1
|
Qiu T, Zhu X, Wu J, Hong W, Hu W, Fang T. Mechanisms of rifaximin inhibition of hepatic fibrosis in mice with metabolic dysfunction associated steatohepatitis through the TLR4/NFκB pathway. Sci Rep 2025; 15:9815. [PMID: 40118973 PMCID: PMC11928543 DOI: 10.1038/s41598-025-92282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) has become a serious public health problem, posing an increasingly dangerous threat to human health owing to its increasing prevalence and accompanying intra- and extrahepatic adverse outcomes. Rifaximin is considered to have therapeutic potential for MASH; however, its efficacy remains controversial. Our study aimed to observe the ameliorative effects of rifaximin and explore its possible mechanisms at the cellular level. 1. 42 male C57BL/6J mice were divided into 3 groups, the CON group and MCD group were fed with normal feed and MCD feed for 12 weeks respectively, and the MCD + RFX group was treated with rifaximin by gavage for 4 weeks on the basis of MCD feed. Hematoxylin-eosin staining, Sirius red staining and immunohistochemical staining were used to observe the histopathological changes of liver and intestine. Differences in liver transaminases, inflammatory factors, fibrosis indexes and intestinal tight junction proteins were compared among the 3 groups of mice. 2. A MASH cell model was constructed by inducing HepG2 cells with free fatty acids to observe the effects of rifaximin on MASH in vitro. In addition, the effects of rifaximin on TLR4/NF-κB signaling pathway were explored by applying TLR4 agonist LPS and TLR4 inhibitor TAK-242. Hepatic histopathology was significantly improved in MASH mice after rifaximin treatment, and their serum alanine aminotransferase and aspartate aminotransferase levels were (72.72 ± 5.68) U/L and (222.8 ± 11.22) U/L, respectively, which were significantly lower than those in the MCD group [(293.3 ± 10.69) U/L and (414.1 ± 36.29) U/L, P < 0.05], and the levels of inflammatory factors and fibrosis indicators were reduced. Rifaximin ameliorated intestinal barrier injury with increased expression of intestinal tight junction protein ZO-1 in the MCD + RFX group of mice, and the concentration of LPS-binding proteins (4.92 ± 0.55 vs. 15.82 ± 1.71, P < 0.05) was lower than that in the MCD group. In the NASH cell model, rifaximin similarly exerted inhibitory effects on its inflammatory factors and TLR4/NF-κB signaling pathway. Application of TLR4 inhibitors weakened the inhibitory effect of rifaximin on MASH. Our study supports rifaximin as a potential treatment for MASH, with potential mechanisms related to improving intestinal barrier integrity and downregulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of General Practice, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xiaodong Zhu
- Department of Gastroenterology, Quanzhou First Hospital, Quanzhou, China
| | - Jingju Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wenyuan Hong
- Anxi Maternal and Child Health Hospital, Quanzhou, China
| | - Weitao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
2
|
Zhang Q, Li T, Jiang H, Cao J, Wang H, Wang Z, Tang Q, Yang N, Zhao J, Wang F. Transcriptomic Insights Into Electroacupuncture Using Different Acupoint Combinations to Repair Mucosal Inflammatory Injury Induced in a Rat Model of Gastric Ulcer. J Inflamm Res 2025; 18:3399-3417. [PMID: 40093956 PMCID: PMC11910035 DOI: 10.2147/jir.s504930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background Electroacupuncture (EA) is a promising treatment for gastrointestinal disorders, yet the efficacy of different acupoint combinations remains mechanistically undefined. We evaluated the therapeutic effects of different acupoint combinations on mucosal inflammatory injury induced in a rat model of gastric ulcer (GU) and dissected its molecular mechanisms through transcriptomic profiling. Methods A GU rat model was established using hypothermic restrained water immersion stress. EA therapy was administered to the He-Mu (ST36-CV12), Shu-Mu (BL21-CV12), and Yuan-Luo (ST42- ST40) acupoint combinations for 5 days. EA therapeutic effects were evaluated by coat score, fecal moisture percentage, pain threshold, body mass, organ index, histopathological changes, serum level of oxidative stress, and inflammatory cytokine levels in gastric tissue. A transcriptome analysis identified the related differentially expressed genes (DEGs) and central signaling pathway. Real-time quantitative PCR and Western blot were performed to verify the mRNA and protein expression levels of the main genes in the central pathway. Results EA using different acupoint combinations differentially alleviated gastric mucosal injury in GU rats, with the He-Mu group exhibiting superior tissue damage alleviation, as well as inflammation and oxidative stress reductions. A Venn diagram transcriptome analysis revealed a shared central pathway among the three groups, corresponding to focal adhesion. Quantitative validation confirmed that the mRNA, protein, and phosphorylated protein expression of FAK, VCL, and EGFR-the core signal transduction factors of the focal adhesion pathway activated in gastric tissue after EA treatment-were upregulated, consistent with their therapeutic efficacy. Conclusion Our results demonstrated that the He-Mu acupoint combination exhibited superior therapeutic efficacy among the three acupoint combinations. EA using different acupoint combinations improved gastric mucosal injury to varying degrees, and was related to the focal adhesion pathway. The FAK, VCL, and EGFR are promising targets, and further studies are needed to elucidate their functional consequences in GU.
Collapse
Affiliation(s)
- Qi Zhang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
- School of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan City, Hubei Province, People's Republic of China
| | - Tie Li
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Hailin Jiang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Jiazhen Cao
- School of Nursing, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - He Wang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Zhongke Wang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Qingqing Tang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Ning Yang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Jinying Zhao
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Fuchun Wang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| |
Collapse
|
3
|
Pal S, Arisha R, Mazumder PM. A systematic review of preclinical studies targeted toward the management of co-existing functional gastrointestinal disorders, stress, and gut dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:25-46. [PMID: 39096376 DOI: 10.1007/s00210-024-03332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Modern dietary habits and stressed lifestyle have escalated the tendency to develop functional gastrointestinal disorders (FGIDs) through alteration in the gut-brain-microbiome axis. Clinical practices use symptomatic treatments, neglect root causes, and prolong distress in patients. The past decade has seen the evolution of various interventions to attenuate FGIDs. But clinical translation of such studies is very rare mostly due to lack of awareness. The aim of this review is to meticulously integrate different studies and bridge this knowledge gap. Literature between 2013 and 2023 was retrieved from PubMed, ProQuest, and Web of Science. The data was extracted based on the PRISMA guidelines and using the SYRCLE's risk of bias and the Cochrane Risk of Bias tools, quality assessment was performed. The review has highlighted molecular insights into the coexistence of FGIDs, stress, and gut dysbiosis. Furthermore, novel interventions focusing on diet, probiotics, herbal formulations, and phytoconstituents were explored which mostly had a multitargeted approach for the management of the diseases. Scientific literature implied positive interactions between the interventions and the gut microbiome by increasing the relative abundance of beneficial bacteria and reducing stress-related hormones. Moreover, the interventions reduced intestinal inflammation and regulated the expression of epithelial tight junction proteins in different in vivo models. This systematic review delves deep into the preclinical interventions to manage coexisting FGIDs, stress, and gut dysbiosis. However, in most of the discussed studies, long-term risks and toxicity profile of the interventions are lacking. So, it is necessary to highlight them for improved clinical outcomes.
Collapse
Affiliation(s)
- Shreyashi Pal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ruhi Arisha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
4
|
Du L, Jiang W, Zhu X, Zhu L, Fan Y, Jiang W. Rifaximin alleviates intestinal barrier disruption and systemic inflammation via the PXR/NFκB/MLCK pathway and modulates intestinal Lachnospiraceae abundance in heat-stroke mice. Int Immunopharmacol 2024; 143:113462. [PMID: 39461239 DOI: 10.1016/j.intimp.2024.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Heatstroke is a critical condition with a high mortality rate and intestinal barrier dysfunction is a key factor in its progression to sepsis in some patients. This study aimed to explore the protective effects of rifaximin on the intestinal barrier in heat-stroke mice and the underlying mechanisms. A mouse model of heat stroke was established, followed by rifaximin intervention. Rifaximin significantly improved survival rates, reduced core body temperature, and alleviated intestinal tissue damage. Further mechanistic studies revealed that rifaximin restored heat stroke-induced damage to intestinal barrier function by upregulating the expression of the tight junction proteins, ZO-1 and occludin. Additionally, 16S rRNA sequencing showed that rifaximin significantly increased the abundance of Lachnospiraceae in the gut and enhanced short-chain fatty acid butyrate levels. In vitro experiment results revealed that butyrate promotes the expression of the intestinal epithelial cell protein MUC2, thereby strengthening the intestinal barrier. Rifaximin also activated the pregnane X receptor (PXR) signaling pathway and inhibited the NF-κB/MLCK signaling pathway, reducing the permeability of intestinal epithelial cells. This study demonstrated that rifaximin protects the intestinal barrier in mice with heat stroke through multiple pathways by modulating the gut microbiota, increasing butyrate production, and activating the PXR signaling pathway. These findings provide a new theoretical basis for the clinical application of rifaximin in heat stroke treatment.
Collapse
Affiliation(s)
- Liwen Du
- Emergency Department, Ningbo No.2 Hospital, Ningbo 315010, China
| | - Weiqiang Jiang
- Emergency Department, Ningbo Hangzhou Bay Hospital, Ningbo 315336, China
| | - Xueqi Zhu
- Emergency Department, Ningbo No.2 Hospital, Ningbo 315010, China
| | - Leilei Zhu
- Emergency Department, Ningbo No.2 Hospital, Ningbo 315010, China
| | - Youfen Fan
- Burns Department, Ningbo No.2 Hospital, Ningbo 315010, China
| | - Wei Jiang
- Department of Intensive Care Unit, Ningbo No.2 Hospital, Ningbo 315010, China.
| |
Collapse
|
5
|
Airola C, Severino A, Spinelli I, Gasbarrini A, Cammarota G, Ianiro G, Ponziani FR. "Pleiotropic" Effects of Antibiotics: New Modulators in Human Diseases. Antibiotics (Basel) 2024; 13:1176. [PMID: 39766566 PMCID: PMC11727521 DOI: 10.3390/antibiotics13121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025] Open
Abstract
Antibiotics, widely used medications that have significantly increased life expectancy, possess a broad range of effects beyond their primary antibacterial activity. While some are recognized as adverse events, others have demonstrated unexpected benefits. These adjunctive effects, which have been defined as "pleiotropic" in the case of other pharmacological classes, include immunomodulatory properties and the modulation of the microbiota. Specifically, macrolides, tetracyclines, and fluoroquinolones have been shown to modulate the immune system in both acute and chronic conditions, including autoimmune disorders (e.g., rheumatoid arthritis, spondyloarthritis) and chronic inflammatory pulmonary diseases (e.g., asthma, chronic obstructive pulmonary disease). Azithromycin, in particular, is recommended for the long-term treatment of chronic inflammatory pulmonary diseases due to its well-established immunomodulatory effects. Furthermore, antibiotics influence the human microbiota. Rifaximin, for example, exerts a eubiotic effect that enhances the balance between the gut microbiota and the host immune cells and epithelial cells. These pleiotropic effects offer new therapeutic opportunities by interacting with human cells, signaling molecules, and bacteria involved in non-infectious diseases like spondyloarthritis and inflammatory bowel diseases. The aim of this review is to explore the pleiotropic potential of antibiotics, from molecular and cellular evidence to their clinical application, in order to optimize their use. Understanding these effects is essential to ensure careful use, particularly in consideration of the threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Irene Spinelli
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
6
|
Llansola M, Izquierdo-Altarejos P, Montoliu C, Mincheva G, Palomares-Rodriguez A, Pedrosa MA, Arenas YM, Felipo V. Role of peripheral inflammation in minimal hepatic encephalopathy. Metab Brain Dis 2024; 39:1667-1677. [PMID: 39177864 DOI: 10.1007/s11011-024-01417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Many patients with liver cirrhosis show minimal hepatic encephalopathy (MHE) with mild cognitive impairment (MCI) and motor alterations that reduce their quality of life. Some patients with steatotic liver disease also suffer MCI. To design treatments to improve MHE/MCI it is necessary to understand the mechanisms by which liver disease induce them. This review summarizes studies showing that appearance of MHE/MCI is associated with a shift in the immunophenotype leading to an "autoimmune-like" form with increased pro-inflammatory monocytes, enhanced CD4 T and B lymphocytes activation and increased plasma levels of pro-inflammatory cytokines, including IL-17, IL-21, TNFα, IL-15 and CCL20. The contribution of peripheral inflammation to trigger MHE is supported by studies in animal models and by the fact that rifaximin treatment reverses MHE in around 60% of patients in parallel with reversal of the changes in peripheral inflammation. MHE does not improve in patients in which peripheral inflammation is not improved by rifaximin. The process by which peripheral inflammation induces MHE involves induction of neuroinflammation in brain, with activation of microglia and astrocytes and increased pro-inflammatory TNFα and IL-1β, which is observed in patients who died with steatotic liver disease (SLD) or liver cirrhosis and in animal models of MHE. Neuroinflammation alters glutamatergic and GABAergic neurotransmission, leading to cognitive and motor impairment. Transmission of peripheral alterations into the brain is mediated by infiltration in brain of extracellular vesicles from plasma and of cells from the peripheral immune system. Acting on any step of the process peripheral inflammation - neuroinflammation - altered neurotransmission may improve MHE.
