1
|
Mödl B, Awad M, Zwolanek D, Scharf I, Schwertner K, Milovanovic D, Moser D, Schmidt K, Pjevac P, Hausmann B, Krauß D, Mohr T, Svinka J, Kenner L, Casanova E, Timelthaler G, Sibilia M, Krieger S, Eferl R. Defects in microvillus crosslinking sensitize to colitis and inflammatory bowel disease. EMBO Rep 2023; 24:e57084. [PMID: 37691494 PMCID: PMC10561180 DOI: 10.15252/embr.202357084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Intestinal epithelial cells are covered by the brush border, which consists of densely packed microvilli. The Intermicrovillar Adhesion Complex (IMAC) links the microvilli and is required for proper brush border organization. Whether microvillus crosslinking is involved in the intestinal barrier function or colitis is currently unknown. We investigate the role of microvillus crosslinking in colitis in mice with deletion of the IMAC component CDHR5. Electron microscopy shows pronounced brush border defects in CDHR5-deficient mice. The defects result in severe mucosal damage after exposure to the colitis-inducing agent DSS. DSS increases the permeability of the mucus layer and brings bacteria in direct contact with the disorganized brush border of CDHR5-deficient mice. This correlates with bacterial invasion into the epithelial cell layer which precedes epithelial apoptosis and inflammation. Single-cell RNA sequencing data of patients with ulcerative colitis reveals downregulation of CDHR5 in enterocytes of diseased areas. Our results provide experimental evidence that a combination of microvillus crosslinking defects with increased permeability of the mucus layer sensitizes to inflammatory bowel disease.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Monira Awad
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Daniela Zwolanek
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Irene Scharf
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Katharina Schwertner
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Danijela Milovanovic
- Department of Experimental and Translational Pathology, Institute of Clinical PathologyMedical University of ViennaViennaAustria
| | - Doris Moser
- Department of Cranio‐Maxillofacial and Oral SurgeryMedical University of ViennaViennaAustria
| | - Katy Schmidt
- Cell Imaging & Ultrastructure ResearchUniversity of ViennaViennaAustria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of ViennaViennaAustria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of ViennaViennaAustria
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Dana Krauß
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
- Department of Analytical ChemistryUniversity of ViennaViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University ViennaViennaAustria
| | - Jasmin Svinka
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Lukas Kenner
- Department of Experimental and Translational Pathology, Institute of Clinical PathologyMedical University of ViennaViennaAustria
- Department of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Emilio Casanova
- Center of Physiology and Pharmacology, Institute of PharmacologyMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Gerald Timelthaler
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Maria Sibilia
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| | - Sigurd Krieger
- Department of Experimental and Translational Pathology, Institute of Clinical PathologyMedical University of ViennaViennaAustria
| | - Robert Eferl
- Center for Cancer ResearchMedical University of Vienna & Comprehensive Cancer Center (CCC)ViennaAustria
| |
Collapse
|
2
|
Robinson P, Montoya K, Magness E, Rodriguez E, Villalobos V, Engineer N, Yang P, Bharadwaj U, Eckols TK, Tweardy DJ. Therapeutic Potential of a Small-Molecule STAT3 Inhibitor in a Mouse Model of Colitis. Cancers (Basel) 2023; 15:cancers15112977. [PMID: 37296943 DOI: 10.3390/cancers15112977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) predisposes to colorectal cancer (CRC). In the current studies, we used the dextran sodium sulfate (DSS) murine model of colitis, which is widely used in preclinical studies, to determine the contribution of STAT3 to IBD. STAT3 has two isoforms: (STAT3 α; which has pro-inflammatory and anti-apoptotic functions, and STAT3β; which attenuates the effects of STAT3α). In the current study, we determined the contribution of STAT3 to IBD across all tissues by examining DSS-induced colitis in mice that express only STAT3α and in mice treated with TTI-101, a direct small-molecule inhibitor of both isoforms of STAT3. METHODS We examined mortality, weight loss, rectal bleeding, diarrhea, colon shortening, apoptosis of colonic CD4+ T-cells, and colon infiltration with IL-17-producing cells following 7-day administration of DSS (5%) to transgenic STAT3α knock-in (STAT3β-deficient; ΔβΔβ) mice and wild-type (WT) littermate cage control mice. We also examined the effect of TTI-101 on these endpoints in DSS-induced colitis in WT mice. RESULTS Each of the clinical manifestations of DSS-induced colitis examined was exacerbated in ΔβΔβ transgenic versus cage-control WT mice. Importantly, TTI-101 treatment of DSS-administered WT mice led to complete attenuation of each of the clinical manifestations and also led to increased apoptosis of colonic CD4+ T cells, reduced colon infiltration with IL-17-producing cells, and down-modulation of colon mRNA levels of STAT3-upregulated genes involved in inflammation, apoptosis resistance, and colorectal cancer metastases. CONCLUSIONS Thus, small-molecule targeting of STAT3 may be of benefit in treating IBD and preventing IBD-associated colorectal cancer.
Collapse
Affiliation(s)
- Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Kelsey Montoya
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Emily Magness
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Emma Rodriguez
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Viviana Villalobos
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Nikita Engineer
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Peng Yang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Thomas Kris Eckols
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - David John Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| |
Collapse
|
3
|
Delhorme JB, Bersuder E, Terciolo C, Vlami O, Chenard MP, Martin E, Rohr S, Brigand C, Duluc I, Freund JN, Gross I. CDX2 controls genes involved in the metabolism of 5-fluorouracil and is associated with reduced efficacy of chemotherapy in colorectal cancer. Pharmacotherapy 2022; 147:112630. [DOI: 10.1016/j.biopha.2022.112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
|
4
|
Bersuder E, Terciolo C, Lechevrel M, Martin E, Quesnelle C, Freund JN, Reimund JM, Gross I. Mesalazine initiates an anti-oncogenic β-catenin / MUCDHL negative feed-back loop in colon cancer cells by cell-specific mechanisms. Biomed Pharmacother 2021; 146:112543. [PMID: 34929577 DOI: 10.1016/j.biopha.2021.112543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Chronic inflammation associated with intestinal architecture and barrier disruption puts patients with inflammatory bowel disease (IBD) at increased risk of developing colorectal cancer (CRC). Widely used to reduce flares of intestinal inflammation, 5-aminosalicylic acid derivatives (5-ASAs) such as mesalazine appear to also exert more direct mucosal healing and chemopreventive activities against CRC. The mechanisms underlying these activities are poorly understood and may involve the up-regulation of the cadherin-related gene MUCDHL (CDHR5). This atypical cadherin is emerging as a new actor of intestinal homeostasis and opposes colon tumorigenesis. Here, we showed that mesalazine increase mRNA levels of MUCDHL and of other genes involved in the intestinal barrier function in most intestinal cell lines. In addition, using gain / loss of function experiments (agonists, plasmid or siRNAs transfections), luciferase reporter genes and chromatin immunoprecipitation, we thoroughly investigated the molecular mechanisms triggered by mesalazine that lead to the up-regulation of MUCDHL expression. We found that basal transcription of MUCDHL in different CRC cell lines is regulated positively by CDX2 and negatively by β-catenin through a negative feed-back loop. However, mesalazine-stimulation of MUCDHL transcription is controlled by cell-specific mechanisms, involving either enhanced activation of CDX2 and PPAR-γ or repression of the β-catenin inhibitory effect. This work highlights the importance of the cellular and molecular context in the activity of mesalazine and suggests that its efficacy against CRC depends on the genetic alterations of transformed cells.
