1
|
Zhou S, Zi J, Hu Y, Wang X, Cheng G, Xiong J. Genetic correlation, pleiotropic loci and shared risk genes between major depressive disorder and gastrointestinal tract disorders. J Affect Disord 2025; 374:84-90. [PMID: 39800072 DOI: 10.1016/j.jad.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with gastrointestinal tract (GIT) disorders, while genetic correlation, pleiotropic loci and shared risk genes remain to be explored. METHODS Leveraging genome-wide association study statistics for MDD (n = 170,756), peptic ulcer disease (PUD; n = 16,666), gastroesophageal reflux disease (GORD; n = 54,854), PUD and/or GORD and/or medications (PGM; n = 90,175), irritable bowel syndrome (IBS; n = 28,518), and inflammatory bowel disease (IBD; n = 7045), we determined global and local genetic correlations, identified pleiotropic loci, performed gene-level evaluations, and inferred causal associations using bidirectional Mendelian randomization. RESULTS We found global correlation of MDD with PUD (rg = 0.444, P = 3.135 × 10-24), GORD (rg = 0.459, P = 2.568 × 10-65), PGM (rg = 0.498, P = 6.094 × 10-114), IBS (rg = 0.621, P = 2.483 × 10-63), and IBD (rg = 0.171, P = 1.824 × 10-5). We identified 12 locally correlated regions between MDD and GIT disorders except for IBD, and one shared region (chr11:111985737-113,103,996) for PGM, GORD, and IBS. We found one pleiotropic locus for PUD, 12 for GORD, 30 for PGM, eight for IBS, and seven for IBD, and five shared loci (rs138786869, rs2284189, rs3130063, rs35789010, rs7568369) for GORD and PGM. We respectively observed 14 and 20 overlapping genes for MDD-GORD and MDD-PGM. We showed genetic liabilities to GORD, PGM, and IBS causally increase MDD risk, while all reverse causalities are significant. CONCLUSIONS Our work identifies genetic architectures shared between MDD and GIT disorders, contributes genetic insights to understand depression in the context of gut-brain interactions, and provides potential targets to treat gastrointestinal symptoms in depressive patients.
Collapse
Affiliation(s)
- Siquan Zhou
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Zi
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yifan Hu
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Jingyuan Xiong
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
2
|
Yuan X, Wang Q, Hu C, Yong W, Li P. BTN3A2 interacted with MFGE8 to alleviate preeclampsia by promoting ferroptosis and inhibiting angiogenesis. Life Sci 2025; 370:123584. [PMID: 40147528 DOI: 10.1016/j.lfs.2025.123584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
AIMS Preeclampsia (PE) is a major cause of maternal and perinatal morbidity and mortality and is characterized by placental ischemia. Angiogenic disorders and ferroptosis are key mechanisms in PE; however, their relationship remains unclear. The butyrophilin 3A (BTN3A) family member BTN3A2 is involved in the progression of many cancers; however, its role in PE angiogenesis and ferroptosis is unclear. In this study, we investigated the role of BTN3A2 in PE angiogenesis and ferroptosis. MATERIALS AND METHODS Placental tissues were collected from healthy individuals and PE patients to explore the correlation between ferroptosis and angiogenesis. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, ferrostatin-1, Erastin, and gene manipulations (oe-BTN3A2, si-BTN3A2, and si-milk factor-globule-EFG factor 8 (MFGE8)) to elucidate the underlying mechanisms. Finally, a rat model of PE was established by intraperitoneal injection of Nomega-nitro-L-arginine methyl ester to verify the effects of BTN3A2 on angiogenesis. KEY FINDINGS Placental ferroptosis was negatively correlated with angiogenesis in PE. Clone number, migration, and tube number decreased in HUVECs after hypoxic exposure, and these effects were reversed by ferrostatin-1. BTN3A2 was increased in PE placentae and inhibited the viability of hypoxic HUVECs by inducing ferroptosis. Mechanistically, BTN3A2 interacted with MFGE8, and BTN3A2 promoted hypoxia-induced ferroptosis in HUVECs by downregulating MFGE8. Additionally, BTN3A2 knockdown promoted placental angiogenesis and improved the prognosis in PE rats. SIGNIFICANCE BTN3A2 interacted with MFGE8 to alleviate PE by promoting ferroptosis and inhibiting angiogenesis. Therefore, it may serve as a potential therapeutic target for the diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Wang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
| | - Caihong Hu
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
| | - Wenjing Yong
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China.