Collapse
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Carmina Montoliu
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, Spain
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - María A Pedrosa
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
7
|
Huang C, Lan H, Bai M, Chen J, Xu S, Sun Q, Chen Q, Mao W, Jiang J, Zhu J. Rifaximin alleviates irinotecan-induced diarrhea in mice model. Ann Med 2024; 56:2429029. [PMID: 39575573 PMCID: PMC11587719 DOI: 10.1080/07853890.2024.2429029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Irinotecan is a chemotherapeutic drug widely used to treat solid tumors. However, its effectiveness is limited by the severely delayed onset of diarrhea. This study aimed to confirm the protective effects of the non-systemic oral antibiotic rifaximin on irinotecan-induced mucositis in mice model. MATERIALS AND METHODS Six to eight week-old BALB/c mice were treated with saline, irinotecan (50 mg/kg, i.p. once daily), rifaximin (50 mg/kg, p.o. twice daily), or irinotecan + rifaximin for 9 consecutive days. Signs of diarrhea, bloody diarrhea, and body weight were monitored daily. Intestinal tissues were harvested for histopathological analysis and quantitative PCR. SN38 and SN38G concentration in intestine were detected using LC-MS analysis. Intestinal bacteria β-glucuronidase (BGUS) activity was detected using mouse feces. We performed 16S rRNA sequencing to investigate the gut microbiota composition. Gut permeability was tested in vivo by measuring the fluorescein isothiocyanate-dextran intensity in the serum. RESULTS Rifaximin reduced the frequency of delayed diarrhea and attenuated the severity of diarrhea caused by irinotecan in mice. Rifaximin significantly inhibited SN38 exposure in intestine and irinotecan-induced increase in BGUS activity. Rifaximin alleviated intestinal mucosal inflammation, prevented intestinal epithelial damage caused by irinotecan, and maintained gut barrier function. Moreover, the consecutive use of rifaximin did not cause a disorder in gut microbiota and reduced irinotecan-induced Firmicutes expansion. More importantly, rifaximin inhibited the expansion of some microbiota (such as Blautia, Eggerthella, and f_Enterobacteriaceae) and promoted an increase in beneficial microbiota (such as Lactobacillus intestinalis, Lachnospiraceae NK4A136 group, and f_Oscillospiraceae). CONCLUSIONS Preventive use of rifaximin is a feasible method to protect against irinotecan-induced diarrhea.
Collapse
Affiliation(s)
- Chengyi Huang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinggang Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shengkun Xu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jin Jiang
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhao B, Ye J, Zhao W, Liu X, Lan H, Sun J, Chen J, Cai X, Wei Q, Zhou Q, Zhang Z, Wu Y, Yang Y, Cao P. 6-Shogaol Derived from Ginger Inhibits Intestinal Crypt Stem Cell Differentiation and Contributes to Irritable Bowel Syndrome Risk. RESEARCH (WASHINGTON, D.C.) 2024; 7:0524. [PMID: 39512446 PMCID: PMC11542252 DOI: 10.34133/research.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Dietary factors play a crucial role in irritable bowel syndrome (IBS) pathogenesis. Therefore, the dietary contraindications for patients with IBS require further supplementation. Recent investigations have revealed that ginger consumption may pose a risk of aggravating the symptoms and incidence of IBS; however, the specific mechanism remains unknown. In this study, we developed experimental IBS and intestinal organoid differentiation screening models to elucidate the mechanisms underlying the ginger-mediated exacerbation of IBS symptoms. Subsequently, we used a knockout approach combined with click chemistry as well as virus infection to identify the toxic components of ginger and the target mechanism. Our results showed that a daily intake of 90 to 300 mg/kg ginger (equivalent to a human daily dose of 0.6 to 2 g per person) may pose a risk of exacerbating IBS symptoms. Furthermore, a component derived from 6-gingerol (ginger's main ingredient) through in vivo gastric acid and heat processing inhibited the formation of the eIF3 transcription initiation complex by covalently binding to the Cys58 site of eIF3A, a key factor regulating intestinal crypt stem cell differentiation, further reducing the goblet cell number and related mucus layer thickness and increasing lipopolysaccharide infiltration and low-grade inflammation in the ileum crypts, thereby exacerbating the symptoms of IBS in mice. Our study suggests that dietary ginger aggravates IBS and provides safety evaluation methods for the proper use of foods in specific populations.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Ye
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinbing Sun
- Department of General Surgery, Changshu No. 1 People’s Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China
| | - Jiao Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Cai
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingyun Wei
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhou
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengwei Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuze Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Compare D, Sgamato C, Rocco A, Coccoli P, Ambrosio C, Nardone G. The Leaky Gut and Human Diseases: "Can't Fill the Cup if You Don't Plug the Holes First". Dig Dis 2024; 42:548-566. [PMID: 39047703 DOI: 10.1159/000540379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The gut barrier is a sophisticated and dynamic system that forms the frontline defense between the external environment and the body's internal milieu and includes various structural and functional components engaged not only in digestion and nutrient absorption but also in immune regulation and overall health maintenance. SUMMARY When one or more components of the intestinal barrier lose their structure and escape their function, this may result in a leaky gut. Mounting evidence emphasizes the crucial role of the gut microbiome in preserving the integrity of the gut barrier and provides insights into the pathophysiological implications of conditions related to leaky gut in humans. Assessment of intestinal permeability has evolved from invasive techniques to noninvasive biomarkers, but challenges remain in achieving consensus about the best testing methods and their accuracy. Research on the modulation of gut permeability is just starting, and although no medical guidelines for the treatment of leaky gut syndrome are available, several treatment strategies are under investigation with promising results. KEY MESSAGES This review discusses the composition of the intestinal barrier, the pathophysiology of the leaky gut and its implications on human health, the measurement of intestinal permeability, and the therapeutic strategies to restore gut barrier integrity.
Collapse
Affiliation(s)
- Debora Compare
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Costantino Sgamato
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Alba Rocco
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Pietro Coccoli
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Carmen Ambrosio
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| |
Collapse
|
10
|
Kebede V, Ravizza T, Balosso S, Di Sapia R, Canali L, Soldi S, Galletti S, Papazlatani C, Karas PA, Vasileiadis S, Sforzini A, Pasetto L, Bonetto V, Vezzani A, Vesci L. Early treatment with rifaximin during epileptogenesis reverses gut alterations and reduces seizure duration in a mouse model of acquired epilepsy. Brain Behav Immun 2024; 119:363-380. [PMID: 38608741 DOI: 10.1016/j.bbi.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
The gut microbiota is altered in epilepsy and is emerging as a potential target for new therapies. We studied the effects of rifaximin, a gastrointestinal tract-specific antibiotic, on seizures and neuropathology and on alterations in the gut and its microbiota in a mouse model of temporal lobe epilepsy (TLE). Epilepsy was induced by intra-amygdala kainate injection causing status epilepticus (SE) in C57Bl6 adult male mice. Sham mice were injected with vehicle. Two cohorts of SE mice were fed a rifaximin-supplemented diet for 21 days, starting either at 24 h post-SE (early disease stage) or at day 51 post-SE (chronic disease stage). Corresponding groups of SE mice (one each disease stage) were fed a standard (control) diet. Cortical ECoG recording was done at each disease stage (24/7) for 21 days in all SE mice to measure the number and duration of spontaneous seizures during either rifaximin treatment or control diet. Then, epileptic mice ± rifaximin and respective sham mice were sacrificed and brain, gut and feces collected. Biospecimens were used for: (i) quantitative histological analysis of the gut structural and cellular components; (ii) markers of gut inflammation and intestinal barrier integrity by RTqPCR; (iii) 16S rRNA metagenomics analysis in feces. Hippocampal neuronal cell loss was assessed in epileptic mice killed in the early disease phase. Rifaximin administered for 21 days post-SE (early disease stage) reduced seizure duration (p < 0.01) and prevented hilar mossy cells loss in the hippocampus compared to epileptic mice fed a control diet. Epileptic mice fed a control diet showed a reduction of both villus height and villus height/crypt depth ratio (p < 0.01) and a decreased number of goblet cells (p < 0.01) in the duodenum, as well as increased macrophage (Iba1)-immunostaining in the jejunum (p < 0.05), compared to respective sham mice. Rifaximin's effect on seizures was associated with a reversal of gut structural and cellular changes, except for goblet cells which remained reduced. Seizure duration in epileptic mice was negatively correlated with the number of mossy cells (p < 0.01) and with villus height/crypt depth ratio (p < 0.05). Rifaximin-treated epileptic mice also showed increased tight junctions (occludin and ZO-1, p < 0.01) and decreased TNF mRNA expression (p < 0.01) in the duodenum compared to epileptic mice fed a control diet. Rifaximin administered for 21 days in chronic epileptic mice (chronic disease stage) did not change the number or duration of seizures compared to epileptic mice fed a control diet. Chronic epileptic mice fed a control diet showed an increased crypt depth (p < 0.05) and reduced villus height/crypt depth ratio (p < 0.01) compared to respective sham mice. Rifaximin treatment did not affect these intestinal changes. At both disease stages, rifaximin modified α- and β-diversity in epileptic and sham mice compared to respective mice fed a control diet. The microbiota composition in epileptic mice, as well as the effects of rifaximin at the phylum, family and genus levels, depended on the stage of the disease. During the early disease phase, the abundance of specific taxa was positively correlated with seizure duration in epileptic mice. In conclusion, gut-related alterations reflecting a dysfunctional state, occur during epilepsy development in a TLE mouse model. A short-term treatment with rifaximin during the early phase of the disease, reduced seizure duration and neuropathology, and reversed some intestinal changes, strengthening the therapeutic effects of gut-based therapies in epilepsy.
Collapse
Affiliation(s)
- Valentina Kebede
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Luca Canali
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Sara Soldi
- AAT Advanced Analytical Technologies Srl, Fiorenzuola d'Arda (PC), Italy
| | - Serena Galletti
- AAT Advanced Analytical Technologies Srl, Fiorenzuola d'Arda (PC), Italy
| | - Christina Papazlatani
- Dept. Biochemistry and Biotechnology University of Thessaly Biopolis, Larissa, Greece
| | - Panagiotis A Karas
- Dept. Biochemistry and Biotechnology University of Thessaly Biopolis, Larissa, Greece
| | - Sotirios Vasileiadis
- Dept. Biochemistry and Biotechnology University of Thessaly Biopolis, Larissa, Greece
| | | | - Laura Pasetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Valentina Bonetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | | |
Collapse
|
11
|
Ke W, Wu J, Li H, Huang S, Li H, Wang Y, Wu Y, Yuan J, Zhang S, Tang H, Lei K. Network pharmacology and experimental validation to explore the mechanism of Changji'an formula against irritable bowel syndrome with predominant diarrhea. Heliyon 2024; 10:e33102. [PMID: 39005919 PMCID: PMC11239594 DOI: 10.1016/j.heliyon.2024.e33102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Changji'an Formula (CJAF) is a Chinese herbal compound, which is effective against irritable bowel syndrome with predominant diarrhea (IBS-D) in clinic. However, the molecular mechanism has not been well defined. In the current study, the potential targets and signaling pathways of CJAF against IBS-D were predicted using network pharmacology analysis. The pharmacological mechanisms of CJAF against IBS-D and the potential mechanism were validated by using an IBS-D mouse model induced by enema with trinitrobenzene-sulfonic acid (TNBS) plus with restraint stress and further intervened with CJAF. A total of 232 active compounds of CJAF were obtained, a total of 397 potential targets for the active ingredients were retrieved and a total of 219 common targets were obtained as the potential targets of CJAF against IBS-D. GO and KEGG enrichment analyses showed that multiple targets were enriched and could be experimentally validated in a mouse model of IBS-D. The mechanisms were mainly converged on the immune and inflammatory pathways, especially the NF-κB, TNF and IL-17 signaling pathway, which were closely involved in the treatment of CJAF against IBS-D. Animal experiment showed that CJAF alleviated visceral hypersensitivity and diarrhea symptom of IBS-D. CJAF also restored the histological and ultrastructure damage of IBS-D. The result of Western blot showed that CJAF upregulated colonic tight junction proteins of ZO-1, Occludin and Claudin-1. Further results demonstrated that CJAF inhibited the protein expression of NF-κB/NLRP3 inflammasome pathway targets and downregulated proinflammatory mediators of IL-1β, IL-18, TNF-α. In conclusion, CJAF could effectively reduce inflammatory response and alleviate visceral hypersensitivity as well as diarrhea symptom of IBS-D by inhibiting the NF-κB/NLRP3 signaling pathway. This study not only reveals the mechanism of CJAF against IBS-D, but also provides a novel therapeutic strategy for IBS-D.