Collapse
Affiliation(s)
- Emilie Bersuder
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Chloe Terciolo
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Mathilde Lechevrel
- Université de Caen / Basse-Normandie, UFR de Médecine, EA 4652, F-14032 Caen, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Celine Quesnelle
- Université de Caen / Basse-Normandie, UFR de Médecine, EA 4652, F-14032 Caen, France
| | - Jean-Noel Freund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Jean-Marie Reimund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France; Université de Caen / Basse-Normandie, UFR de Médecine, EA 4652, F-14032 Caen, France; Service Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France.
| | - Isabelle Gross
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France.
| |
Collapse
|
5
|
Zhu Y, Hryniuk A, Foley T, Hess B, Lohnes D. Cdx2 Regulates Intestinal EphrinB1 through the Notch Pathway. Genes (Basel) 2021; 12:genes12020188. [PMID: 33525395 PMCID: PMC7911442 DOI: 10.3390/genes12020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023] Open
Abstract
The majority of colorectal cancers harbor loss-of-function mutations in APC, a negative regulator of canonical Wnt signaling, leading to intestinal polyps that are predisposed to malignant progression. Comparable murine APC alleles also evoke intestinal polyps, which are typically confined to the small intestine and proximal colon, but do not progress to carcinoma in the absence of additional mutations. The Cdx transcription factors Cdx1 and Cdx2 are essential for homeostasis of the intestinal epithelium, and loss of Cdx2 has been associated with more aggressive subtypes of colorectal cancer in the human population. Consistent with this, concomitant loss of Cdx1 and Cdx2 in a murine APC mutant background leads to an increase in polyps throughout the intestinal tract. These polyps also exhibit a villous phenotype associated with the loss of EphrinB1. However, the basis for these outcomes is poorly understood. To further explore this, we modeled Cdx2 loss in SW480 colorectal cancer cells. We found that Cdx2 impacted Notch signaling in SW480 cells, and that EphrinB1 is a Notch target gene. As EphrinB1 loss also leads to a villus tumor phenotype, these findings evoke a mechanism by which Cdx2 impacts colorectal cancer via Notch-dependent EphrinB1 signaling.
Collapse
Affiliation(s)
- Yalun Zhu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8684)
| |
Collapse
|
6
|
Rees WD, Tandun R, Yau E, Zachos NC, Steiner TS. Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium? Front Cell Dev Biol 2020; 8:583919. [PMID: 33282867 PMCID: PMC7688923 DOI: 10.3389/fcell.2020.583919] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The intestinal epithelium is replenished every 3-4 days through an orderly process that maintains important secretory and absorptive functions while preserving a continuous mucosal barrier. Intestinal epithelial cells (IECs) derive from a stable population of intestinal stem cells (ISCs) that reside in the basal crypts. When intestinal injury reaches the crypts and damages IECs, a mechanism to replace them is needed. Recent research has highlighted the existence of distinct populations of acute and chronic damage-associated ISCs and their roles in maintaining homeostasis in several intestinal perturbation models. What remains unknown is how the damage-associated regenerative ISC population functions in the setting of chronic inflammation, as opposed to acute injury. What long-term consequences result from persistent inflammation and other cellular insults to the ISC niche? What particular "regenerative" cell types provide the most efficacious restorative properties? Which differentiated IECs maintain the ability to de-differentiate and restore the ISC niche? This review will cover the latest research on damage-associated regenerative ISCs and epigenetic factors that determine ISC fate, as well as provide opinions on future studies that need to be undertaken to understand the repercussions of the emergence of these cells, their contribution to relapses in inflammatory bowel disease, and their potential use in therapeutics for chronic intestinal diseases.
Collapse
Affiliation(s)
- William D Rees
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Rene Tandun
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Enoch Yau
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theodore S Steiner
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
7
|
Beck M, Baranger M, Moufok-Sadoun A, Bersuder E, Hinkel I, Mellitzer G, Martin E, Marisa L, Duluc I, de Reynies A, Gaiddon C, Freund JN, Gross I. The atypical cadherin MUCDHL antagonizes colon cancer formation and inhibits oncogenic signaling through multiple mechanisms. Oncogene 2020; 40:522-535. [PMID: 33188295 DOI: 10.1038/s41388-020-01546-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 01/24/2023]
Abstract
Cadherins form a large and pleiotropic superfamily of membranous proteins sharing Ca2+-binding repeats. While the importance of classic cadherins such as E- or N-cadherin for tumorigenesis is acknowledged, there is much less information about other cadherins that are merely considered as tissue-specific adhesion molecules. Here, we focused on the atypical cadherin MUCDHL that stood out for its unusual features and unique function in the gut. Analyses of transcriptomic data sets (n > 250) established that MUCDHL mRNA levels are down-regulated in colorectal tumors. Importantly, the decrease of MUCDHL expression is more pronounced in the worst-prognosis subset of tumors and is associated with decreased survival. Molecular characterization of the tumors indicated a negative correlation with proliferation-related processes (e.g., nucleic acid metabolism, DNA replication). Functional genomic studies showed that the loss of MUCDHL enhanced tumor incidence and burden in intestinal tumor-prone mice. Extensive structure/function analyses revealed that the mode of action of MUCDHL goes beyond membrane sequestration of ß-catenin and targets through its extracellular domain key oncogenic signaling pathways (e.g., EGFR, AKT). Beyond MUCDHL, this study illustrates how the loss of a gene critical for the morphological and functional features of mature cells contributes to tumorigenesis by dysregulating oncogenic pathways.
Collapse
Affiliation(s)
- Marine Beck
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Mathilde Baranger
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Ahlam Moufok-Sadoun
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Emilie Bersuder
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Isabelle Hinkel
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Georg Mellitzer
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | | | - Isabelle Duluc
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | | | - Christian Gaiddon
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Jean-Noel Freund
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Isabelle Gross
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France.
| |
Collapse
|
8
|
Gao J, Wang M, Li T, Liu Q, You L, Liao Q. Up-regulation of CDHR5 expression promotes malignant phenotype of pancreatic ductal adenocarcinoma. J Cell Mol Med 2020; 24:12726-12735. [PMID: 33025744 PMCID: PMC7687006 DOI: 10.1111/jcmm.15856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
CDHR5 has been reported to play key roles in carcinogenesis of various cancers, but its roles in pancreatic cancer have not been reported. The present study was designed to investigate its clinical value in pancreatic ductal adenocarcinoma (PDAC). Tissue microarray-based immunohistochemistry was performed to analyse the correlation between CDHR5 expression and clinical and pathological features of PDAC, as well as the CDHR5 expression during tumour progression. Cell function assays were performed to investigate CDHR5's effects on PDAC cells. Moreover, qRT-PCR was applied to investigate the expression of CDHR5 isoforms in PDAC cells. Expression of CDHR5 was higher on the membrane of PDAC cells. This high expression level was associated with shorter overall survival of PDAC patients and was identified as an independent prognostic factor for overall survival by multivariate Cox regression analysis. In addition, expression level of CDHR5 presented an increased trend in the occurrence and progression of PDAC. Cell experiment suggested that CDHR5 could notably promote invasion and migration of PDAC cells. Moreover, analysis of CDHR5 isoforms indicated CDHR5-L was the major isoform expressed in PDAC cell lines. CDHR5 appears to be a promising and novel prognostic factor for PDAC, and its promotion in PDAC metastasis might be ascribed to the isoform CDHR5-L.
Collapse
Affiliation(s)
- Junyi Gao
- Department of General SurgeryPeking Union Medical College Hospital (PUMCH)Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Mengyi Wang
- Department of General SurgeryPeking Union Medical College Hospital (PUMCH)Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Tong Li
- Department of General SurgeryPeking Union Medical College Hospital (PUMCH)Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Qiaofei Liu
- Department of General SurgeryPeking Union Medical College Hospital (PUMCH)Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Lei You
- Department of General SurgeryPeking Union Medical College Hospital (PUMCH)Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| | - Quan Liao
- Department of General SurgeryPeking Union Medical College Hospital (PUMCH)Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC)BeijingChina
| |
Collapse
|
9
|
Wu CC, Hsu TW, Yeh CC, Huang HB. The role of transcription factor caudal-related homeobox transcription factor 2 in colorectal cancer. Tzu Chi Med J 2020; 32:305-311. [PMID: 33163374 PMCID: PMC7605288 DOI: 10.4103/tcmj.tcmj_49_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most malignant tumors in humans and causes mass mortality. In the age of precise medicine, more and more subtypes of CRC were classified. The caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor which is implicated in differentiation, proliferation, cell-adhesion, and migration. The loss of CDX2 in immunohistochemical stain was reported to be a prognostic factor of colon cancer, but the clinical application remained controversial. Most of the CRCs expressed or over-expressed CDX2. Homeobox genes can display either an oncogenic or a tumor-suppressing activity. CDX2 regulates the developing intestinal epithelium and CRC by different pathways. The complex regulation of CDX2 and its complex targets cause the difficulties of application for CDX2 in the prediction of prognosis. However, CDX2 is a potential biomarker applied in the precise classification of CRC for personalized medicine. This review partially clarifies the role of CDX2 in CRC.
