1
|
Vignali S, Buhner S, Greiter W, Daniel H, Frieling T, Schemann M, Annahazi A. Biopsy samples from patients with irritable bowel syndrome, but not from those with mastocytosis or unspecific gastrointestinal complaints reveal unique nerve activation in all gut regions independent of mast cell density, histamine content or specific gastrointestinal symptoms. Front Neurosci 2024; 18:1291554. [PMID: 39015376 PMCID: PMC11250647 DOI: 10.3389/fnins.2024.1291554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/29/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction We previously showed enteric nerve activation after application of colonic mucosal biopsy supernatants from patients with irritable bowel syndrome (IBS). The question remains whether this is a region-specific or a generalized sensitization. We tested the nerve-activating properties of supernatants from large and small intestinal regions of IBS patients with diarrhea (IBS-D) in comparison to those from mastocytosis patients with diarrhea (MC-D) or non-IBS/non-MC patients with GI-complaints. MC-D patients were included to test samples from patients with an established, severe mast cell disorder, because mast cells are suggested to play a role in IBS. Methods Voltage-sensitive dye imaging was used to record the effects of mucosal biopsy supernatants from IBS-D, MC-D, and non-IBS/non-MC on guinea pig submucous neurons. Mast cell density and histamine concentrations were measured in all samples. Results The median neuroindex (spike frequency × % responding neurons in Hz × %) was significantly (all p < 0.001) increased for IBS-D (duodenum and colon, proximal and distal each, 49.3; 50.5; 63.7; 71.9, respectively) compared to non-IBS/non-MC (duodenum and colon, proximal and distal each, 8.7; 4.9; 6.9; 5.4, respectively) or MC-D supernatants (duodenum and colon, proximal and distal each, 9.4; 11.9; 0.0; 7.9, respectively). Nerve activation by MC-D and non-IBS/non-MC supernatants was comparable (p>0.05). Mast cell density or histamine concentrations were not different between IBS-D, MC-D, and non-IBS/non-MC samples. Discussion Nerve activation by biopsy supernatants is an IBS hallmark that occurs throughout the gut, unrelated to mast cell density or histamine concentration. At least as important is our finding that GI complaints per se were not associated with biopsy supernatant-induced nerve activation, which further stresses the relevance of altered nerve behavior in IBS.
Collapse
Affiliation(s)
- Sheila Vignali
- Chair of Human Biology, Technical University of Munich, Freising, Germany
| | - Sabine Buhner
- Chair of Human Biology, Technical University of Munich, Freising, Germany
- Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Wolfgang Greiter
- Chair of Human Biology, Technical University of Munich, Freising, Germany
- Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Hannelore Daniel
- Chair of Nutrition Physiology, Technical University of Munich, Freising, Germany
| | - Thomas Frieling
- Medical Clinic II, Helios Klinikum Krefeld, Krefeld, Germany
| | - Michael Schemann
- Chair of Human Biology, Technical University of Munich, Freising, Germany
| | - Anita Annahazi
- Chair of Human Biology, Technical University of Munich, Freising, Germany
- Chair of Zoology, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
3
|
Morales-Soto W, Gonzales J, Jackson WF, Gulbransen BD. Enteric glia promote visceral hypersensitivity during inflammation through intercellular signaling with gut nociceptors. Sci Signal 2023; 16:eadg1668. [PMID: 37988454 PMCID: PMC10733972 DOI: 10.1126/scisignal.adg1668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/17/2023] [Indexed: 11/23/2023]
Abstract
Inflammation in the intestines causes abdominal pain that is challenging to manage. The terminals of sensory neurons innervating the gut are surrounded by glia. Here, using a mouse model of acute colitis, we found that enteric glia contribute to visceral pain by secreting factors that sensitized sensory nerves innervating the gut in response to inflammation. Acute colitis induced a transient increase in the production of proinflammatory cytokines in the intestines of male and female mice. Of these, IL-1β was produced in part by glia and augmented the opening of the intercellular communication hemichannel connexin-43 in glia, which made normally innocuous stimuli painful in female mice. Chemogenetic glial activation paired with calcium imaging in nerve terminals demonstrated that glia sensitized gut-innervating nociceptors only under inflammatory conditions. This inflammatory, glial-driven visceral hypersensitivity involved an increased abundance of the enzyme COX-2 in glia, resulting in greater production and release of prostaglandin E2 that activated EP4 receptors on sensory nerve terminals. Blocking EP4 receptors reduced nociceptor sensitivity in response to glial stimulation in tissue samples from colitis-model mice, and impairing glial connexin-43 reduced visceral hypersensitivity induced by IL-1β in female mice. The findings suggest that therapies targeting enteric glial-neuron signaling might alleviate visceral pain caused by inflammatory disorders.
Collapse
Affiliation(s)
- Wilmarie Morales-Soto
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI, 48824 USA
| | - Jacques Gonzales
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI, 48824 USA
| | - William F. Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824 USA
| | - Brian D. Gulbransen
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI, 48824 USA
| |
Collapse
|
4
|
Burns GL, Keely S. Understanding food allergy through neuroimmune interactions in the gastrointestinal tract. Ann Allergy Asthma Immunol 2023; 131:576-584. [PMID: 37331592 DOI: 10.1016/j.anai.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Food allergies are adverse immune reactions to food proteins in the absence of oral tolerance, and the incidence of allergies to food, including peanut, cow's milk, and shellfish, has been increasing globally. Although advancements have been made toward understanding the contributions of the type 2 immune response to allergic sensitization, crosstalk between these immune cells and neurons of the enteric nervous system is an area of emerging interest in the pathophysiology of food allergy, given the close proximity of neuronal cells of the enteric nervous system and type 2 effector cells, including eosinophils and mast cells. At mucosal sites, such as the gastrointestinal tract, neuroimmune interactions contribute to the sensing and response to danger signals from the epithelial barrier. This communication is bidirectional, as immune cells express receptors for neuropeptides and transmitters, and neurons express cytokine receptors, allowing for the detection of and response to inflammatory insults. In addition, it seems that neuromodulation of immune cells including mast cells, eosinophils, and innate lymphoid cells is critical for amplification of the type 2 allergic immune response. As such, neuroimmune interactions may be critical targets for future food allergy therapies. This review evaluates the contributions of local enteric neuroimmune interactions to the underlying immune response in food allergy and discusses considerations for future investigations into targeting neuroimmune pathways for treatment of food allergies.
Collapse
Affiliation(s)
- Grace L Burns
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia; National Health and Medical Research Council Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia; Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia; National Health and Medical Research Council Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia; Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
5
|
Oh SG, Choi JY, Lee JE, Jeon S, Lee BR, Son KH, Lee SB, An BS, Hwang DY, Kim SJ, Ha KT, Lee J, Jeon YH. Visualizing mast cell migration to tumor sites using sodium iodide symporter of nuclear medicine reporter gene. Neoplasia 2023; 43:100925. [PMID: 37562258 PMCID: PMC10423699 DOI: 10.1016/j.neo.2023.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE Owing to the close relationship between mast cells and cancer progression, an imaging technique that can be applied in a clinical setting to explore the biological behavior of mast cells in the tumor microenvironment is needed. In this study, we visualized mast cell migration to lung tumor lesions in live mice using sodium iodide symporter (NIS) as a nuclear medicine reporter gene. EXPERIMENTAL DESIGN The murine mast cell line MC-9 was infected with retrovirus including NIS, luciferase (as a surrogate marker for NIS), and Thy1.1 to generate MC-9/NFT cells. Radioiodine uptake was measured in MC-9/NFT cells, and an inhibition assay of radioiodine uptake using KCLO4 was also performed. Cell proliferation and FcεRI expression was examined in MC-9 and MC-9/NFT cells. The effect of mast cell-conditioned media (CM) on the proliferation of Lewis lung cancer (LLC) cells was examined. The migration level of MC-9/NFT cells was confirmed in the presence of serum-free media (SFM) and CM of cancer cells. After intravenous injection of MC-9/NFT cells into mice with an LLC tumor, I-124 PET/CT and biodistribution analysis was performed. RESULTS MC-9/NFT cells exhibited higher radioiodine avidity compared to parental MC-9 cells; this increased radioiodine avidity in MC-9/NFT cells was reduced to basal level by KCLO4. Levels of FcεRI expression and cell proliferation were not different in parental MC-9 cell and MC-9/ NFT cells. The CM of MC-9/NFT cells increased cancer cell proliferation relative to that of the SFM. The migration level of MC-9/NFT cells was higher in the CM than the SFM of LLC cells. PET/CT imaging with I-124 clearly showed infiltration of reporter mast cells in lung tumor at 24 h after transfer, which was consistent with the findings of the biodistribution examination. CONCLUSION These findings suggest that the sodium iodide symporter can serve as a reliable nuclear medicine reporter gene for non-invasively imaging the biological activity of mast cells in mice with lung tumors. Visualizing mast cells in the tumor microenvironment via a nuclear medicine reporter gene would provide valuable insights into their biological functions.