Collapse
Affiliation(s)
- Wei Ke
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, China
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jinjun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Hongbin Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Siyu Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Huibiao Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Yongfu Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingxiu Wu
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jie Yuan
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Shuncong Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Hongmei Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Kaijun Lei
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong, China
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| |
Collapse
|
12
|
Sugihara N, Okada Y, Tomioka A, Ito S, Tanemoto R, Nishii S, Mizoguchi A, Inaba K, Hanawa Y, Horiuchi K, Wada A, Akita Y, Higashiyama M, Kurihara C, Komoto S, Tomita K, Hokari R. Probiotic Yeast from Miso Ameliorates Stress-Induced Visceral Hypersensitivity by Modulating the Gut Microbiota in a Rat Model of Irritable Bowel Syndrome. Gut Liver 2024; 18:465-475. [PMID: 37291901 PMCID: PMC11096913 DOI: 10.5009/gnl220100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/18/2022] [Accepted: 01/26/2023] [Indexed: 06/10/2023] Open
Abstract
Background/Aims Recent studies indicate that probiotics, which have attracted attention as a treatment for irritable bowel syndrome, affect intestinal homeostasis. In this study, we investigated whether Zygosaccharomyces sapae (strain I-6), a probiotic yeast isolated from miso (a traditional Japanese fermented food), could improve irritable bowel syndrome symptoms. Methods Male Wistar rats were exposed to water avoidance stress (WAS). The number of defecations during WAS and the visceral hypersensitivity before and after WAS were evaluated using colorectal distension. Tight junction changes were assessed by Western blotting. Some rats were fed with strain I-6 or β-glucan from strain I-6. Changes in the intestinal microbiota were analyzed. The effect of fecal microbiota transplantation after WAS was evaluated similarly. Caco-2 cells were stimulated with interleukin-1β and tight junction changes were investigated after coculture with strain I-6. Results The increased number of stool pellets and visceral hypersensitivity induced by WAS were suppressed by administering strain I-6. The decrease in tight junction protein occludin by WAS was reversed by the administration of strain I-6. β-Glucan from strain I-6 also suppressed those changes induced by WAS. In the rat intestinal microbiota, treatment with strain I-6 altered the β-diversity and induced changes in bacterial occupancy. Upon fecal microbiota transplantation, some symptoms caused by WAS were ameliorated. Conclusions These results suggest that traditional fermented foods such as miso in Japan are valuable sources of probiotic yeast candidates, which may be useful for preventing and treating stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- Nao Sugihara
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Suguru Ito
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Rina Tanemoto
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shin Nishii
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Mizoguchi
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kenichi Inaba
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshinori Hanawa
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kazuki Horiuchi
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Wada
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshihiro Akita
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
13
|
Zhu X, Zhang C, Feng S, He R, Zhang S. Intestinal microbiota regulates the gut-thyroid axis: the new dawn of improving Hashimoto thyroiditis. Clin Exp Med 2024; 24:39. [PMID: 38386169 PMCID: PMC10884059 DOI: 10.1007/s10238-024-01304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Intestinal microbiota plays an indispensable role in the host's innate immune system, which may be related to the occurrence of many autoimmune diseases. Hashimoto thyroiditis (HT) is one of the most common autoimmune diseases, and there is plenty of evidence indicating that HT may be related to genetics and environmental triggers, but the specific mechanism has not been proven clearly. Significantly, the composition and abundance of intestinal microbiota in patients with HT have an obvious difference. This phenomenon led us to think about whether intestinal microbiota can affect the progress of HT through some mechanisms. By summarizing the potential mechanism of intestinal microflora in regulating Hashimoto thyroiditis, this article explores the possibility of improving HT by regulating intestinal microbiota and summarizes relevant biomarkers as therapeutic targets, which provide new ideas for the clinical diagnosis and treatment of Hashimoto thyroiditis.
Collapse
Affiliation(s)
- Xiaxin Zhu
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310018, People's Republic of China
| | - Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Takakura W, Rezaie A, Chey WD, Wang J, Pimentel M. Symptomatic Response to Antibiotics in Patients With Small Intestinal Bacterial Overgrowth: A Systematic Review and Meta-analysis. J Neurogastroenterol Motil 2024; 30:7-16. [PMID: 38173154 PMCID: PMC10774808 DOI: 10.5056/jnm22187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Background/Aims We performed a systematic review and meta-analysis evaluating the symptomatic response rate to antibiotics in patients with small intestinal bacterial overgrowth (SIBO). Similarly, we performed a meta-analysis on the symptomatic response to antibiotics in irritable bowel syndrome (IBS) patients with and without SIBO. Methods MEDLINE, EMBASE, Web of Science, and Cochrane databases were searched from inception to March 2021. Randomized controlled trials and prospective studies reporting dichotomous outcomes were included. Results There were 6 studies included in the first meta-analysis comparing the efficacy of antibiotics to placebo or no antibiotic. This included 196 patients, of whom 101 received antibiotics and 95 received placebo or no antibiotics. Significantly more patients improved with antibiotics (relative risk [95% CI] = 2.46 [1.33-4.55], P = 0.004). There were 4 studies included in the analysis comparing symptomatic response rates in IBS patients with or without SIBO with 266 IBS patients, of whom 172 had SIBO and 94 did not. The pooled response rate for symptomatic response was 51.2% in the SIBO group vs 23.4% in the no SIBO group, respectively. Significantly more IBS patients with SIBO responded to antibiotics compared to those without SIBO (relative risk [95% CI] = 2.07 [1.40-3.08], P = 0.0003). Conclusions Antibiotics appear to be efficacious in treating SIBO, although small sample sizes and poor data quality limit this interpretation. Symptomatic response rates also appear to be higher in IBS patients with SIBO. This may be the first example of precision medicine in IBS as opposed to our current empiric treatment approach. Large-multicenter studies are needed to verify the results.
Collapse
Affiliation(s)
- Will Takakura
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - William D Chey
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jiajing Wang
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
15
|
Jha P, Dangi N, Sharma S. Probiotics Show Promise as a Novel Natural Treatment for Neurological Disorders. Curr Pharm Biotechnol 2024; 25:799-806. [PMID: 37877144 DOI: 10.2174/0113892010261604230919170143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/26/2023]
Abstract
Probiotics are beneficial microorganisms shown to improve human health when consumed regularly and in sufficient quantities. Numerous health benefits can be attained by possessing important metabolites with nutritional and medicinal qualities. It has been shown through scientific research that these living microbial consortiums can influence a variety of mental health outcomes, including but not limited to anxiety, depression, cognitive processes, stress responses, and behavioral patterns. Selected strains of bacteria and yeasts control how the central nervous system (CNS) communicates with the gut-brain axis (GBA) through neuronal, humoral, and metabolic pathways to ease mood. Psychobiotics are substances that can affect the digestive system as well as mood and anxiety. There is scant evidence to validate the beneficial effects of psychiatric drugs in treating neurological diseases or disorders. The therapeutic method of research into psychobiotics opens exciting prospects for the future of the field of development. This review compiles the current evidence available in the scientific literature on the use of probiotics to influence neurological disorders.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Biotechnology, Amity Institute of Biotechnology, Amity University, Jaipur, 303002, Rajasthan, India
| | - Neha Dangi
- Department of Pharmaceutical Sciences, Alwar Pharmacy College, M.I.A., Alwar, 301030, Rajasthan, India
| | - Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar, 301028, Rajasthan, India
| |
Collapse
|
16
|
Kraimi N, Ross T, Pujo J, De Palma G. The gut microbiome in disorders of gut-brain interaction. Gut Microbes 2024; 16:2360233. [PMID: 38949979 PMCID: PMC11218806 DOI: 10.1080/19490976.2024.2360233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.
Collapse
Affiliation(s)
- Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Taylor Ross
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Julien Pujo
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
17
|
Zhang J, Zhang C, Zhang T, Zhang L, Duan L. Distinct Effects of Non-absorbed Agents Rifaximin and Berberine on the Microbiota-Gut-Brain Axis in Dysbiosis-induced Visceral Hypersensitivity in Rats. J Neurogastroenterol Motil 2023; 29:520-531. [PMID: 37814439 PMCID: PMC10577460 DOI: 10.5056/jnm22182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 02/12/2023] [Indexed: 10/11/2023] Open
Abstract
Background/Aims Irritable bowel syndrome (IBS) is accepted as a disorder of gut-brain interactions. Berberine and rifaximin are non-absorbed antibiotics and have been confirmed effective for IBS treatment, but there is still lack of direct comparison of their effects. This study aims to compare the effect of the 2 drugs on the alteration of gut-brain axis caused by gut microbiota from IBS patients. Methods Germ-free rats received fecal microbiota transplantation from screened IBS patients and healthy controls. After 14 days' colonization, rats were administrated orally with berberine, rifaximin or vehicle respectively for the next 14 days. The visceral sensitivity was evaluated, fecal microbiota profiled and microbial short chain fatty acids were determined. Immunofluorescence staining and morphological analysis were performed to evaluate microglial activation. Results Visceral hypersensitivity induced by IBS-fecal microbiota transplantation was relieved by berberine and rifaximin, and berberine increased sucrose preference rate. Microbial α-diversity were reduced by both drugs. Compared with rifaximin, berberine significantly changed microbial structure and enriched Lachnoclostridium. Furthermore, berberine but not rifaximin significantly increased fecal concentrations of acetate and propionate acids. Berberine restored the morphological alterations of microglia induced by dysbiosis, which may be associated with its effect on the expression of microbial gene pathways involved in peptidoglycan biosynthesis. Rifaximin affected neither the numbers of activated microglial cells nor the microglial morphological alterations. Conclusions Berberine enriched Lachnoclostridium, reduced the expression of peptidoglycan biosynthesis genes and increased acetate and propionate. The absence of these actions of rifaximin may explain the different effects of the drugs on microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Tao Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Lu Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
18
|
Torre A, Córdova-Gallardo J, Frati Munari AC. Rifaximin Alfa and Liver Diseases: More Than a Treatment for Encephalopathy, a Disease Modifier. Ther Clin Risk Manag 2023; 19:839-851. [PMID: 37899985 PMCID: PMC10612522 DOI: 10.2147/tcrm.s425292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 10/31/2023] Open
Abstract
RFX, a rifamycin-based antibacterial agent obtained by the culture of the actinomycete Streptomyces mediterranei, has a broad antibacterial spectrum covering gram- positive, gram-negative, aerobic, and anaerobic bacteria. RFX is an antibiotic that elicits its effect by inhibiting bacterial RNA synthesis. When administered orally, its intestinal absorption is extremely low (<0.4%), restricting antibacterial activity mainly in the intestinal tract, with few systemic side effects. RFX has been recommended by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver guidelines for the treatment of HE. RFX may contribute to restore hepatic function and to decrease the development of liver fibrosis. Its efficacy has been shown in patients with previous hepatic encephalopathy and several complications, such as infections, including spontaneous bacterial peritonitis, ascites and oesophageal variceal bleeding. Thus, RFX has an outstanding role in the therapeutic arsenal in hepatic cirrhosis, under the concept of disease modifier.