Collapse
Affiliation(s)
- Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,College of Medicine, Tzu Chi University, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ta-Wen Hsu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hsien-Bing Huang
- Department of Biomedical Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
10
|
Soler L, Stella A, Seva J, Pallarés FJ, Lahjouji T, Burlet-Schiltz O, Oswald IP. Proteome changes induced by a short, non-cytotoxic exposure to the mycoestrogen zearalenone in the pig intestine. J Proteomics 2020; 224:103842. [PMID: 32454255 DOI: 10.1016/j.jprot.2020.103842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/28/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Intestinal epithelial homeostasis is regulated by a complex network of signaling pathways. Among them is estrogen signaling, important for the proliferation and differentiation of epithelial cells, immune signaling and metabolism. The mycotoxin zearalenone (ZEN) is an estrogen disruptor naturally found in food and feed. The exposure of the intestine to ZEN has toxic effects including alteration of the immune status and is possibly implicated in carcinogenesis, but the molecular mechanisms linked with these effects are not clear. Our objective was to explore the proteome changes induced by a short, non-cytotoxic exposure to ZEN in the intestine using pig jejunal explants. Our results indicated that ZEN promotes little proteome changes, but significantly related with an induction of ERα signaling and a consequent disruption of highly interrelated signaling cascades, such as NF-κB, ERK1/2, CDX2 and HIF1α. The toxicity of ZEN leads also to an altered immune status characterized by the activation of the chemokine CXCR4/SDF-1 axis and an accumulation of MHC-I proteins. Our results connect the estrogen disrupting activity of ZEN with its intestinal toxic effect, associating the exposure to ZEN with cell-signaling disorders similar to those involved in the onset and progression of diseases such as cancer and chronic inflammatory disorders. SIGNIFICANCE: The proteomics results presented in our study indicate that the endocrine disruptor activity of ZEN is able to regulate a cascade of highly inter-connected signaling events essential for the small intestinal crypt-villus cycle and immune status. These molecular mechanisms are also implicated in the onset and progress of intestinal immune disorders and cancer indicating that exposure to ZEN could play an important role in intestinal pathogenesis.
Collapse
Affiliation(s)
- Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Alexandre Stella
- Toulouse Proteomics Infrastructure, Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Juan Seva
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Francisco Jose Pallarés
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Murcia, Mare Nostrum Excellence Campus, Murcia, Spain
| | - Tarek Lahjouji
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Toulouse Proteomics Infrastructure, Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
11
|
Weng J, Li S, Lin H, Mei H, Liu Y, Xiao C, Zhu Z, Cai W, Ding X, Mi Y, Wen Y. PCDHGA9 represses epithelial-mesenchymal transition and metastatic potential in gastric cancer cells by reducing β-catenin transcriptional activity. Cell Death Dis 2020; 11:206. [PMID: 32231199 PMCID: PMC7105466 DOI: 10.1038/s41419-020-2398-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) has a high mortality rate, and metastasis is the main reason for treatment failure. It is important to study the mechanism of tumour invasion and metastasis based on the regulation of key genes. In a previous study comparing the expression differences between GES-1 and SGC-7901 cells, PCDHGA9 was selected for further research. In vitro and in vivo experiments showed that PCDHGA9 inhibited invasion and metastasis. A cluster analysis suggested that PCDHGA9 inhibited epithelial-mesenchymal transition (EMT) through the Wnt/β-catenin and TGF-β pathways. Laser confocal techniques and western blotting revealed that PCDHGA9 inhibited the nuclear translocation of β-catenin, regulated T cell factor (TCF)/ /lymphoid enhancer factor (LEF) transcriptional activity, directly impacted the signal transmission of the TGF-β/Smad2/3 pathway, strengthened the adhesion complex, weakened the effects of TGF-β, and blocked the activation of the Wnt pathway. In addition, PCDHGA9 expression was regulated by methylation, which was closely related to poor clinical prognosis. The aim of this study was to elucidate the molecular mechanism by which PCDHGA9 inhibits EMT and metastasis in GC to provide a new theoretical basis for identifying GC metastasis and a new target for improving the outcome of metastatic GC.
Collapse
Affiliation(s)
- Junyong Weng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, 200003, Shanghai, China
| | - Shanbao Li
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, 201800, Shanghai, China
| | - Hao Lin
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU, Munich, 80539, Germany
| | - Haitao Mei
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Yang Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of General Surgery, Shanghai Huashan Hospital, Fudan University, 200000, Shanghai, China
| | - Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of General Surgery, Henan Provincial People's Hospital, 450003, Zhengzhou, Henan, China
| | - Weiwei Cai
- Department of Medicine, The Third Hospital of Quanzhou, 362000, Quanzhou, China
| | - Xusheng Ding
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, 200003, Shanghai, China
| | - Yushuai Mi
- Department of General Surgery, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China.
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.
| |
Collapse
|
12
|
Zhang Q, Zhang C, Ma JX, Ren H, Sun Y, Xu JZ. Circular RNA PIP5K1A promotes colon cancer development through inhibiting miR-1273a. World J Gastroenterol 2019; 25:5300-5309. [PMID: 31558874 PMCID: PMC6761237 DOI: 10.3748/wjg.v25.i35.5300] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are considered to be highly stable due to the closed structure, which are predominately correlated with the development and progression of a wide variety of cancers. Colon cancer is one of the most common malignancies worldwide. A recent study demonstrated the upregulated expression of circPIP5K1A in non-small cell lung cancer. However, few studies have investigated the relationship between circ_0014130 level and colon cancer. Therefore, elucidating the underlying mechanisms of circPIP5K1A’s role may help with the identification of novel diagnostic and therapeutic targets for colon cancer.
AIM To investigate the status of circPIP5K1A in colon cancers and its effects on the modulation of cancer development.
METHODS The expression level of circPIP5K1A in tissue and serum samples from colon cancer patients, as well as human colonic cancer cell lines was detected by real-time quantitative reverse transcription-polymerase chain reaction. Following the transfection of specifically synthesized small interfering RNA (siRNA) into colon cell lines, we used Hoechst staining assay to measure the ratio of cell death in the absence of circPIP5K1A. Moreover, we also used the Transwell assay to assess the migratory function of colon cells overexpressing circPIP5K1A. Additionally, we employed a series of bioinformatics prediction programs to predict the potential of circPIP5K1A-targeted miRNAs and mRNAs. The miR-1273a vector was constructed, and then transfected with or without circPIP5K1A vector into colon cancer cells. Afterwards, the expression of activator protein 1 (AP-1), interferon regulating factor 4 (IRF-4), caudal type homeobox 2 (CDX-2), and zinc finger of the cerebellum 1 (Zic-1) was detected by western blotting.
RESULTS CircPIP5K1A was significantly upregulated in colon cancer tissue relative to their adjacent normal tissues. Knockdown of circPIP5K1A in colon cancer cells impaired cell viability and suppressed cell invasion and migration, while enforced expression of circPIP5K1A exhibited the opposite effects on cell migration. Bioinformatics prediction program predicted that the association of circPIP5K1A with miR-1273a, as well as AP-1, IRF-4, CDX-2, and Zic-1. Subsequent studies showed that overexpression of circPIP5K1A augmented the expression of AP-1 but attenuated the expression of IRF-4, CDX-2, and Zic-1. Reciprocally, overexpression of miR-1273a abrogated the oncogenic function of circPIP5K1A in colon cancers.
CONCLUSION Overall, our data demonstrate the oncogenic role of circPIP5K1A-miR-1273a axis in regulation of colon cancer development, which provides a novel insights into colon cancer pathogenesis.
Collapse
Affiliation(s)
- Qu Zhang
- Department of Radiotherapy Center, Hubei Cancer Hospital, Wuhan 430079, Hubei Province, China
| | - Chi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, Nanjing 210029, Jiangsu Province, China
| | - Jian-Xin Ma
- Department of Oncology, Lianyungang Municipal Oriental Hospital, Lianyungang 222042, Jiangsu Province, China
| | - Hui Ren
- Department of Chest Medicine, Hubei Cancer Hospital, Wuhan 430079, Hubei Province, China
| | - Yu Sun
- Department of Radiation Oncology, Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, Anhui Province, China
| | - Jiao-Zhen Xu
- Department of Radiotherapy Center, Hubei Cancer Hospital, Wuhan 430079, Hubei Province, China
| |
Collapse
|
13
|
Rinne SJ, Sipilä LJ, Sulo P, Jouanguy E, Béziat V, Abel L, Casanova JL, Parvaneh N, Balighi K, Guttman-Yassky E, Sarid R, Aaltonen LA, Aavikko M. Candidate Predisposition Variants in Kaposi Sarcoma as Detected by Whole-Genome Sequencing. Open Forum Infect Dis 2019; 6:ofz337. [PMID: 31660331 PMCID: PMC6778425 DOI: 10.1093/ofid/ofz337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Familial clustering of classic Kaposi sarcoma (CKS) is rare with, approximately 100 families reported to date. We studied 2 consanguineous families, 1 Iranian and 1 Israeli, with multiple cases of adult CKS and without overt underlying immunodeficiency. We performed genome-wide linkage analysis and whole-genome sequencing to discover the putative genetic cause for predisposition. A 9-kb homozygous intronic deletion in RP11-259O2.1 in the Iranian family and 2 homozygous variants, 1 in SCUBE2 and the other in CDHR5, in the Israeli family were identified as possible candidates. The presented variants provide a robust starting point for validation in independent samples.
