1
|
Shi Y, Wang Z, Xu J, Niu W, Wu Y, Guo H, Shi J, Li Z, Fu B, Hong Y, Wang Z, Guo W, Chen D, Li X, Li Q, Wang S, Gao J, Sun A, Xiao Y, Cao J, Fu L, Wu Y, Zhang T, Xia N, Yuan Q. TCR-like bispecific antibodies toward eliminating infected hepatocytes in HBV mouse models. Emerg Microbes Infect 2024; 13:2387448. [PMID: 39109538 PMCID: PMC11313007 DOI: 10.1080/22221751.2024.2387448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Therapeutics for eradicating hepatitis B virus (HBV) infection are still limited and current nucleos(t)ide analogs (NAs) and interferon are effective in controlling viral replication and improving liver health, but they cannot completely eradicate the hepatitis B virus and only a very small number of patients are cured of it. The TCR-like antibodies recognizing viral peptides presented on human leukocyte antigens (HLA) provide possible tools for targeting and eliminating HBV-infected hepatocytes. Here, we generated three TCR-like antibodies targeting three different HLA-A2.1-presented peptides derived from HBV core and surface proteins. Bispecific antibodies (BsAbs) were developed by fuzing variable fragments of these TCR-like mAbs with an anti-CD3ϵ antibody. Our data demonstrate that the BsAbs could act as T cell engagers, effectively redirecting and activating T cells to target HBV-infected hepatocytes in vitro and in vivo. In HBV-persistent mice expressing human HLA-A2.1, two infusions of BsAbs induced marked and sustained suppression in serum HBsAg levels and also reduced the numbers of HBV-positive hepatocytes. These findings highlighted the therapeutic potential of TCR-like BsAbs as a new strategy to cure hepatitis B.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Zihan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Jingjing Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Wenxia Niu
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Yubin Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Huiyu Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Jinmiao Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Zonglin Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Baorong Fu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Yunda Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Zikang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Wenjie Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Dabing Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Xingling Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Qian Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Shaojuan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Jiahua Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Aling Sun
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Yaosheng Xiao
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Jiali Cao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Lijuan Fu
- Department of Infectious Disease, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, People’s Republic of China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostic, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
2
|
Chen Z, Shu J, Hu Y, Mei H. Synergistic integration of mRNA-LNP with CAR-engineered immune cells: Pioneering progress in immunotherapy. Mol Ther 2024; 32:3772-3792. [PMID: 39295145 DOI: 10.1016/j.ymthe.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has emerged as a revolutionary approach in the treatment of malignancies. Despite its remarkable successes, this field continues to grapple with challenges such as scalability, safety concerns, limited therapeutic effect, in vivo persistence, and the need for precise control over CAR expression. In the post-pandemic era of COVID-19 vaccine immunization, the application of messenger RNA (mRNA) encapsulated within lipid nanoparticles (LNPs) has recently garnered significant attention as a potential solution to address these challenges. This review delves into the dynamic landscape of mRNA-LNP technology and its potential implications for CAR-engineered immune cell-based immunotherapy.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
3
|
Bertoletti A, Tan AT. Engineering HBV-specific T cells for the treatment of HBV-related HCC and HBV infection: Past, Present, and Future. Editorial on "Genetically-modified, redirected T cells target hepatitis B surface antigen-positive hepatocytes and hepatocellular carcinoma lesions in a clinical setting". Clin Mol Hepatol 2024; 30:728-734. [PMID: 38934109 PMCID: PMC11540402 DOI: 10.3350/cmh.2024.0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
4
|
Xie Z, Protzer U. Activating adaptive immunity by bispecific, T-cell engager antibodies bridging infected and immune-effector cells is a promising novel therapy for chronic hepatitis B. Antiviral Res 2024; 229:105972. [PMID: 39084340 DOI: 10.1016/j.antiviral.2024.105972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered immunoglobulins that combine two different antigen-binding sites in one molecule. BsAbs can be divided into two molecular formats: IgG-like and non-IgG-like antibodies. Structural elements of each format have implications for engaging the immune system. T cell engager antibodies (TCEs) are bsAbs designed to engage T cells with target cells. TCEs can be applied not only in cancer but also in infectious disease therapy to activate T-cell responses. In this review, we focus on current literature on the design and use of bsAbs as an innovative strategy to enhance adaptive antiviral immune responses. We summarized the novel T cell-related immunotherapies with a focus on TCEs, that are developed for the treatment of chronic hepatitis B. Chronic infection with the hepatitis B virus (HBV) had a death toll of 1.1 million humans in 2022, mainly due to liver cirrhosis and hepatocellular carcinoma developing in the more than 250 million humans chronically infected. A curative treatment approach for chronic hepatitis B is lacking. Combining antiviral therapy with immune therapies activating T-cell responses is regarded as the most promising therapeutic approach to curing HBV and preventing the sequelae of chronic infection. Attracting functionally intact T cells that are not HBV-specific and, therefore, have not yet been exposed to regulatory mechanisms and activating those at the target site in the liver is a very interesting therapeutic approach that could be achieved by TCEs. Thus, TCEs redirecting T cells toward HBV-positive cells represent a promising strategy for treating chronic hepatitis B and HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhe Xie
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Sites, Germany.
| |
Collapse
|
5
|
Assefa A, Getie M, Getie B, Yazie T, Enkobahry A. Molecular epidemiology of hepatitis B virus (HBV) in Ethiopia: A review article. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105618. [PMID: 38857639 DOI: 10.1016/j.meegid.2024.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Hepatitis B virus (HBV) belongs to the family Hepadnaviridae and is the smallest human DNA virus, with a genome that is only 3200 nucleotides long. The absence of proofreading function in HBV reverse transcriptase provides a wide range of genetic variants for targeted outgrowth at different stages of infection. A number of sub genotypes and ten HBV genotypes (A through J) have been identified through analyses of the divergence of HBV genomic sequences. Numerous clinical outcomes, including the emergence of chronicity, the course of the disease, the effectiveness of treatment, and the response to vaccination, have been related to differences in genotype between HBV isolates. There are just seven studies that have been done in Ethiopia that examine the molecular epidemiology of HBV. Moreover, these studies haven't been compiled and reviewed yet. In this review, we looked at the genetic diversity and molecular epidemiology of HBV, the relationship between HBV genotypes and clinical outcomes, the immunopathogenesis of HBV, and finally the molecular epidemiology of HBV in Ethiopia. PubMed, Embase, and Google Scholar search engines were used to find relevant articles for the review. By using HBV genotyping, clinicians can better tailor vaccination decisions and antiviral therapy for patients with chronic hepatitis B who are more likely to experience the disease's progression.
Collapse
Affiliation(s)
- Ayenew Assefa
- Unit of Immunology, Department of Medical Laboratory Science, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Molla Getie
- College of Medicine and Health Science, Medical Laboratory Science Department, Injibara University, Injibara, Ethiopia
| | - Birhanu Getie
- Unit of Medical Microbiology, Department of Medical Laboratory Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Takilosimeneh Yazie
- College of Health Science, Department of Pharmacy, Debre Tabor University, Debre Tabor, Ethiopia
| | - Aklesya Enkobahry
- College of Medicine and Health Science, Department of Biomedical Science, Injibara University, Injibara, Ethiopia
| |
Collapse
|
6
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
8
|
Shu J, Xie W, Chen Z, Offringa R, Hu Y, Mei H. The enchanting canvas of CAR technology: Unveiling its wonders in non-neoplastic diseases. MED 2024; 5:495-529. [PMID: 38608709 DOI: 10.1016/j.medj.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have made a groundbreaking advancement in personalized immunotherapy and achieved widespread success in hematological malignancies. As CAR technology continues to evolve, numerous studies have unveiled its potential far beyond the realm of oncology. This review focuses on the current applications of CAR-based cellular platforms in non-neoplastic indications, such as autoimmune, infectious, fibrotic, and cellular senescence-associated diseases. Furthermore, we delve into the utilization of CARs in non-T cell populations such as natural killer (NK) cells and macrophages, highlighting their therapeutic potential in non-neoplastic conditions and offering the potential for targeted, personalized therapies to improve patient outcomes and enhanced quality of life.
Collapse
Affiliation(s)
- Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Wei Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
9
|
Gopalakrishna H, Ghany MG. Perspective on Emerging Therapies to Achieve Functional Cure of Chronic Hepatitis B. CURRENT HEPATOLOGY REPORTS 2024; 23:241-252. [PMID: 38699562 PMCID: PMC11062629 DOI: 10.1007/s11901-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 05/05/2024]
Abstract
Purpose of Review Advancements in our understanding of the hepatitis B viral (HBV) life cycle have paved the way for novel approaches to treat HBV infection. This review summarizes the various strategies being pursued to achieve a functional cure, defined as loss of hepatitis B surface antigen (HBsAg) and absence of viral replication 6 months off-therapy. Recent Findings Direct acting antiviral, host targeting antiviral, and immunological approaches are in various stages of development as treatment for chronic HBV infection. Summary Novel treatments are being developed in pursuit of a cure for HBV. Current evidence suggests a single therapeutic agent alone may be insufficient, necessitating the need for combination therapy targeting HBV and the host immune response. Ongoing research focused on identifying the best therapeutic combination holds promise in achieving functional cure for HBV.