| |
Collapse
|
3
|
Bian L, Hu B, Li F, Gu Y, Hu C, Chen Y, Deng B, Fang H, Zhu X, Chen Y, Fu X, Wang T, She Q, Zhu M, Jiang Y, Dai J, Xu H, Ma H, Xu Z, Hu Z, Shen H, Ding Y, Yan C, Jin G. Single-cell eQTL mapping reveals cell-type-specific genes associated with the risk of gastric cancer. CELL GENOMICS 2025:100812. [PMID: 40112817 DOI: 10.1016/j.xgen.2025.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/05/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Most expression quantitative trait locus (eQTL) analyses have been conducted in heterogeneous gastric tissues, limiting understanding of cell-type-specific regulatory mechanisms. Here, we employed a pooled multiplexing strategy to profile 399,683 gastric cells from 203 Chinese individuals using single-cell RNA sequencing (scRNA-seq). We identified 19 distinct gastric cell types and performed eQTL analyses, uncovering 8,498 independent eQTLs, with a considerable fraction (81%, 6,909/8,498) exhibiting cell-type-specific effects. Integration of these eQTLs with genome-wide association studies for gastric cancer (GC) revealed four co-localization signals in specific cell types. Genetically predicted cell-type-specific gene expression identified 15 genes associated with GC risk, including the upregulation of MUC1 exclusively in parietal cells, linked to decreased GC risk. Our findings highlight substantial heterogeneity in the genetic regulation of gene expression across gastric cell types and provide critical cell-type-specific annotations of genetic variants associated with GC risk, offering new molecular insights underlying GC.
Collapse
Affiliation(s)
- Lijun Bian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi 214023, China
| | - Beiping Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Fengyuan Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanliang Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Caihong Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuheng Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Haisheng Fang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xia Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiangjin Fu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiang She
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225012, China.
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi 214023, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing 211166, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Bayasgalan T, Kanda M, Sato Y, Zhu H, Hamrah MH, Martinez FEG, Shinozuka T, Ito Y, Sasahara M, Shimizu D, Umeda S, Inokawa Y, Hattori N, Hayashi M, Tanaka C, Kodera Y. SPOCD1 Enhances Cancer Cell Activities and Serves as a Prognosticator in Esophageal Squamous Cell Carcinoma. Cancer Genomics Proteomics 2025; 22:306-325. [PMID: 39993802 PMCID: PMC11880929 DOI: 10.21873/cgp.20503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/AIM Comprehensive transcriptome analysis has revealed SPOC Domain Containing 1 (SPOCD1) as a potential biomarker for esophageal squamous cell carcinoma (ESCC). However, the expression and oncological roles of SPOCD1 in ESCC remains underexplored. We aimed to evaluate the role of SPOCD1 in oncogenesis and prognosis of ESCC in vitro and in vivoMaterials and Methods: The Cancer Cell Line Encyclopedia (CCLE) database was utilized to evaluate correlations between SPOCD1 expression and oncogenes in ESCC. mRNA and protein levels were measured by qRT-PCR and Simple Western assays, respectively. siRNA-mediated knockdown and overexpression experiments assessed the effects of SPOCD1 expression on proliferation, migration, and invasion of ESCC cell lines. In vivo, siRNA knockdown effects on tumor growth were tested in mouse xenograft models. SPOCD1 mRNA levels in 164 resected tissues were correlated with clinicopathological parameters and survival, while a cohort of 177 patients was analyzed for protein expression and survival. RESULTS SPOCD1 mRNA expression varied widely among ESCC cell lines and correlated with epithelial-mesenchymal transition-related genes. Knockdown significantly suppressed proliferation, migration, and invasion (p<0.001), while overexpression increased proliferation (p<0.001). In vivo, siRNA knockdown reduced tumor growth compared to both si-control (p=0.005) and untransfected groups (p<0.001). High SPOCD1 mRNA expression was linked to poor disease-specific survival (p=0.009, HR=1.965, 95% CI=1.187-3.252) and disease-free survival (p=0.047, HR=1.602, 95% CI=1.007-2.549). Similarly, elevated protein levels were associated with unfavorable disease-specific (p=0.013, HR=1.860, 95% CI=1.137-3.041) and disease-free survival (p=0.032, HR=1.618, 95% CI=1.042-2.513). CONCLUSION SPOCD1 expression correlates with the aggressiveness of ESCC cells, and its expression levels in tumor tissues may serve as a prognostic factor for ESCC patients.