Collapse
Affiliation(s)
- Sanni J Rinne
- Applied Tumor Genomics Research Program and, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Lauri J Sipilä
- Applied Tumor Genomics Research Program and, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Päivi Sulo
- Applied Tumor Genomics Research Program and, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,University Paris Descartes, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,University Paris Descartes, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,University Paris Descartes, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,University Paris Descartes, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York.,Howard Hughes Medical Institute, New York, New York.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, , Tehran, Iran.,Research Center for Immunodeficiencies, Tehran, Iran
| | - Kamran Balighi
- Department of Dermatology, Razi Hospital, and, Tehran, Iran.,Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York.,Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences & Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program and, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Mervi Aavikko
- Applied Tumor Genomics Research Program and, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
The H2A.Z histone variant integrates Wnt signaling in intestinal epithelial homeostasis. Nat Commun 2019; 10:1827. [PMID: 31015444 PMCID: PMC6478875 DOI: 10.1038/s41467-019-09899-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
The Tip60/p400 chromatin-modifying complex, which is involved in the incorporation and post-translational modification of the H2A.Z histone variant, regulates cell proliferation and important signaling pathways, such as Wnt. Here, we study the involvement of H2A.Z in intestinal epithelial homeostasis, which is dependent on the finely-tuned equilibrium between stem cells renewal and differentiation, under the control of such pathway. We use cell models and inducible knock-out mice to study the impact of H2A.Z depletion on intestinal homeostasis. We show that H2A.Z is essential for the proliferation of human cancer and normal intestinal crypt cells and negatively controls the expression of a subset of differentiation markers, in cultured cells and mice. H2A.Z impairs the recruitment of the intestine-specific transcription factor CDX2 to chromatin, is itself a target of the Wnt pathway and thus, acts as an integrator for Wnt signaling in the control of intestinal epithelial cell fate and homeostasis. The histone variant, H2A.Z is known to regulate gene expression and cell proliferation. Here the authors show that H2A.Z has a central role in the control of intestinal epithelial homeostasis in mice, by preventing terminal differentiation of intestinal progenitors.
Collapse
|
15
|
Identification and Functional Analysis of Gene Regulatory Sequences Interacting with Colorectal Tumor Suppressors. Methods Mol Biol 2019; 1765:57-77. [PMID: 29589301 DOI: 10.1007/978-1-4939-7765-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several tumor suppressors possess gene regulatory activity. Here, we describe how promoter and promoter/enhancer reporter assays can be used to characterize a colorectal tumor suppressor proteins' gene regulatory activity of possible target genes. In the first part, a bioinformatic approach to identify relevant gene regulatory regions of potential target genes is presented. In the second part, it is demonstrated how to prepare and carry out the functional assay.We explain how to clone the bioinformatically identified gene regulatory regions into luciferase reporter plasmids by the use of the quick and efficient In-Fusion cloning method, and how to carry out transient transfections of Caco-2 colon cancer cells with the produced luciferase reporter plasmids using polyethyleneimine (PEI). A plan describing how to set up and carry out the luciferase expression assay is presented. The luciferase/β-galactosidase (Dual Light) assay presented is a highly sensitive assay that can monitor small changes in the promoter/enhancer activity and includes an internal control monitoring transfection efficiency.
Collapse
|
16
|
CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression. Cell Death Dis 2019; 10:26. [PMID: 30631044 PMCID: PMC6328578 DOI: 10.1038/s41419-018-1263-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
Caudal-related homeobox transcription factor 2 (CDX2), an intestine-specific nuclear transcription factor, has been strongly implicated in the tumourigenesis of various human cancers. However, the functional role of CDX2 in the development and progression of colorectal cancer (CRC) is not well known. In this study, CDX2 knockdown in colon cancer cells promoted cell proliferation in vitro, accelerated tumor formation in vivo, and induced a cell cycle transition from G0/G1 to S phase, whereas CDX2 overexpression inhibited cell proliferation. TOP/FOP-Flash reporter assay showed that CDX2 knockdown or CDX2 overexpression significantly increased or decreased Wnt signaling activity. Western blot assay showed that downstream targets of Wnt signaling, including β-catenin, cyclin D1 and c-myc, were up-regulated or down-regulated in CDX2-knockdown or CDX2-overexpressing colon cancer cells. In addition, suppression of Wnt signaling by XAV-939 led to a marked suppression of the cell proliferation enhanced by CDX2 knockdown, whereas activation of this signaling by CHIR-99021 significantly enhanced the cell proliferation inhibited by CDX2 overexpression. Dual-luciferase reporter and quantitative chromatin immunoprecipitation (qChIP) assays further confirmed that CDX2 transcriptionally activates glycogen synthase kinase-3β (GSK-3β) and axis inhibition protein 2 (Axin2) expression by directly binding to the promoter of GSK-3β and the upstream enhancer of Axin2. In conclusion, these results indicated that CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling.
Collapse
|
17
|
Kim SW, Ehrman J, Ahn MR, Kondo J, Lopez AAM, Oh YS, Kim XH, Crawley SW, Goldenring JR, Tyska MJ, Rericha EC, Lau KS. Shear stress induces noncanonical autophagy in intestinal epithelial monolayers. Mol Biol Cell 2017; 28:3043-3056. [PMID: 28855375 PMCID: PMC5662261 DOI: 10.1091/mbc.e17-01-0021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/04/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Shear stress applied on the apical side of polarizing intestinal cells induces vacuole formation via the autophagy machinery. This response is relayed through apical microvilli that act as mechanosensors linking the physical environment to the intracellular trafficking pathways. Flow of fluids through the gut, such as milk from a neonatal diet, generates a shear stress on the unilaminar epithelium lining the lumen. We report that exposure to physiological levels of fluid shear stress leads to the formation of large vacuoles, containing extracellular contents within polarizing intestinal epithelial cell monolayers. These observations lead to two questions: how can cells lacking primary cilia transduce shear stress, and what molecular pathways support the formation of vacuoles that can exceed 80% of the cell volume? We find that shear forces are sensed by actin-rich microvilli that eventually generate the apical brush border, providing evidence that these structures possess mechanosensing ability. Importantly, we identified the molecular pathway that regulates large vacuole formation downstream from mechanostimulation to involve central components of the autophagy pathway, including ATG5 and LC3, but not Beclin. Together our results establish a novel link between the actin-rich microvilli, the macroscopic transport of fluids across cells, and the noncanonical autophagy pathway in organized epithelial monolayers.
Collapse
Affiliation(s)
- Sun Wook Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jonathan Ehrman
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
| | - Mok-Ryeon Ahn
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Republic of Korea
| | - Jumpei Kondo
- Department of Biochemistry, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Andrea A Mancheno Lopez
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Yun Sik Oh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Xander H Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Scott W Crawley
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - Matthew J Tyska
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Erin C Rericha
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232 .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
18
|
Bläsius FM, Meller S, Stephan C, Jung K, Ellinger J, Glocker MO, Thiesen HJ, Tolkach Y, Kristiansen G. Loss of cadherin related family member 5 (CDHR5) expression in clear cell renal cell carcinoma is a prognostic marker of disease progression. Oncotarget 2017; 8:75076-75086. [PMID: 29088846 PMCID: PMC5650401 DOI: 10.18632/oncotarget.20507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/29/2017] [Indexed: 11/25/2022] Open
Abstract
Reduced expression of Cadherin-Related Family Member 5 (CDHR5) was recently found implied in carcinogenesis of colon cancer, but its role in other tumors is unknown. We aimed to analyze the expression of CDHR5 in different subtypes of renal cell carcinoma. CDHR5 expression was immunohistochemically examined using tissue micro arrays (TMAs) covering 279 patients with primary renal cell carcinoma. Additionally, expression data from the TCGA (The Cancer Genome Atlas) of an independent cohort of 489 clear-cell RCC cases was evaluated. CDHR5 protein expression was found in 74.9% of cases, with higher levels seen in clear cell and papillary RCC. In the univariate analysis CDHR5 expression was significantly associated with a longer overall survival of RCC patients at the protein (p = 0.026, HR = 0.56) and transcript levels (TCGA-cohort: p = 0.0002, HR = 0.55). Importantly, differences in survival times were confirmed independently in multivariate analyses in a model with common clinicopathological variables at the transcript level (p = 0.0097, HR = 0.65). Investigation of the putative functional role of CDHR5 using TCGA data and Enrichment analysis for Gene Ontology and Pathways revealed associations with many metabolic and some tumor growth-associated processes and pathways. CDHR5 expression appears to be a promising and new independent prognostic biomarker in renal cell carcinoma.