Collapse
Affiliation(s)
- Aldo Torre
- Guest Research, Metabolic Unit Department, Instituto Nacional de Ciencias Médicas Y Nutrición “Salvador Zubirán”, México City, Mexico
- Guest Research, Liver Unit Department, Hospital General de México, México City, Mexico
| | | | | |
Collapse
|
19
|
Hung TH, Wang CY, Lee HF. Update in diagnosis and management of irritable bowel syndrome. Tzu Chi Med J 2023; 35:306-311. [PMID: 38035060 PMCID: PMC10683518 DOI: 10.4103/tcmj.tcmj_104_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 08/09/2023] [Indexed: 12/02/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by a lack of structural or biochemical abnormalities. The current diagnosis of IBS is based on the Rome IV criteria, and it is recommended to approach IBS patients using a multidimensional clinical profile (MDCP). The pathophysiology of IBS is multifactorial and involves motility disorders, genetic factors, immune responses, visceral hypersensitivity, brain-gut dysregulation, and altered intestinal microbiota. The management of IBS includes both nonpharmacologic and pharmacologic therapies. Nonpharmacologic therapy options include physical activity, low fermentable oligosaccharides, disaccharides, monosaccharides, and polyol diet, as well as cognitive behavioral therapy. Pharmacologic therapy options include probiotics, antidepressants, antispasmodics, and new agents. In clinical practice, a multidisciplinary strategy, including nonpharmacologic or/and pharmacologic treatment for IBS, is emphasized. Therefore, clinicians should carefully consider the underlying pathophysiology before selecting an appropriate therapeutic option for the treatment of IBS. In other words, individualized treatment plans are necessary for managing IBS.
Collapse
Affiliation(s)
- Tsung-Hsing Hung
- Division of Gastroenterology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Ying Wang
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hsing-Feng Lee
- Division of Gastroenterology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
20
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Gao F, Yuan WH, Wu SB, Wang ZB, Zhu GQ, Zhou MQ. Electroacupuncture in the treatment of IBS in rats: investigation of the mechanisms of CRH + neurons in the paraventricular nucleus. J Neurophysiol 2023; 130:380-391. [PMID: 37435647 PMCID: PMC10625839 DOI: 10.1152/jn.00156.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023] Open
Abstract
Electroacupuncture (EA) is well documented to treat irritable bowel syndrome (IBS). However, the mechanism of the central nervous system related to IBS and acupuncture stimulation is still not well known. In this study, a rat model of IBS was established by cold-restraint comprehensive stresses for 15 days, and it was found that the levels of corticotropin-releasing hormone (CRH), corticosterone (CORT), and adrenocorticotropic hormone (ACTH) in the peripheral serum were increased; the visceral sensitivity was enhanced; and the intestinal motility was accelerated, specifically, there was an enhancement in the discharge frequency of neurons in the paraventricular nucleus (PVN). EA treatment for 3 days, 20 min/day, alleviated the increase in the levels of CRH, CORT, and ACTH in the peripheral serum of rats, reduced the visceral sensitivity of IBS rats, and inhibited colon movement and discharge frequency of the neurons in the PVN. In addition, EA could reduce the excitability of CRH neurons and the expression of corticotropin-releasing hormone receptor 1 (CRHR1) and corticotropin-releasing hormone receptor 2 (CRHR2) in PVN. At the same time, the expression of CRH, CRHR1, and CRHR2 in the peripheral colon was decreased. Taken together, EA appears to regulate intestinal functional activity through the central CRH nervous system, revealing the central regulation mechanism of EA in IBS rats, and providing a scientific research basis for the correlation among the meridians, viscera, and brain.NEW & NOTEWORTHY The purpose of this research was to determine the central regulatory mechanism of electroacupuncture (EA) in rats with irritable bowel syndrome (IBS). Our results showed that combined with the serum changes in corticotropin-releasing hormone (CRH), corticosterone (CORT), and adrenocorticotropic hormone (ACTH), the improvement of IBS by EA was related to them. Furthermore, EA could regulate intestinal functional activity through the central CRH+ nervous system.
Collapse
Affiliation(s)
- Fang Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Hua Yuan
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Sheng-Bing Wu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | | | - Guo-Qi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Mei-Qi Zhou
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
22
|
Cheng S, Zhu Z, Li H, Wang W, Jiang Z, Pan F, Liu D, Ho RCM, Ho CSH. Rifaximin ameliorates depression-like behaviour in chronic unpredictable mild stress rats by regulating intestinal microbiota and hippocampal tryptophan metabolism. J Affect Disord 2023; 329:30-41. [PMID: 36842645 DOI: 10.1016/j.jad.2023.02.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Chronic unpredictable mild stress (CUMS) can induce depressive behaviours and alter the composition of the gut microbiome. Although modulating gut microbiota can improve depression-like behaviour in rats, the mechanism of action is unclear. Additionally, gut microbiota can affect brain function through the neuroendocrine pathway. This pathway may function by regulating the secretion of neurotransmitters such as tryptophan (TRP). Metabolites of TRP, such as 5-hydroxytryptamine (5-HT) and kynurenine (KYN), are related to the pathophysiological process of depression. Indoleamine-2, 3-dioxygenase-1 (IDO1) and Tryptophan hydroxylase 2 (TPH2) are the key rate-limiting enzymes in TRP metabolism and play an important role in KYN and 5-HT metabolism. METHODS Rats were subjected to four weeks of CUMS and given rifaximin150 mg/kg by oral gavage daily. After modelling, we investigated the rat's behaviours, composition of the faecal microbiome, neurotransmitter metabolism and key metabolic enzymes of the TRP pathway in the hippocampus (HIP). RESULTS Rifaximin administration improved depressive behaviour in rats, corrected intestinal microbiota disorders and HIP TRP metabolism and regulated the expression of IDO1 and TPH2 in the HIP. CONCLUSIONS Rifaximin improves depression-like behaviour in CUMS rats by influencing the gut microbiota and tryptophan metabolism.
Collapse
Affiliation(s)
- Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhijun Jiang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| | - Roger C M Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Hanning N, Verboven R, De Man JG, Ceuleers H, De Schepper HU, Smet A, De Winter BY. Single-day and multi-day exposure to orogastric gavages does not affect intestinal barrier function in mice. Am J Physiol Gastrointest Liver Physiol 2023; 324:G281-G294. [PMID: 36749571 DOI: 10.1152/ajpgi.00203.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023]
Abstract
Animals involved in common laboratory procedures experience minor levels of stress. The direct effect of limited amounts of stress on gastrointestinal function has not been reported yet. Therefore, this study aimed to assess the effect of single-day and multi-day orogastric gavages on gut physiology in mice. To this end, 12-wk-old female C57Bl6/J mice were randomized to receive treatment with sterile water (200 µL) delivered by orogastric gavages twice daily for a total of 1 or 10 day(s). Control animals did not receive any treatment. Subsequently, gastrointestinal function was assessed by measuring fecal pellet production. Furthermore, ex vivo intestinal barrier and secretory function of the distal colon, proximal colon, and terminal ileum were quantified in Ussing chambers. In mice, single-day gavages did neither influence corticosterone levels nor gastrointestinal function. In mice exposed to multi-day gavages, corticosterone levels were slightly but significantly increased compared with controls after 10 days of treatment. Gastrointestinal motor function was altered, as evidenced by increased fecal pellet counts and a small increase in fecal water content. However, exposure to repeated gavages did not lead to detectable alterations in gastrointestinal barrier function as quantified by the paracellular flux of the probe 4 kDa FITC-dextran as well as transepithelial resistance measurements. Thus, the administration of drugs via single-day or multi-day orogastric gavages leads to no or minor stress in mice, respectively. In both cases, it does not hamper the study of the intestinal barrier function and therefore remains a valuable administration route in preclinical pharmacological research.NEW & NOTEWORTHY Exposure of mice to serial orogastric gavages over the course of 10 days leads to a small but significant increase in plasma corticosterone levels, indicating the presence of a limited amount of stress that is absent after a single-day treatment. This minor stress after multi-day gavages results in increased fecal pellet production and fecal water content in exposed compared with nontreated mice but does not affect the intestinal barrier function in the distal colon, proximal colon, or terminal ileum.
Collapse
Affiliation(s)
- Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Rosanne Verboven
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Heiko U De Schepper
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics and Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
24
|
Ivashkin V, Shifrin O, Maslennikov R, Poluektova E, Korolev A, Kudryavtseva A, Krasnov G, Benuni N, Barbara G. Eubiotic effect of rifaximin is associated with decreasing abdominal pain in symptomatic uncomplicated diverticular disease: results from an observational cohort study. BMC Gastroenterol 2023; 23:82. [PMID: 36959568 PMCID: PMC10037807 DOI: 10.1186/s12876-023-02690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Rifaximin effectively treats symptomatic uncomplicated diverticular disease (SUDD) and has shown eubiotic potential (i.e., an increase in resident microbial elements with potential beneficial effects) in other diseases. This study investigated changes in the fecal microbiome of patients with SUDD after repeated monthly treatment with rifaximin and the association of these changes with the severity of abdominal pain. METHODS This was a single-center, prospective, observational, uncontrolled cohort study. Patients received rifaximin 400 mg twice a day for 7 days per month for 6 months. Abdominal pain (assessed on a 4-point scale from 0 [no pain] to 3 [severe pain]) and fecal microbiome (assessed using 16 S rRNA gene sequencing) were assessed at inclusion (baseline) and 3 and 6 months. The Spearman's rank test analyzed the relationship between changes in the gut microbiome and the severity of abdominal pain. A p-value ≤ 0.05 was considered statistically significant. RESULTS Of the 23 patients enrolled, 12 patients completed the study and were included in the analysis. Baseline abdominal pain levels decreased significantly after 3 (p = 0.036) and 6 (p = 0.008) months of treatment with rifaximin. The abundance of Akkermansia in the fecal microbiome was significantly higher at 3 (p = 0.017) and 6 (p = 0.015) months versus baseline. The abundance of Ruminococcaceae (p = 0.034), Veillonellaceae (p = 0.028), and Dialister (p = 0.036) were significantly increased at 6 months versus baseline, whereas Anaerostipes (p = 0.049) was significantly decreased. The severity of abdominal pain was negatively correlated with the abundance of Akkermansia (r=-0.482; p = 0.003) and Ruminococcaceae (r=-0.371; p = 0.026) but not with Veillonellaceae, Dialister, or Anaerostipes. After 3 months of rifaximin, abdominal pain was significantly less in patients with Akkermansia in their fecal microbiome than in patients without Akkermansia (p = 0.022). CONCLUSION The eubiotic effect of rifaximin was associated with decreased abdominal pain in patients with SUDD.
Collapse
Affiliation(s)
- Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
- Scientific Community for the Human Microbiome Research, Moscow, Russian Federation
| | - Oleg Shifrin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation.
- Scientific Community for the Human Microbiome Research, Moscow, Russian Federation.
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
- Scientific Community for the Human Microbiome Research, Moscow, Russian Federation
| | - Alexander Korolev
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
| | - Anna Kudryavtseva
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George Krasnov
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nona Benuni
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russian Federation
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, IRCCS Azienda Ospedaliero-Universitaria, Bologna, Italy
| |
Collapse
|
25
|
Ikeuchi K, Tsutsumi T, Ishizaka A, Mizutani T, Sedohara A, Koga M, Tamaoki S, Yotsuyanagi H. Modulation of duodenal and jejunal microbiota by rifaximin in mice with CCl 4-induced liver fibrosis. Gut Pathog 2023; 15:14. [PMID: 36945059 PMCID: PMC10029291 DOI: 10.1186/s13099-023-00541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Rifaximin is a poorly absorbed broad-spectrum antibiotic used for hepatic encephalopathy. Although increased Lactobacillaceae and decreased Bacteroidetes abundance are characteristic of hepatic encephalopathy, rifaximin does not dramatically alter the stool microbiota. As the antimicrobial effect of rifaximin increases by micellization with bile acids, we hypothesized that rifaximin alters the microbiota in the duodenum and jejunum, where the levels of bile acids are abundant. METHODS AND RESULTS Eight-week-old BALB/c mice were injected with carbon tetrachloride (CCl4) intraperitoneally for 12 weeks to induce liver fibrosis. The mice were grouped into the control (n = 9), CCl4 (n = 13), and rifaximin group in which mice were treated with rifaximin for two weeks after CCl4 administration (n = 13). We analyzed the microbiota of the duodenum, jejunum, ileum, cecum, and stool using 16S ribosomal RNA gene analysis. The content of Lactobacillaceae, the most abundant bacterial family in the duodenum and small intestine, increased in the CCl4 group, especially in the jejunum (median 67.0% vs 87.8%, p = 0.03). Rifaximin significantly decreased Lactobacillaceae content in the duodenum (median 79.4% vs 19.0%, p = 0.006) and jejunum (median 87.8% vs 61.3%, p = 0.03), but not in the ileum, cecum, and stool. Bacteroidetes abundance tended to decrease on CCl4 administration and increased following rifaximin treatment in the duodenum and jejunum. S24_7, the most abundant family in Bacteroidetes, demonstrated a significant inverse correlation with Lactobacillaceae (duodenum, r = - 0.61, p < 0.001; jejunum, r = - 0.72, p < 0.001). In the ileum, cecum, and stool, the effect of rifaximin on the microbiota was minimal, with changes within the same phylum. The percentage of bacterial families, such as Lactobacillaceae and S24_7 in the duodenum and small intestine, did not correlate with that in the stool. CONCLUSIONS The abundance of Lactobacillaceae increased in the jejunum of mice with CCl4-induced liver fibrosis, while rifaximin significantly reduced it in the duodenum and jejunum. Thus, rifaximin possibly exerts its effect by altering the duodenal and jejunal microbiota. Furthermore, changes in the duodenal and small intestinal microbiota were not associated with that of stool, suggesting that the analysis of stool microbiota is insufficient to evaluate upper intestinal microbiota.