Collapse
Affiliation(s)
- Harish Gopalakrishna
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Building 10, Room 9B-16, Bethesda, MD 20892‐1800, USA
| | - Marc G. Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Building 10, Room 9B-16, Bethesda, MD 20892‐1800, USA
| |
Collapse
|
10
|
Gehring AJ, Salimzadeh L. Current and future use of antibody-based passive immunity to prevent or control HBV/HDV infections. Antiviral Res 2024; 226:105893. [PMID: 38679166 DOI: 10.1016/j.antiviral.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
With the increasing momentum and success of monoclonal antibody therapy in conventional medical practices, there is a revived emphasis on the development of monoclonal antibodies targeting the hepatitis B surface antigen (anti-HBs) for the treatment of chronic hepatitis B (HBV) and hepatitis D (HDV). Combination therapies of anti-HBs monoclonal antibodies, and novel anti-HBV compounds and immunomodulatory drugs presenting a promising avenue to enhanced therapeutic outcomes in HBV/HDV cure regimens. In this review, we will cover the role of antibodies in the protection and clearance of HBV infection, the association of anti-HBV surface antigen antibodies (anti-HBs) in protection against HBV and how antibody effector functions, beyond neutralization, are likely necessary. Lastly, we will review clinical data from previous and ongoing clinical trials of passive antibody therapy to provide a state-of-the-are perspective on passive antibody therapies in combinations with additional novel agents.
Collapse
Affiliation(s)
- Adam J Gehring
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Loghman Salimzadeh
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
11
|
Schreiber S, Dressler LS, Loffredo-Verde E, Asen T, Färber S, Wang W, Groll T, Chakraborty A, Kolbe F, Kreer C, Kosinska AD, Simon S, Urban S, Klein F, Riddell SR, Protzer U. CARs derived from broadly neutralizing, human monoclonal antibodies identified by single B cell sorting target hepatitis B virus-positive cells. Front Immunol 2024; 15:1340619. [PMID: 38711498 PMCID: PMC11072186 DOI: 10.3389/fimmu.2024.1340619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
To design new CARs targeting hepatitis B virus (HBV), we isolated human monoclonal antibodies recognizing the HBV envelope proteins from single B cells of a patient with a resolved infection. HBV-specific memory B cells were isolated by incubating peripheral blood mononuclear cells with biotinylated hepatitis B surface antigen (HBsAg), followed by single-cell flow cytometry-based sorting of live, CD19+ IgG+ HBsAg+ cells. Amplification and sequencing of immunoglobulin genes from single memory B cells identified variable heavy and light chain sequences. Corresponding immunoglobulin chains were cloned into IgG1 expression vectors and expressed in mammalian cells. Two antibodies named 4D06 and 4D08 were found to be highly specific for HBsAg, recognized a conformational and a linear epitope, respectively, and showed broad reactivity and neutralization capacity against all major HBV genotypes. 4D06 and 4D08 variable chain fragments were cloned into a 2nd generation CAR format with CD28 and CD3zeta intracellular signaling domains. The new CAR constructs displayed a high functional avidity when expressed on primary human T cells. CAR-grafted T cells proved to be polyfunctional regarding cytokine secretion and killed HBV-positive target cells. Interestingly, background activation of the 4D08-CAR recognizing a linear instead of a conformational epitope was consistently low. In a preclinical model of chronic HBV infection, murine T cells grafted with the 4D06 and the 4D08 CAR showed on target activity indicated by a transient increase in serum transaminases, and a lower number of HBV-positive hepatocytes in the mice treated. This study demonstrates an efficient and fast approach to identifying pathogen-specific monoclonal human antibodies from small donor cell numbers for the subsequent generation of new CARs.
Collapse
Affiliation(s)
- Sophia Schreiber
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research, Munich Partner Site, Munich, Germany
| | - Lisa S. Dressler
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Eva Loffredo-Verde
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Theresa Asen
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Stephanie Färber
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Wenshi Wang
- Department of Infectious Diseases, Molecular Virology, University Hospital, Heidelberg, Germany
| | - Tanja Groll
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Anindita Chakraborty
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Fenna Kolbe
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Anna D. Kosinska
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research, Munich Partner Site, Munich, Germany
| | - Sylvain Simon
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital, Heidelberg, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Stanley R. Riddell
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research, Munich Partner Site, Munich, Germany
| |
Collapse
|
12
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Targeting virus-specific CD8+ T cells for treatment of chronic viral hepatitis: from bench to bedside. Expert Opin Biol Ther 2024; 24:77-89. [PMID: 38290716 DOI: 10.1080/14712598.2024.2313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION More than 350 million people worldwide live with chronic viral hepatitis and are thus at risk for severe complications like liver cirrhosis and hepatocellular carcinoma (HCC). To meet the goals of the World Health Organization (WHO) global hepatitis strategy, there is an urgent need for new immunotherapeutic approaches. These are particularly required for chronic hepatitis B virus infection and - B/D coinfection. AREAS COVERED This review summarizes data on mechanisms of CD8+ T cells failure in chronic hepatitis B, D, C and E virus infection. The relative contribution of the different concepts (viral escape, CD8+ T cell exhaustion, defective priming) will be discussed. On this basis, examples for future therapeutic approaches targeting virus-specific CD8+ T cells for the individual hepatitis viruses will be discussed. EXPERT OPINION Immunotherapeutic approaches targeting virus-specific CD8+ T cells have the potential to change clinical practice, especially in chronic hepatitis B virus infection. Further clinical development, however, requires a more detailed understanding of T cell immunology in chronic viral hepatitis. Some important conceptual questions remain to be addressed, e.g. regarding heterogeneity of exhausted virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
- IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Wang L, Zeng X, Wang Z, Fang L, Liu J. Recent advances in understanding T cell activation and exhaustion during HBV infection. Virol Sin 2023; 38:851-859. [PMID: 37866815 PMCID: PMC10786656 DOI: 10.1016/j.virs.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major public health concern globally, and T cell responses are widely believed to play a pivotal role in mediating HBV clearance. Accordingly, research on the characteristics of HBV-specific T cell responses, from activation to exhaustion, has advanced rapidly. Here, we summarize recent developments in characterizing T cell immunity in HBV infection by reviewing basic and clinical research published in the last five years. We provide a comprehensive summary of the mechanisms that induce effective anti-HBV T cell immunity, as well as the latest developments in understanding T cell dysfunction in chronic HBV infection. Furthermore, we briefly discuss current novel treatment strategies aimed at restoring anti-HBV T cell responses.
Collapse
Affiliation(s)
- Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zida Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Fang
- Central Sterile Supply Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Liao F, Xie J, Du R, Gao W, Lan L, Wang M, Rong X, Fu Y, Wang H. Replication and Expression of the Consensus Genome of Hepatitis B Virus Genotype C from the Chinese Population. Viruses 2023; 15:2302. [PMID: 38140543 PMCID: PMC10747539 DOI: 10.3390/v15122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) genotype C is a prevalent HBV genotype in the Chinese population. Although genotype C shows higher sequence heterogeneity and more severe liver disease than other genotypes, its pathogenesis and immunological traits are not yet fully elucidated. In this study, we first established and chemically synthesized the consensus sequence based on representative 138 full-length HBV genotype C genomes from the Chinese population. The pHBV1.3C plasmid system, containing a 1.3-fold full-length HBV genotype C consensus sequence, was constructed for subsequent validation. Next, we performed functional assays to investigate the replicative competence of pHBV1.3C in vitro through the transient transfection of HepG2 and Huh7 cells and validated the in vivo function via a hydrodynamic injection to BALB/c recipient mice. The in vitro investigation revealed that the extracellular HBV DNA and intracellular replicative intermediate (i.e., pregenomic RNA, pgRNA) were apparently measurable at 48 h, and the HBsAg and HBcAg were still positive in hepatoma cells at 96 h. We also found that HBsAg and HBeAg accumulated at the extracellular and intracellular levels in a time-dependent manner. The in vivo validation demonstrated that pHBV1.3C plasmids induced HBV viremia, triggered morphological changes and HBsAg- or HBcAg- positivity of hepatocytes, and ultimately caused inflammatory infiltration and focal or piecemeal necrosis in the livers of the murine recipients. HBV protein (HBsAg) colocalized with CD8+ T cells or CD4+ T cells in the liver. F4/80+ Kupffer cells were abundantly recruited around the altered murine hepatocytes. Taken together, our results indicate that the synthetic consensus sequence of HBV genotype C is replication-competent in vitro and in vivo. This genotype C consensus genome supports the full HBV life cycle, which is conducive to studying its pathogenesis and immune response, screening novel antiviral agents, and further optimizing testing and therapeutics.