Collapse
Affiliation(s)
- Tuvshin Bayasgalan
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan;
| | - Yusuke Sato
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Haote Zhu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mohammad Hussain Hamrah
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ito
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sasahara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Kang J, Yang L, Jia T, Zhang W, Wang LB, Zhao YJ, You J, Deng YT, Ge YJ, Liu WS, Zhang Y, Chen YL, He XY, Sahakian BJ, Yang YT, Zhao XM, Yu JT, Feng J, Cheng W. Plasma proteomics identifies proteins and pathways associated with incident depression in 46,165 adults. Sci Bull (Beijing) 2025; 70:573-586. [PMID: 39424455 DOI: 10.1016/j.scib.2024.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Proteomic alterations preceding the onset of depression offer valuable insights into its development and potential interventions. Leveraging data from 46,165 UK Biobank participants and 2920 plasma proteins profiled at baseline, we conducted a longitudinal analysis with a median follow-up of 14.5 years to explore the relationship between plasma proteins and incident depression. Linear regression was then used to assess associations between depression-related proteins and brain structures, genetic factors, and stress-related events. Our analysis identified 157 proteins associated with incident depression (P <1.71 × 10-5), including novel associations with proteins such as GAST, PLAUR, LRRN1, BCAN, and ITGA11. Notably, higher expression levels of GDF15 (P = 6.18 × 10-26) and PLAUR (P = 2.88 × 10-14) were linked to an increased risk of depression, whereas higher levels of LRRN1 (P = 4.28 × 10-11) and ITGA11 (P = 3.68 × 10-9) were associated with a decreased risk. Dysregulation of the 157 proteins is correlated with brain regions implicated in depression, including the hippocampus and middle temporal gyrus. Additionally, these protein alterations were strongly correlated with stress-related events, including self-harm events, adult, and childhood trauma. Biological pathway enrichment analysis highlighted the critical roles of the immune response. EGFR and TNF emerged as key proteins in the protein-protein interaction network. BTN3A2, newly linked to incident depression (P = 4.35 × 10-10), was confirmed as a causal factor through Mendelian randomization analysis. In summary, our research identified the proteomic signatures associated with the onset of depression, highlighting its potential for early intervention and tailored therapeutic avenues.
Collapse
Affiliation(s)
- Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Lin-Bo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Yu-Jie Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Jia You
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Yi-Lin Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China; Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Yucheng T Yang
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200433, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; School of Data Science, Fudan University, Shanghai 200438, China.
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China; Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200433, China.
| |
Collapse
|
6
|
Mehdikhani F, Bahar A, Bashi M, Mohammadlou M, Yousefi B. From immunomodulation to therapeutic prospects: Unveiling the biology of butyrophilins in cancer. Cell Biochem Funct 2024; 42:e4081. [PMID: 38934382 DOI: 10.1002/cbf.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Bahar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Bashi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Sun H, Shang J, Liu X, Ren S, Hu S, Wang X. Eukaryotic initiation factor 3a promotes the development of diffuse large B-cell lymphoma through regulating cell proliferation. BMC Cancer 2024; 24:432. [PMID: 38589831 PMCID: PMC11003032 DOI: 10.1186/s12885-024-12166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND One-third of diffuse large B-cell lymphoma (DLBCL) patients suffer relapse after standard treatment. Eukaryotic initiation factor 3a (eIF3a) is a key player in the initial stage of translation, which has been widely reported to be correlated with tumorigenesis and therapeutic response. This study aimed to explore the biological role of eIF3a, evaluate its prognostic and therapeutic potential in DLBCL. METHODS RNA-seq datasets from GEO database were utilized to detect the expression and prognostic role of eIF3a in DLBCL patients. Protein level of eIF3a was estimated by western blot and immunohistochemical. Next, DLBCL cells were transfected with lentiviral vector either eIF3a-knockdown or empty to assess the biological role of eIF3a. Then, samples were divided into 2 clusters based on eIF3a expression and differentially expressed genes (DEGs) were identified. Function enrichment and mutation analysis of DEGs were employed to detect potential biological roles. Moreover, we also applied pan-cancer and chemosensitivity analysis for deep exploration. RESULTS eIF3a expression was found to be higher in DLBCL than healthy controls, which was associated with worse prognosis. The expression of eIF3a protein was significantly increased in DLBCL cell lines compared with peripheral blood mononuclear cells (PBMCs) from healthy donors. eIF3a knockdown inhibited the proliferation of DLBCL cells and the expression of proliferation-related proteins and increase cell apoptosis rate. Besides, 114 DEGs were identified which had a close linkage to cell cycle and tumor immune. eIF3a and DEGs mutations were found to be correlated to chemosensitivity and vital signal pathways. Pan-cancer analysis demonstrated that high eIF3a expression was associated with worse prognosis in several tumors. Moreover, eIF3a expression was found to be related to chemosensitivity of several anti-tumor drugs in DLBCL, including Vincristine and Wee1 inhibitor. CONCLUSIONS We firstly revealed the high expression and prognostic role of eIF3a in DLBCL, and eIF3a might promote the development of DLBCL through regulating cell proliferation and apoptosis. eIF3a expression was related to immune profile and chemosensitivity in DLBCL. These results suggest that eIF3a could serve as a potential prognostic biomarker and therapeutic target in DLBCL.