Collapse
Affiliation(s)
- Kazuhiko Ikeuchi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
- Department of Infection Control and Prevention, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Taketoshi Mizutani
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Ayako Sedohara
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Satoru Tamaoki
- Medical Affairs Department, ASKA Pharmaceutical Co., Ltd., 2-5-1, Shibaura, Minato-Ku, Tokyo, 108-8532, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| |
Collapse
|
26
|
Zhang T, Zhang B, Ma X, Zhang J, Wei Y, Wang F, Tang X. Research trends in the field of the gut-brain interaction: Functional dyspepsia in the spotlight – An integrated bibliometric and science mapping approach. Front Neurosci 2023; 17:1109510. [PMID: 36968499 PMCID: PMC10035075 DOI: 10.3389/fnins.2023.1109510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
ObjectivesThis study aims to perform a bibliometric analysis of functional dyspepsia (FD), which includes visualizing bibliographic information, in order to identify prevailing study themes, topics of interest, contributing journals, countries, institutions, and authors as well as co-citation patterns.MethodsThe Web of Science™ Core Collection Database was used to retrieve all peer-reviewed scientific publications related to FD research. The validated search terms were entered into the “title” and “author keywords” fields, and the results were sorted by publication year from 2006 to 2022. There were no restrictions on language. On 12 February 2023, a manual export of the complete metadata for each original publication and review article was performed. CiteSpace was used to reveal co-authorship, publication, and co-citation patterns to find prominent authors, organizations, countries, and journals in FD research as well as to identify author keywords with strong citation bursts, which could indicate an emerging research area. VOSviewer was used to build the co-occurrence indicator (co-word) to identify the main author keywords on which previous studies focused and to induce clustered scientific landscape for two consecutive periods to identify intriguing areas for future research.ResultsA search of the database retrieved 2,957 documents. There was a wave-like pattern in the number of publications until 2017, after which there was a spike in publication volume. The USA, China, and Japan provided the majority of contributions. In terms of institution, Mayo Clin, Univ Newcastle, and Katholieke Univ Leuven were found to be the prolific institutions. Additionally, the results indicate that eastern Asian researchers contributed significantly to the global knowledge of literature that led other countries; however, Canada, the USA, Australia, England, and Germany were found to have the highest degree of betweenness centrality. Nicholas J. Talley, Jan Tack, Gerald Holtmann, Michael Camilleri, Ken Haruma, and Paul Moayyedi occupied the top positions based on productivity and centrality indicators. Six thematic clusters emerged (Helicobacter pylori infection; pathophysiological mechanisms of FD; extraintestinal co-morbidities and overlap syndromes associated with FD; herbal medicine in FD; diabetic gastroparesis; and dietary factors in FD). “Acupuncture,” “duodenal eosinophilia,” “gut microbiota,” and others were among the author keywords with rising prevalence.ConclusionIn FD research, eastern Asian countries have established themselves as major contributors with the highest publishing productivity; however, research has primarily been driven by North America, Europe, and Australia, where cooperation is generally more active and highly influential scientific results are produced. Our analysis suggests that increased investments, training of human resources, improved infrastructures, and expanded collaborations are essential to improving the quality of FD research in Asia. The emerging author keyword analysis suggests that eosinophil-mast cell axis, gut microbiota, mental disorders, and acupuncture are the key areas that attract researchers’ attention as future research boulevards. There is a highly skewed distribution of research output across Asia, with most focus on complementary and alternative medicine (CAM) coming from Chinese, Japanese, and South Korean centers. However, CAM remains an underexplored area of research in the context of FD, and it deserves greater research efforts in order to obtain quality scientific evidence. Furthermore, we propose that the research framework of CAM should not be limited to dysmotility; rather, it could be interpreted within a more holistic context that includes the brain-gut-microbiota axis, as well as novel concepts such as duodenitis, increased mucosal permeability, and infiltration and activation of eosinophils and mast cells, among others. Overall, we provided bibliometrics-based overviews of relevant literature to researchers from different backgrounds and healthcare professionals to provide an in-depth overview of major trends in FD research.
Collapse
Affiliation(s)
- Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Fengyun Wang,
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xudong Tang,
| |
Collapse
|
27
|
Niang LY, Heckroth M, Mathur P, Abell TL. Gastroparesis syndromes: emerging drug targets and potential therapeutic opportunities. Expert Opin Investig Drugs 2023; 32:245-262. [PMID: 36872904 DOI: 10.1080/13543784.2023.2186222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Gastroparesis (Gp) and related disorders such as chronic unexplained nausea and vomiting and functional dyspepsia, known as gastropareis syndromes (GpS), have large unmet needs. Mainstays of GpS treatments are diet and drugs. AREAS COVERED The purpose of this review is to explore potential new medications and other therapies for gastroparesis. Before discussing possible new drugs, the currently used drugs are discussed. These include dopamine receptor antagonists, 5-hydroxytryptamine receptor agonists and antagonists, neurokinin-1 receptor antagonists and other anti-emetics. The article also considers future drugs that may be used for Gp, based on currently known pathophysiology. EXPERT OPINION Gaps in knowledge about the pathophysiology of gastroparesis and related syndromes are critical to developing therapeutic agents that will be successful. Recent major developments in the gastroparesis arena are related to microscopic anatomy, cellular function, and pathophysiology. The major challenges moving forward will be to develop the genetic and biochemical correlates of these major developments in gastroparesis research.
Collapse
Affiliation(s)
- Le Yu Niang
- Department of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Matthew Heckroth
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Prateek Mathur
- Department of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Thomas L Abell
- Department of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
28
|
Meena AS, Shukla PK, Rao R, Canelas C, Pierre JF, Rao R. TRPV6 deficiency attenuates stress and corticosterone-mediated exacerbation of alcohol-induced gut barrier dysfunction and systemic inflammation. Front Immunol 2023; 14:1093584. [PMID: 36817471 PMCID: PMC9929865 DOI: 10.3389/fimmu.2023.1093584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chronic stress is co-morbid with alcohol use disorder that feedback on one another, thus impeding recovery from both disorders. Stress and the stress hormone corticosterone aggravate alcohol-induced intestinal permeability and liver damage. However, the mechanisms involved in compounding tissue injury by stress/corticosterone and alcohol are poorly defined. Here we explored the involvement of the TRPV6 channel in stress (or corticosterone) 3and alcohol-induced intestinal epithelial permeability, microbiota dysbiosis, and systemic inflammation. Methods Chronic alcohol feeding was performed on adult wild-type and Trpv6-/- mice with or without corticosterone treatment or chronic restraint stress (CRS). The barrier function was determined by evaluating inulin permeability in vivo and assessing tight junction (TJ) and adherens junction (AJ) integrity by immunofluorescence microscopy. The gut microbiota composition was evaluated by 16S rRNA sequencing and metagenomic analyses. Systemic responses were assessed by evaluating endotoxemia, systemic inflammation, and liver damage. Results Corticosterone and CRS disrupted TJ and AJ, increased intestinal mucosal permeability, and caused endotoxemia, systemic inflammation, and liver damage in wild-type but not Trpv6-/- mice. Corticosterone and CRS synergistically potentiated the alcohol-induced breakdown of intestinal epithelial junctions, mucosal barrier impairment, endotoxemia, systemic inflammation, and liver damage in wild-type but not Trpv6-/- mice. TRPV6 deficiency also blocked the effects of CRS and CRS-mediated potentiation of alcohol-induced dysbiosis of gut microbiota. Conclusions These findings indicate an essential role of TRPV6 in stress, corticosterone, and alcohol-induced intestinal permeability, microbiota dysbiosis, endotoxemia, systemic inflammation, and liver injury. This study identifies TRPV6 as a potential therapeutic target for developing treatment strategies for stress and alcohol-associated comorbidity.
Collapse
Affiliation(s)
- Avtar S. Meena
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Pradeep K. Shukla
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rupa Rao
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Cherie Canelas
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joseph F. Pierre
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - RadhaKrishna Rao
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| |
Collapse
|
29
|
Modulation of the microbiota across different intestinal segments by Rifaximin in PI-IBS mice. BMC Microbiol 2023; 23:22. [PMID: 36658488 PMCID: PMC9850553 DOI: 10.1186/s12866-023-02772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Rifaximin has been increasingly applied in irritable bowel syndrome (IBS) treatment. Whether there were differences in the effects of rifaximin on microbiota from different intestinal segments, especially the small intestine where rifaximin predominantly acted, has not been confirmed. METHODS In this study, we used Trichinella spiralis infection to induce post infectious irritable bowel syndrome (PI-IBS) and measured visceral sensitivity of mice by means of abdominal withdrawal reflex (AWR) tests to colorectal distention (CRD). We compared the effects of rifaximin on the composition of ileal, colonic mucosal and fecal microbiota in PI-IBS mice. RESULTS Rifaximin significantly reduced AWR scores and increased pain threshold in PI-IBS mice, and this effect was associated with the change in the relative abundance of ileal mucosal microbiota. Rifaximin could obviously decrease ileum mucosal microbiota alpha diversity assessed by Shannon microbial diversity index. Meanwhile, the analysis of beta diversity and relative abundance of microbiota at phylum, family and genus levels showed that rifaximin could improve the microbiota structure of ileal mucosa. However, for colonic mucosal and fecal microbiota, this effect of rifaximin was not obvious. Rifaximin could reshape the correlation of genera between different intestinal segments. CONCLUSION Rifaximin improved visceral hypersensitivity in PI-IBS mice. Rifaximin mainly affected ileal mucosal microbiota, and its improvement effect on IBS might be closely related to the improvement of ileal microbiota structure.
Collapse
|
30
|
Bogatic D, Bryant RV, Lynch KD, Costello SP. Systematic review: microbial manipulation as therapy for primary sclerosing cholangitis. Aliment Pharmacol Ther 2023; 57:23-36. [PMID: 36324251 PMCID: PMC10092549 DOI: 10.1111/apt.17251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a progressive liver disease with poor prognosis and no effective therapies to prevent progression. An aetiopathological link between PSC and gastrointestinal microbial dysbiosis has been suggested. AIM To evaluate all potential medical therapies which may exert their effect in PSC by modulation of the gut-liver axis. METHODS We conducted a comprehensive scoping review of PubMed and Cochrane Library, including all articles evaluating an intervention aimed at manipulating the gastrointestinal microbiome in PSC. RESULTS A wide range of therapies proposed altering the gastrointestinal microbiome for the treatment of PSC. In particular, these considered antibiotics including vancomycin, metronidazole, rifaximin, minocycline and azithromycin. However, few therapies have been investigated in randomised, placebo-controlled trials. Vancomycin has been the most widely studied antibiotic, with improvement in alkaline phosphatase reported in two randomised controlled trials, but with no data on disease progression. Unlike antibiotics, strategies such as faecal microbiota transplantation and dietary therapy can improve microbial diversity. However, since these have only been tested in small numbers of patients, robust efficacy data are currently lacking. CONCLUSIONS The gut-liver axis is increasingly considered a potential target for the treatment of PSC. However, no therapies have been demonstrated to improve transplant-free survival. Innovative and well-designed clinical trials of microbiome-targeted therapies with long-term follow-up are required for this orphan disease.