Collapse
Affiliation(s)
- Fenfang Liao
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Junmou Xie
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Rongsong Du
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Wenbo Gao
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Lanyin Lan
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| | - Hao Wang
- Guangzhou Blood Center, Guangzhou 510091, China
- The Key Medical Laboratory of Guangzhou, Guangzhou 510091, China
| |
Collapse
|
15
|
Guo G, He W, Zhou Z, Diao Y, Sui J, Li W. PreS1- targeting chimeric antigen receptor T cells diminish HBV infection in liver humanized FRG mice. Virology 2023; 586:23-34. [PMID: 37478771 DOI: 10.1016/j.virol.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Current therapies control but rarely achieve a cure for hepatitis B virus (HBV) infection. Restoration of the HBV-specific immunity by cell-based therapy represents a potential approach for a cure. In this study, we generated HBV specific CAR T cells based on an antibody 2H5-A14 targeting a preS1 region of the HBV large envelope protein. We show that the A14 CAR T cell is capable of killing hepatocytes infected by HBV with high specificity; adoptive transfer of A14 CAR T cells to HBV infected humanized FRG mice resulted in reductions of all serum and intrahepatic virological markers to levels below the detection limit. A14 CAR T cells treatment increased the levels of human IFN-γ, GM-CSF, and IL-8/CXCL-8 in the mice. These results show that A14 CAR T cells may be further developed for curative therapy against HBV infection by eliminating HBV-infected hepatocytes and inducing production of pro-inflammatory and antiviral cytokines.
Collapse
Affiliation(s)
- Guilan Guo
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Yan Diao
- National Institute of Biological Sciences, Beijing, China; Zhongshan School of Medicine, Sun Yet-Sen University, Guangzhou, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
16
|
Song JJ, Chobrutskiy A, Chobrutskiy BI, Cios KJ, Huda TI, Eakins RA, Diaz MJ, Blanck G. TRB CDR3 chemical complementarity with HBV epitopes correlates with increased hepatocellular carcinoma, disease-free survival. J Med Virol 2023; 95:e29043. [PMID: 37621059 DOI: 10.1002/jmv.29043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The liver is a site of immune privilege, compared with the bladder and skin, for example. To study this attenuation of the immune response in the cancer setting, we compared quantities and features of adaptive immune receptor (IR) recombination reads obtained from hepatocellular carcinoma (HCC) and six other cancers. Of these cancers, HCC had the lowest numbers of IR recombination reads and was the only cancer with a greater number immunoglobulin rather than T-cell receptor recombination reads. To better understand the role of adaptive IRs obtained from the tumor microenvironment in shaping the outcome of HCC cases, we quantified the chemical complementarity between HCC tumor TRB and IGH complementarity determining region-3 (CDR3) amino acid (AA) sequences, and known hepatitis B virus (HBV) epitopes. High chemical complementarity between HCC-resident CDR3s and three HBV epitopes correlated with increased survival probabilities, for two sources of CDR3s representing different CDR3 recovery algorithms. These results suggest the potential of CDR3 AA sequences as biomarkers for HCC patient stratification and as guides for future development of therapeutics.
Collapse
Affiliation(s)
- Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, Oregon, USA
| | - Konrad J Cios
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Rachel A Eakins
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael J Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
17
|
Salama II, Sami SM, Salama SI, Abdel-Latif GA, Shaaban FA, Fouad WA, Abdelmohsen AM, Raslan HM. Current and novel modalities for management of chronic hepatitis B infection. World J Hepatol 2023; 15:585-608. [PMID: 37305370 PMCID: PMC10251278 DOI: 10.4254/wjh.v15.i5.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over 296 million people are estimated to have chronic hepatitis B viral infection (CHB), and it poses unique challenges for elimination. CHB is the result of hepatitis B virus (HBV)-specific immune tolerance and the presence of covalently closed circular DNA as mini chromosome inside the nucleus and the integrated HBV. Serum hepatitis B core-related antigen is the best surrogate marker for intrahepatic covalently closed circular DNA. Functional HBV “cure” is the durable loss of hepatitis B surface antigen (HBsAg), with or without HBsAg seroconversion and undetectable serum HBV DNA after completing a course of treatment. The currently approved therapies are nucleos(t)ide analogues, interferon-alpha, and pegylated-interferon. With these therapies, functional cure can be achieved in < 10% of CHB patients. Any variation to HBV or the host immune system that disrupts the interaction between them can lead to reactivation of HBV. Novel therapies may allow efficient control of CHB. They include direct acting antivirals and immunomodulators. Reduction of the viral antigen load is a crucial factor for success of immune-based therapies. Immunomodulatory therapy may lead to modulation of the host immune system. It may enhance/restore innate immunity against HBV (as toll-like-receptors and cytosolic retinoic acid inducible gene I agonist). Others may induce adaptive immunity as checkpoint inhibitors, therapeutic HBV vaccines including protein (HBsAg/preS and hepatitis B core antigen), monoclonal or bispecific antibodies and genetically engineered T cells to generate chimeric antigen receptor-T or T-cell receptor-T cells and HBV-specific T cells to restore T cell function to efficiently clear HBV. Combined therapy may successfully overcome immune tolerance and lead to HBV control and cure. Immunotherapeutic approaches carry the risk of overshooting immune responses causing uncontrolled liver damage. The safety of any new curative therapies should be measured in relation to the excellent safety of currently approved nucleos(t)ide analogues. Development of novel antiviral and immune modulatory therapies should be associated with new diagnostic assays used to evaluate the effectiveness or to predict response.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Samia M Sami
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Hala M Raslan
- Department of Internal Medicine, National Research Centre, Giza 12411, Dokki, Egypt
| |
Collapse
|
18
|
Nevola R, Beccia D, Rosato V, Ruocco R, Mastrocinque D, Villani A, Perillo P, Imbriani S, Delle Femine A, Criscuolo L, Alfano M, La Montagna M, Russo A, Marfella R, Cozzolino D, Sasso FC, Rinaldi L, Marrone A, Adinolfi LE, Claar E. HBV Infection and Host Interactions: The Role in Viral Persistence and Oncogenesis. Int J Mol Sci 2023; 24:7651. [PMID: 37108816 PMCID: PMC10145402 DOI: 10.3390/ijms24087651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Despite the advent of vaccines and potent antiviral agents able to suppress viral replication, recovery from chronic HBV infection is still an extremely difficult goal to achieve. Complex interactions between virus and host are responsible for HBV persistence and the risk of oncogenesis. Through multiple pathways, HBV is able to silence both innate and adaptive immunological responses and become out of control. Furthermore, the integration of the viral genome into that of the host and the production of covalently closed circular DNA (cccDNA) represent reservoirs of viral persistence and account for the difficult eradication of the infection. An adequate knowledge of the virus-host interaction mechanisms responsible for viral persistence and the risk of hepatocarcinogenesis is necessary for the development of functional cures for chronic HBV infection. The purpose of this review is, therefore, to analyze how interactions between HBV and host concur in the mechanisms of infection, persistence, and oncogenesis and what are the implications and the therapeutic perspectives that follow.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| |
Collapse
|
19
|
Velasco-de Andrés M, Muñoz-Sánchez G, Carrillo-Serradell L, Gutiérrez-Hernández MDM, Català C, Isamat M, Lozano F. Chimeric antigen receptor-based therapies beyond cancer. Eur J Immunol 2023; 53:e2250184. [PMID: 36649259 DOI: 10.1002/eji.202250184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Adoptive cell transfer (ACT) therapies have gained renewed interest in the field of immunotherapy following the advent of chimeric antigen receptor (CAR) technology. This immunological breakthrough requires immune cell engineering with an artificial surface protein receptor for antigen-specific recognition coupled to an intracellular protein domain for cell activating functions. CAR-based ACT has successfully solved some hematological malignancies, and it is expected that other tumors may soon benefit from this approach. However, the potential of CAR technology is such that other immune-mediated disorders are beginning to profit from it. This review will focus on CAR-based ACT therapeutic areas other than oncology such as infection, allergy, autoimmunity, transplantation, and fibrotic repair. Herein, we discuss the results and limitations of preclinical and clinical studies in that regard.
Collapse
Affiliation(s)
| | - Guillermo Muñoz-Sánchez
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | | | - Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcos Isamat
- Sepsia Therapeutics S.L., L'Hospitalet de Llobregat, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Chen X, Liu X, Jiang Y, Xia N, Liu C, Luo W. Abnormally primed CD8 T cells: The Achilles' heel of CHB. Front Immunol 2023; 14:1106700. [PMID: 36936922 PMCID: PMC10014547 DOI: 10.3389/fimmu.2023.1106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a significant public health challenge, and more than 250 million people around world are infected with HBV. The clearance of HBV with virus-specific CD8 T cells is critical for a functional cure. However, naïve HBV-specific CD8 T cells are heavily hindered during the priming process, and this phenomenon is closely related to abnormal cell and signal interactions in the complex immune microenvironment. Here, we briefly summarize the recent progress in understanding the abnormal priming of HBV-specific CD8 T cells and some corresponding immunotherapies to facilitate their functional recovery, which provides a novel perspective for the design and development of immunotherapy for chronic HBV infection (CHB). Finally, we also highlight the balance between viral clearance and pathological liver injury induced by CD8 T-cell activation that should be carefully considered during drug development.
Collapse
Affiliation(s)
- Xiaoqing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- The Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| |
Collapse
|
21
|
Jin X, Bi J. Prospects for NK-based immunotherapy of chronic HBV infection. Front Immunol 2022; 13:1084109. [PMID: 36591230 PMCID: PMC9797727 DOI: 10.3389/fimmu.2022.1084109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/01/2022] [Indexed: 12/16/2022] Open
Abstract
Effective and long-term treatment is required for controlling chronic Hepatitis B Virus (HBV) infection. Natural killer (NK) cells are antiviral innate lymphocytes and represent an essential arm of current immunotherapy. In chronic HBV (CHB), NK cells display altered changes in phenotypes and functions, but preserve antiviral activity, especially for cytolytic activity. On the other hand, NK cells might also cause liver injury in the disease. NK -based immunotherapy, including adoptive NK cell therapy and NK -based checkpoint inhibition, could potentially exploit the antiviral aspect of NK cells for controlling CHB infection while preventing liver tissue damage. Here, we review recent progress in NK cell biology under the context of CHB infection, and discuss potential NK -based immunotherapy strategies for the disease.