Collapse
Affiliation(s)
- Hongkun Sun
- Department of Hematology, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China
- Department of Hematology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong, China
| | - Juanjuan Shang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China
| | - Xiao Liu
- Department of Hematology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong, China
| | - Shuai Ren
- Department of Oncology, Zibo Central Hospital, 255016, Zibo, Shandong, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, 250021, Jinan, Shandong, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, 250021, Jinan, Shandong, China.
| |
Collapse
|
8
|
Wang D, Wei Z, Lin F, Wang Y, Liu X, Li Q, Sun L, Yang S. Protective effects of villi mesenchymal stem cells on human umbilical vein endothelial cells by inducing SPOCD1 expression in cases of gestational diabetes mellitus. Biochem Biophys Res Commun 2023; 686:149177. [PMID: 37953105 DOI: 10.1016/j.bbrc.2023.149177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is characterized by a lack of response to insulin in pregnancies, and often accompanied by severe complications. GDM is associated with structural and functional alterations, particularly endothelial dysfunction, in various tissues. This study is aimed to investigate the effect of placental mesenchymal stem cells (MSCs) on the endothelial biological function of human umbilical vein endothelial cells (HUVECs) and their molecular mechanisms. METHODS Villi mesenchymal stem cells (VMSCs) were co-cultured with HUVECs, and transcriptomic analysis of differential genes was performed in HUVECs under high-glucose induction. Lentiviral transfection was performed to construct HUVECs with stable knockdown or overexpression of SPOCD1. The immunohistochemical assays were used to detect the expression of SPOCD1 in GDM patients. TUNEL fluorescence staining was applied for detection of the HUVEC apoptosis. β galactosidase staining assay was performed to detect the cell senescence. Electron microscopy was used to detect the cell pyroptosis. qRT-PCR and western blot assays were conducted for identifying the mRNA & protein expressions of genes. RESULTS VMSCs, when co-cultured with HUVECs, could inhibit the apoptosis, pyroptosis and senescence induced by high-glucose condition in HUVECs. Transcriptomic results showed an upregulation of SPOCD1 expression induced by VMSCs in HUVECs. Overexpression of SPOCD1 inhibited high-level glucose-induced apoptosis, pyroptosis and senescence in HUVECs via the β-catenin pathway. CONCLUSION VMSCs induce β-catenin activation by upregulating the expression of SPOCD1 in HUVECs, which ultimately inhibits high-level glucose-induced apoptosis, pyroptosis and senescence in HUVECs. This observation provides potential therapeutic insight for future GDM treatment.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenying Wei
- Department of Obstetrics, The Qingdao Women and Children's Hospital, Qingdao, China
| | - Fangfei Lin
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yiqian Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaogang Liu
- Department of Obstetrics, People's Hospital of Yuxi City, Yuxi, China
| | - Qiuyi Li
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Sun
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shengmei Yang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Zhou S, Luo H, Tian Y, Li H, Zeng Y, Wang X, Shan S, Xiong J, Cheng G. Investigating the shared genetic architecture of post-traumatic stress disorder and gastrointestinal tract disorders: a genome-wide cross-trait analysis. Psychol Med 2023; 53:7627-7635. [PMID: 37218628 DOI: 10.1017/s0033291723001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Observational studies suggest a correlation between post-traumatic stress disorder (PTSD) and gastrointestinal tract (GIT) disorders. However, the genetic overlap, causal relationships, and underlining mechanisms between PTSD and GIT disorders were absent. METHODS We obtained genome-wide association study statistics for PTSD (23 212 cases, 151 447 controls), peptic ulcer disease (PUD; 16 666 cases, 439 661 controls), gastroesophageal reflux disease (GORD; 54 854 cases, 401 473 controls), PUD and/or GORD and/or medications (PGM; 90 175 cases, 366 152 controls), irritable bowel syndrome (IBS; 28 518 cases, 426 803 controls), and inflammatory bowel disease (IBD; 7045 cases, 449 282 controls). We quantified genetic correlations, identified pleiotropic loci, and performed multi-marker analysis of genomic annotation, fast gene-based association analysis, transcriptome-wide association study analysis, and bidirectional Mendelian randomization analysis. RESULTS PTSD globally correlates with PUD (rg = 0.526, p = 9.355 × 10-7), GORD (rg = 0.398, p = 5.223 × 10-9), PGM (rg = 0.524, p = 1.251 × 10-15), and IBS (rg = 0.419, p = 8.825 × 10-6). Cross-trait meta-analyses identify