Collapse
Affiliation(s)
- Seul-Gi Oh
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea; Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Young Choi
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea; Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Jae-Eon Lee
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea; Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - SoYeon Jeon
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Bo-Ra Lee
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Kwang Hee Son
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Sang Bong Lee
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Seong-Jang Kim
- Pusan National University College of Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yong Hyun Jeon
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea.
| |
Collapse
|
6
|
Wang M, Liu W, Ge J, Liu S. The immunomodulatory mechanisms for acupuncture practice. Front Immunol 2023; 14:1147718. [PMID: 37090714 PMCID: PMC10117649 DOI: 10.3389/fimmu.2023.1147718] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
The system physiology approaches that emerge in western countries in recent years echo the holistic view of ancient Traditional Chinese Medicine (TCM) practices that deal with the root, rather than only the symptoms of diseases. Particularly, TCM practices, including acupuncture, emphasize the mobilization of self-healing mechanisms to bring back body homeostasis. Acupuncture has been practiced for over two thousand years to modulate body physiology via stimulation at specific body regions (acupoints). With the development of various research on acupuncture therapy, its regulatory effect on the immune system has been gradually recognized, especially on immunological diseases, including infectious and allergic diseases. In this study, we reviewed the immunomodulatory mechanism of acupuncture and systematically integrates existing research to respectively elucidate the modulatory mechanisms of acupuncture on the innate immune system, adaptive immune system, and well-known neuroanatomical mechanisms, including intact somatosensory-autonomic reflex pathway. With the advances made in recent systems physiology studies, we now have a great opportunity to gain insight into how acupuncture modulates immunity, and subsequently improves its efficacy.
Collapse
Affiliation(s)
| | | | | | - Shenbin Liu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
The Controversial Role of Intestinal Mast Cells in Colon Cancer. Cells 2023; 12:cells12030459. [PMID: 36766801 PMCID: PMC9914221 DOI: 10.3390/cells12030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mast cells are tissue-resident sentinels involved in large number of physiological and pathological processes, such as infection and allergic response, thanks to the expression of a wide array of receptors. Mast cells are also frequently observed in a tumor microenvironment, suggesting their contribution in the transition from chronic inflammation to cancer. In particular, the link between inflammation and colorectal cancer development is becoming increasingly clear. It has long been recognized that patients with inflammatory bowel disease have an increased risk of developing colon cancer. Evidence from experimental animals also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. However, the exact role of mast cells in tumor initiation and growth remains controversial: mast cell-derived mediators can either exert pro-tumorigenic functions, causing the progression and spread of the tumor, or anti-tumorigenic functions, limiting the tumor's growth. Here, we review the multifaceted and often contrasting findings regarding the role of the intestinal mast cells in colon cancer progression focusing on the molecular pathways mainly involved in the regulation of mast cell plasticity/functions during tumor progression.
Collapse
|
8
|
Bishop ES, Namkoong H, Aurelian L, McCarthy M, Nallagatla P, Zhou W, Neshatian L, Gurland B, Habtezion A, Becker L. Age-dependent Microglial Disease Phenotype Results in Functional Decline in Gut Macrophages. GASTRO HEP ADVANCES 2022; 2:261-276. [PMID: 36908772 PMCID: PMC10003669 DOI: 10.1016/j.gastha.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND AIMS Muscularis macrophages (MMs) are tissue-resident macrophages in the gut muscularis externa which play a supportive role to the enteric nervous system. We have previously shown that age-dependent MM alterations drive low-grade enteric nervous system inflammation, resulting in neuronal loss and disruption of gut motility. The current studies were designed to identify the MM genetic signature involved in these changes, with particular emphasis on comparison to genes in microglia, the central nervous system macrophage population involved in age-dependent cognitive decline. METHODS Young (3 months) and old (16-24 months) C57BL/6 mice and human tissue were studied. Immune cells from mouse small intestine, colon, and spinal cord and human colon were dissociated, immunophenotyped by flow cytometry, and examined for gene expression by single-cell RNA sequencing and quantitative real-time PCR. Phagocytosis was assessed by in vivo injections of pHrodo beads (Invitrogen). Macrophage counts were performed by immunostaining of muscularis whole mounts. RESULTS MMs from young and old mice express homeostatic microglial genes, including Gpr34, C1qc, Trem2, and P2ry12. An MM subpopulation that becomes more abundant with age assumes a geriatric state (GS) phenotype characterized by increased expression of disease-associated microglia genes including Cd9, Clec7a, Itgax (CD11c), Bhlhe40, Lgals3, IL-1β, and Trem2 and diminished phagocytic activity. Acquisition of the GS phenotype is associated with clearance of α-synuclein aggregates. Human MMs demonstrate a similar age-dependent acquisition of the GS phenotype associated with intracellular α-synuclein accumulation. CONCLUSION MMs demonstrate age-dependent genetic changes that mirror the microglial disease-associated microglia phenotype and result in functional decline.
Collapse
Affiliation(s)
- Estelle Spear Bishop
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Hong Namkoong
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Laure Aurelian
- Stanford University School of Medicine OFDD, Stanford, California
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Madison McCarthy
- Department of Surgery, Stanford University, Stanford, California
| | - Pratima Nallagatla
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, California
| | - Wenyu Zhou
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Leila Neshatian
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Brooke Gurland
- Department of Surgery, Stanford University, Stanford, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| | - Laren Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California
| |
Collapse
|
9
|
Hasler WL, Grabauskas G, Singh P, Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14339. [PMID: 35315179 PMCID: PMC9286860 DOI: 10.1111/nmo.14339] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Abnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
Collapse
Affiliation(s)
- William L. Hasler
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Gintautas Grabauskas
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Prashant Singh
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Chung Owyang
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| |
Collapse
|
10
|
Zhu Y, Duan S, Wang M, Deng Z, Li J. Neuroimmune Interaction: A Widespread Mutual Regulation and the Weapons for Barrier Organs. Front Cell Dev Biol 2022; 10:906755. [PMID: 35646918 PMCID: PMC9130600 DOI: 10.3389/fcell.2022.906755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Since the embryo, the nervous system and immune system have been interacting to regulate each other’s development and working together to resist harmful stimuli. However, oversensitive neural response and uncontrolled immune attack are major causes of various diseases, especially in barrier organs, while neural-immune interaction makes it worse. As the first defense line, the barrier organs give a guarantee to maintain homeostasis in external environment. And the dense nerve innervation and abundant immune cell population in barrier organs facilitate the neuroimmune interaction, which is the physiological basis of multiple neuroimmune-related diseases. Neuroimmune-related diseases often have complex mechanisms and require a combination of drugs, posing challenges in finding etiology and treatment. Therefore, it is of great significance to illustrate the specific mechanism and exact way of neuro-immune interaction. In this review, we first described the mutual regulation of the two principal systems and then focused on neuro-immune interaction in the barrier organs, including intestinal tract, lungs and skin, to clarify the mechanisms and provide ideas for clinical etiology exploration and treatment.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Shixin Duan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| |
Collapse
|
11
|
Yuan Z, Yang D, Yang Z, Zhao J, Liang Y. Digital refocusing based on deep learning in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:3005-3020. [PMID: 35774338 PMCID: PMC9203092 DOI: 10.1364/boe.453326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
We present a deep learning-based digital refocusing approach to extend depth of focus for optical coherence tomography (OCT) in this paper. We built pixel-level registered pairs of en face low-resolution (LR) and high-resolution (HR) OCT images based on experimental data and introduced the receptive field block into the generative adversarial networks to learn the complex mapping relationship between LR-HR image pairs. It was demonstrated by results of phantom and biological samples that the lateral resolutions of OCT images were improved in a large imaging depth clearly. We firmly believe deep learning methods have broad prospects in optimizing OCT imaging.