Collapse
Affiliation(s)
| | | | - Carsten Stephan
- Clinic of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Berlin Institute for Urologic Research, Robert-Koch Platz 7, Berlin, Germany
| | - Jörg Ellinger
- Clinic of Urology, University Hospital Bonn, Bonn, Germany
| | | | | | - Yuri Tolkach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
19
|
Fingleton B. Making Cancer Quiescent: SPDEF De-Cycles Beta-Catenin. Gastroenterology 2017; 153:10-12. [PMID: 28572010 DOI: 10.1053/j.gastro.2017.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Barbara Fingleton
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
20
|
Du Q, Wang Y, Liu C, Wang H, Fan H, Li Y, Wang J, Zhang X, Lu J, Ji H, Hu R. Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis. Oncotarget 2017; 7:17870-84. [PMID: 26910375 PMCID: PMC4951256 DOI: 10.18632/oncotarget.7554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Nonresolving inflammation in the intestine predisposes individuals to colitis-associated colorectal cancer (CAC), which leads to high morbidity and mortality. Here we show that genistein-27 (GEN-27), a derivative of genistein, inhibited proliferation of human colorectal cancer cells through inhibiting β-catenin activity. Our results showed that GEN-27 increased expressions of adenomatous polyposis coli (APC) and axis inhibition protein 2 (AXIN2), and reduced β-catenin nuclear localization, which resulted from the inhibition of NF-κB/p65 nuclear localization and up-regulation of caudal-related homeobox transcription factor 2 (CDX2). Furthermore, GEN-27 decreased binding of p65 to the silencer region of CDX2 and increased binding of CDX2 to the promoter regions of APC and AXIN2, thus inhibiting the activation of β-catenin induced by TNF-α. Importantly, GEN-27 protected mice from azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon carcinogenesis, with reduced mortality, tumor number and tumor volume. Histopathology, immunohistochemistry and flow cytometry revealed that dietary GEN-27 significantly decreased secretion of proinflammatory cytokines and macrophage infiltration. Moreover, GEN-27 inhibited AOM/DSS-induced p65 and β-catenin nuclear translocation, while promoted the expression of CDX2, APC, and AXIN2. Taken together, our findings demonstrate that the anti-proliferation effect of GEN-27 in vitro and the prevention of CAC in vivo is mediated by p65-CDX2-β-catenin axis via inhibiting β-catenin target genes. Our results imply that GEN-27 could be a promising candidate for the chemoprevention of CAC.
Collapse
Affiliation(s)
- Qianming Du
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Yajing Wang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Chao Liu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Huimin Fan
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Yan Li
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Jiangsu, Nanjing, P.R.China
| | - Jianing Wang
- Neurobiology Laboratory, Jiangsu Center for Drug Screening, China Pharmaceutical University, Jiangsu, Nanjing, P.R.China
| | - Xu Zhang
- College of Clinical Medicine, Chengdu University of TCM, Chengdu, P.R. China
| | - Jinrong Lu
- Department of Organic Chemistry, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| |
Collapse
|
21
|
Platet N, Hinkel I, Richert L, Murdamoothoo D, Moufok-Sadoun A, Vanier M, Lavalle P, Gaiddon C, Vautier D, Freund JN, Gross I. The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton. Cancer Lett 2017; 386:57-64. [DOI: 10.1016/j.canlet.2016.10.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
|
22
|
Joo MK, Park JJ, Chun HJ. Impact of homeobox genes in gastrointestinal cancer. World J Gastroenterol 2016; 22:8247-8256. [PMID: 27729732 PMCID: PMC5055856 DOI: 10.3748/wjg.v22.i37.8247] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/13/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Homeobox genes, including HOX and non-HOX genes, have been identified to be expressed aberrantly in solid tumors. In gastrointestinal (GI) cancers, most studies have focused on the function of non-HOX genes including caudal-related homeobox transcription factor 1 (CDX1) and CDX2. CDX2 is a crucial factor in the development of pre-cancerous lesions such as Barrett’s esophagus or intestinal metaplasia in the stomach, and its tumor suppressive role has been investigated in colorectal cancers. Recently, several HOX genes were reported to have specific roles in GI cancers; for example, HOXA13 in esophageal squamous cell cancer and HOXB7 in stomach and colorectal cancers. HOXD10 is upregulated in colorectal cancer while it is silenced epigenetically in gastric cancer. Thus, it is essential to examine the differential expression pattern of various homeobox genes in specific tumor types or cell lineages, and understand their underlying mechanisms. In this review, we summarize the available research on homeobox genes and present their potential value for the prediction of prognosis in GI cancers.
Collapse
|
23
|
Montorsi L, Parenti S, Losi L, Ferrarini F, Gemelli C, Rossi A, Manco G, Ferrari S, Calabretta B, Tagliafico E, Zanocco-Marani T, Grande A. Expression of μ-protocadherin is negatively regulated by the activation of the β-catenin signaling pathway in normal and cancer colorectal enterocytes. Cell Death Dis 2016; 7:e2263. [PMID: 27310872 PMCID: PMC5143391 DOI: 10.1038/cddis.2016.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 01/11/2023]
Abstract
Mu-protocadherin (MUCDHL) is an adhesion molecule predominantly expressed by colorectal epithelial cells which is markedly downregulated upon malignant transformation. Notably, treatment of colorectal cancer (CRC) cells with mesalazine lead to increased expression of MUCDHL, and is associated with sequestration of β-catenin on the plasma membrane and inhibition of its transcriptional activity. To better characterize the causal relationship between β-catenin and MUCDHL expression, we performed various experiments in which CRC cell lines and normal colonic organoids were subjected to culture conditions inhibiting (FH535 treatment, transcription factor 7-like 2 siRNA inactivation, Wnt withdrawal) or stimulating (LiCl treatment) β-catenin activity. We show here that expression of MUCDHL is negatively regulated by functional activation of the β-catenin signaling pathway. This finding was observed in cell culture systems representing conditions of physiological stimulation and upon constitutive activation of β-catenin in CRC. The ability of MUCDHL to sequester and inhibit β-catenin appears to provide a positive feedback enforcing the effect of β-catenin inhibitors rather than serving as the primary mechanism responsible for β-catenin inhibition. Moreover, MUCDHL might have a role as biomarker in the development of CRC chemoprevention drugs endowed with β-catenin inhibitory activity.