seven genome-wide significant loci between PTSD and PGM (rs13107325, rs1632855, rs1800628, rs2188100, rs3129953, rs6973700, and rs73154693); three between PTSD and GORD (rs13107325, rs1632855, and rs3132450); one between PTSD and IBS/IBD (rs4937872 and rs114969413, respectively). Proximal pleiotropic genes are mainly enriched in immune response regulatory pathways, and in brain, digestive, and immune systems. Gene-level analyses identify five candidates: ABT1, BTN3A2, HIST1H3J, ZKSCAN4, and ZKSCAN8. We found significant causal effects of GORD, PGM, IBS, and IBD on PTSD. We observed no reverse causality of PTSD with GIT disorders, except for GORD. CONCLUSIONS PTSD and GIT disorders share common genetic architectures. Our work offers insights into the biological mechanisms, and provides genetic basis for translational research studies.
Collapse
Affiliation(s)
- Siquan Zhou
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hang Luo
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Ye Tian
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Haoqi Li
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Yaxian Zeng
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Hua H, Su T, Han L, Zhang L, Huang Y, Zhang N, Yang M. LINC01226 promotes gastric cancer progression through enhancing cytoplasm-to-nucleus translocation of STIP1 and stabilizing β-catenin protein. Cancer Lett 2023; 577:216436. [PMID: 37806517 DOI: 10.1016/j.canlet.2023.216436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Gastric cancer (GC) remains one of the most common malignances and the leading cause of cancer-related mortality worldwide. Although the critical role of several long non-coding RNAs (lncRNAs) transcribed from several GC-risk loci has been established, we still know little about the biological significance of these lncRNAs at most gene loci and how they play in cell signaling. In the present study, we identified a novel oncogenic lncRNA LINC01226 transcribed from the 1p35.2 GC-risk locus. LINC01226 shows markedly higher expression levels in GC specimens compared with those in normal tissues. High expression of LINC01226 is evidently correlated with worse prognosis of GC cases. In line with these, oncogenic LINC01226 promotes proliferation, migration and metastasis of GC cells ex vivo and in vivo. Importantly, LINC01226 binds to STIP1 protein, leads to disassembly of the STIP1-HSP90 complex, elevates interactions between HSP90 and β-catenin, stabilizes β-catenin protein, activates the Wnt/β-catenin signaling and, thereby, promote GC progression. Together, our findings uncovered a novel layer regulating the Wnt signaling in cancers and uncovers a new epigenetic mode of GC tumorigenesis. These discoveries also shed new light on the importance of functional lncRNAs as innovative therapeutic targets through precisely controlling protein-protein interactions in cancers.
Collapse
Affiliation(s)
- Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Tao Su
- Shandong University Cancer Center, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Shandong University Cancer Center, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
11
|
Zlatareva I, Wu Y. Local γδ T cells: translating promise to practice in cancer immunotherapy. Br J Cancer 2023; 129:393-405. [PMID: 37311978 PMCID: PMC10403623 DOI: 10.1038/s41416-023-02303-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Rapid bench-to-bedside translation of basic immunology to cancer immunotherapy has revolutionised the clinical practice of oncology over the last decade. Immune checkpoint inhibitors targeting αβ T cells now offer durable remissions and even cures for some patients with hitherto treatment-refractory metastatic cancers. Unfortunately, these treatments only benefit a minority of patients and efforts to improve efficacy through combination therapies utilising αβ T cells have seen diminishing returns. Alongside αβ T cells and B cells, γδ T cells are a third lineage of adaptive lymphocytes. Less is known about these cells, and they remain relatively untested in cancer immunotherapy. Whilst preclinical evidence supports their utility, the few early-phase trials involving γδ T cells have failed to demonstrate convincing efficacy in solid cancers. Here we review recent progress in our understanding of how these cells are regulated, especially locally within tissues, and the potential for translation. In particular, we focus on the latest advances in the field of butyrophilin (BTN) and BTN-like (BTNL) regulation of γδ T cells and speculate on how these advances may address the limitations of historical approaches in utilising these cells, as well as how they may inform novel approaches in deploying these cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Iva Zlatareva
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
| | - Yin Wu
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 9RT, UK.