Collapse
Affiliation(s)
- Zhuoqun Yuan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
- Contributed equally
| | - Di Yang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
- Contributed equally
| | - Zihan Yang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Jingzhu Zhao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yanmei Liang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| |
Collapse
|
12
|
Mischopoulou M, D'Ambrosio M, Bigagli E, Luceri C, Farrugia G, Cipriani G. Role of Macrophages and Mast Cells as Key Players in the Maintenance of Gastrointestinal Smooth Muscle Homeostasis and Disease. Cell Mol Gastroenterol Hepatol 2022; 13:1849-1862. [PMID: 35245688 PMCID: PMC9123576 DOI: 10.1016/j.jcmgh.2022.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
The gut contains the largest macrophage pool in the body, with populations of macrophages residing in the mucosa and muscularis propria of the gastrointestinal (GI) tract. Muscularis macrophages (MMs), which are located within the muscularis propria, interact with cells essential for GI function, such as interstitial cells of Cajal, enteric neurons, smooth muscle cells, enteric glia, and fibroblast-like cells, suggesting that these immune cells contribute to several aspects of GI function. This review focuses on the latest insights on the factors contributing to MM heterogeneity and the functional interaction of MMs with other cell types essential for GI function. This review integrates the latest findings on macrophages in other organs with increasing knowledge of MMs to better understand their role in a healthy and diseased gut. We describe the factors that contribute to (muscularis macrophage) MM heterogeneity, and the nature of MM interactions with cells regulating GI function. Finally, we also describe the increasing evidence suggesting a critical role of another immune cell type, the mast cell, in normal and diseased GI physiology.
Collapse
Affiliation(s)
| | - Mario D'Ambrosio
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Cristina Luceri
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | | | | |
Collapse
|
13
|
Schonkeren SL, Küthe TT, Idris M, Bon-Frauches AC, Boesmans W, Melotte V. The gut brain in a dish: Murine primary enteric nervous system cell cultures. Neurogastroenterol Motil 2022; 34:e14215. [PMID: 34236124 PMCID: PMC9285479 DOI: 10.1111/nmo.14215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND The enteric nervous system (ENS) is an extensive neural network embedded in the wall of the gastrointestinal tract that regulates digestive function and gastrointestinal homeostasis. The ENS consists of two main cell types; enteric neurons and enteric glial cells. In vitro techniques allow simplified investigation of ENS function, and different culture methods have been developed over the years helping to understand the role of ENS cells in health and disease. PURPOSE This review focuses on summarizing and comparing available culture protocols for the generation of primary ENS cells from adult mice, including dissection of intestinal segments, enzymatic digestions, surface coatings, and culture media. In addition, the potential of human ENS cultures is also discussed.
Collapse
Affiliation(s)
- Simone L Schonkeren
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tara T Küthe
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Musa Idris
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ana C Bon-Frauches
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Werend Boesmans
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Veerle Melotte
- Department of Pathology, Maastricht University Medical Center, Maastricht, Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Identifying Types of Neurons in the Human Colonic Enteric Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:243-249. [PMID: 36587163 DOI: 10.1007/978-3-031-05843-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Distinguishing and characterising the different classes of neurons that make up a neural circuit has been a long-term goal for many neuroscientists. The enteric nervous system is a large but moderately simple part of the nervous system. Enteric neurons in laboratory animals have been extensively characterised morphologically, electrophysiologically, by projections and immunohistochemically. However, studies of human enteric nervous system are less advanced despite the potential availability of tissue from elective surgery (with appropriate ethics permits). Recent studies using single cell sequencing have confirmed and extended the classification of enteric neurons in mice and human, but it is not clear whether an encompassing classification has been achieved. We present preliminary data on a means to distinguish classes of myenteric neurons in specimens of human colon combining immunohistochemical, morphological, projection and size data on single cells. A method to apply multiple layers of antisera to specimens was developed, allowing up to 12 markers to be characterised in individual neurons. Applied to multi-axonal Dogiel type II neurons, this approach demonstrated that they constitute fewer than 5% of myenteric neurons, are nearly all immunoreactive for choline acetyltransferase and tachykinins. Many express the calcium-binding proteins calbindin and calretinin and they are larger than average myenteric cells. This methodology provides a complementary approach to single-cell mRNA profiling to provide a comprehensive account of the types of myenteric neurons in the human colon.
Collapse
|
15
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Noto CN, Hoft SG, DiPaolo RJ. Mast Cells as Important Regulators in Autoimmunity and Cancer Development. Front Cell Dev Biol 2021; 9:752350. [PMID: 34712668 PMCID: PMC8546116 DOI: 10.3389/fcell.2021.752350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Mast cells are an essential part of the immune system and are best known as important modulators of allergic and anaphylactic immune responses. Upon activation, mast cells release a multitude of inflammatory mediators with various effector functions that can be both protective and damage-inducing. Mast cells can have an anti-inflammatory or pro-inflammatory immunological effect and play important roles in regulating autoimmune diseases including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Importantly, chronic inflammation and autoimmunity are linked to the development of specific cancers including pancreatic cancer, prostate cancer, colorectal cancer, and gastric cancer. Inflammatory mediators released from activated mast cells regulate immune responses and promote vascular permeability and the recruitment of immune cells to the site of inflammation. Mast cells are present in increased numbers in tissues affected by autoimmune diseases as well as in tumor microenvironments where they co-localize with T regulatory cells and T effector cells. Mast cells can regulate immune responses by expressing immune checkpoint molecules on their surface, releasing anti-inflammatory cytokines, and promoting vascularization of solid tumor sites. As a result of these immune modulating activities, mast cells have disease-modifying roles in specific autoimmune diseases and cancers. Therefore, determining how to regulate the activities of mast cells in different inflammatory and tumor microenvironments may be critical to discovering potential therapeutic targets to treat autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
17
|
Wang H, Zhao X, Cui X, Wang M, Jiao C, Li J, Yang Y, Li Y, Zhang H. A Pilot Study of Clinical Evaluation and Formation Mechanism of Irritable Bowel Syndrome-like Symptoms in Inflammatory Bowel Disease Patients in Remission. J Neurogastroenterol Motil 2021; 27:612-625. [PMID: 34642282 PMCID: PMC8521459 DOI: 10.5056/jnm20151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/02/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Background/Aims Some inflammatory bowel disease (IBD) patients in remission suffer from irritable bowel syndrome (IBS)-like symptoms (IBD-IBS). The pathogenesis has not yet been elucidated. The study aim is to evaluate relationships among quality of life (QOL), psychological status, and visceral sensitivity, and explore the formation mechanism of IBD-IBS. Methods Forty-seven patients with Crohn’s disease in remission, 24 ulcerative colitis in remission, 26 IBS, and 20 healthy controls were included in the study. The abdominal pain, QOL, anxiety, and depression were evaluated through questionnaires. Visceral sensitivity was measured by rectal balloon distension. The serum levels of 5-hydroxytryptamine (5-HT) and nerve growth factor (NGF) were measured by enzyme-linked immunosorbent assay. The expressions of tryptase, 5-HT, NGF, and related receptors in colonic tissues were detected by immunohistochemistry and western blot. Results Prevalence of IBS-like symptoms in Crohn’s disease and ulcerative colitis patients in clinical remission was 29.8% and 50.0%, respectively. The QOL was lower, the anxiety/depression scores were higher in IBD-IBS patients than those without IBS-like symptoms. Additionally, patients with IBD-IBS existed visceral hypersensitivity. Besides, abdominal pain was associated with poor QOL, visceral hypersensitivity, anxiety, and depression in IBD-IBS patients. The number of mast cells (MCs) and expressions of 5-HT, NGF, and related receptors were higher in IBD-IBS patients than those with no such symptoms. The serum levels of 5-HT and NGF positively correlated with abdominal pain and visceral hypersensitivity. Conclusion IBD-IBS patients may have low QOL and psychological abnormalities, as wells as visceral hypersensitivity which may be related to increased 5-HT and NGF levels released from activated mast cells.
Collapse
Affiliation(s)
- Haiyang Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojing Zhao
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufang Cui
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meifeng Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunhua Jiao
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiajia Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Yang
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Li
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongjie Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Hong Y, Ren X, Liu W, Sun K, Chen B, Liu B, Yu X, Chen Q, Qian Q, Xie X, Jiang C. miR-128 participates in the pathogenesis of chronic constipation by regulating the p38α/M-CSF inflammatory signaling pathway. Am J Physiol Gastrointest Liver Physiol 2021; 321:G436-G447. [PMID: 34405716 DOI: 10.1152/ajpgi.00114.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic constipation (CC) is a gastrointestinal disorder that adversely affects the quality of life. MicroRNAs are involved in the pathogenesis of functional gastrointestinal disorders. This study aims to investigate the molecular mechanism of microRNA-128 in CC. Here, we successfully constructed a murine model of CC based on morphine and rhubarb. The expression of stem cell factor (SCF) and neuron-specific enolase (NSE) was low in the models. Using miRNA array and bioinformatic analysis, we predicted and confirmed the expression of miR-128 and its downstream target genes in CC model. Compared with the control group, CC group showed a significant downregulation of miR-128 and upregulation of p38α and macrophage colony-stimulating factors (M-CSFs). Moreover, we observed elevated inflammatory cytokine and decreased anti-inflammatory cytokine levels in colonic tissues. Furthermore, coculture assays indicated that regulating expression of miR-128 in colonic epithelial cells induced the secretion of IL-6 and TNF-α by macrophages. In conclusion, our study demonstrated that miR-128 regulated the p38α/M-CSF signaling pathway to promote chronic inflammatory responses and changes in the immune microenvironment of the colon, thereby offering potential insights into the pathogenesis of CC and therapeutic targets for its treatment.NEW & NOTEWORTHY In this study, we constructed a murine model and identified a novel signaling mechanism involved in the chronic constipation progression. Our findings on the role of miR-128/p38α/M-CSF axis provide new insights into the treatment of chronic constipation.