Collapse
Affiliation(s)
- L Montorsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - S Parenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - L Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - C Gemelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A Rossi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - G Manco
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - S Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - B Calabretta
- Department of Clinical and Diagnostic Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy.,Department of Cancer Biology and SKKC, Thomas Jefferson University, Philadelphia, PA, USA
| | - E Tagliafico
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - T Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A Grande
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
24
|
Kong J, Sai H, Crissey MAS, Jhala N, Falk GW, Ginsberg GG, Abrams JA, Nakagawa H, Wang K, Rustgi AK, Wang TC, Lynch JP. Immature myeloid progenitors promote disease progression in a mouse model of Barrett's-like metaplasia. Oncotarget 2015; 6:32980-3005. [PMID: 26460825 PMCID: PMC4741744 DOI: 10.18632/oncotarget.5431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023] Open
Abstract
Cdx2, an intestine specific transcription factor, is expressed in Barrett's esophagus (BE). We sought to determine if esophageal Cdx2 expression would accelerate the onset of metaplasia in the L2-IL-1β transgenic mouse model for Barrett's-like metaplasia. The K14-Cdx2::L2-IL-1β double transgenic mice had half as many metaplastic nodules as control L2-IL-1β mice. This effect was not due to a reduction in esophageal IL-1β mRNA levels nor diminished systemic inflammation. The diminished metaplasia was due to an increase in apoptosis in the K14-Cdx2::L2-IL-1β mice. Fluorescence activated cell sorting of immune cells infiltrating the metaplasia identified a population of CD11b+Gr-1+ cells that are significantly reduced in K14-Cdx2::L2-IL-1β mice. These cells have features of immature granulocytes and have immune-suppressing capacity. We demonstrate that the apoptosis in K14-Cdx2::L2-IL-1β mice is CD8+ T cell dependent, which CD11b+Gr-1+ cells are known to inhibit. Lastly, we show that key regulators of CD11b+Gr-1+ cell development, IL-17 and S100A9, are significantly diminished in the esophagus of K14-Cdx2::L2-IL-1β double transgenic mice. We conclude that metaplasia development in this mouse model for Barrett's-like metaplasia requires suppression of CD8+ cell dependent apoptosis, likely mediated by immune-suppressing CD11b+Gr-1+ immature myeloid cells.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Sai
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Ann S. Crissey
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nirag Jhala
- Department of Pathology, Temple University, Philadelphia, PA, USA
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory G. Ginsberg
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julian A. Abrams
- Division of Gastroenterology, Columbia University, New York, NY, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth Wang
- Division of Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Anil K. Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy C. Wang
- Division of Gastroenterology, Columbia University, New York, NY, USA
| | - John P. Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Woo YM, Shin Y, Hwang JA, Hwang YH, Lee S, Park EY, Kong HK, Park HC, Lee YS, Park JH. Epigenetic silencing of the MUPCDH gene as a possible prognostic biomarker for cyst growth in ADPKD. Sci Rep 2015; 5:15238. [PMID: 26463459 PMCID: PMC4604459 DOI: 10.1038/srep15238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/28/2015] [Indexed: 11/09/2022] Open
Abstract
Although autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease, and is characterized by the formation of multiple fluid-filled cysts, which results in renal failure, early diagnosis and treatment of ADPKD have yet to be defined. Herein, we observed that the promoter region of the gene encoding mucin-like protocadherin (MUPCDH) was hypermethylated in the renal tissue of patients with ADPKD compared to non-ADPKD controls. Inversely, MUPCDH was significantly repressed in ADPKD, especially in cyst-lining cells. Our results indicate that aberrant methylation of MUPCDH promoter CpG islands may be negatively correlated with reduced expression level of MUPCDH and that this contributes to abnormal cell proliferation in ADPKD. It suggests that methylation status of MUPCDH promoter can be used as a novel epigenetic biomarker and a therapeutic target in ADPKD.
Collapse
Affiliation(s)
- Yu Mi Woo
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Yubin Shin
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Jung-Ah Hwang
- Branch of Cancer Genomics, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, Seoul, 139-892, Korea
| | - Sunyoung Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Eun Young Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Hyun Kyung Kong
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | - Hayne Cho Park
- Division of Nephrology, Armed Forces Capital Hospital, Seongnam, Korea
| | - Yeon-Su Lee
- Branch of Cancer Genomics, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| |
Collapse
|
26
|
Epigenetic-Mediated Downregulation of μ-Protocadherin in Colorectal Tumours. Gastroenterol Res Pract 2015; 2015:317093. [PMID: 25972897 PMCID: PMC4417986 DOI: 10.1155/2015/317093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/25/2015] [Indexed: 11/18/2022] Open
Abstract
Carcinogenesis involves altered cellular interaction and tissue morphology that partly arise from aberrant expression of cadherins. Mucin-like protocadherin is implicated in intercellular adhesion and its expression was found decreased in colorectal cancer (CRC). This study has compared MUPCDH (CDHR5) expression in three key types of colorectal tissue samples, for normal mucosa, adenoma, and carcinoma. A gradual decrease of mRNA levels and protein expression was observed in progressive stages of colorectal carcinogenesis which are consistent with reports of increasing MUPCDH 5′ promoter region DNA methylation. High MUPCDH methylation was also observed in HCT116 and SW480 CRC cell lines that revealed low gene expression levels compared to COLO205 and HT29 cell lines which lack DNA methylation at the MUPCDH locus. Furthermore, HCT116 and SW480 showed lower levels of RNA polymerase II and histone H3 lysine 4 trimethylation (H3K4me3) as well as higher levels of H3K27 trimethylation at the MUPCDH promoter. MUPCDH expression was however restored in HCT116 and SW480 cells in the presence of 5-Aza-2′-deoxycytidine (DNA methyltransferase inhibitor). Results indicate that μ-protocadherin downregulation occurs during early stages of tumourigenesis and progression into the adenoma-carcinoma sequence. Epigenetic mechanisms are involved in this silencing.
Collapse
|
27
|
Dawson H, Lugli A. Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front Med (Lausanne) 2015; 2:11. [PMID: 25806371 PMCID: PMC4354406 DOI: 10.3389/fmed.2015.00011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
In recent years, tumor budding in colorectal cancer has gained much attention as an indicator of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival, and as an independent prognostic factor. Tumor buds, defined as the presence of single tumor cells or small clusters of up to five tumor cells at the peritumoral invasive front (peritumoral buds) or within the main tumor body (intratumoral buds), are thought to represent the morphological correlate of cancer cells having undergone epithelial–mesenchymal transition (EMT), an important mechanism for the progression of epithelial cancers. In contrast to their undisputed prognostic power and potential to influence clinical management, our current understanding of the biological background of tumor buds is less established. Most studies examining tumor buds have attempted to recapitulate findings of mechanistic EMT studies using immunohistochemical markers. The aim of this review is to provide a comprehensive summary of studies examining protein expression profiles of tumor buds and to illustrate the molecular pathways and crosstalk involved in their formation and maintenance.
Collapse
Affiliation(s)
- Heather Dawson
- Clinical Pathology Division, Institute of Pathology, University of Bern , Bern , Switzerland ; Translational Research Unit, Institute of Pathology, University of Bern , Bern , Switzerland
| | - Alessandro Lugli
- Clinical Pathology Division, Institute of Pathology, University of Bern , Bern , Switzerland ; Translational Research Unit, Institute of Pathology, University of Bern , Bern , Switzerland
| |
Collapse
|
28
|
Freund JN, Duluc I, Reimund JM, Gross I, Domon-Dell C. Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities. World J Gastroenterol 2015; 21:1436-1443. [PMID: 25663763 PMCID: PMC4316086 DOI: 10.3748/wjg.v21.i5.1436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/25/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
The homeoprotein encoded by the intestinal-specific Cdx2 gene is a major regulator of gut development and homeostasis, also involved in colon cancer as well as in intestinal-type metaplasias when it is abnormally expressed outside the gut. At the molecular level, structure/function studies have demonstrated that the Cdx2 protein is a transcription factor containing a conserved homeotic DNA-binding domain made of three alpha helixes arranged in a helix-turn-helix motif, preceded by a transcriptional domain and followed by a regulatory domain. The protein interacts with several thousand sites on the chromatin and widely regulates intestinal functions in stem/progenitor cells as well as in mature differentiated cells. Yet, this transcription factor also acts trough original nontranscriptional mechanisms. Indeed, the identification of novel protein partners of Cdx2 and also of a splicing variant revealed unexpected functions in the control of signaling pathways like the Wnt and NF-κB pathways, in double-strand break DNA repair and in premessenger RNA splicing. These novel functions of Cdx2 must be considered to fully understand the complexity of the role of Cdx2 in the healthy intestine and in diseases.
Collapse
|
29
|
Modica S, Cariello M, Morgano A, Gross I, Vegliante MC, Murzilli S, Salvatore L, Freund JN, Sabbà C, Moschetta A. Transcriptional regulation of the intestinal nuclear bile acid farnesoid X receptor (FXR) by the caudal-related homeobox 2 (CDX2). J Biol Chem 2014; 289:28421-32. [PMID: 25138215 DOI: 10.1074/jbc.m114.571513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Farnesoid X receptor (FXR, NR1H4) is a bile acid-activated transcription factor that belongs to the nuclear receptor superfamily. It is highly expressed in the enterohepatic system, where it senses bile acid levels to consequently reduce their synthesis while inducing their detoxification. Bile acids are intestinal tumor promoters and their concentrations have to be tightly regulated. Indeed, reduced expression of FXR in the intestine increases colorectal cancer susceptibility in mice, whereas its activation can promote apoptosis in genetically modified cells. Notably, despite the broad knowledge of the FXR enterohepatic transcriptional activity, the molecular mechanisms regulating FXR expression in the intestine are still unknown. Herein, by combining both gain and loss of function approaches and FXR promoter activity studies, we identified caudal-related homeobox 2 (CDX2) transcription factor as a positive regulator of FXR expression in the enterocytes. Our results provide a putative novel tool for modulating FXR expression against bile acid-related colorectal cancer progression.