- Department of Medical Oncology, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
12
|
Huang Y, Zhang W, Xu C, Li Q, Zhang W, Xu W, Zhang M. Presence of PD-1 similarity genes in monocytes may promote the development of type 1 diabetes mellitus and poor prognosis of pancreatic cancer. BMJ Open Diabetes Res Care 2023; 11:11/3/e003196. [PMID: 37130628 PMCID: PMC10163525 DOI: 10.1136/bmjdrc-2022-003196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
INTRODUCTION To identify proteins and corresponding genes that share sequential and structural similarity with programmed cell death protein-1 (PD-1) in patients with type 1 diabetes mellitus (T1DM) via bioinformatics analysis. RESEARCH DESIGN AND METHODS All proteins with immunoglobulin V-set domain were screened in the human protein sequence database, and the corresponding genes were obtained in the gene sequence database. GSE154609 was downloaded from the GEO database, which contained peripheral blood CD14+ monocyte samples from patients with T1DM and healthy controls. The difference result and the similar genes were intersected. Analysis of gene ontology and Kyoto encyclopedia of genes and genomes pathways was used to predict potential functions using the R package 'cluster profiler'. The expression differences of intersected genes were analyzed in The Cancer Genome Atlas pancreatic cancer dataset and GTEx database using t-test. The correlation between the overall survival and disease-free progression of patients with pancreatic cancer was analyzed using Kaplan-Meier survival analysis. RESULTS 2068 proteins with immunoglobulin V-set domain similar to PD-1 and 307 corresponding genes were found. 1705 upregulated differentially expressed genes (DEGs) and 1335 downregulated DEGs in patients with T1DM compared with healthy controls were identified. A total of 21 genes were overlapped with the 307 PD-1 similarity genes, including 7 upregulated and 14 downregulated. Of these, mRNA levels of 13 genes were significantly increased in patients with pancreatic cancer. High expression of MYOM3 and HHLA2 was significantly correlated with shorter overall survival of patients with pancreatic cancer, while high expression of FGFRL1, CD274, and SPEG was significantly correlated with shorter disease-free survival of patients with pancreatic cancer. CONCLUSIONS Genes encoding immunoglobulin V-set domain similar to PD-1 may contribute to the occurrence of T1DM. Of these genes, MYOM3 and SPEG may serve as potential biomarkers for the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Yuquan Huang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenchuan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Can Xu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qingxia Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wu Zhang
- Clinical School of Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wanfeng Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mingming Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Zhang N, Wang B, Ma C, Zeng J, Wang T, Han L, Yang M. LINC00240 in the 6p22.1 risk locus promotes gastric cancer progression through USP10-mediated DDX21 stabilization. J Exp Clin Cancer Res 2023; 42:89. [PMID: 37072811 PMCID: PMC10111703 DOI: 10.1186/s13046-023-02654-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/25/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Gastric cancer remains the leading cause of cancer death in the world. It is increasingly evident that long non-coding RNAs (lncRNAs) transcribed from the genome-wide association studies (GWAS)-identified gastric cancer risk loci act as a key mode of cancer development and disease progression. However, the biological significance of lncRNAs at most cancer risk loci remain poorly understood. METHODS The biological functions of LINC00240 in gastric cancer were investigated through a series of biochemical assays. Clinical implications of LINC00240 were examined in tissues from gastric cancer patients. RESULTS In the present study, we identified LINC00240, which is transcribed from the 6p22.1 gastric cancer risk locus, functioning as a novel oncogene. LINC00240 exhibits the noticeably higher expression in gastric cancer specimens compared with normal tissues and its high expression levels are associated with worse survival of patients. Consistently, LINC00240 promotes malignant proliferation, migration and metastasis of gastric cancer cells in vitro and in vivo. Importantly, LINC00240 could interact and stabilize oncoprotein DDX21 via eliminating its ubiquitination by its novel deubiquitinating enzyme USP10, which, thereby, promote gastric cancer progression. CONCLUSIONS Taken together, our data uncovered a new paradigm on how lncRNAs control protein deubiquitylation via intensifying interactions between the target protein and its deubiquitinase. These findings highlight the potentials of lncRNAs as innovative therapeutic targets and thus lay the ground work for clinical translation.