Collapse
Affiliation(s)
- Yuntian Hong
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Weicheng Liu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Kongliang Sun
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Bo Liu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xueqiao Yu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| |
Collapse
|
19
|
The Interplay between Nutrition, Innate Immunity, and the Commensal Microbiota in Adaptive Intestinal Morphogenesis. Nutrients 2021; 13:nu13072198. [PMID: 34206809 PMCID: PMC8308283 DOI: 10.3390/nu13072198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract is a functionally and anatomically segmented organ that is colonized by microbial communities from birth. While the genetics of mouse gut development is increasingly understood, how nutritional factors and the commensal gut microbiota act in concert to shape tissue organization and morphology of this rapidly renewing organ remains enigmatic. Here, we provide an overview of embryonic mouse gut development, with a focus on the intestinal vasculature and the enteric nervous system. We review how nutrition and the gut microbiota affect the adaptation of cellular and morphologic properties of the intestine, and how these processes are interconnected with innate immunity. Furthermore, we discuss how nutritional and microbial factors impact the renewal and differentiation of the epithelial lineage, influence the adaptation of capillary networks organized in villus structures, and shape the enteric nervous system and the intestinal smooth muscle layers. Intriguingly, the anatomy of the gut shows remarkable flexibility to nutritional and microbial challenges in the adult organism.
Collapse
|
20
|
Kulkarni S, Kurapati S, Bogunovic M. Neuro-innate immune interactions in gut mucosal immunity. Curr Opin Immunol 2021; 68:64-71. [PMID: 33130386 PMCID: PMC11095515 DOI: 10.1016/j.coi.2020.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
The gastrointestinal (GI) tract performs a set of vital physiological functions related to food and water consumption. To help regulate these complex physiological processes, the GI tract is innervated by extensive neural networks. The GI tract also serves as the largest immune organ aimed to protect hosts from harmful microbes and toxins ingested with food. It emerges that the enteric nervous and immune systems are highly integrated to optimize digestion while reinforcing immune protection. In this review, we will discuss key cellular players involved in the neuro-immune interactions within the GI mucosa with the focus on the recently uncovered neural pathways that regulate mucosal immunity in a context relevant to GI health and disease.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Department of Medicine, Center for Neurogastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Sravya Kurapati
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States; Penn State Biomedical Sciences Ph.D. Program, Penn State University College of Medicine, Hershey, PA, United States
| | - Milena Bogunovic
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
21
|
Abstract
The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.
Collapse
Affiliation(s)
- Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Sarnelli G, Pesce M, Seguella L, Lu J, Efficie E, Tack J, Elisa De Palma FD, D’Alessandro A, Esposito G. Impaired Duodenal Palmitoylethanolamide Release Underlies Acid-Induced Mast Cell Activation in Functional Dyspepsia. Cell Mol Gastroenterol Hepatol 2020; 11:841-855. [PMID: 33065341 PMCID: PMC7858681 DOI: 10.1016/j.jcmgh.2020.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acid hypersensitivity is claimed to be a symptomatic trigger in functional dyspepsia (FD); however, the neuroimmune pathway(s) and the mediators involved in this process have not been investigated systematically. Palmitoylethanolamide (PEA) is an endogenous compound, able to modulate nociception and inflammation, but its role in FD has not been assessed. METHODS Duodenal biopsy specimens from FD and control subjects, and peroxisome proliferator-activated receptor-α (PPARα) null mice were cultured at a pH of 3.0 and 7.4. Mast cell (MC) number, the release of their mediators, and the expression of transient receptor potential vanilloid receptor (TRPV)1 and TRPV4, were evaluated. All measurements also were performed in the presence of a selective blocker of neuronal action potential (tetradotoxin). FD and control biopsy specimens in acidified medium also were incubated in the presence of different PEA concentrations, alone or combined with a selective PPARα or PPAR-γ antagonist. RESULTS An acid-induced increase in MC density and the release of their mediators were observed in both dyspeptic patients and controls; however, this response was amplified significantly in FD. This effect was mediated by submucosal nerve fibers and up-regulation of TRPV1 and TRPV4 receptors because pretreatment with tetradotoxin significantly reduced MC infiltration. The acid-induced endogenous release of PEA was impaired in FD and its exogenous administration counteracts MC activation and TRPV up-regulation. CONCLUSIONS Duodenal acid exposure initiates a cascade of neuronal-mediated events culminating in MC activation and TRPV overexpression. These phenomena are consequences of an impaired release of endogenous PEA. PEA might be regarded as an attractive therapeutic strategy for the treatment of FD.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, Naples, Italy,United Nations Educational, Scientific and Cultural Organization Chair, University of Naples "Federico II," Naples, Italy,Correspondence Address correspondence to: Giovanni Sarnelli, MD, PhD, Department of Clinical Medicine and Surgery, University of Naples "Federico II," Via Pansini 5 80131, Naples, Italy. fax: (39) 0817463892.
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang City, Liaoning, China
| | | | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Fatima Domenica Elisa De Palma
- Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, Department of Molecular Medicine and Medical Biotechnologies, Naples, Italy
| | | | - Giuseppe Esposito
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Mast Cell Mediators as Pain Triggers in Migraine: Comparison of Histamine and Serotonin in the Activation of Primary Afferents in the Meninges in Rats. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s11055-020-00983-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Lucarini E, Parisio C, Branca JJV, Segnani C, Ippolito C, Pellegrini C, Antonioli L, Fornai M, Micheli L, Pacini A, Bernardini N, Blandizzi C, Ghelardini C, Di Cesare Mannelli L. Deepening the Mechanisms of Visceral Pain Persistence: An Evaluation of the Gut-Spinal Cord Relationship. Cells 2020; 9:cells9081772. [PMID: 32722246 PMCID: PMC7464824 DOI: 10.3390/cells9081772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The management of visceral pain is a major clinical problem in patients affected by gastrointestinal disorders. The poor knowledge about pain chronicization mechanisms prompted us to study the functional and morphological alterations of the gut and nervous system in the animal model of persistent visceral pain caused by 2,4-dinitrobenzenesulfonic acid (DNBS). This agent, injected intrarectally, induced a colonic inflammation peaking on day 3 and remitting progressively from day 7. In concomitance with bowel inflammation, the animals developed visceral hypersensitivity, which persisted after colitis remission for up to three months. On day 14, the administration of pain-relieving drugs (injected intraperitoneally and intrathecally) revealed a mixed nociceptive, inflammatory and neuropathic pain originating from both the peripheral and central nervous system. At this time point, the colonic histological analysis highlighted a partial restitution of the tunica mucosa, transmural collagen deposition, infiltration of mast cells and eosinophils, and upregulation of substance P (SP)-positive nerve fibers, which were surrounded by eosinophils and MHC-II-positive macrophages. A significant activation of microglia and astrocytes was observed in the dorsal and ventral horns of spinal cord. These results suggest that the persistence of visceral pain induced by colitis results from maladaptive plasticity of the enteric, peripheral and central nervous systems.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Jacopo J. V. Branca
- Department of Experimental and Clinical Medicine—DMSC, Anatomy and Histology Section, University of Florence, L. go Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Cristina Segnani
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, 56126 Pisa, Italy; (C.S.); (C.I.); (N.B.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, 56126 Pisa, Italy; (C.S.); (C.I.); (N.B.)
| | - Carolina Pellegrini
- Department of Pharmacy, Unit of Pharmacology, University of Pisa, 56126 Pisa, Italy;
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (C.B.)
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (C.B.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine—DMSC, Anatomy and Histology Section, University of Florence, L. go Brambilla 3, 50134 Florence, Italy; (J.J.V.B.); (A.P.)
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, 56126 Pisa, Italy; (C.S.); (C.I.); (N.B.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy; (L.A.); (M.F.); (C.B.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (C.P.); (L.M.); (C.G.)