Collapse
|
22
|
Debelec-Butuner B, Quitt O, Schreiber S, Momburg F, Wisskirchen K, Protzer U. Activation of distinct antiviral T-cell immunity: A comparison of bi- and trispecific T-cell engager antibodies with a chimeric antigen receptor targeting HBV envelope proteins. Front Immunol 2022; 13:1029214. [DOI: 10.3389/fimmu.2022.1029214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Despite the availability of an effective prophylactic vaccine, 820,000 people die annually of hepatitis B virus (HBV)-related liver disease according to WHO. Since current antiviral therapies do not provide a curative treatment for the 296 million HBV carriers around the globe, novel strategies to cure HBV are urgently needed. A promising approach is the redirection of T cells towards HBV-infected hepatocytes employing chimeric antigen receptors or T-cell engager antibodies. We recently described the effective redirection of T cells employing a second-generation chimeric antigen receptor directed against the envelope protein of hepatitis B virus on the surface of infected cells (S-CAR) as well as bispecific antibodies that engage CD3 or CD28 on T cells employing the identical HBV envelope protein (HBVenv) binder. In this study, we added a trispecific antibody comprising all three moieties to the tool-box. Cytotoxic and non-cytolytic antiviral activities of these bi- and trispecific T-cell engager antibodies were assessed in co-cultures of human PBMC with HBV-positive hepatoma cells, and compared to that of S-CAR-grafted T cells. Activation of T cells via the S-CAR or by either a combination of the CD3- and CD28-targeting bispecific antibodies or the trispecific antibody allowed for specific elimination of HBV-positive target cells. While S-CAR-grafted effector T cells displayed faster killing kinetics, combinatory treatment with the bispecific antibodies or single treatment with the trispecific antibody was associated with a more pronounced cytokine release. Clearance of viral antigens and elimination of the HBV persistence form, the covalently closed circular (ccc) DNA, through cytolytic as well as cytokine-mediated activity was observed in all three settings with the combination of bispecific antibodies showing the strongest non-cytolytic, cytokine-mediated antiviral effect. Taken together, we demonstrate that bi- and trispecific T-cell engager antibodies can serve as a potent, off-the-shelf alternative to S-CAR-grafted T cells to cure HBV.
Collapse
|
23
|
Zhai Y, He K, Huang L, Shang X, Wang G, Yuan G, Han ZG. DLK1-directed chimeric antigen receptor T-cell therapy for hepatocellular carcinoma. Liver Int 2022; 42:2524-2537. [PMID: 36002393 DOI: 10.1111/liv.15411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Delta-like homologue 1 (DLK1), a transmembrane protein, is highly expressed in hepatocellular carcinoma (HCC). We explored whether DLK1-directed chimeric antigen receptor (CAR) T cells can specifically eliminate DLK1-positive HCC cells and serve as a therapeutic strategy for HCC immunotherapy. METHODS We first characterized a homemade anti-human DLK1 monoclonal antibody, sequenced the single-chain Fragment variable (scFv) and integrated it into the second-generation CAR lentiviral vector, and then developed the DLK1-directed CAR-T cells. The cytotoxic activities of DLK1-directed CAR-T cells against different HCC cells were evaluated in vitro and in vivo. RESULTS The genetically modified human T cells with the DLK1-directed CARs produced cytotoxic activity against DLK1-positive HCC cells. Additionally, the DLK1-directed CARs enhanced T cell proliferation and activation in a DLK1-dependent manner. Interestingly, the DLK1-targeted CAR-T cells significantly inhibited both subcutaneous and peritoneal xenograft tumours derived from human liver cancer cell lines HepG2 or Huh-7. CONCLUSION DLK1-directed CAR-T cells specifically suppresses DLK1-positive HCC cells in vitro and in vivo. This study provides a novel transmembrane antigen DLK1 as a potential therapeutic target appropriate for CAR-T cell therapy, which may be further developed as a clinical therapeutic strategy for HCC immunotherapy.
Collapse
Affiliation(s)
- Yangyang Zhai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liyu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuyang Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangxing Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guandou Yuan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Park SJ, Kwon S, Lee MS, Jang BH, Guzmán-Cedillo AE, Kang JH. Human Cell-Camouflaged Nanomagnetic Scavengers Restore Immune Homeostasis in a Rodent Model with Bacteremia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203746. [PMID: 36070419 DOI: 10.1002/smll.202203746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Bloodstream infection caused by antimicrobial resistance pathogens is a global concern because it is difficult to treat with conventional therapy. Here, scavenger magnetic nanoparticles enveloped by nanovesicles derived from blood cells (MNVs) are reported, which magnetically eradicate an extreme range of pathogens in an extracorporeal circuit. It is quantitatively revealed that glycophorin A and complement receptor (CR) 1 on red blood cell (RBC)-MNVs predominantly capture human fecal bacteria, carbapenem-resistant (CR) Escherichia coli, and extended-spectrum beta-lactamases-positive (ESBL-positive) E. coli, vancomycin-intermediate Staphylococcus aureus (VISA), endotoxins, and proinflammatory cytokines in human blood. Additionally, CR3 and CR1 on white blood cell-MNVs mainly contribute to depleting the virus envelope proteins of Zika, SARS-CoV-2, and their variants in human blood. Supplementing opsonins into the blood significantly augments the pathogen removal efficiency due to its combinatorial interactions between pathogens and CR1 and CR3 on MNVs. The extracorporeal blood cleansing enables full recovery of lethally infected rodent animals within 7 days by treating them twice in series. It is also validated that parameters reflecting immune homeostasis, such as blood cell counts, cytokine levels, and transcriptomics changes, are restored in blood of the fatally infected rats after treatment.
Collapse
Affiliation(s)
- Sung Jin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Seyong Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Min Seok Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Bong Hwan Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Axel E Guzmán-Cedillo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
25
|
Akbar SMF, Al Mahtab M, Khan S, Yoshida O, Aguilar JC, Gerardo GN, Hiasa Y. Innovative Therapies Targeting the Virus and the Host for Treating Chronic Hepatitis B Virus Infection: From Bench to Bedside. Vaccines (Basel) 2022; 10:vaccines10050746. [PMID: 35632502 PMCID: PMC9144882 DOI: 10.3390/vaccines10050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic hepatitis B (CHB) is a highly complicated pathological process in which the disease is initiated by the hepatitis B virus (HBV); however, host immune responses are primarily responsible for variable extents of liver damage. If the patients with CHB remain untreated, many CHB patients will eventually develop complications like cirrhosis of the liver (LC) and hepatocellular carcinoma (HCC). In 2019, an estimated 882,000 patients died due to HBV-related complications worldwide. Accordingly, several drugs with antiviral properties have been used to treat CHB patients during the last four decades. However, the treatment outcome is not satisfactory because viral suppression is not usually related to the containment of progressive liver damage. Although proper reconstruction of host immunity is essential in CHB patients, as of today, there is no acceptable immune therapeutic protocol for them. These realities have exposed new, novel, and innovative therapeutic regimens for the management of CHB patients. This review will update the scope and limitation of the different innovative antiviral and immune therapeutic approaches for restoring effective host immunity and containing the virus in CHB patients to block progression to LC and HCC.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
- Correspondence: ; Tel.: +81-89-960-5308; Fax: +81-89-960-5310
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, BSMMU, Dhaka 1000, Bangladesh;
| | - Sakirul Khan
- Department of Microbiology, Oita University, Oita 879-5593, Japan;
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
| | - Julio Cesar Aguilar
- Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (J.C.A.); (G.N.G.)
| | - Guillen Nieto Gerardo
- Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (J.C.A.); (G.N.G.)
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
| |
Collapse
|
26
|
Odenwald MA, Paul S. Viral hepatitis: Past, present, and future. World J Gastroenterol 2022; 28:1405-1429. [PMID: 35582678 PMCID: PMC9048475 DOI: 10.3748/wjg.v28.i14.1405] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Each hepatitis virus-Hepatitis A, B, C, D, E, and G-poses a distinct scenario to the patient and clinician alike. Since the discovery of each virus, extensive knowledge regarding epidemiology, virologic properties, and the natural clinical and immunologic history of acute and chronic infections has been generated. Basic discoveries about host immunologic responses to acute and chronic viral infections, combined with virologic data, has led to vaccines to prevent Hepatitis A, B, and E and highly efficacious antivirals for Hepatitis B and C. These therapeutic breakthroughs are transforming the fields of hepatology, transplant medicine in general, and public and global health. Most notably, there is even an ambitious global effort to eliminate chronic viral hepatitis within the next decade. While attainable, there are many barriers to this goal that are being actively investigated in basic and clinical labs on the local, national, and international scales. Herein, we discuss pertinent clinical information and recent organizational guidelines for each of the individual hepatitis viruses while also synthesizing this information with the latest research to focus on exciting future directions for each virus.