Collapse
Affiliation(s)
- Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Chi Ma
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Department of Thyroid Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, Yantai, 264000, China
| | - Jiajia Zeng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Teng Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
14
|
Zou W, Zhang Q, Sun R, Li X, He S. Study on TFF1 and PALB2 gene variants associated with gastric carcinoma risk in the Chinese Han population. Cancer Epidemiol 2023; 83:102333. [PMID: 36758349 DOI: 10.1016/j.canep.2023.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVE Gastric carcinoma (GC) has received extensive attention due to its complex pathogenesis. Studies have shown that the expression of Trefoil factor 1 (TFF1) and Partner and localiser of BRCA2 (PALB2) genes promotes the occurrence of GC. Therefore, we investigated whether TFF1 and PALB2 gene polymorphisms are associated with GC risk in the Chinese Han population. METHODS A total of 509 GC cases and 505 controls were recruited, and single nucleotide polymorphisms (SNPs) of TFF1 and PALB2 in these subjects were genotyped. The association between each candidate polymorphism and GC risk was assessed by calculating odds ratios (ORs) and 95% confidence intervals (CIs). The visualization of gene-gene interactions and functional enrichment analysis were then performed using Cytoscape software and the R package "cluster profile". RESULTS The TFF1 rs2156310 polymorphism significantly reduced the predisposition to GC in people under 60 years of age (AA vs. AG - GG, OR = 0.58, 95% CI = 0.35-0.97, p = 0.036). The gender-stratified analysis found that PALB2 rs513313 was significantly associated with the risk of GC in males (CT vs. TT, OR = 1.51, 95% CI = 1.06-2.15, p = 0.022). Besides, PALB2 rs249954 significantly reduced the susceptibility to GC in females (AA vs GG, OR = 0.42, 95% CI = 0.19-0.94, p = 0.034). CONCLUSION Our results revealed that TFF1 and PALB2 gene polymorphisms were correlated with the genetic susceptibility to GC, providing certain data support for researchers to further study the mechanism of GC.
Collapse
Affiliation(s)
- Wenjing Zou
- Department of Digestive Internal Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Digestive Internal Medicine, Xi'an Fifth Hospital, Xi'an 710082, China
| | - Qian Zhang
- Department of First Internal Medicine, Shaanxi Province Cancer Hospital, Xi'an 710061, China
| | - Ruifang Sun
- Department of Pathology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xu Li
- Department of Sixth Internal Medicine, Shaanxi Province Cancer Hospital, Xi'an 710061, China.
| | - Shuixiang He
- Department of Digestive Internal Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
15
|
Schröder J, Chegwidden L, Maj C, Gehlen J, Speller J, Böhmer AC, Borisov O, Hess T, Kreuser N, Venerito M, Alakus H, May A, Gerges C, Schmidt T, Thieme R, Heider D, Hillmer AM, Reingruber J, Lyros O, Dietrich A, Hoffmeister A, Mehdorn M, Lordick F, Stocker G, Hohaus M, Reim D, Kandler J, Müller M, Ebigbo A, Fuchs C, Bruns CJ, Hölscher AH, Lang H, Grimminger PP, Dakkak D, Vashist Y, May S, Görg S, Franke A, Ellinghaus D, Galavotti S, Veits L, Weismüller J, Dommermuth J, Benner U, Rösch T, Messmann H, Schumacher B, Neuhaus H, Schmidt C, Wissinowski TT, Nöthen MM, Dong J, Ong JS, Buas MF, Thrift AP, Vaughan TL, Tomlinson I, Whiteman DC, Fitzgerald RC, Jankowski J, Vieth M, Mayr A, Gharahkhani P, MacGregor S, Gockel I, Palles C, Schumacher J. GWAS meta-analysis of 16 790 patients with Barrett's oesophagus and oesophageal adenocarcinoma identifies 16 novel genetic risk loci and provides insights into disease aetiology beyond the single marker level. Gut 2023; 72:612-623. [PMID: 35882562 DOI: 10.1136/gutjnl-2021-326698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/07/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Oesophageal cancer (EC) is the sixth leading cause of cancer-related deaths. Oesophageal adenocarcinoma (EA), with Barrett's oesophagus (BE) as a precursor lesion, is the most prevalent EC subtype in the Western world. This study aims to contribute to better understand the genetic causes of BE/EA by leveraging genome wide association studies (GWAS), genetic correlation analyses and polygenic risk modelling. DESIGN We combined data from previous GWAS with new cohorts, increasing the sample size to 16 790 BE/EA cases and 32 476 controls. We also carried out a transcriptome wide association study (TWAS) using expression data from disease-relevant tissues to identify BE/EA candidate genes. To investigate the relationship with reported BE/EA risk factors, a linkage disequilibrium score regression (LDSR) analysis was performed. BE/EA risk models were developed combining clinical/lifestyle risk factors with polygenic risk scores (PRS) derived from the GWAS meta-analysis. RESULTS The GWAS meta-analysis identified 27 BE and/or EA risk loci, 11 of which were novel. The TWAS identified promising BE/EA candidate genes at seven GWAS loci and at five additional risk loci. The LDSR analysis led to the identification of novel genetic correlations and pointed to differences in BE and EA aetiology. Gastro-oesophageal reflux disease appeared to contribute stronger to the metaplastic BE transformation than to EA development. Finally, combining PRS with BE/EA risk factors improved the performance of the risk models. CONCLUSION Our findings provide further insights into BE/EA aetiology and its relationship to risk factors. The results lay the foundation for future follow-up studies to identify underlying disease mechanisms and improving risk prediction.