- Correspondence:
| |
Collapse
|
25
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
26
|
Jarret A, Jackson R, Duizer C, Healy ME, Zhao J, Rone JM, Bielecki P, Sefik E, Roulis M, Rice T, Sivanathan KN, Zhou T, Solis AG, Honcharova-Biletska H, Vélez K, Hartner S, Low JS, Qu R, de Zoete MR, Palm NW, Ring AM, Weber A, Moor AE, Kluger Y, Nowarski R, Flavell RA. Enteric Nervous System-Derived IL-18 Orchestrates Mucosal Barrier Immunity. Cell 2020; 180:50-63.e12. [PMID: 31923399 PMCID: PMC7339937 DOI: 10.1016/j.cell.2019.12.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022]
Abstract
Mucosal barrier immunity is essential for the maintenance of the commensal microflora and combating invasive bacterial infection. Although immune and epithelial cells are thought to be the canonical orchestrators of this complex equilibrium, here, we show that the enteric nervous system (ENS) plays an essential and non-redundant role in governing the antimicrobial protein (AMP) response. Using confocal microscopy and single-molecule fluorescence in situ mRNA hybridization (smFISH) studies, we observed that intestinal neurons produce the pleiotropic cytokine IL-18. Strikingly, deletion of IL-18 from the enteric neurons alone, but not immune or epithelial cells, rendered mice susceptible to invasive Salmonella typhimurium (S.t.) infection. Mechanistically, unbiased RNA sequencing and single-cell sequencing revealed that enteric neuronal IL-18 is specifically required for homeostatic goblet cell AMP production. Together, we show that neuron-derived IL-18 signaling controls tissue-wide intestinal immunity and has profound consequences on the mucosal barrier and invasive bacterial killing.
Collapse
Affiliation(s)
- Abigail Jarret
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruaidhrí Jackson
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Coco Duizer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marc E Healy
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich 8091, Switzerland; Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Jun Zhao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joseph M Rone
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Piotr Bielecki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manolis Roulis
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tyler Rice
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kisha N Sivanathan
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ting Zhou
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Angel G Solis
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hanna Honcharova-Biletska
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Karelia Vélez
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Saskia Hartner
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; University of Vienna, Universitätsring 1, Wien 1010, Austria
| | - Jun Siong Low
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rihao Qu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marcel R de Zoete
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich 8091, Switzerland; Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Andreas E Moor
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Yuval Kluger
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Applied Mathematics Program, Yale University, New Haven, CT 06511, USA
| | - Roni Nowarski
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double-Edged Sword in Immunity: Their Function in Health and Disease. First of Two Parts. Endocr Metab Immune Disord Drug Targets 2019; 20:654-669. [PMID: 31789135 DOI: 10.2174/1871530319666191202120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
Mast cells (MCs) have recently been re-interpreted in the context of the immune scenario in the sense that their pro-allergic role is no longer exclusive. In fact, MCs even in steady state conditions maintain homeostatic functions, producing mediators and intensively cross-talking with other immune cells. Here, emphasis will be placed on the array of receptors expressed by MCs and the variety of cytokines they produce. Then, the bulk of data discussed will provide readers with a wealth of information on the dual ability of MCs not only to defend but also to offend the host. This double attitude of MCs relies on many variables, such as their subsets, tissues of residency and type of stimuli ranging from microbes to allergens and food antigens. Finally, the relationship between MCs with basophils and eosinophils will be discussed.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
28
|
Jones MK, Nair A, Gupta M. Mast Cells in Neurodegenerative Disease. Front Cell Neurosci 2019; 13:171. [PMID: 31133804 PMCID: PMC6524694 DOI: 10.3389/fncel.2019.00171] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide, yet there are currently no effective treatments. Because risk of neurodegenerative disease substantially increases with age, greater life expectancy with a concomitant aging population means more individuals will be affected in the coming decades. Thus, there is an urgent need for understanding the mechanisms driving neurodegenerative diseases in order to develop improved treatment strategies. Inflammation in the nervous system, termed “neuroinflammation,” has become increasingly recognized as being associated with neurodegenerative diseases. Early attention focused primarily on morphological changes in astrocytes and microglia; however, brain and CNS resident mast cells are now receiving attention as a result of being “first responders” to injury. Mast cells also exert profound effects on their microenvironment and neighboring cells including behavior and/or activation of astrocytes, microglia, and neurons, which, in turn, are implicated in neuroinflammation, neurogenesis and neurodegeneration. Mast cells also affect disruption/permeability of the blood brain barrier enabling toxin and immune cell entry exacerbating an inflammatory microenvironment. Here, we discuss the roles of mast cells in neuroinflammation and neurodegeneration with a focus on development and progression of four prominent neurodegenerative diseases: Alzheimer’s Disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and Huntington’s Disease.
Collapse
Affiliation(s)
- Michael K Jones
- Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Archana Nair
- Department of Ophthalmology, New York University, New York, NY, United States
| | - Mihir Gupta
- Department of Neurosurgery, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
29
|
Becker J, Ott D, Diener M. Impact of Sensitization and Inflammation on the Interaction of Mast Cells With the Intestinal Epithelium in Rats. Front Physiol 2019; 10:329. [PMID: 30971956 PMCID: PMC6443827 DOI: 10.3389/fphys.2019.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
The density of intestinal mast cells has been reported to increase during inflammatory bowel disease (IBD). As mast cell mediators are known to increase the permeability of epithelial tight junctions, we hypothesized that antigen responses in sensitized animals might be enhanced under inflammatory conditions. This would contribute to a vicious circle by further enhancing the entry of luminal antigens into the colonic wall and thereby continuing the inadequate immune response during IBD. Therefore, one group of rats was sensitized against ovalbumin. In a second group of animals additionally a colitis was induced by rectal administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in ethanol. Specimens from distal colon and jejunum (as intestinal segment located distantly from the inflamed area) were mounted in Ussing chambers to measure tissue conductance, short-circuit current (Isc) induced by antigen exposure and paracellular permeability (fluorescein flux). This was paralleled by determination of mast cell markers and tight junction proteins with immunofluorescence and qPCR. In contrast to the initial hypothesis, antigen-induced Isc was not upregulated, but tended to be downregulated in the tissues from the colitis animals, both in colon and in jejunum. Only in the jejunum mast cell degranulation evoked an increase in fluorescein flux. Mast cell density was not altered significantly in the colon of the colitis animals. In the jejunum, sensitization induced a strong increase in mast cell density, which was unaffected by additional induction of colitis. Expression of sealing tight junction components claudin-3 and -4 were increased on the protein level in the sensitized animals in comparison to non-sensitized animals. Additional induction of colitis evoked a downregulation of claudin-3 in both intestinal segments and an upregulation of claudin-4 in the jejunum. Consequently, these data indicate segment differences in mast cell - epithelium interaction, but no enhancement of ion secretion in the TNBS/ethanol model of acute colitis after prior sensitization.
Collapse
Affiliation(s)
- Jasmin Becker
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Daniela Ott
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
30
|
Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 2019; 282:35-46. [PMID: 29431204 DOI: 10.1111/imr.12636] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| | - Riccardo Sibilano
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | | |
Collapse
|
31
|
Tikoo S, Barki N, Jain R, Zulkhernain NS, Buhner S, Schemann M, Weninger W. Imaging of mast cells. Immunol Rev 2019; 282:58-72. [PMID: 29431206 DOI: 10.1111/imr.12631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells are a part of the innate immune system implicated in allergic reactions and the regulation of host-pathogen interactions. The distribution, morphology and biochemical composition of mast cells has been studied in detail in vitro and on tissue sections both at the light microscopic and ultrastructural level. More recently, the development of fluorescent reporter strains and intravital imaging modalities has enabled first glimpses of the real-time behavior of mast cells in situ. In this review, we describe commonly used imaging approaches to study mast cells in cell culture as well as within normal and diseased tissues. We further describe the interrogation of mast cell function via imaging by providing a detailed description of mast cell-nerve plexus interactions in the intestinal tract. Together, visualizing mast cells has expanded our view of these cells in health and disease.