Collapse
Affiliation(s)
- Matthew August Odenwald
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, Center for Liver Diseases, University of Chicago, Chicago, IL 60637, United States
| | - Sonali Paul
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, Center for Liver Diseases, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
27
|
Chikileva I, Shubina I, Burtseva AM, Kirgizov K, Stepanyan N, Varfolomeeva S, Kiselevskiy M. Antiviral Cell Products against COVID-19: Learning Lessons from Previous Research in Anti-Infective Cell-Based Agents. Biomedicines 2022; 10:biomedicines10040868. [PMID: 35453618 PMCID: PMC9027720 DOI: 10.3390/biomedicines10040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
COVID-19 is a real challenge for the protective immunity. Some people do not respond to vaccination by acquiring an appropriate immunological memory. The risk groups for this particular infection such as the elderly and people with compromised immunity (cancer patients, pregnant women, etc.) have the most serious problems in developing an adequate immune response. Therefore, dendritic cell (DC) vaccines that are loaded ex vivo with SARS-CoV-2 antigens in the optimal conditions are promising for immunization. Lymphocyte effector cells with chimeric antigen receptor (CAR lymphocytes) are currently used mainly as anti-tumor treatment. Before 2020, few studies on the antiviral CAR lymphocytes were reported, but since the outbreak of SARS-CoV-2 the number of such studies has increased. The basis for CARs against SARS-CoV-2 were several virus-specific neutralizing monoclonal antibodies. We propose a similar, but basically novel and more universal approach. The extracellular domain of the immunoglobulin G receptors will be used as the CAR receptor domain. The specificity of the CAR will be determined by the antibodies, which it has bound. Therefore, such CAR lymphocytes are highly universal and have functional activity against any infectious agents that have protective antibodies binding to a foreign surface antigen on the infected cells.
Collapse
Affiliation(s)
- Irina Chikileva
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
- Correspondence:
| | - Irina Shubina
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| | - Anzhelika-Mariia Burtseva
- College of New Materials and Nanotechnologies, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
| | - Kirill Kirgizov
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Nara Stepanyan
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Svetlana Varfolomeeva
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Mikhail Kiselevskiy
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| |
Collapse
|
28
|
Zhao HJ, Hu YF, Han QJ, Zhang J. Innate and adaptive immune escape mechanisms of hepatitis B virus. World J Gastroenterol 2022; 28:881-896. [PMID: 35317051 PMCID: PMC8908287 DOI: 10.3748/wjg.v28.i9.881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/09/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is an international health problem with extremely high mortality and morbidity rates. Although current clinical chronic hepatitis B (CHB) treatment strategies can partly inhibit and eliminate HBV, viral breakthrough may result due to non-adherence to treatment, the emergence of viral resistance, and a long treatment cycle. Persistent CHB infection arises as a consequence of complex interactions between the virus and the host innate and adaptive immune systems. Therefore, understanding the immune escape mechanisms involved in persistent HBV infection is important for designing novel CHB treatment strategies to clear HBV and achieve long-lasting immune control. This review details the immunological and biological characteristics and escape mechanisms of HBV and the novel immune-based therapies that are currently used for treating HBV.
Collapse
Affiliation(s)
- Hua-Jun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Fei Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
29
|
Aghajanian H, Rurik JG, Epstein JA. CAR-based therapies: opportunities for immuno-medicine beyond cancer. Nat Metab 2022; 4:163-169. [PMID: 35228742 PMCID: PMC9947862 DOI: 10.1038/s42255-022-00537-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 02/01/2023]
Abstract
One of the most exciting new therapies for cancer involves the use of autologous T cells that are engineered to recognize and destroy cancerous cells. Patients with previously untreatable B cell leukaemias and lymphomas have been cured, and efforts are underway to extend this success to other tumours. Here, we discuss recent studies and emerging research aimed to extend this approach beyond oncology in areas such as cardiometabolic disorders, autoimmunity, fibrosis and senescence. We also summarize new technologies that may help to reduce the cost and increase access to related forms of immunotherapy.
Collapse
Affiliation(s)
- Haig Aghajanian
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joel G. Rurik
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Mohammadi M, Akhoundi M, Malih S, Mohammadi A, Sheykhhasan M. Therapeutic roles of CAR T cells in infectious diseases: Clinical lessons learnt from cancer. Rev Med Virol 2022; 32:e2325. [PMID: 35037732 DOI: 10.1002/rmv.2325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy has made improvements due to the advances in chimaeric antigen receptor (CAR) T cell development, offering a promising treatment option for patients who have failed to respond to traditional treatments. In light of the successful use of adoptive CAR T cell therapy for cancer, researchers have been inspired to develop CARs for the treatment of other diseases beyond cancers such as viral infectious diseases. Nonetheless, various obstacles limit the efficacy of CAR T cell therapies and prevent their widespread usage. Severe toxicities, poor in vivo persistence, antigen escape, and heterogeneity, as well as off-target effect, are key challenges that must all be addressed to broaden the application of CAR T cells to a wider spectrum of diseases. The key advances in CAR T cell treatment for cancer and viral infections are reviewed in this article. We will also discuss revolutionary CAR T cell products developed to improve and enhance the therapeutic advantages of these treatments.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Akhoundi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Malih
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Mesenchymal Stem Cells, The Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
31
|
Kim SW, Yoon JS, Lee M, Cho Y. Toward a complete cure for chronic hepatitis B: Novel therapeutic targets for hepatitis B virus. Clin Mol Hepatol 2022; 28:17-30. [PMID: 34281294 PMCID: PMC8755466 DOI: 10.3350/cmh.2021.0093] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 11/09/2022] Open
Abstract
Hepatitis B virus (HBV) affects approximately 250 million patients worldwide, resulting in the progression to cirrhosis and hepatocellular carcinoma, which are serious public health problems. Although universal vaccination programs exist, they are only prophylactic and not curative. In the HBV life cycle, HBV forms covalently closed circular DNA (cccDNA), which is the viral minichromosome, in the nuclei of human hepatocytes and makes it difficult to achieve a complete cure with the current nucleos(t)ide analogs and interferon therapies. Current antiviral therapies rarely eliminate cccDNA; therefore, lifelong antiviral treatment is necessary. Recent trials for antiviral treatment of chronic hepatitis B have been focused on establishing a functional cure, defined by either the loss of hepatitis B surface antigen, undetectable serum HBV DNA levels, and/or seroconversion to hepatitis B surface antibody. Novel therapeutic targets and molecules are in the pipeline for early clinical trials aiming to cure HBV infection. The ideal strategy for achieving a long-lasting functional or complete cure might be using combination therapies targeting different steps of the HBV life cycle and immunomodulators. This review summarizes the current knowledge about novel treatments and combination treatments for a complete HBV cure.
Collapse
Affiliation(s)
- Sun Woong Kim
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Jun Sik Yoon
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| |
Collapse
|
32
|
Hupperetz C, Lah S, Kim H, Kim CH. CAR T Cell Immunotherapy Beyond Haematological Malignancy. Immune Netw 2022; 22:e6. [PMID: 35291659 PMCID: PMC8901698 DOI: 10.4110/in.2022.22.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, which express a synthetic receptor engineered to target specific antigens, have demonstrated remarkable potential to treat haematological malignancies. However, their transition beyond haematological malignancy has so far been unsatisfactory. Here, we discuss recent challenges and improvements for CAR T cell therapy against solid tumors: Antigen heterogeneity which provides an effective escape mechanism against conventional mono-antigen-specific CAR T cells; and the immunosuppressive tumor microenvironment which provides physical and molecular barriers that respectively prevent T cell infiltration and drive T cell dysfunction and hypoproliferation. Further, we discuss the application of CAR T cells in infectious disease and autoimmunity.
Collapse
Affiliation(s)
- Cedric Hupperetz
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sangjoon Lah
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyojin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chan Hyuk Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
33
|
Tan AT, Bertoletti A. HBV-HCC treatment with mRNA electroporated HBV-TCR T cells. IMMUNOTHERAPY ADVANCES 2021; 2:ltab026. [PMID: 35919490 PMCID: PMC9327102 DOI: 10.1093/immadv/ltab026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma is a significant global health challenge with steadily increasing incidence in the East Asia region. While both Hepatitis C and B virus infections account for the majority of HCC cases, the advent of potent antivirals against HCV infection has biased the aetiology towards chronic HBV infection that at the moment remains without an effective cure. For this reason, HBV-HCC remains a persistent global problem. Treatment options for intermediate to advanced stages of HBV-HCC remain limited, hence novel therapeutic strategies are required to fulfil this medical need. Following the considerable success of adoptive T-cell immunotherapy against B-cell malignancies, it is conceivable to envision whether the same could be achieved against HBV-HCC. In this review, we describe the development of T-cell therapy strategies for HBV-HCC and discuss the safety and the efficacy of the strategies in terms of the direct killing of tumour cells and the other alterations possibly induced by the action of the T cells.