Collapse
Affiliation(s)
- Damjana Bogatic
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia
- Faculty of Health SciencesSchool of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Robert V. Bryant
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia
- Faculty of Health SciencesSchool of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Kate D. Lynch
- Faculty of Health SciencesSchool of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- IBD ServiceDepartment of Gastroenterology and HepatologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Samuel P. Costello
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia
- Faculty of Health SciencesSchool of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
31
|
Shin A, Kashyap PC. Multi-omics for biomarker approaches in the diagnostic evaluation and management of abdominal pain and irritable bowel syndrome: what lies ahead. Gut Microbes 2023; 15:2195792. [PMID: 37009874 PMCID: PMC10072066 DOI: 10.1080/19490976.2023.2195792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
Reliable biomarkers for common disorders of gut-brain interaction characterized by abdominal pain, including irritable bowel syndrome (IBS), are critically needed to enhance care and develop individualized therapies. The dynamic and heterogeneous nature of the pathophysiological mechanisms that underlie visceral hypersensitivity have challenged successful biomarker development. Consequently, effective therapies for pain in IBS are lacking. However, recent advances in modern omics technologies offer new opportunities to acquire deep biological insights into mechanisms of pain and nociception. Newer methods for large-scale data integration of complementary omics approaches have further expanded our ability to build a holistic understanding of complex biological networks and their co-contributions to abdominal pain. Here, we review the mechanisms of visceral hypersensitivity, focusing on IBS. We discuss candidate biomarkers for pain in IBS identified through single omics studies and summarize emerging multi-omics approaches for developing novel biomarkers that may transform clinical care for patients with IBS and abdominal pain.
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna C. Kashyap
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Paeoniflorin alleviates inflammatory response in IBS-D mouse model via downregulation of the NLRP3 inflammasome pathway with involvement of miR-29a. Heliyon 2022; 8:e12312. [PMID: 36590561 PMCID: PMC9800317 DOI: 10.1016/j.heliyon.2022.e12312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Paeoniflorin has been traditionally used to treat pain and immunologic derangement in China. However, its detailed mechanism remains to be illuminated. We investigated the mechanism by which paeoniflorin alleviates the inflammatory response in a mouse model of irritable bowel syndrome with predominant diarrhea (IBS-D). C57BL/6 wild type (WT) and miR-29a knockout (KO) mice were randomly divided into control, model, rifaximin, and paeoniflorin groups (n = 7). IBS-D model was induced by single intracolonic instillation of 0.1 mL trinitro-benzene-sulfonic acid (TNBS, 50 mg/mL) combined with restraint stress for seven consecutive days. The treatment groups received rifaximin (100 mg/kg) and paeoniflorin (50 mg/kg) via intragastric administration for seven days, respectively. The results showed that the fecal water content, fecal pellet output, visceral sensitivity, and histopathological score after paeoniflorin treatment were lower than those of the model group in both WT and miR-29a KO mice (P < 0.05). In both lineage mice, damage was observed in the colon tissues of model group, while paeoniflorin treatment partially ameliorated the tissue damage. Serum levels of DAO, DLA, IL-1β, IL-18, TNF-α, and MPO were decreased after paeoniflorin treatment (P < 0.05), with miR-29a KO mice in a lower level compared with that of WT mice. RT-PCR showed that the relative expression of miR-29a, NF-κB (p65), NLRP3, ASC, caspase-1, IL-1β, and TNF-α was downregulated while NKRF was upregulated after paeoniflorin treatment (P < 0.05). Immunohistochemistry showed that intestinal epithelial protein levels of NLRP3, ASC, and caspase-1 decreased while those of Claudin-1 and ZO-1 increased in the paeoniflorin treatment group (P < 0.05). In general, compared with WT mice, NLRP3 inflammasome pathway targets was in much lower expression level than miR-29a KO mice. In conclusion, paeoniflorin could inhibit abnormal activation of the NLRP3 inflammasome pathway by inhibiting miR-29a in IBS-D, thereby relieving the inflammatory response of the intestinal mucosa and reconstructing the intestinal epithelial barrier.
Collapse
|
33
|
Chen J, Wang J, Zou L, Zhu S, Li K, Liao L, Ruan J, Chu H. Effects of moxibustion on miRNA-133b, Pitx3/TH, and neurotransmitters in the midbrain of rats with diarrhea-predominant irritable bowel syndrome. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Objective
To investigate the mechanism of moxibustion in the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), by observing the effects of moxibustion at Tianshu (ST25) and Shangjuxu (ST37) on microRNA-133b (miRNA-133b), pituitary homeobox family factor 3 (Pitx3)/tyrosine hydroxylase (TH), and neurotransmitters in the brain tissue of IBS-D rats.
Methods
Healthy Sprague-Dawley rats were randomly divided into a normal group, a model group, a moxibustion group, and a Western medicine group, with 12 rats in each group. Except for the normal group, the IBS-D rat model was established by mother-offspring separation and acetic acid enema combined with restraint stress stimulation in all the other groups. No intervention was performed in the normal and model groups. Mild moxibustion was applied to both Tianshu (ST25) and Shangjuxu (ST37) in the moxibustion group. Rifaximin was given by gavage in the Western medicine group. The physical status of rats in each group was observed at different periods. After the intervention, hematoxylineosin staining was performed to observe the histopathological morphology of rat colon; enzyme-linked immunosorbent assay was used to measure the levels of dopamine (DA), noradrenaline (NE), and 5-hydroxytryptamine (5-HT) in plasma, colon, and midbrain tissue of rats; the relative expression levels of miRNA-133b, Pitx3 mRNA, and TH mRNA in the midbrain tissue were measured by real-time fluorescence quantitative polymerase chain reaction, and the relative expression levels of Pitx3 and TH proteins in the midbrain tissue were measured by Western blotting and immunofluorescence.
Results
The body weights of rats among groups and at different time points were statistically different (P<0.01). The body weight of the normal group was higher than that of the other groups over time (P<0.01). After modeling, the minimum volume threshold of abdominal withdrawal reflex (AWR) was significantly lower (P<0.01) and the loose stool rate was significantly higher (P<0.01) in the model, moxibustion, and Western medicine groups compared with the normal group; the miRNA-133b expression in the midbrain tissue was significantly lower (P<0.01), the expression levels of Pitx3 and TH in the midbrain tissue were significantly higher (P<0.01), and the levels of DA, NE, and 5-HT in plasma, colon and midbrain tissue were significantly higher (P<0.01). After the intervention, the minimum volume threshold of AWR was significantly higher (P<0.01), the loose stool rate was significantly lower (P<0.01), the miRNA-133b expression was significantly increased (P<0.01 or P<0.05) and the expression levels of Pitx3 and TH were significantly decreased (P<0.01) in the midbrain tissue, the levels of DA, NE, and 5-HT in plasma, colon, and midbrain tissue were significantly reduced (P<0.01) in the moxibustion and Western medicine groups compared with the model group; the levels of 5-HT in the colon and midbrain tissue of the moxibustion group were significantly lower than those in the Western medicine group (P<0.05), and there was no statistical difference compared with the remaining groups (P>0.05). Linear correlation analysis showed that miRNA-133b was negatively correlated with Pitx3 (r<0, P<0.01); Pitx3 with TH, TH with DA, and NE with 5-HT were positively correlated (r>0, P<0.01).
Conclusion
Moxibustion at Tianshu (ST25) and Shangjuxu (ST37) improves diarrhea symptoms and visceral hypersensitivity in IBS-D rats. The mechanism may be related to up-regulating miRNA-133b, inhibiting Pitx3/TH, and reducing neurotransmitter expression levels in the midbrain tissue.
Collapse
|
34
|
Algera JP, Törnblom H, Simrén M. Treatments targeting the luminal gut microbiota in patients with irritable bowel syndrome. Curr Opin Pharmacol 2022; 66:102284. [PMID: 36067685 DOI: 10.1016/j.coph.2022.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/03/2022]
Abstract
Irritable bowel syndrome (IBS) is a common disorder of gut-brain interaction affecting 4% of the world's population. Patients with IBS experience chronic or recurrent abdominal pain in combination with altered bowel habits (diarrhea and/or constipation), and have reduced quality of life. Despite the high prevalence and substantial burden of IBS, its pathophysiology is incompletely understood and remains to be elucidated. The importance of the gut microenvironment has been highlighted in IBS, as there are signs that the gut microbiota of patients differs from healthy controls. Recent studies have aimed to alter the gut microbiota and thereby, attempted to alleviate gastrointestinal symptoms in IBS patients. We highlighted recent advances in common treatments that are targeting the luminal gut microbiota in IBS.
Collapse
Affiliation(s)
- Joost P Algera
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Functional GI & Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
35
|
Guo J, Lou X, Gong W, Bian J, Liao Y, Wu Q, Jiao Q, Zhang X. The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models. Front Cell Infect Microbiol 2022; 12:953474. [PMID: 36250050 PMCID: PMC9557054 DOI: 10.3389/fcimb.2022.953474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that the effect of intestinal microecological disorders on organismal physiology is not limited to the digestive system, which provides new perspectives for microecological studies and new ideas for clinical diagnosis and prevention of microecology-related diseases. Stress triggers impairment of intestinal mucosal barrier function, which could be duplicated by animal models. In this paper, pathological animal models with high prevalence and typical stressors—corresponding to three major stressors of external environmental factors, internal environmental factors, and social psychological factors, respectively exemplified by burns, intestinal ischemia-reperfusion injury (IIRI), and depression models—were selected. We summarized the construction and evaluation of these typical animal models and the effects of stress on the organism and intestinal barrier, as well as systematically discussed the effects of different stresses on the intestinal mucosal barrier and intestinal microecology.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Yuhan Liao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Qi Wu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xingwei Zhang, ; Qibin Jiao,
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xingwei Zhang, ; Qibin Jiao,
| |
Collapse
|
36
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Won SM, Oh KK, Gupta H, Ganesan R, Sharma SP, Jeong JJ, Yoon SJ, Jeong MK, Min BH, Hyun JY, Park HJ, Eom JA, Lee SB, Cha MG, Kwon GH, Choi MR, Kim DJ, Suk KT. The Link between Gut Microbiota and Hepatic Encephalopathy. Int J Mol Sci 2022; 23:ijms23168999. [PMID: 36012266 PMCID: PMC9408988 DOI: 10.3390/ijms23168999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic encephalopathy (HE) is a serious complication of cirrhosis that causes neuropsychiatric problems, such as cognitive dysfunction and movement disorders. The link between the microbiota and the host plays a key role in the pathogenesis of HE. The link between the gut microbiome and disease can be positively utilized not only in the diagnosis area of HE but also in the treatment area. Probiotics and prebiotics aim to resolve gut dysbiosis and increase beneficial microbial taxa, while fecal microbiota transplantation aims to address gut dysbiosis through transplantation (FMT) of the gut microbiome from healthy donors. Antibiotics, such as rifaximin, aim to improve cognitive function and hyperammonemia by targeting harmful taxa. Current treatment regimens for HE have achieved some success in treatment by targeting the gut microbiota, however, are still accompanied by limitations and problems. A focused approach should be placed on the establishment of personalized trial designs and therapies for the improvement of future care. This narrative review identifies factors negatively influencing the gut–hepatic–brain axis leading to HE in cirrhosis and explores their relationship with the gut microbiome. We also focused on the evaluation of reported clinical studies on the management and improvement of HE patients with a particular focus on microbiome-targeted therapy.
Collapse
|
38
|
Jung JH, Kim SE, Suk KT, Kim DJ. Gut microbiota-modulating agents in alcoholic liver disease: Links between host metabolism and gut microbiota. Front Med (Lausanne) 2022; 9:913842. [PMID: 35935787 PMCID: PMC9354621 DOI: 10.3389/fmed.2022.913842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Alcoholic liver disease (ALD) involves a wide spectrum of diseases, including asymptomatic hepatic steatosis, alcoholic hepatitis, hepatic fibrosis, and cirrhosis, which leads to morbidity and mortality and is responsible for 0.9% of global deaths. Alcohol consumption induces bacterial translocation and alteration of the gut microbiota composition. These changes in gut microbiota aggravate hepatic inflammation and fibrosis. Alteration of the gut microbiota leads to a weakened gut barrier and changes host immunity and metabolic function, especially related to bile acid metabolism. Modulation and treatment for the gut microbiota in ALD has been studied using probiotics, prebiotics, synbiotics, and fecal microbial transplantation with meaningful results. In this review, we focused on the interaction between alcohol and gut dysbiosis in ALD. Additionally, treatment approaches for gut dysbiosis, such as abstinence, diet, pro-, pre-, and synbiotics, antibiotics, and fecal microbial transplantation, are covered here under ALD. However, further research through human clinical trials is warranted to evaluate the appropriate gut microbiota-modulating agents for each condition related to ALD.