Collapse
Affiliation(s)
- Shweta Tikoo
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | - Natasja Barki
- LS Human Biology, Technical University München, München, Germany
| | - Rohit Jain
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | | | - Sabine Buhner
- LS Human Biology, Technical University München, München, Germany
| | - Michael Schemann
- LS Human Biology, Technical University München, München, Germany
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
32
|
van Sadelhoff JHJ, Perez Pardo P, Wu J, Garssen J, van Bergenhenegouwen J, Hogenkamp A, Hartog A, Kraneveld AD. The Gut-Immune-Brain Axis in Autism Spectrum Disorders; A Focus on Amino Acids. Front Endocrinol (Lausanne) 2019; 10:247. [PMID: 31057483 PMCID: PMC6477881 DOI: 10.3389/fendo.2019.00247] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a range of neurodevelopmental conditions that affect communication and social behavior. Besides social deficits, systemic inflammation, gastrointestinal immune-related problems, and changes in the gut microbiota composition are characteristic for people with ASD. Animal models showed that these characteristics can induce ASD-associated behavior, suggesting an intimate relationship between the microbiota, gut, immune system and the brain in ASD. Multiple factors can contribute to the development of ASD, but mutations leading to enhanced activation of the mammalian target of rapamycin (mTOR) are reported frequently. Hyperactivation of mTOR leads to deficits in the communication between neurons in the brain and to immune impairments. Hence, mTOR might be a critical factor linking the gut-brain-immune axis in ASD. Pharmacological inhibition of mTOR is shown to improve ASD-associated behavior and immune functions, however, the clinical use is limited due to severe side reactions. Interestingly, studies have shown that mTOR activation can also be modified by nutritional stimuli, in particular by amino acids. Moreover, specific amino acids are demonstrated to inhibit inflammation, improve gut barrier function and to modify the microbiota composition. In this review we will discuss the gut-brain-immune axis in ASD and explore the potential of amino acids as a treatment option for ASD, either via modification of mTOR activity, the immune system or the gut microbiota composition.
Collapse
Affiliation(s)
- Joris H. J. van Sadelhoff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jiangbo Wu
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anita Hartog
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Veterinary Pharmacology, Institute for Risk Assessment Studies, Faculty of Veterinary Sciences, Utrecht University, Utrecht, Netherlands
- *Correspondence: Aletta D. Kraneveld
| |
Collapse
|
33
|
Zhang L, Song J, Bai T, Wang R, Hou X. Sustained pain hypersensitivity in the stressed colon: Role of mast cell-derived nerve growth factor-mediated enteric synaptic plasticity. Neurogastroenterol Motil 2018; 30:e13430. [PMID: 30069980 DOI: 10.1111/nmo.13430] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/23/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sustained pain hypersensitivity is the hallmark of stressed colon which could be partially explained by central sensitization with synaptic plasticity, the key mechanism of memory. We previously identified that synaptic plasticity of enteric nerve system (ENS) contributed to peripheral pain maintaining in the gut. However, the mechanisms of enteric "memory" formation remain elusive. METHODS In this study, rats were exposed to water avoidance stress (WAS) or sham stress (SS), with cromolyn sodium or physiological saline injected intraperitoneally 30 minutes before stress every day. The abdominal withdrawal reflex scores, mesenteric afferent nerve activity, enteric neural c-fos expression, and enteric synaptic plasticity were assessed, and mast cell infiltration and degranulation. Furthermore, colonic mucosal mediators-induced enteric synaptic plasticity and the role of mast cell-derived nerve growth factor (NGF), tryptase, and histamine were investigated via ex vivo longitudinal muscle-myenteric plexus (LMMP) organotypic culture. KEY RESULTS It is shown that mast cell stabilizing inhibited WAS-induced visceral hypersensitivity through enhancing visceral pain threshold, decreasing spontaneous and distention-induced mesenteric afferent firing, and downregulating enteric neural activation (c-fos). Importantly, WAS led to evident enteric synaptic plasticity, but decreased by cromolyn. Water avoidance stress-derived mucosal supernatants markedly enhanced the c-fos expression and enteric synaptic plasticity in LMMP tissues, which could be eliminated by mast cell inhibition or NGF neutralization, but not tryptase or histamine blocking. CONCLUSIONS & INFERENCES In conclusion, mast cells/NGF pathway may be the key regulator of synaptic plasticity of ENS and participate in the formation of chronic stress-induced sustained visceral hypersensitivity.
Collapse
Affiliation(s)
- L Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - T Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - R Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Jung HK, Talley NJ. Role of the Duodenum in the Pathogenesis of Functional Dyspepsia: A Paradigm Shift. J Neurogastroenterol Motil 2018; 24:345-354. [PMID: 29791992 PMCID: PMC6034675 DOI: 10.5056/jnm18060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
Functional dyspepsia (FD) is a common disorder characterized by chronic epigastric pain or burning, or bothersome postprandial fullness or early satiation, without a definitive organic cause. The pathogenesis of FD is likely heterogeneous. Classically, motor disorders, visceral hypersensitivity, and brain-gut interactions have been implicated in the pathophysiology of FD, but recently an important role for chronic low-grade inflammation and infection in FD has been reported and confirmed. Duodenal low-grade inflammation is frequently observed in FD in those with and without documented previous gastroenteritis. Duodenal eosinophils and in some cases mast cells may together or separately play a key role, and immune activation (eg, circulating homing small intestinal T cells) has been observed in FD. Low-grade intestinal inflammation in patients with FD may provoke impairment in motor-sensory abnormalities along the gastrointestinal neural axis. Among FD patients, the risk of developing dyspeptic symptoms after a bout of gastroenteritis is 2.54 (95% CI, 1.76–3.65) at more than 6 months after acute gastroenteritis. Gut host and microbial interactions are likely important, and emerging data demonstrate both quantitative and qualitative changes of duodenal mucosal and fecal microbiota in FD. Food antigens (eg, wheat proteins) may also play a role in inducing duodenal inflammation and dyspepsia. While causation is not established, the hypothesis that FD is a disorder of microscopic small intestinal inflammation in a major subset is gaining acceptance, opening the possibility of novel treatment approaches that may be able to alter the natural history of the disorder.
Collapse
Affiliation(s)
- Hye-Kyung Jung
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Nicholas J Talley
- University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
35
|
Vasamsetti SB, Florentin J, Coppin E, Stiekema LCA, Zheng KH, Nisar MU, Sembrat J, Levinthal DJ, Rojas M, Stroes ESG, Kim K, Dutta P. Sympathetic Neuronal Activation Triggers Myeloid Progenitor Proliferation and Differentiation. Immunity 2018; 49:93-106.e7. [PMID: 29958804 PMCID: PMC6051926 DOI: 10.1016/j.immuni.2018.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023]
Abstract
There is a growing body of research on the neural control of immunity and inflammation. However, it is not known whether the nervous system can regulate the production of inflammatory myeloid cells from hematopoietic progenitor cells in disease conditions. Myeloid cell numbers in diabetic patients were strongly correlated with plasma concentrations of norepinephrine, suggesting the role of sympathetic neuronal activation in myeloid cell production. The spleens of diabetic patients and mice contained higher numbers of tyrosine hydroxylase (TH)-expressing leukocytes that produced catecholamines. Granulocyte macrophage progenitors (GMPs) expressed the β2 adrenergic receptor, a target of catecholamines. Ablation of splenic sympathetic neuronal signaling using surgical, chemical, and genetic approaches diminished GMP proliferation and myeloid cell development. Finally, mice lacking TH-producing leukocytes had reduced GMP proliferation, resulting in diminished myelopoiesis. Taken together, our study demonstrates that catecholamines produced by leukocytes and sympathetic nerve termini promote GMP proliferation and myeloid cell development.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emilie Coppin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lotte C A Stiekema
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kang H Zheng
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Muhammad Umer Nisar
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA
| | - John Sembrat
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David J Levinthal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kang Kim
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Doherty TA, White AA. Postural orthostatic tachycardia syndrome and the potential role of mast cell activation. Auton Neurosci 2018; 215:83-88. [PMID: 30033040 DOI: 10.1016/j.autneu.2018.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Though a sizeable amount of data connects mast cell activity to the neurologic system, less is known about the true clinical implications of this relationship. Even less is understood about treatment strategies in those with both allergic and neurologic complaints. This is particularly true in postural orthostatic tachycardia syndrome (POTS), a common type of dysautonomia, where patients are burdened by symptoms of orthostatic cerebral hypoperfusion and several other comorbidities that are likely influenced by autonomic tone. Some patients describe characteristic allergic symptoms, in the absence of typical IgE mediated triggers, and also improvement with traditional mast cell directed medications. Further work is necessary to determine whether these anecdotal observations are valid. The answer to this question will likely be addressed as the mechanisms of POTS are better characterized, which may include a phenotype with distinct mast cell involvement.