Collapse
Affiliation(s)
- Anthony T Tan
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Antonio Bertoletti
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Singapore Immunology Network, Agency for Science and Technology (A∗STAR), Singapore
| |
Collapse
|
34
|
Khan IW, Dad Ullah MU, Choudhry M, Ali MJ, Ali MA, Lam SLK, Shah PA, Kaur SP, Lau DTY. Novel Therapies of Hepatitis B and D. Microorganisms 2021; 9:2607. [PMID: 34946209 PMCID: PMC8707465 DOI: 10.3390/microorganisms9122607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue and is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Hepatitis D virus (HDV) requires the hepatitis B surface antigen (HBsAg) to replicate. The eradication of HBV, therefore, can also cure HDV. The current therapies for chronic hepatitis B and D are suboptimal and cannot definitely cure the viruses. In order to achieve functional or complete cure of these infections, novel therapeutic agents that target the various sites of the viral replicative cycle are necessary. Furthermore, novel immunomodulatory agents are also essential to achieve viral clearance. Many of these new promising compounds such as entry inhibitors, covalently closed circular DNA (cccDNA) inhibitors, small interfering RNAs (siRNAs), capsid assembly modulators and nucleic acid polymers are in various stages of clinical developments. In this review article, we provided a comprehensive overview of the structure and lifecycle of HBV, the limitations of the current therapies and a summary of the novel therapeutic agents for both HDV and HBV infection.
Collapse
Affiliation(s)
- Iman Waheed Khan
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mati Ullah Dad Ullah
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mina Choudhry
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mukarram Jamat Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Muhammad Ashar Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Sam L. K. Lam
- Liver Center, Department of Medicine, Department of Pharmacy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Pir Ahmad Shah
- Department of Internal Medicine, University of Texas, San Antonio, TX 78229, USA;
| | - Satinder Pal Kaur
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Daryl T. Y. Lau
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| |
Collapse
|
35
|
Schreiber S, Honz M, Mamozai W, Kurktschiev P, Schiemann M, Witter K, Moore E, Zielinski C, Sette A, Protzer U, Wisskirchen K. Characterization of a library of 20 HBV-specific MHC class II-restricted T cell receptors. Mol Ther Methods Clin Dev 2021; 23:476-489. [PMID: 34853796 PMCID: PMC8605085 DOI: 10.1016/j.omtm.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
CD4+ T cells play an important role in the immune response against cancer and infectious diseases. However, mechanistic details of their helper function in hepatitis B virus (HBV) infection in particular, or their advantage for adoptive T cell therapy remain poorly understood as experimental and therapeutic tools are missing. Therefore, we identified, cloned, and characterized a comprehensive library of 20 MHC class II-restricted HBV-specific T cell receptors (TCRs) from donors with acute or resolved HBV infection. The TCRs were restricted by nine different MHC II molecules and specific for eight different epitopes derived from intracellularly processed HBV envelope, core, and polymerase proteins. Retroviral transduction resulted in a robust expression of all TCRs on primary T cells. A high functional avidity was measured for all TCRs specific for epitopes S17, S21, S36, and P774 (half-maximal effective concentration [EC50] <10 nM), or C61 and preS9 (EC50 <100 nM). Eight TCRs recognized peptide variants of HBV genotypes A to D. Both CD4+ and CD8+ T cells transduced with the MHC II-restricted TCRs were polyfunctional, producing interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, and granzyme B (GrzB), and killed peptide-loaded target cells. Our set of MHC class II-restricted TCRs represents an important tool for elucidating CD4+ T cell help in viral infection with potential benefit for T cell therapy.
Collapse
|
36
|
Guo X, Kazanova A, Thurmond S, Saragovi HU, Rudd CE. Effective chimeric antigen receptor T cells against SARS-CoV-2. iScience 2021; 24:103295. [PMID: 34693218 PMCID: PMC8520176 DOI: 10.1016/j.isci.2021.103295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Current therapies to treat coronavirus disease 2019 (COVID-19) involve vaccines against the spike protein S1 of SARS-CoV-2. Here, we outline an alternative approach involving chimeric antigen receptors (CARs) in T cells (CAR-Ts). CAR-T recognition of the SARS-CoV-2 receptor-binding domain (RBD) peptide induced ribosomal protein S6 phosphorylation, the increased expression of activation antigen, CD69 and effectors, interferon-γ, granzyme B, perforin, and Fas-ligand on overlapping subsets of CAR-Ts. CAR-Ts further showed potent in vitro killing of target cells loaded with RBD, S1 peptide, or expressing the S1 protein. The efficacy of killing varied with different sized hinge regions, whereas time-lapse microscopy showed CAR-T cluster formation around RBD-expressing targets. Cytolysis of targets was mediated primarily by the GZMB/perforin pathway. Lastly, we showed in vivo killing of S1-expressing cells by our SARS-CoV-2 CAR-Ts in mice. The successful generation of SARS-CoV-2 CAR-Ts represents a living vaccine approach for the treatment of COVID-19. Cytolytic CAR-Ts can be successfully developed against SARS-CoV-2 CAR-Ts binding to RBD peptide induced effectors IFN-γ, GZMB, Perforin and FasL CAR-Ts with different hinge regions showed differences in target killing SARS-CoV-2 CAR-Ts show successful in vivo killing of S1-expressing cells in mice
Collapse
Affiliation(s)
- Xueyang Guo
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
| | - Alexandra Kazanova
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
| | - Stephanie Thurmond
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
| | - H. Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada
| | - Christopher E. Rudd
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
- Division of Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada
- Corresponding author
| |
Collapse
|
37
|
Zhao L, Chen F, Quitt O, Festag M, Ringelhan M, Wisskirchen K, Festag J, Yakovleva L, Sureau C, Bohne F, Aichler M, Bruss V, Shevtsov M, van de Klundert M, Momburg F, Möhl BS, Protzer U. Hepatitis B virus envelope proteins can serve as therapeutic targets embedded in the host cell plasma membrane. Cell Microbiol 2021; 23:e13399. [PMID: 34729894 DOI: 10.1111/cmi.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
Hepatitis B virus (HBV) infection is a major health threat causing 880,000 deaths each year. Available therapies control viral replication but do not cure HBV, leaving patients at risk to develop hepatocellular carcinoma. Here, we show that HBV envelope proteins (HBs)-besides their integration into endosomal membranes-become embedded in the plasma membrane where they can be targeted by redirected T-cells. HBs was detected on the surface of HBV-infected cells, in livers of mice replicating HBV and in HBV-induced hepatocellular carcinoma. Staining with HBs-specific recombinant antibody MoMab recognising a conformational epitope indicated that membrane-associated HBs remains correctly folded in HBV-replicating cells in cell culture and in livers of HBV-transgenic mice in vivo. MoMab coated onto superparamagnetic iron oxide nanoparticles allowed to detect membrane-associated HBs after HBV infection by electron microscopy in distinct stretches of the hepatocyte plasma membrane. Last but not least, we demonstrate that HBs located on the cell surface allow therapeutic targeting of HBV-positive cells by T-cells either engrafted with a chimeric antigen receptor or redirected by bispecific, T-cell engager antibodies. TAKE AWAYS: HBs become translocated to the plasma membrane. Novel, recombinant antibody confirmed proper conformation of HBs on the membrane. HBs provide an interesting target by T-cell-based, potentially curative therapies.
Collapse
Affiliation(s)
- Lili Zhao
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany
| | - Fuwang Chen
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany
| | - Oliver Quitt
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany
| | - Marvin Festag
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany
| | - Marc Ringelhan
- Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Karin Wisskirchen
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany
| | - Julia Festag
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany
| | - Luidmila Yakovleva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine, Paris, France
| | - Felix Bohne
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Volker Bruss
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,Center for Translational Cancer Research, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maarten van de Klundert
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Britta S Möhl
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany.,German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, TUM School of Medicine, Munich, Germany.,German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
38
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Immunotherapy and therapeutic vaccines for chronic HBV infection. Curr Opin Virol 2021; 51:149-157. [PMID: 34710645 DOI: 10.1016/j.coviro.2021.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major global health burden causing severe complications like liver cirrhosis or hepatocellular carcinoma. Curative treatment options are lacking. Therefore, there is an urgent need for new therapeutic options. Immunotherapy with the goal to restore dysfunctional HBV-specific T cell immunity is an interesting new therapeutic strategy. Based on current evidence on dysfunction of the HBV-specific CD8+ T cell response in chronic HBV infection, we will review the growing field of immunotherapeutic approaches for treatment of chronic HBV infection. The review will focus on therapies targeting T cells and will cover checkpoint inhibitors, T cell engineering, Toll-like receptor agonists and therapeutic vaccination.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany; IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
39
|
Klopp A, Schreiber S, Kosinska AD, Pulé M, Protzer U, Wisskirchen K. Depletion of T cells via Inducible Caspase 9 Increases Safety of Adoptive T-Cell Therapy Against Chronic Hepatitis B. Front Immunol 2021; 12:734246. [PMID: 34691041 PMCID: PMC8527178 DOI: 10.3389/fimmu.2021.734246] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
T-cell therapy with T cells that are re-directed to hepatitis B virus (HBV)-infected cells by virus-specific receptors is a promising therapeutic approach for treatment of chronic hepatitis B and HBV-associated cancer. Due to the high number of target cells, however, side effects such as cytokine release syndrome or hepatotoxicity may limit safety. A safeguard mechanism, which allows depletion of transferred T cells on demand, would thus be an interesting means to increase confidence in this approach. In this study, T cells were generated by retroviral transduction to express either an HBV-specific chimeric antigen receptor (S-CAR) or T-cell receptor (TCR), and in addition either inducible caspase 9 (iC9) or herpes simplex virus thymidine kinase (HSV-TK) as a safety switch. Real-time cytotoxicity assays using HBV-replicating hepatoma cells as targets revealed that activation of both safety switches stopped cytotoxicity of S-CAR- or TCR-transduced T cells within less than one hour. In vivo, induction of iC9 led to a strong and rapid reduction of transferred S-CAR T cells adoptively transferred into AAV-HBV-infected immune incompetent mice. One to six hours after injection of the iC9 dimerizer, over 90% reduction of S-CAR T cells in the blood and the spleen and of over 99% in the liver was observed, thereby limiting hepatotoxicity and stopping cytokine secretion. Simultaneously, however, the antiviral effect of S-CAR T cells was diminished because remaining S-CAR T cells were mostly non-functional and could not be restimulated with HBsAg. A second induction of iC9 was only able to deplete T cells in the liver. In conclusion, T cells co-expressing iC9 and HBV-specific receptors efficiently recognize and kill HBV-replicating cells. Induction of T-cell death via iC9 proved to be an efficient means to deplete transferred T cells in vitro and in vivo containing unwanted hepatotoxicity.