Collapse
Affiliation(s)
- Salvatore Modica
- From the Department of Interdisciplinary Medicine, "Aldo Moro," University of Bari, Bari 70124, Italy, the National Cancer Research Center, IRCCS Oncologico Giovanni Paolo II, 70124 Bari, Italy
| | - Marica Cariello
- the National Cancer Research Center, IRCCS Oncologico Giovanni Paolo II, 70124 Bari, Italy
| | - Annalisa Morgano
- the Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), 66030 Italy
| | - Isabelle Gross
- INSERM UMR S1113, 67200 Strasbourg, France, and the Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg 67081, France
| | | | - Stefania Murzilli
- the Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), 66030 Italy
| | - Lorena Salvatore
- the Laboratory of Lipid Metabolism and Cancer, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), 66030 Italy
| | - Jean-Noel Freund
- INSERM UMR S1113, 67200 Strasbourg, France, and the Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg 67081, France
| | - Carlo Sabbà
- From the Department of Interdisciplinary Medicine, "Aldo Moro," University of Bari, Bari 70124, Italy
| | - Antonio Moschetta
- From the Department of Interdisciplinary Medicine, "Aldo Moro," University of Bari, Bari 70124, Italy, the National Cancer Research Center, IRCCS Oncologico Giovanni Paolo II, 70124 Bari, Italy,
| |
Collapse
|
30
|
Olsen J, Espersen MLM, Jess P, Kirkeby LT, Troelsen JT. The clinical perspectives of CDX2 expression in colorectal cancer: a qualitative systematic review. Surg Oncol 2014; 23:167-76. [PMID: 25126956 DOI: 10.1016/j.suronc.2014.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/05/2014] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Homeobox genes are often deregulated in cancer. They can have both oncogenic and tumor-suppressing potential. The Caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor. It is implicated in differentiation, proliferation, cell-adhesion, and migration. CDX2 has been proposed as a tumor suppressor in colorectal cancer but its role is still controversial. This systematic review were undertaken in order to clarify CDX2s role in colorectal cancer. METHODS A literature search was performed in the MEDLINE database from 1966 to February 2014. Only studies in which all or a part of the experimental design were performed on human colorectal cancer tissue were included. Thus, studies solely performed in cell-lines or animal models were excluded. RESULTS Fifty-two articles of relevance were identified. CDX2 expression was rarely lost in colorectal cancers, however the expression pattern may often be heterogeneous within the tumor and can be selectively down regulated at the invasive front and in tumor buddings. Loss of CDX2 expression is probably correlated to tumor grade, stage, right-sided tumor location, MMR-deficiency, CIMP, and BRAF mutations. The CDX2 gene is rarely mutated but the locus harboring the gene is often amplified and may suggest CDX2 as a linage-survival oncogene. CDX2 might be implicated in cell proliferation and migration through cross-talk with the Wnt-signaling pathway, tumor-stroma proteins, and inflammatory cytokines. CONCLUSION A clear role for CDX2 expression in colorectal cancer remains to be elucidated, and it might differ in relation to the underlying molecular pathways leading to the cancer formation.
Collapse
Affiliation(s)
- J Olsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - M L M Espersen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; The Molecular Unit, Department of Pathology, Herlev University Hospital, DK-2730 Herlev, Denmark.
| | - P Jess
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - L T Kirkeby
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - J T Troelsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
31
|
Natoli M, Christensen J, El-Gebali S, Felsani A, Anderle P. The role of CDX2 in Caco-2 cell differentiation. Eur J Pharm Biopharm 2014; 85:20-5. [PMID: 23958315 DOI: 10.1016/j.ejpb.2013.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND CDX2 plays a key part in the differentiation of Caco-2 cells, a colon carcinoma derived cell line that undergoes spontaneous differentiation. The effect of CDX2 expression in Caco-2 cells over time in culture has not been studied yet on a genome-wide level. METHODS The impact of CDX2 expression on the genomic profile of Caco-2 cells was studied by transducing cells with CDX2 targeting shRNAs. Knockdown efficiency was assessed on mRNA level and protein level by RTPCR, microarrays, and Western blots. Gene set enrichment analysis was performed to assess regulation of specific gene sets. RESULTS CDX2 expression had an inhibitory effect on the transcriptional activity of β-catenin/TCF at early stages of culturing, while at later stages, its role in the trans-activation of target genes specific for small intestinal enterocytes seemed more dominant. CONCLUSIONS The unique induction of a small intestinal signature upon differentiation in Caco-2 cells seems to be at least partially under the control of CDX2.
Collapse
Affiliation(s)
- Manuela Natoli
- Istituto di Biologia Cellulare e Neurobiologia, CNR, Rome, Italy
| | | | | | | | | |
Collapse
|
32
|
Coskun M, Olsen AK, Bzorek M, Holck S, Engel UH, Nielsen OH, Troelsen JT. Involvement of CDX2 in the cross talk between TNF-α and Wnt signaling pathway in the colon cancer cell line Caco-2. Carcinogenesis 2014; 35:1185-92. [PMID: 24501326 DOI: 10.1093/carcin/bgu037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) is highly upregulated in inflammation and reduces the expression of the intestinal transcription factor, Caudal-related homeobox transcription factor 2 (CDX2). Wnt/β-catenin signaling is critical for intestinal cell proliferation, but a decreased CDX2 expression has influence on the Wnt signaling-related genes and progression of colorectal cancer. Although several inflammatory signaling pathways, including TNF-α, have been reported to promote Wnt/β-catenin activity and development of cancer, the underlying molecular mechanisms remain unclear. The aim was to investigate the signaling pathways involved in the TNF-α-mediated downregulation of CDX2, and its influence on Wnt/β-catenin signaling components in colon cancer cells. The expression of TNF-α and CDX2 at the invasive front were evaluated by immunohistochemical staining and showed reduced CDX2-positive cells in tumor buddings in areas with TNF-α expression in the surrounding inflammatory cells. In vitro studies revealed that TNF-α treatment showed a dose-dependent decrease of CDX2 messenger RNA (mRNA) and protein expression in Caco-2 cells. Inhibition of nuclear factor-kappaB or p38 pathways showed that these are involved in the TNF-α-dependent downregulation of CDX2. Furthermore, TNF-α-mediated downregulation of CDX2 was found to significantly decrease the mRNA levels of adenomatous polyposis coli (APC), axis inhibition protein 2 (AXIN2) and glycogen synthase kinase-3 beta (GSK3β), whereas the mRNA levels of Wnt targets were significantly elevated in TNF-α-treated Caco-2 cells. These findings were associated with reduced binding of CDX2 to promoter or enhancer regions of APC, AXIN2 and GSK3β. In conclusion, it was found that TNF-α induces the expression of Wnt signaling components through a downregulation of the CDX2 expression that might have a tumor-promoting effect on colon cancer cells.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, DK-2730 Herlev, Denmark
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Loss of cadherin 1 (CDH1; also known as epithelial cadherin (E-cadherin)) is used for the diagnosis and prognosis of epithelial cancers. However, it should not be ignored that the superfamily of transmembrane cadherin proteins encompasses more than 100 members in humans, including other classical cadherins, numerous protocadherins and cadherin-related proteins. Elucidation of their roles in suppression versus initiation or progression of various tumour types is a young but fascinating field of molecular cancer research. These cadherins are very diverse in both structure and function, and their mutual interactions seem to influence biological responses in complex and versatile ways.