Collapse
Affiliation(s)
- Taylor A Doherty
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, United States
| | - Andrew A White
- Division of Allergy, Asthma and Immunology, Scripps Clinic, 3811 Valley Centre Drive, S99, San Diego, CA 92130, United States.
| |
Collapse
|
37
|
Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2018; 29:247-261. [PMID: 28814067 DOI: 10.1093/intimm/dxx040] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted an emerging role for neuro-immune interactions in mediating allergic diseases. Allergies are caused by an overactive immune response to a foreign antigen. The peripheral sensory and autonomic nervous system densely innervates mucosal barrier tissues including the skin, respiratory tract and gastrointestinal (GI) tract that are exposed to allergens. It is increasingly clear that neurons actively communicate with and regulate the function of mast cells, dendritic cells, eosinophils, Th2 cells and type 2 innate lymphoid cells in allergic inflammation. Several mechanisms of cross-talk between the two systems have been uncovered, with potential anatomical specificity. Immune cells release inflammatory mediators including histamine, cytokines or neurotrophins that directly activate sensory neurons to mediate itch in the skin, cough/sneezing and bronchoconstriction in the respiratory tract and motility in the GI tract. Upon activation, these peripheral neurons release neurotransmitters and neuropeptides that directly act on immune cells to modulate their function. Somatosensory and visceral afferent neurons release neuropeptides including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide, which can act on type 2 immune cells to drive allergic inflammation. Autonomic neurons release neurotransmitters including acetylcholine and noradrenaline that signal to both innate and adaptive immune cells. Neuro-immune signaling may play a central role in the physiopathology of allergic diseases including atopic dermatitis, asthma and food allergies. Therefore, getting a better understanding of these cellular and molecular neuro-immune interactions could lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Amélie Bouvier
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
38
|
Wang X, Hao GL, Gao CC, Wang YX, Liu YH, Qiu ZQ, Li LS, Xu JD. Intestinal mast cells and their function. Shijie Huaren Xiaohua Zazhi 2018; 26:601-608. [DOI: 10.11569/wcjd.v26.i10.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mast cells develop from the CD34+ precursor cells in bone marrow, are activated in the gut, and can release a variety of bioactive mediators, including histamine, 5-hydroxytryptamine, and tryptase. They play a crucial role in intestinal innate and adaptive immunity because of their diverse secretory granules and unique mature characteristics. Many studies have shown that a variety of intestinal diseases have close relationship with mast cells, especially inflammatory bowel disease, irritable bowel syndrome, and intestinal allergic diseases, which has attracted extensive attention. In this paper, we review the function and mechanism of intestinal mast cells and their role in the treatment of related clinical diseases.
Collapse
Affiliation(s)
- Xue Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | - Gui-Liang Hao
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | | | | | - Yue-Hong Liu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, China
| | | | | | | |
Collapse
|
39
|
Lazaridis N, Germanidis G. Current insights into the innate immune system dysfunction in irritable bowel syndrome. Ann Gastroenterol 2018; 31:171-187. [PMID: 29507464 PMCID: PMC5825947 DOI: 10.20524/aog.2018.0229] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder associated with abdominal pain and alterations in bowel habits. The presence of IBS greatly impairs patients' quality of life and imposes a high economic burden on the community; thus, there is intense pressure to reveal its elusive pathogenesis. Many etiological mechanisms have been implicated, but the pathophysiology of the syndrome remains unclear. As a result, novel drug development has been slow and no pharmacological intervention is universally accepted. A growing evidence implicates the role of low-grade inflammation and innate immune system dysfunction, although contradictory results have frequently been presented. Mast cells (MC), eosinophils and other key immune cells together with their mediators seem to play an important role, at least in subgroups of IBS patients. Cytokine imbalance in the systematic circulation and in the intestinal mucosa may also characterize IBS presentation. Toll-like receptors and their emerging role in pathogen recognition have also been highlighted recently, as dysregulation has been reported to occur in patients with IBS. This review summarizes the current knowledge regarding the involvement of any immunological alteration in the development of IBS. There is substantial evidence to support innate immune system dysfunction in several IBS phenotypes, but additional studies are required to better clarify the underlying pathogenetic pathways. IBS heterogeneity could potentially be attributed to multiple causes that lead to different disease phenotypes, thus explaining the variability found between study results.
Collapse
Affiliation(s)
- Nikolaos Lazaridis
- Gastroenterology Department, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Germanidis
- Gastroenterology Department, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
40
|
Buhner S, Barki N, Greiter W, Giesbertz P, Demir IE, Ceyhan GO, Zeller F, Daniel H, Schemann M. Calcium Imaging of Nerve-Mast Cell Signaling in the Human Intestine. Front Physiol 2017; 8:971. [PMID: 29238306 PMCID: PMC5712982 DOI: 10.3389/fphys.2017.00971] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction: It is suggested that an altered microenvironment in the gut wall alters communication along a mast cell nerve axis. We aimed to record for the first time signaling between mast cells and neurons in intact human submucous preparations. Methods: We used the Ca2+ sensitive dye Fluo-4 AM to simultaneously image changes in intracellular calcium [Ca+2]i (%ΔF/F) in neurons and mast cells. Data are presented as median with interquartile ranges (25/75%). Results: We recorded nerve responses in 29 samples upon selective activation of 223 mast cells by IgE receptor cross linking with the antibody mAb22E7. Mast cells responded to mAb22E7 with a median [Ca+2]i increase of 20% (11/39) peaking 90 s (64/144) after the application. Only very few neurons responded and the median percentage of responding neuronal area was 0% (0/5.9). Mast cell activation remained in the presence of the fast sodium channel blocker tetrodotoxin. Specific neuronal activation by transmural electrical field stimulation (EFS) in 34 samples evoked instantaneously [Ca+2]i signals in submucous neurons. This was followed by a [Ca+2]i peak response of 8%ΔF/F (4/15) in 33% of 168 mast cells in the field of view. The mast cell response was abolished by the nerve blocker tetrododoxin, reduced by the Calcitonin Gene-Related Peptide receptor 1 antagonist BIBN-4096 and the Vasoactive Intestinal Peptide receptor antagonist PG97-269, but not by blockade of the neurokinin receptors 1-3. Conclusion: The findings revealed bidirectional signaling between mast cells and submucous neurons in human gut. In our macroscopically normal preparations a nerve to mast cell signaling was very prominent whereas a mast cell to nerve signaling was rather rare.
Collapse
Affiliation(s)
- Sabine Buhner
- Human Biology, Technische Universität München, Freising, Germany
| | - Natasja Barki
- Human Biology, Technische Universität München, Freising, Germany
| | - Wolfgang Greiter
- Human Biology, Technische Universität München, Freising, Germany
| | - Pieter Giesbertz
- Molecular Nutrition Unit, Technische Universität München, Freising, Germany
| | - Ihsan E. Demir
- Department of General Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Güralp O. Ceyhan
- Department of General Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Hannelore Daniel
- Molecular Nutrition Unit, Technische Universität München, Freising, Germany
| | - Michael Schemann
- Human Biology, Technische Universität München, Freising, Germany
| |
Collapse
|
41
|
Wang B, An N, Shaikh AS, Wang H, Xiao L, Liu H, Li J, Zhao D. Hyperosmolarity evokes histamine release from ileum mucosa by stimulating a cholinergic pathway. Biochem Biophys Res Commun 2017; 493:1037-1042. [PMID: 28939039 DOI: 10.1016/j.bbrc.2017.09.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/18/2022]
Abstract
Changes in extracellular osmolarity lead to alteration in cellular volume. In the study, we examined the effects of hyperosmolarity on short-circuit currents (Isc) in the rat ileum using the Ussing chamber technique. Mucosal exposure to 20 mM glucose evoked a decrease of ISC in the rat ileum, which was antagonized by the stretch-activated channel blocker GdCl3, TTX and atropine, respectively. In contrast, it was not blocked by phlorizin, a Na+-glucose cotransporter SGLT1 inhibitor. Furthermore, the unabsorbed substances, such as sucrose, lactulose or urea, also induced a decrease of ISC in rat ileum. ELISA results revealed that 20 mM glucose stimulated the release of histamine from rat ileum mucosa, which was attenuated by TTX. In addition, the glucose-induced ISC was depressed by pyrilamine, a histamine H1 receptor blocker (H1 antagonist) whereas it was not affected by ranitidine (H2 antagonist), clobenpropit (H3 antagonists) or JNJ7777120 (H4 antagonist), respectively. The ion substitution experiments suggest that the changes of Na+ and HCO3- ion flux underlie the glucose-induced ISC. In conclusion, osmotic stimulus decreased the basal ISC of rat ileum by evoking histamine release from ileum mucosa. The changes of Na+ and HCO3- ion transport are involved in the glucose-evoked decrease of basal ISC.