Collapse
MESH Headings
- Adoptive Transfer/adverse effects
- Animals
- Caspase 9/biosynthesis
- Caspase 9/genetics
- Cell Death
- Cell Line
- Coculture Techniques
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Enzyme Induction
- Female
- Hepatitis B Antigens/immunology
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/metabolism
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Humans
- Interleukin Receptor Common gamma Subunit/genetics
- Interleukin Receptor Common gamma Subunit/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Simplexvirus/enzymology
- Simplexvirus/genetics
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
- Thymidine Kinase/genetics
- Thymidine Kinase/metabolism
- Transduction, Genetic
- Mice
Collapse
Affiliation(s)
- Alexandre Klopp
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Sophia Schreiber
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Anna D. Kosinska
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Martin Pulé
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Ulrike Protzer
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Karin Wisskirchen
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
40
|
Abstract
Chronic hepatitis B virus (HBV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma, estimated to be globally responsible for ∼800,000 deaths annually. Although effective vaccines are available to prevent new HBV infection, treatment of existing chronic hepatitis B (CHB) is limited, as the current standard-of-care antiviral drugs can only suppress viral replication without achieving cure. In 2016, the World Health Organization called for the elimination of viral hepatitis as a global public health threat by 2030. The United States and other nations are working to meet this ambitious goal by developing strategies to cure CHB, as well as prevent HBV transmission. This review considers recent research progress in understanding HBV pathobiology and development of therapeutics for the cure of CHB, which is necessary for elimination of hepatitis B by 2030.
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| |
Collapse
|
41
|
Zam W, Assaad A. Chimeric antigen receptor T-cells (CARs) in cancer treatment. Curr Mol Pharmacol 2021; 15:532-546. [PMID: 34382510 DOI: 10.2174/1874467214666210811150255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide. Chemotherapy, radiation therapy, and stem cell transplantation were the main cancer treatment approaches for several years but due to their limited effectiveness, there was a constant search for new therapeutic approaches. Cancer immunotherapy that utilizes and enhances the normal capacity of the patient's immune system was used to fight against cancer. Genetically engineered T-cells that express chimeric antigen receptors (CARs) showed remarkable anti-tumor activity against hematologic malignancies and is now being investigated in a variety of solid tumors. The use of this therapy in the last few years has been successful, achieving a great success in improving the quality of life and prolonging the survival time of patients with a reduction in remission rates. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. <P> Objective: This review summarizes various experimental approaches towards the use of CAR T-cells in hematologic malignancies and solid tumors. <P> Conclusion: Finally, we address the challenges posed by CAR T-cells and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Wadi International University, Homs. Syrian Arab Republic
| | - Amany Assaad
- 2. Department of Analytical and Food Chemistry, Faculty of Pharmacy,Tartous University, Tartous. Syrian Arab Republic
| |
Collapse
|
42
|
Shared immunotherapeutic approaches in HIV and hepatitis B virus: combine and conquer. Curr Opin HIV AIDS 2021; 15:157-164. [PMID: 32167944 DOI: 10.1097/coh.0000000000000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to identify similarities, differences and lessons to be shared from recent progress in HIV and hepatitis B virus (HBV) immunotherapeutic approaches. RECENT FINDINGS Immune dysregulation is a hallmark of both HIV and HBV infection, which have shared routes of transmission, with approximately 10% of HIV-positive patients worldwide being coinfected with HBV. Immune modulation therapies to orchestrate effective innate and adaptive immune responses are currently being sought as potential strategies towards a functional cure in both HIV and HBV infection. These are based on activating immunological mechanisms that would allow durable control by triggering innate immunity, reviving exhausted endogenous responses and/or generating new immune responses. Recent technological advances and increased appreciation of humoral responses in the control of HIV have generated renewed enthusiasm in the cure field. SUMMARY For both HIV and HBV infection, a primary consideration with immunomodulatory therapies continues to be a balance between generating highly effective immune responses and mitigating any significant toxicity. A large arsenal of new approaches and ongoing research offer the opportunity to define the pathways that underpin chronic infection and move closer to a functional cure.
Collapse
|
43
|
CARs-A New Perspective to HCMV Treatment. Viruses 2021; 13:v13081563. [PMID: 34452428 PMCID: PMC8402902 DOI: 10.3390/v13081563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV), by primary infection or reactivation, represents a great risk for immune-suppressed or compromised patients. In immunocompetent humans, the immune system suppresses the spread of HCMV during an infection, resulting in a mostly asymptomatic or mild course of the disease, whereas in immune suppressed patients, the compromised host immune response cannot control the viral infection. Multiple viral immunomodulatory mechanisms additionally contribute to immune evasion. Use of chimeric antigen receptors (CARs), a treatment strategy adapted from cancer immunotherapy, is investigated for possible application to combat HCMV and other infections in immunocompromised patients. The administration of CAR+ T-cells directed against HCMV antigens can bypass viral immune evasion and may complement existing treatment methods. This review gives a short overview of HCMV, the obstacles of current treatment options as well as a brief introduction to CARs and the current research situation on CAR+ T-cells against HCMV.
Collapse
|
44
|
Healy K, Pavesi A, Parrot T, Sobkowiak MJ, Reinsbach SE, Davanian H, Tan AT, Aleman S, Sandberg JK, Bertoletti A, Sällberg Chen M. Human MAIT cells endowed with HBV specificity are cytotoxic and migrate towards HBV-HCC while retaining antimicrobial functions. JHEP Rep 2021; 3:100318. [PMID: 34377970 PMCID: PMC8327138 DOI: 10.1016/j.jhepr.2021.100318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Virus-specific T cell dysfunction is a common feature of HBV-related hepatocellular carcinoma (HBV-HCC). Conventional T (ConT) cells can be redirected towards viral antigens in HBV-HCC when they express an HBV-specific receptor; however, their efficacy can be impaired by liver-specific physical and metabolic features. Mucosal-associated invariant T (MAIT) cells are the most abundant innate-like T cells in the liver and can elicit potent intrahepatic effector functions. Here, we engineered ConT and MAIT cells to kill HBV expressing hepatoma cells and compared their functional properties. METHODS Donor-matched ConT and MAIT cells were engineered to express an HBV-specific T cell receptor (TCR). Cytotoxicity and hepatocyte homing potential were investigated using flow cytometry, real-time killing assays, and confocal microscopy in 2D and 3D HBV-HCC cell models. Major histocompatibility complex (MHC) class I-related molecule (MR1)-dependent and MR1-independent activation was evaluated in an Escherichia coli THP-1 cell model and by IL-12/IL-18 stimulation, respectively. RESULTS HBV TCR-MAIT cells demonstrated polyfunctional properties (CD107a, interferon [IFN] γ, tumour necrosis factor [TNF], and IL-17A) with strong HBV target sensitivity and liver-homing chemokine receptor expression when compared with HBV TCR-ConT cells. TCR-mediated lysis of hepatoma cells was comparable between the cell types and augmented in the presence of inflammation. Coculturing with HBV+ target cells in a 3D microdevice mimicking aspects of the liver microenvironment demonstrated that TCR-MAIT cells migrate readily towards hepatoma targets. Expression of an ectopic TCR did not affect the ability of the MAIT cells to be activated via MR1-presented bacterial antigens or IL-12/IL-18 stimulation. CONCLUSIONS HBV TCR-MAIT cells demonstrate anti-HBV functions without losing their endogenous antimicrobial mechanisms or hepatotropic features. Our results support future exploitations of MAIT cells for liver-directed immunotherapies. LAY SUMMARY Chronic HBV infection is a leading cause of liver cancer. T cell receptor (TCR)-engineered T cells are patients' immune cells that have been modified to recognise virus-infected and/or cancer cells. Herein, we evaluated whether mucosal-associated invariant T cells, a large population of unconventional T cells in the liver, could recognise and kill HBV infected hepatocytes when engineered with an HBV-specific TCR. We show that their effector functions may exceed those of conventional T cells currently used in the clinic, including antimicrobial properties and chemokine receptor profiles better suited for targeting liver tumours.