Collapse
Affiliation(s)
- Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.The Inflammation Research Center, VIB, B-9052 Ghent, Belgium
| |
Collapse
|
34
|
Koestler DC, Li J, Baron JA, Tsongalis GJ, Butterly LF, Goodrich M, Lesseur C, Karagas MR, Marsit CJ, Moore JH, Andrew AS, Srivastava A. Distinct patterns of DNA methylation in conventional adenomas involving the right and left colon. Mod Pathol 2014; 27:145-55. [PMID: 23868178 PMCID: PMC3880603 DOI: 10.1038/modpathol.2013.104] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/05/2013] [Accepted: 05/11/2013] [Indexed: 12/17/2022]
Abstract
Recent studies have shown two distinct non-CIMP methylation clusters in colorectal cancer, raising the possibility that DNA methylation, involving non-CIMP genes, may play a role in the conventional adenoma-carcinoma pathway. A total of 135 adenomas (65 left colon and 70 right colon) were profiled for epigenome-wide DNA methylation using the Illumina HumanMethylation450 BeadChip. A principal components analysis was performed to examine the association between variability in DNA methylation and adenoma location. Linear regression and linear mixed effects models were used to identify locus-specific differential DNA methylation in adenomas of right and left colon. A significant association was present between the first principal component and adenoma location (P=0.007), even after adjustment for subject age and gender (P=0.009). A total of 168 CpG sites were differentially methylated between right- and left-colon adenomas and these loci demonstrated enrichment of homeobox genes (P=3.0 × 10(-12)). None of the 168 probes were associated with CIMP genes. Among CpG loci with the largest difference in methylation between right- and left-colon adenomas, probes associated with PRAC (prostate cancer susceptibility candidate) gene showed hypermethylation in right-colon adenomas whereas those associated with CDX2 (caudal type homeobox transcription factor 2) showed hypermethylation in left-colon adenomas. A subgroup of left-colon adenomas enriched for current smokers (OR=6.1, P=0.004) exhibited a methylation profile similar to right-colon adenomas. In summary, our results indicate distinct patterns of DNA methylation, independent of CIMP genes, in adenomas of the right and left colon.
Collapse
Affiliation(s)
- Devin C Koestler
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Jing Li
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - John A Baron
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Gregory J Tsongalis
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Lynn F Butterly
- Department of Gastroenterology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Martha Goodrich
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Corina Lesseur
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Margaret R Karagas
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Carmen J Marsit
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA,Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Jason H Moore
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA,Department of Genetics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Angeline S Andrew
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | | |
Collapse
|
35
|
Dawson H, Koelzer VH, Lukesch AC, Mallaev M, Inderbitzin D, Lugli A, Zlobec I. Loss of Cdx2 Expression in Primary Tumors and Lymph Node Metastases is Specific for Mismatch Repair-Deficiency in Colorectal Cancer. Front Oncol 2013; 3:265. [PMID: 24130965 PMCID: PMC3795344 DOI: 10.3389/fonc.2013.00265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/26/2013] [Indexed: 12/19/2022] Open
Abstract
Background: Approximately 20% of all colorectal cancers are hypothesized to arise from the “serrated pathway” characterized by mutation in BRAF, high-level CpG Island Methylator Phenotype, and microsatellite instability/mismatch repair (MMR)-deficiency. MMR-deficient cancers show frequent losses of Cdx2, a homeodomain transcription factor. Here, we determine the predictive value of Cdx2 expression for MMR-deficiency and investigate changes in expression between primary cancers and matched lymph node metastases. Methods: Immunohistochemistry for Cdx2, Mlh1, Msh2, Msh6, and Pms2 was performed on whole tissue sections from 201 patients with primary colorectal cancer and 59 cases of matched lymph node metastases. Receiver operating characteristic curve analysis and Area under the Curve (AUC) were investigated; association of Cdx2 with clinicopathological features and patient survival was carried out. Results: Loss of Cdx2 expression was associated with higher tumor grade (p = 0.0002), advanced pT (p = 0.0166), and perineural invasion (p = 0.0228). Cdx2 loss was an unfavorable prognostic factor in univariate (p = 0.0145) and multivariate [p = 0.0427; HR (95% CI): 0.58 (0.34–0.98)] analysis. The accuracy (AUC) for discriminating MMR-proficient and – deficient cancers was 87% [OR (95% CI): 0.96 (0.95–0.98); p < 0.0001]. Specificity and negative predictive value for MMR-deficiency was 99.1 and 96.3%. One hundred and seventy-four patients had MMR-proficient cancers, of which 60 (34.5%) showed Cdx2 loss. Cdx2 loss in metastases was related to MMR-deficiency (p < 0.0001). There was no difference in expression between primary tumors and matched metastases. Conclusion: Loss of Cdx2 is a sensitive and specific predictor of MMR-deficiency, but is not limited to these tumors, suggesting that events “upstream” of the development of microsatellite instability may impact Cdx2 expression.
Collapse
Affiliation(s)
- Heather Dawson
- Department of Clinical Pathology, Institute of Pathology, University of Bern , Bern , Switzerland ; Translational Research Unit, Institute of Pathology, University of Bern , Bern , Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Olsen AK, Coskun M, Bzorek M, Kristensen MH, Danielsen ET, Jørgensen S, Olsen J, Engel U, Holck S, Troelsen JT. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells. Carcinogenesis 2013; 34:1361-9. [DOI: 10.1093/carcin/bgt037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
37
|
[Identity and intestinal pathologies: the Cdx2 homeotic gene]. Ann Pathol 2012; 32:S24-7. [PMID: 23127929 DOI: 10.1016/j.annpat.2012.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/12/2012] [Indexed: 11/23/2022]
|
38
|
Derbal-Wolfrom L, Pencreach E, Saandi T, Aprahamian M, Martin E, Greferath R, Tufa E, Choquet P, Lehn JM, Nicolau C, Duluc I, Freund JN. Increasing the oxygen load by treatment with myo-inositol trispyrophosphate reduces growth of colon cancer and modulates the intestine homeobox gene Cdx2. Oncogene 2012; 32:4313-8. [PMID: 23045284 DOI: 10.1038/onc.2012.445] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 12/11/2022]
Abstract
Preventing tumor neovascularisation is one of the strategies recently developed to limit the dissemination of cancer cells and apparition of metastases. Although these approaches could improve the existing treatments, a number of unexpected negative effects have been reported, mainly linked to the hypoxic condition and the subsequent induction of the pro-oncogenic hypoxia inducible factor(s) resulting from cancer cells' oxygen starvation. Here, we checked in vivo on colon cancer cells an alternative approach. It is based on treatment with myo-inositol trispyrophosphate (ITPP), a molecule that leads to increased oxygenation of tumors. We provide evidence that ITPP increases the survival of mice in a model of carcinomatosis of human colon cancer cells implanted into the peritoneal cavity. ITPP also reduced the growth of subcutaneous colon cancer cells xenografted in nu/nu mice. In the subcutaneous tumors, ITPP stimulated the expression of the homeobox gene Cdx2 that is crucial for intestinal differentiation and that also has an anti-tumoral function. On this basis, human colon cancer cells were cultured in vitro in hypoxic conditions. Hypoxia was shown to decrease the level of Cdx2 protein, mRNA and the activity of the Cdx2 promoter. This decline was unrelated to the activation of HIF1α and HIF2α by hypoxia. However, it resulted from the activation of a phosphatidylinositol 3-kinases-like mitogen-activated protein kinase pathway, as assessed by the fact that LY294002 and U0126 restored high Cdx2 expression in hypoxia. Corroborating these results, U0126 recapitulated the increase of Cdx2 triggered by ITPP in subcutaneous colon tumor xenografts. The present study provides evidence that a chemical compound that increases oxygen pressure can antagonize the hypoxic setting and reduce the growth of human colon tumors implanted in nu/nu mice.
Collapse
|
39
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
40
|
Barros R, Freund JN, David L, Almeida R. Gastric intestinal metaplasia revisited: function and regulation of CDX2. Trends Mol Med 2012; 18:555-63. [PMID: 22871898 DOI: 10.1016/j.molmed.2012.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
Abstract
Intestinal metaplasia of the stomach is a preneoplastic lesion that appears following Helicobacter pylori infection and confers increased risk for gastric cancer development. However, the molecular networks connecting infection to lesion formation and the cellular origin of this lesion remain largely unknown. A more comprehensive understanding of how intestinal metaplasia arises and is maintained will be a major breakthrough towards developing novel therapeutic interventions. Furthermore, after ascertaining the pivotal role of CDX2 in establishing and maintaining intestinal metaplasia, it becomes important to decipher the upstream molecular pathways leading to its ectopic expression. Here, we review the pathophysiology of intestinal metaplasia in the context of the molecular network involved in its establishment and maintenance, with emphasis on CDX2 function and regulation.
Collapse
Affiliation(s)
- Rita Barros
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal.
| | | | | | | |
Collapse
|