Collapse
Affiliation(s)
- Banqin Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Mental Disorders, Shandong University School of Medicine, Jinan, China
| | - Ning An
- Department of Physiology, Shandong Provincial Key Laboratory of Mental Disorders, Shandong University School of Medicine, Jinan, China; Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Abdul Sami Shaikh
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Haoyi Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Mental Disorders, Shandong University School of Medicine, Jinan, China
| | - Ling Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Mental Disorders, Shandong University School of Medicine, Jinan, China
| | - Hongwei Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Mental Disorders, Shandong University School of Medicine, Jinan, China
| | - Jingxin Li
- Department of Physiology, Shandong Provincial Key Laboratory of Mental Disorders, Shandong University School of Medicine, Jinan, China
| | - Dongbo Zhao
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
42
|
Fabisiak A, Włodarczyk J, Fabisiak N, Storr M, Fichna J. Targeting Histamine Receptors in Irritable Bowel Syndrome: A Critical Appraisal. J Neurogastroenterol Motil 2017; 23:341-348. [PMID: 28551943 PMCID: PMC5503283 DOI: 10.5056/jnm16203] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/10/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022] Open
Abstract
Irritable bowel syndrome is a group of functional gastrointestinal disorders with not yet fully clarified etiology. Recent evidence suggesting that mast cells may play a central role in the pathogenesis of irritable bowel syndrome paves the way for agents targeting histamine receptors as a potential therapeutic option in clinical treatment. In this review, the role of histamine and histamine receptors is debated. Moreover, the clinical evidence of anti-histamine therapeutics in irritable bowel syndrome is discussed.
Collapse
Affiliation(s)
- Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
| | - Natalia Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
| | - Martin Storr
- Center of Endoscopy, Starnberg,
Germany
- Walter Brendel Center of Experimental Medicine, Ludwig Maximilians University of Munich, Munich,
Germany
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz,
Poland
- Correspondence: Jakub Fichna, PhD, DSc, Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland, Tel: +48-42-272-5707, Fax: +48-42-272-5694, E-mail:
| |
Collapse
|
43
|
段 园, 唐 旭, 王 凤, 马 祥. PAR-2信号通路与功能性胃肠病. Shijie Huaren Xiaohua Zazhi 2017; 25:1159-1165. [DOI: 10.11569/wcjd.v25.i13.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
功能性胃肠病(functional gastrointestinal disorders, FGIDs)是一组排除器质性病变的胃肠道疾病, 其症状复杂且无特异性. 该类疾病在人群中患病率不断升高, 虽不致死, 但伴随精神症状大大降低了患者生活质量, 病情反复且周期长, 给患者家庭和社会造成了一定经济压力. 探索其发病机制以制定更佳治疗策略成为当前重任. 近年研究证实蛋白酶激活受体2(protease-activated receptor 2, PAR-2)在FGIDs发病机制中的作用确切, 相关研究亦越来越深入. 但众多研究各持一角, 不免混杂, 故本文就近几年PAR-2的相关研究作了梳理, 以便后续研究能有所借鉴, 看到不足, 并能做进一步的深入研究.
Collapse
|
44
|
The Effect of Tong-Xie-Yao-Fang on Intestinal Mucosal Mast Cells in Postinfectious Irritable Bowel Syndrome Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9086034. [PMID: 28331524 PMCID: PMC5346372 DOI: 10.1155/2017/9086034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
Objective. To investigate the effects of Tong-Xie-Yao-Fang (TXYF) on intestinal mucosal mast cells in rats with postinfectious irritable bowel syndrome (PI-IBS). Design. PI-IBS rat models were established using a multistimulation paradigm. Then, rats were treated with TXYF intragastrically at doses of 2.5, 5.0, and 10.0 g·kg−1·d−1 for 14 days, respectively. Intestinal sensitivity was assessed based on abdominal withdrawal reflex (AWR) scores and fecal water content (FWC). Mast cell counts and the immunofluorescence of tryptase and c-Fos in intestinal mucosa were measured; and serum IL-1β, TNF-α, and histamine levels were determined. Results. AWR reactivity and FWC which were significantly increased could be observed in PI-IBS rats. Remarkably increased mast cell activation ratio in intestinal mucosa, together with increased serum TNF-α and histamine levels, could also be seen in PI-IBS rats; furthermore, PI-IBS-induced changes in mast cell activation and level of serum TNF-α and histamine could be reversed by TXYF treatment. Meanwhile, tryptase and c-Fos expression were also downregulated. Conclusion. TXYF improves PI-IBS symptoms by alleviating behavioral hyperalgesia and antidiarrhea, the underlying mechanism of which involves the inhibitory effects of TXYF on activating mucosal mast cells, downregulating tryptase and c-Fos expression, and reducing serum TNF-α and histamine levels.
Collapse
|
45
|
|
46
|
Veiga-Fernandes H, Pachnis V. Neuroimmune regulation during intestinal development and homeostasis. Nat Immunol 2017; 18:116-122. [DOI: 10.1038/ni.3634] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
|
47
|
Veiga-Fernandes H, Mucida D. Neuro-Immune Interactions at Barrier Surfaces. Cell 2017; 165:801-11. [PMID: 27153494 DOI: 10.1016/j.cell.2016.04.041] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/23/2022]
Abstract
Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.
Collapse
Affiliation(s)
- Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
48
|
Lee KN, Lee OY. The Role of Mast Cells in Irritable Bowel Syndrome. Gastroenterol Res Pract 2016; 2016:2031480. [PMID: 28115927 PMCID: PMC5225338 DOI: 10.1155/2016/2031480] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, but its treatment is unsatisfactory as its pathophysiology is multifactorial. The putative factors of IBS pathophysiology are visceral hypersensitivity and intestinal dysmotility, also including psychological factors, dysregulated gut-brain axis, intestinal microbiota alterations, impaired intestinal permeability, and mucosal immune alterations. Recently, mucosal immune alterations have received much attention with the role of mast cells in IBS. Mast cells are abundant in the intestines and function as intestinal gatekeepers at the interface between the luminal environment in the intestine and the internal milieu under the intestinal epithelium. As a gatekeeper at the interface, mast cells communicate with the adjacent cells such as epithelial, neuronal, and other immune cells throughout the mediators released when they themselves are activated. Many studies have suggested that mast cells play a role in the pathophysiology of IBS. This review will focus on studies of the role of mast cell in IBS and the limitations of studies and will also consider future directions.
Collapse
Affiliation(s)
- Kang Nyeong Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Oh Young Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
49
|
Chen B, Li MY, Guo Y, Zhao X, Lim HMC. Mast cell-derived exosomes at the stimulated acupoints activating the neuro-immune regulation. Chin J Integr Med 2016; 23:878-880. [PMID: 27650095 DOI: 10.1007/s11655-016-2269-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 01/25/2023]
Abstract
Exosomes are cell-derived vesicles that take part in intercellular signaling. Research has shown that acupuncture is closely related to affecting the functions of the mast cells in the local region of the acupoint, and stimulating the afferent nerve. Mast cells have a connection with the conduction within the meridians, and play an important role in immuno-regulation. The 'synapse-like' connection between the mast cells and nerve endings is the basis for the exchange of information between these two tissues. Exosome mediates mast exchange of information between mast cells and the nerves, starting the process of neuro-immuno regulation. Therefore, we propose that mast cell-derived exosomes mediate the neuro-immuno regulation at the local site of acupuncture, and this is one of the key factors resulting in the effectiveness of acupuncture.
Collapse
Affiliation(s)
- Bo Chen
- Acu-moxibustion and Tuina Department of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ming-Yue Li
- Department of Clinical Practice Teaching, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yi Guo
- Acu-moxibustion and Tuina Department of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xue Zhao
- Acu-moxibustion and Tuina Department of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hui-Min Calista Lim
- Acu-moxibustion and Tuina Department of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| |
Collapse
|
50
|
Margolis KG, Gershon MD, Bogunovic M. Cellular Organization of Neuroimmune Interactions in the Gastrointestinal Tract. Trends Immunol 2016; 37:487-501. [PMID: 27289177 PMCID: PMC5003109 DOI: 10.1016/j.it.2016.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/19/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract is the largest immune organ; in vertebrates, it is the only organ whose function is controlled by its own intrinsic enteric nervous system (ENS), but it is additionally regulated by extrinsic (sympathetic and parasympathetic) innervation. The GI nervous and immune systems are highly integrated in their common goal, which is to unite digestive functions with protection from ingested environmental threats. This review discusses the physiological relevance of enteric neuroimmune integration by summarizing the current knowledge of evolutionary and developmental pathways, cellular organization, and molecular mechanisms of neuroimmune interactions in health and disease.
Collapse
Affiliation(s)
- Kara Gross Margolis
- Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michael David Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Milena Bogunovic
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|