer risk was identified in familial CRC and/or other Lynch-associated cancers (1/178 patients vs 2/1121 healthy controls, OR = 3.2, 95%CI: 0.29-35.05, P = 0.348) and in sporadic CRCs (4/1023 patients vs 2/1121 healthy controls, OR = 2.2, 95%CI: 0.40-12.02, P = 0.364).
CONCLUSION: We confirm that UNC5C mutations are very rare in familial and sporadic CRCs, but further investigations are needed to justify routine UNC5C testing for diagnostic purposes.
Collapse
|
27
|
Luchino J, Hocine M, Amoureux MC, Gibert B, Bernet A, Royet A, Treilleux I, Lécine P, Borg JP, Mehlen P, Chauvet S, Mann F. Semaphorin 3E suppresses tumor cell death triggered by the plexin D1 dependence receptor in metastatic breast cancers. Cancer Cell 2013; 24:673-85. [PMID: 24139859 DOI: 10.1016/j.ccr.2013.09.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 07/26/2013] [Accepted: 09/17/2013] [Indexed: 01/08/2023]
Abstract
The semaphorin guidance molecules and their receptors, the plexins, are often inappropriately expressed in cancers. However, the signaling processes mediated by plexins in tumor cells are still poorly understood. Here, we demonstrate that the Semaphorin 3E (Sema3E) regulates tumor cell survival by suppressing an apoptotic pathway triggered by the Plexin D1 dependence receptor. In mouse models of breast cancer, a ligand trap that sequesters Sema3E inhibited tumor growth and reduced metastasis through a selective tumor cytocidal effect. We further showed that Plexin D1 triggers apoptosis via interaction with the orphan nuclear receptor NR4A1. These results define a critical role of Sema3E/Plexin D1 interaction in tumor resistance to apoptosis and suggest a therapeutic approach based on activation of a dependence receptor pathway.
Collapse
Affiliation(s)
- Jonathan Luchino
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proc Natl Acad Sci U S A 2013; 110:3017-22. [PMID: 23341610 DOI: 10.1073/pnas.1212333110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The TrkC neurotrophin receptor belongs to the functional dependence receptor family, members of which share the ability to induce apoptosis in the absence of their ligands. Such a trait has been hypothesized to confer tumor-suppressor activity. Indeed, cells that express these receptors are thought to be dependent on ligand availability for their survival, a mechanism that inhibits uncontrolled tumor cell proliferation and migration. TrkC is a classic tyrosine kinase receptor and therefore generally considered to be a proto-oncogene. We show here that TrkC expression is down-regulated in a large fraction of human colorectal cancers, mainly through promoter methylation. Moreover, we show that TrkC silencing by promoter methylation is a selective advantage for colorectal cell lines to limit tumor cell death. Furthermore, reestablished TrkC expression in colorectal cancer cell lines is associated with tumor cell death and inhibition of in vitro characteristics of cell transformation, as well as in vivo tumor growth. Finally, we provide evidence that a mutation of TrkC detected in a sporadic cancer is a loss-of-proapoptotic function mutation. Together, these data support the conclusion that TrkC is a colorectal cancer tumor suppressor.
Collapse
|
29
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|