Collapse
Key Words
- 5-OP-RU, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil
- APC, allophycocyanin
- Adoptive cell transfer
- CAR, chimeric antigen receptor
- CCR, CC chemokine receptor
- CXCL, chemokine (CXC) ligand
- CXCR, CXC chemokine receptor
- ConT, conventional T
- DCI, dead cell index
- FMO, fluorescence minus one
- FSC, forward scatter
- HBV
- HCC
- HCC, hepatocellular carcinoma
- HLA, human leukocyte antigen
- IFN, interferon
- IR, irrelevant peptide
- MAIT cells
- MAIT, mucosal-associated invariant T
- MFI, mean fluorescence intensity
- MHC, major histocompatibility complex
- MR1, MHC class I-related molecule
- PBMC, peripheral blood mononuclear cell
- PE, phycoerythrin
- PMA, phorbol myristate acetate
- RT, room temperature
- SSC, side scatter
- TCR, T cell receptor
- TCR-T cells
- TNF, tumour necrosis function
- UMAP, Uniform Manifold Approximation and Projection
- VCAM-1, vascular cell adhesion molecule-1
- VLA-4, very late antigen-4
Collapse
Affiliation(s)
- Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, A∗STAR, Singapore
| | - Tiphaine Parrot
- Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Susanne E. Reinsbach
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Haleh Davanian
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anthony T. Tan
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Bertoletti
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | |
Collapse
|
45
|
Hafezi M, Tan A, Bertoletti A. Personalized Armored TCR-Redirected T Cell Therapy for Liver/Organ Transplant with Recurrent Cancer. Cells 2021; 10:cells10081861. [PMID: 34440630 PMCID: PMC8393584 DOI: 10.3390/cells10081861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus-related hepatocellular carcinoma recurrence after liver transplantation (LT) is notoriously difficult to manage and fatal. As a therapeutic option, adoptive cell therapy with HBV-specific TCR-redirected T cells could be employed to target and control relapses in these patients. However, indispensable immunosuppressive medications post-transplantation can significantly hinder the optimum efficacy of such therapy in the clinic. Here we report a new class of Armored TCR T cells which are able to attack recurrent cancer cells in liver transplanted recipients, while temporarily evading immunosuppressant drugs. We believe this strategy could open up new opportunities for treating pathologies under immunosuppressant treatment.
Collapse
Affiliation(s)
- Morteza Hafezi
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore 169857, Singapore; (M.H.); (A.T.)
| | - Anthony Tan
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore 169857, Singapore; (M.H.); (A.T.)
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore 169857, Singapore; (M.H.); (A.T.)
- Singapore Immunology Network, Singapore Agency for Science, Technology & Research (A*STAR), Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
46
|
Maepa MB, Bloom K, Ely A, Arbuthnot P. Hepatitis B virus: promising drug targets and therapeutic implications. Expert Opin Ther Targets 2021; 25:451-466. [PMID: 33843412 DOI: 10.1080/14728222.2021.1915990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Current therapy for infection with hepatitis B virus (HBV) rarely clears the virus, and viremia commonly resurges following treatment withdrawal. To prevent serious complications of the infection, research has been aimed at identifying new viral and host targets that can be exploited to inactivate HBV replication.Areas covered: This paper reviews the use of these new molecular targets to advance anti-HBV therapy. Emphasis is on appraising data from pre-clinical and early clinical studies described in journal articles published during the past 10 years and available from PubMed.Expert opinion: The wide range of viral and host factors that can be targeted to disable HBV is impressive and improved insight into HBV molecular biology continues to provide the basis for new drug design. In addition to candidate therapies that have direct or indirect actions on HBV covalently closed circular DNA (cccDNA), compounds that inhibit HBsAg secretion, viral entry, destabilize viral RNA and effect enhanced immune responses to HBV show promise. Preclinical and clinical evaluation of drug candidates, as well as investigating use of treatment combinations, are encouraging. The field is poised at an interesting stage and indications are that reliably achieving functional cure from HBV infection is a tangible goal.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdullah Ely
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- School of Pathology, Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
47
|
Ali SA, Singh G, Datusalia AK. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre-clinical and clinical evidences. Phytother Res 2021; 35:3702-3731. [PMID: 33734511 DOI: 10.1002/ptr.7068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune and infectious diseases are the major public health issues and have gained great attention in the last few years for the search of new agents with therapeutic benefits on the host immune functions. In recent years, natural products (NPs) have been studied broadly for their multi-targeted activities under pathological conditions. Interestingly, several attempts have been made to outline the immunomodulatory properties of NPs. Research on in-vitro and in-vivo models have shown the immunomodulatory activity of NPs, is due to their antiinflammatory property, induction of phagocytosis and immune cells stimulation activity. Moreover, studies on humans have suggested that phytomedicines reduce inflammation and could provide appropriate benefits either in single form or complex combinations with other agents preventing disease progression, subsequently enhancing the efficacy of treatment to combat multiple malignancies. However, the exact mechanism of immunomodulation is far from clear, warranting more detailed investigations on their effectiveness. Nevertheless, the reduction of inflammatory cascades is considered as a prime protective mechanism in a number of inflammation regulated autoimmune diseases. Altogether, this review will discuss the biological activities of plant-derived secondary metabolites, such as polyphenols, alkaloids, saponins, polysaccharides and so forth, against various diseases and their potential use as an immunomodulatory agent under pathological conditions.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Gurpreet Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
48
|
Ceccarello E, Tabaglio T, Koh S, Oei V, Teo W, Jonathan OJ, Pavesi A, Chen Q, Bertoletti A, Wee KB, Guccione E. Splice-Switching Antisense Oligonucleotides as a Targeted Intrinsic Engineering Tool for Generating Armored Redirected T Cells. Nucleic Acid Ther 2021; 31:145-154. [PMID: 33567222 PMCID: PMC7997720 DOI: 10.1089/nat.2020.0905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Modification of specificity of T cells for the use in adoptive transfer (CAR- or TCR-redirected T cells) has revolutionized the therapy of liquid tumors and some infectious diseases. However, several obstacles are still hampering the efficacy of such potent therapy, hence concurrent modification of the function is also required to obtain successful results. Here we show the use of splice-switching antisense oligonucleotides (SSOs) as a tool to transiently modify T cell function. We demonstrate the possibility to transfect SSOs and an exogenous TCR into primary human T cells in the same electroporation reaction, without affecting viability and function of the transfected T lymphocytes. Moreover, we show that SSOs targeting T cell-specific mRNAs induce the skipping of the targeted exons, and the reduction of the protein and consequent modification of T cell function. This technical work paves the way to the use of SSOs in immune cells, not only for the knockdown of the functional isoform of the targeted proteins, but also for the protein manipulation by elimination of specific domains encoded by targeted exons.
Collapse
Affiliation(s)
- Erica Ceccarello
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,IMMUNOA Pte Ltd, Singapore, Singapore
| | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sarene Koh
- Lion TCR Pte Ltd, Singapore, Singapore.,Singapore Immunology Network, Agency for Science and Technology (A*STAR), Singapore, Singapore
| | - Vincent Oei
- Duke-NUS Medical School, Singapore, Singapore
| | - Winnie Teo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Owen Julianto Jonathan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Keng Boon Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
49
|
Adoptive Cell Therapy in Hepatocellular Carcinoma: Biological Rationale and First Results in Early Phase Clinical Trials. Cancers (Basel) 2021; 13:cancers13020271. [PMID: 33450845 PMCID: PMC7828372 DOI: 10.3390/cancers13020271] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The mortality of hepatocellular carcinoma (HCC) is quickly increasing worldwide. In unresectable HCC, the cornerstone of systemic treatments is switching from tyrosine kinase inhibitors to immune checkpoints inhibitors (ICI). Next to ICI, adoptive cell transfer represents another promising field of immunotherapy. Targeting tumor associated antigens such as alpha-fetoprotein (AFP), glypican-3 (GPC3), or New York esophageal squamous cell carcinoma-1 (NY-ESO-1), T cell receptor (TCR) engineered T cells and chimeric antigen receptors (CAR) engineered T cells are emerging as potentially effective therapies, with objective responses reported in early phase trials. In this review, we address the biological rationale of TCR/CAR engineered T cells in advanced HCC, their mechanisms of action, and results from recent clinical trials.
Collapse
|
50
|
Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. Application of CAR-T Cell Therapy beyond Oncology: Autoimmune Diseases and Viral Infections. Biomedicines 2021; 9:biomedicines9010059. [PMID: 33435454 PMCID: PMC7827151 DOI: 10.3390/biomedicines9010059] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell transfer (ACT) has long been at the forefront of the battle with cancer that began last century with the therapeutic application of tumor-infiltrating lymphocytes (TILs) against melanoma. The development of novel ACT approaches led researchers and clinicians to highly efficient technologies based on genetically engineered T lymphocytes, with chimeric antigen receptor (CAR)-T cells as the most prominent example. CARs consist of an extracellular domain that represents the single-chain variable fragment (scFv) of a monoclonal antibody (mAb) responsible for target recognition and the intracellular domain, which was built from up to several signaling motifs that mediated T cell activation. The number of potential targets amenable for CAR-T cell therapy is expanding rapidly, which means that the tremendous success of this approach in oncology could be further translated to treating other diseases. In this review, we outlined modern trends and recent developments in CAR-T cell therapy from an unusual point of view by focusing on diseases beyond cancer, such as autoimmune disorders and viral infections, including SARS-CoV-2.
Collapse
Affiliation(s)
- Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Alexey Petukhov
- Almazov National Medical Research Center, Institute of Hematology, 197341 Saint Petersburg, Russia;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|