Collapse
Affiliation(s)
- Jang Han Jung
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
- *Correspondence: Dong Joon Kim,
| |
Collapse
|
39
|
Dong LW, Ma ZC, Fu J, Huang BL, Liu FJ, Sun D, Lan C. Upregulated adenosine 2A receptor accelerates post-infectious irritable bowel syndrome by promoting CD4+ T cells’ T helper 17 polarization. World J Gastroenterol 2022; 28:2955-2967. [PMID: 35978875 PMCID: PMC9280732 DOI: 10.3748/wjg.v28.i25.2955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Post-infectious irritable bowel syndrome (PI-IBS) is generally regarded as a functional disease. Several recent studies have reported the involvement of low-grade inflammation and immunological dysfunction in PI-IBS. T helper 17 (Th17) polarization occurs in IBS. Adenosine and its receptors participate in intestinal inflammation and immune regulation.
AIM To investigate the role of Th17 polarization of CD4+ T cells regulated by adenosine 2A receptor (A2AR) in PI-IBS.
METHODS A PI-IBS model was established by infecting mice with Trichinella spiralis. The intestinal A2AR and CD4+ T lymphocytes were detected by immunohistochemistry, and the inflammatory cytokines were detected by enzyme-linked immunoassay. CD4+ T lymphocytes present in the animal’s spleen were separated and cultured with or without A2AR agonist and antagonist. Western blotting and real-time quantitative polymerase chain reaction were performed to determine the effect of A2AR on the cells and intestinal tissue. Cytokine production was determined. The protein and mRNA levels of A2AR associated signaling pathway molecules were also evaluated. Furthermore, A2AR agonist and antagonist were injected into the mouse model and the clinical features were observed.
RESULTS The PI-IBS mouse model showed increased expression of ATP and A2AR (P < 0.05), and inhibition of A2AR improved the clinical features in PI-IBS, including the abdominal withdrawal reflex and colon transportation test (P < 0.05). The number of intestinal CD4+ T cells and interleukin-17 (IL-17) protein levels increased during PI-IBS, which was reversed by administration of the A2AR antagonist (P < 0.05). CD4+ T cells expressed A2AR and produced IL-17 in vitro, which was regulated by the A2AR agonist and antagonist. The A2AR antagonist increased the production of IL-17 by CD4+ T cells via the Janus kinase-signal transducer and activator of transcription-receptor-related orphan receptor γ signaling pathway.
CONCLUSION The results of the present study suggested that the upregulation of A2AR increases PI-IBS by promoting the Th17 polarization of CD4+ T cells.
Collapse
Affiliation(s)
- Li-Wei Dong
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Zhi-Chao Ma
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Jiao Fu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bai-Li Huang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Fu-Jin Liu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| |
Collapse
|
40
|
Abstract
Systemic Lupus Erythematosus is a complex autoimmune disease and its etiology remains unknown. Increased gut permeability has been reported in lupus patients, yet whether it promotes or results from lupus progression is unclear. Recent studies indicate that an impaired intestinal barrier allows the translocation of bacteria and bacterial components into systemic organs, increasing immune cell activation and autoantibody generation. Indeed, induced gut leakage in a mouse model of lupus enhanced disease characteristics, including the production of anti-dsDNA antibody, serum IL-6 as well as cell apoptosis. Gut microbiota dysbiosis has been suggested to be one of the factors that decreases gut barrier integrity by outgrowing harmful bacteria and their products, or by perturbation of gut immune homeostasis, which in turn affects gut barrier integrity. The restoration of microbial balance eliminates gut leakage in mice, further confirming the role of microbiota in maintaining gut barrier integrity. In this review, we discuss recent advances on the association between microbiota dysbiosis and leaky gut, as well as their influences on the progression of lupus. The modifications on host microbiota and gut integrity may offer insights into the development of new lupus treatment.
Collapse
Affiliation(s)
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Concomitant Irritable Bowel Syndrome Does Not Influence the Response to Antimicrobial Therapy in Patients with Functional Dyspepsia. Dig Dis Sci 2022; 67:2299-2309. [PMID: 34392491 DOI: 10.1007/s10620-021-07149-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Antimicrobial therapy improves symptoms in patients with irritable bowel syndrome (IBS), but the efficacy in functional dyspepsia (FD) is largely unknown. While FD and IBS frequently overlap, it is unknown if concomitant IBS in FD alters the response to antimicrobial therapy in FD. Thus, we aimed to assess and compare the effect of antimicrobial therapy on visceral sensory function and symptom improvement in FD patients with and without IBS. METHODS Adult patients with FD with or without IBS received rifaximin 550 mg BD for 10 days, followed by a 6-week follow-up period. The total gastrointestinal symptom score as measured by the SAGIS (Structured Assessment of Gastrointestinal Symptoms) questionnaire and subscores (dyspepsia, diarrhea, and constipation), symptom response to a standardized nutrient challenge and normalization of the glucose breath tests were measured. RESULTS Twenty-one consecutive adult patients with FD and 14/21 with concomitant IBS were recruited. Treatment with rifaximin resulted in a significant (p = 0.017) improvement in the total SAGIS score from 34.7 (± 15.4) at baseline to 26.0 (± 16.8) at 2 weeks and 25.6 (± 17.8) at 6 weeks post-treatment. Similarly, compared to baseline there was a statistically significant improvement in SAGIS subscores for dyspepsia and diarrhea (all p < 0.05) and effects persisted for 6 weeks post-treatment. Similarly, the symptom score (and subscores) following a standardized nutrient challenge improved significantly (p < 0.001) 2 weeks post-treatment. The presence of concomitant IBS did not significantly influence the improvement of symptoms after antibiotic therapy (all p > 0.5). CONCLUSIONS In FD patients, the response to antimicrobial therapy with rifaximin is not influenced by concomitant IBS symptoms.
Collapse
|
42
|
Wiley JW, Higgins GA, Hong S. Chronic psychological stress alters gene expression in rat colon epithelial cells promoting chromatin remodeling, barrier dysfunction and inflammation. PeerJ 2022; 10:e13287. [PMID: 35509963 PMCID: PMC9059753 DOI: 10.7717/peerj.13287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/28/2022] [Indexed: 01/25/2023] Open
Abstract
Chronic stress is commonly associated with enhanced abdominal pain (visceral hypersensitivity), but the cellular mechanisms underlying how chronic stress induces visceral hypersensitivity are poorly understood. In this study, we examined changes in gene expression in colon epithelial cells from a rat model using RNA-sequencing to examine stress-induced changes to the transcriptome. Following chronic stress, the most significantly up-regulated genes included Atg16l1, Coq10b, Dcaf13, Nat2, Ptbp2, Rras2, Spink4 and down-regulated genes including Abat, Cited2, Cnnm2, Dab2ip, Plekhm1, Scd2, and Tab2. The primary altered biological processes revealed by network enrichment analysis were inflammation/immune response, tissue morphogenesis and development, and nucleosome/chromatin assembly. The most significantly down-regulated process was the digestive system development/function, whereas the most significantly up-regulated processes were inflammatory response, organismal injury, and chromatin remodeling mediated by H3K9 methylation. Furthermore, a subpopulation of stressed rats demonstrated very significantly altered gene expression and transcript isoforms, enriched for the differential expression of genes involved in the inflammatory response, including upregulation of cytokine and chemokine receptor gene expression coupled with downregulation of epithelial adherens and tight junction mRNAs. In summary, these findings support that chronic stress is associated with increased levels of cytokines and chemokines, their downstream signaling pathways coupled to dysregulation of intestinal cell development and function. Epigenetic regulation of chromatin remodeling likely plays a prominent role in this process. Results also suggest that super enhancers play a primary role in chronic stress-associated intestinal barrier dysfunction.
Collapse
Affiliation(s)
- John W. Wiley
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| | - Shuangsong Hong
- Department of Internal Medicine, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
| |
Collapse
|
43
|
Jian J, Nie MT, Xiang B, Qian H, Yin C, Zhang X, Zhang M, Zhu X, Xie WF. Rifaximin Ameliorates Non-alcoholic Steatohepatitis in Mice Through Regulating gut Microbiome-Related Bile Acids. Front Pharmacol 2022; 13:841132. [PMID: 35450049 PMCID: PMC9017645 DOI: 10.3389/fphar.2022.841132] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the progressive stage of non-alcoholic fatty liver disease (NAFLD). The non-absorbable antibiotic rifaximin has been used for treatment of irritable bowel syndrome, traveling diarrhea, and hepatic encephalopathy, but the efficacy of rifaximin in NASH patients remains controversial. This study investigated the effects and underlying mechanisms of rifaximin treatment in mice with methionine and choline deficient (MCD) diet-induced NASH. We found that rifaximin greatly ameliorated hepatic steatosis, lobular inflammation, and fibrogenesis in MCD-fed mice. Bacterial 16S rRNA sequencing revealed that the gut microbiome was significantly altered in MCD-fed mice. Rifaximin treatment enriched 13 amplicon sequence variants (ASVs) belonging to the groups Muribaculaceae, Parabacteroides, Coriobacteriaceae_UCG-002, uncultured Oscillospiraceae, Dubosiella, Rikenellaceae_RC9_gut_group, Mucispirillum, and uncultured Desulfovibrionaceae. However, rifaximin treatment also reduced seven ASVs in the groups Aerococcus, Oscillospiraceae, uncultured Ruminococcaceae, Bilophila, Muribaculaceae, Helicobacter, and Alistipes in MCD-fed mice. Bile acid-targeted metabolomic analysis indicated that the MCD diet resulted in accumulation of primary bile acids and deoxycholic acid (DCA) in the ileum. Rifaximin delivery reduced DCA levels in MCD-fed mice. Correlation analysis further showed that DCA levels were associated with differentially abundant ASVs modulated by rifaximin. In conclusion, rifaximin may ameliorate NASH by decreasing ileal DCA through alteration of the gut microbiome in MCD-fed mice. Rifaximin treatment may therefore be a promising approach for NASH therapy in humans.
Collapse
Affiliation(s)
- Jie Jian
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei-Tong Nie
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Baoyu Xiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Zhu
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
44
|
Gu Y, Li L, Yang M, Liu T, Song X, Qin X, Xu X, Liu J, Wang B, Cao H. Bile acid-gut microbiota crosstalk in irritable bowel syndrome. Crit Rev Microbiol 2022; 49:350-369. [PMID: 35389754 DOI: 10.1080/1040841x.2022.2058353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome (IBS) is a common disorder of gut-brain interaction with an increasing prevalence, and its precise aetiology remains unclear. Gut microbiota dysbiosis has been found to be associated with IBS pathogenesis. In addition, a high incidence of bile acid diarrhoea and disturbed bile acid metabolism has been observed in IBS patients. The abundant microorganisms inhabited in human gut have essential functions in bile acid biotransformation, and can immensely affect the size and constitution of bile acid pool. Meanwhile, the alterations of bile acid profile can inversely interfere with the gut microbiota. This review discussed the role of intricate correlations between bile acids and gut microbiota in IBS pathogenesis and delineated the possible molecular mechanisms, mainly the signalling induced by farnesoid X receptor and transmembrane G protein-coupled receptor 5. Besides, some biomarkers for identifying bile acid diarrhoea in IBS population were listed, assisting the diagnosis and classification of IBS. Moreover, it also assessed some therapeutic strategies for IBS that regulate the bile acid-gut microbiota axis, such as dietary modulation, probiotics/prebiotics, faecal microbiota transplantation, and antibiotics. Collectively, this article illustrated the relationship between bile acids and gut microbiota in IBS pathophysiology and might offer some novel therapeutic options for IBS.
Collapse
Affiliation(s)
- Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingfeng Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghua Liu
- Department of Gastroenterology, Tianjin TEDA hospital, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
45
|
Wu Y, Lu Y, Huang Y, Lin H, Xu M, Ahmed I, Chen G, Chen Y, Li Z. Fish allergens of turbot ( Scophthalmus maximus) parvalbumin triggers food allergy via inducing maturation of bone marrow derived dendritic cells and driving Th2 immune response. Food Funct 2022; 13:4194-4204. [PMID: 35322825 DOI: 10.1039/d1fo04070g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aquatic food allergy has become a key food safety problem and therefore it is urgent to study the mechanism of aquatic food allergy. Turbot parvalbumin (PV) is a major marine food allergen that could cause allergic reactions but the cellular and molecular mechanisms remain to be defined. In this study, we used flow cytometry and ELISA, a coupled co-culture system of dendritic cells and T cells, and revealed that PV could promote the maturation of dendritic cells, mainly by inducing bone marrow-derived dendritic cells (BMDCs) to express MHC II and CD86, and promote the cytokines/chemokines IL-6, IFN-γ, IL-23, and IL-12p70, whereas inhibiting TNF-α expression. Our results suggested that murine BMDCs play a crucial role in the effect of PV on the induction of Th2 responses.
Collapse
Affiliation(s)
- Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China.
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China.
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China.
| | - Mengyao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China.
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China.
| | - Guanzhi Chen
- Dermatological department, the Affiliated Hospital of Medical College Qingdao University, Qingdao, Shandong Province 266071, China
| | - Yan Chen
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
46
|
Burns GL, Talley NJ, Keely S. Immune responses in the irritable bowel syndromes: time to consider the small intestine. BMC Med 2022; 20:115. [PMID: 35354471 PMCID: PMC8969236 DOI: 10.1186/s12916-022-02301-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is considered a disorder of gut-brain interaction (DGBI), presenting as chronic abdominal pain and altered defaecation. Symptoms are often food related. Much work in the field has focused on identifying physiological, immune and microbial abnormalities in the colon of patients; however, evidence of small intestinal immune activation and microbial imbalance has been reported in small studies. The significance of such findings has been largely underappreciated despite a growing body of work implicating small intestinal homeostatic imbalance in the pathogenesis of DGBIs. MAIN TEXT Small intestinal mechanosensation is a characteristic feature of IBS. Furthermore, altered small intestinal barrier functions have been demonstrated in IBS patients with the diarrhoea-predominant subtype. Small intestinal bacterial overgrowth and increased populations of small intestinal mast cells are frequently associated with IBS, implicating microbial imbalance and low-grade inflammation in the pathogenesis of IBS. Furthermore, reports of localised food hypersensitivity responses in IBS patients implicate the small intestine as the site of immune-microbial-food interactions. CONCLUSIONS Given the association of IBS symptoms with food intake in a large proportion of patients and the emerging evidence of immune activation in these patients, the current literature suggests the pathogenesis of IBS is not limited to the colon but rather may involve dysfunction of the entire intestinal tract. It remains unclear if regional variation in IBS pathology explains the various symptom phenotypes and further work should consider the intestinal tract as a whole to answer this question.
Collapse
Affiliation(s)
- Grace L Burns
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Callaghan, New South Wales, Australia.,College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia.,Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nicholas J Talley
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Callaghan, New South Wales, Australia.,College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia.,Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Callaghan, New South Wales, Australia. .,College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia. .,Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| |
Collapse
|
47
|
Nozu T, Okumura T. Pathophysiological Commonality Between Irritable Bowel Syndrome and Metabolic Syndrome: Role of Corticotropin-releasing Factor-Toll-like Receptor 4-Proinflammatory Cytokine Signaling. J Neurogastroenterol Motil 2022; 28:173-184. [PMID: 35189599 PMCID: PMC8978123 DOI: 10.5056/jnm21002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain with altered defecation. Most of the patients develop visceral hypersensitivity possibly resulting from impaired gut barrier and altered gut microbiota. We previously demonstrated that colonic hyperpermeability with visceral hypersensitivity in animal IBS models, which is mediated via corticotropin-releasing factor (CRF)-Toll-like receptor 4 (TLR4)-proinflammatory cytokine signaling. CRF impairs gut barrier via TLR4. Leaky gut induces bacterial translocation resulting in dysbiosis, and increases lipopolysaccharide (LPS). Activation of TLR4 by LPS increases the production of proinflammatory cytokines, which activate visceral sensory neurons to induce visceral hypersensitivity. LPS also activates CRF receptors to further increase gut permeability. Metabolic syndrome (MS) is a cluster of cardiovascular risk factors, including insulin resistance, obesity, dyslipidemia, and hypertension, and recently several researchers suggest the possibility that impaired gut barrier and dysbiosis with low-grade systemic inflammation are involved in MS. Moreover, TLR4-proinflammatory cytokine contributes to the development of insulin resistance and obesity. Thus, the existence of pathophysiological commonality between IBS and MS is expected. This review discusses the potential mechanisms of IBS and MS with reference to gut barrier and microbiota, and explores the possibility of existence of pathophysiological link between these diseases with a focus on CRF, TLR4, and proinflammatory cytokine signaling. We also review epidemiological data supporting this possibility, and discuss the potential of therapeutic application of the drugs used for MS to IBS treatment. This notion may pave the way for exploring novel therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
48
|
Pekary AE, Sattin A. Rifaximin modulates TRH and TRH-like peptide expression throughout the brain and peripheral tissues of male rats. BMC Neurosci 2022; 23:9. [PMID: 35189807 PMCID: PMC8862550 DOI: 10.1186/s12868-022-00694-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The TRH/TRH-R1 receptor signaling pathway within the neurons of the dorsal vagal complex is an important mediator of the brain-gut axis. Mental health and protection from a variety of neuropathologies, such as autism, Attention Deficit Hyperactivity Disorder, Alzheimer's and Parkinson's disease, major depression, migraine and epilepsy are influenced by the gut microbiome and is mediated by the vagus nerve. The antibiotic rifaximin (RF) does not cross the gut-blood barrier. It changes the composition of the gut microbiome resulting in therapeutic benefits for traveler's diarrhea, hepatic encephalopathy, and prostatitis. TRH and TRH-like peptides, with the structure pGlu-X-Pro-NH2, where "X" can be any amino acid residue, have reproduction-enhancing, caloric-restriction-like, anti-aging, pancreatic-β cell-, cardiovascular-, and neuroprotective effects. TRH and TRH-like peptides occur not only throughout the CNS but also in peripheral tissues. To elucidate the involvement of TRH-like peptides in brain-gut-reproductive system interactions 16 male Sprague-Dawley rats, 203 ± 6 g, were divided into 4 groups (n = 4/group): the control (CON) group remained on ad libitum Purina rodent chow and water for 10 days until decapitation, acute (AC) group receiving 150 mg RF/kg powdered rodent chow for 24 h providing 150 mg RF/kg body weight for 200 g rats, chronic (CHR) animals receiving RF for 10 days; withdrawal (WD) rats receiving RF for 8 days and then normal chow for 2 days. RESULTS Significant changes in the levels of TRH and TRH-like peptides occurred throughout the brain and peripheral tissues in response to RF. The number of significant changes in TRH and TRH-like peptide levels in brain resulting from RF treatment, in descending order were: medulla (16), piriform cortex (8), nucleus accumbens (7), frontal cortex (5), striatum (3), amygdala (3), entorhinal cortex (3), anterior (2), and posterior cingulate (2), hippocampus (1), hypothalamus (0) and cerebellum (0). The corresponding ranking for peripheral tissues were: prostate (6), adrenals (4), pancreas (3), liver (2), testis (1), heart (0). CONCLUSIONS The sensitivity of TRH and TRH-like peptide expression to RF treatment, particularly in the medulla oblongata and prostate, is consistent with the participation of these peptides in the therapeutic effects of RF.
Collapse
Affiliation(s)
- Albert Eugene Pekary
- Research Services, VA Greater Los Angeles Healthcare System, Bldg. 114, Rm. 229B, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
- Center for Ulcer Research and Education, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
- Department of Medicine, University of California, Los Angeles, CA, 90073, USA.
| | - Albert Sattin
- Research Services, VA Greater Los Angeles Healthcare System, Bldg. 114, Rm. 229B, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA
- Psychiatry Services, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 90073, USA
- Brain Research Institute, University of California, CA, 90073, Los Angeles, USA
| |
Collapse
|
49
|
Patel VC, Lee S, McPhail MJW, Da Silva K, Guilly S, Zamalloa A, Witherden E, Støy S, Manakkat Vijay GK, Pons N, Galleron N, Huang X, Gencer S, Coen M, Tranah TH, Wendon JA, Bruce KD, Le Chatelier E, Ehrlich SD, Edwards LA, Shoaie S, Shawcross DL. Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial. J Hepatol 2022; 76:332-342. [PMID: 34571050 DOI: 10.1016/j.jhep.2021.09.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Rifaximin-α is efficacious for the prevention of recurrent hepatic encephalopathy (HE), but its mechanism of action remains unclear. We postulated that rifaximin-α reduces gut microbiota-derived endotoxemia and systemic inflammation, a known driver of HE. METHODS In a placebo-controlled, double-blind, mechanistic study, 38 patients with cirrhosis and HE were randomised 1:1 to receive either rifaximin-α (550 mg BID) or placebo for 90 days. PRIMARY OUTCOME 50% reduction in neutrophil oxidative burst (OB) at 30 days. SECONDARY OUTCOMES changes in psychometric hepatic encephalopathy score (PHES) and neurocognitive functioning, shotgun metagenomic sequencing of saliva and faeces, plasma and faecal metabolic profiling, whole blood bacterial DNA quantification, neutrophil toll-like receptor (TLR)-2/4/9 expression and plasma/faecal cytokine analysis. RESULTS Patients were well-matched: median MELD (11 rifaximin-α vs. 10 placebo). Rifaximin-α did not lead to a 50% reduction in spontaneous neutrophil OB at 30 days compared to baseline (p = 0.48). However, HE grade normalised (p = 0.014) and PHES improved (p = 0.009) after 30 days on rifaximin-α. Rifaximin-α reduced circulating neutrophil TLR-4 expression on day 30 (p = 0.021) and plasma tumour necrosis factor-α (TNF-α) (p <0.001). Rifaximin-α suppressed oralisation of the gut, reducing levels of mucin-degrading sialidase-rich species, Streptococcus spp, Veillonella atypica and parvula, Akkermansia and Hungatella. Rifaximin-α promoted a TNF-α- and interleukin-17E-enriched intestinal microenvironment, augmenting antibacterial responses to invading pathobionts and promoting gut barrier repair. Those on rifaximin-α were less likely to develop infection (odds ratio 0.21; 95% CI 0.05-0.96). CONCLUSION Rifaximin-α led to resolution of overt and covert HE, reduced the likelihood of infection, reduced oralisation of the gut and attenuated systemic inflammation. Rifaximin-α plays a role in gut barrier repair, which could be the mechanism by which it ameliorates bacterial translocation and systemic endotoxemia in cirrhosis. CLINICAL TRIAL NUMBER ClinicalTrials.gov NCT02019784. LAY SUMMARY In this clinical trial, we examined the underlying mechanism of action of an antibiotic called rifaximin-α which has been shown to be an effective treatment for a complication of chronic liver disease which effects the brain (termed encephalopathy). We show that rifaximin-α suppresses gut bacteria that translocate from the mouth to the intestine and cause the intestinal wall to become leaky by breaking down the protective mucus barrier. This suppression resolves encephalopathy and reduces inflammation in the blood, preventing the development of infection.
Collapse
Affiliation(s)
- Vishal C Patel
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK; Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK; The Roger Williams Institute of Hepatology (Foundation for Liver Research), 111 Coldharbour Lane, London, SE5 9NT, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, 171 21, Stockholm, Sweden; School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Mark J W McPhail
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK; Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK; Imperial College London, Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, London, UK
| | - Kevin Da Silva
- University Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, 78350, France
| | - Susie Guilly
- University Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, 78350, France
| | - Ane Zamalloa
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - Elizabeth Witherden
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, UK
| | - Sidsel Støy
- Aarhus University Hospital, Department of Hepatology and Gastroenterology, Aarhus, Denmark
| | - Godhev Kumar Manakkat Vijay
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Nicolas Pons
- University Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, 78350, France
| | - Nathalie Galleron
- University Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, 78350, France
| | - Xaiohong Huang
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Selin Gencer
- Imperial College London, Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, London, UK
| | - Muireann Coen
- Imperial College London, Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, London, UK
| | - Thomas Henry Tranah
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK; Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Julia Alexis Wendon
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK; Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Kenneth D Bruce
- King's College London, Institute of Pharmaceutical Science, 5th Floor Franklin-Wilkins Building, London, UK
| | | | | | - Lindsey Ann Edwards
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, 171 21, Stockholm, Sweden
| | - Debbie Lindsay Shawcross
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK; Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK.
| |
Collapse
|
50
|
Gut microbiota and its role in stress-induced hyperalgesia: gender-specific responses linked to different changes in serum metabolites. Pharmacol Res 2022; 177:106129. [DOI: 10.1016/j.phrs.2022.106129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|