Collapse
Affiliation(s)
- Julia Schröder
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Laura Chegwidden
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Carlo Maj
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Jan Gehlen
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Jan Speller
- Institute of Medical Biometrics, Informatics and Epidemiology (IMBIE), Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne C Böhmer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Timo Hess
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Nicole Kreuser
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Hakan Alakus
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Andrea May
- Department of Gastroenterology, Oncology and Pneumology, Asklepios Paulinen Clinic Wiesbaden, Wiesbaden, Germany
| | - Christian Gerges
- Department of Internal Medicine II, Evangelisches Krankenhaus Dusseldorf, Dusseldorf, Germany
| | - Thomas Schmidt
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Rene Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University Hospital Cologne, Cologne, Germany
| | - Julian Reingruber
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Orestis Lyros
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | | | - Matthias Mehdorn
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Florian Lordick
- University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Gertraud Stocker
- University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Michael Hohaus
- Department for General and Visceral Surgery, Städt. Klinikum Dresden Friedrichstadt, Dresden, Germany
| | - Daniel Reim
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, München, Germany
| | - Jennis Kandler
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty of Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Michaela Müller
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, University Hospital Marburg and Philipps University, Marburg, Germany
| | - Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Claudia Fuchs
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Arnulf H Hölscher
- Department for General, Visceral and Trauma Surgery, Elisabeth-Krankenhaus-Essen GmbH, Essen, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Peter P Grimminger
- Department of General, Visceral and Transplant Surgery, University Medical Center, University of Mainz, Mainz, Germany
| | - Dani Dakkak
- Department of Internal Medicine and Gastroenterology, Elisabeth Hospital Essen, Essen, Germany
| | | | - Sandra May
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Lübeck/Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sara Galavotti
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Lothar Veits
- Institute of Pathology, Friedrich-Alexander-Universiät Erlangen-Nürnberg, Klinikum Bayreuth, Bayreuth, Germany
| | | | | | - Udo Benner
- Gastroenterologische Gemeinschaftspraxis, Koblenz, Germany
| | - Thomas Rösch
- Department of Interdisciplinary Endoscopy, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Brigitte Schumacher
- Department of Internal Medicine and Gastroenterology, Elisabeth Hospital Essen, Essen, Germany
| | - Horst Neuhaus
- Department of Internal Medicine II, Evangelisches Krankenhaus Dusseldorf, Dusseldorf, Germany
| | - Carsten Schmidt
- Medical Clinic II (Gastroenterology, Hepatology, Endocrinology, Diabetology and Infektiology), Klinikum Fulda, University Medicine Marburg-Campus Fulda, Fulda, Germany
- Medical Faculty, Friedrich Schiller University Jena, Jena, Germany
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Jing Dong
- Division of Hematology and Oncology, Department of Medicine, Cancer Center, and Genomic Sciences & Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthew F Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Aaron P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas L Vaughan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - David C Whiteman
- Cancer Control, Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca Claire Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Janusz Jankowski
- Comprehensive Clinical Trials Unit, University College London, London, UK
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universiät Erlangen-Nürnberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Andreas Mayr
- Institute of Medical Biometrics, Informatics and Epidemiology (IMBIE), Medical Faculty, University of Bonn, Bonn, Germany
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
16
|
Appel LM, Benedum J, Engl M, Platzer S, Schleiffer A, Strobl X, Slade D. SPOC domain proteins in health and disease. Genes Dev 2023; 37:140-170. [PMID: 36927757 PMCID: PMC10111866 DOI: 10.1101/gad.350314.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Since it was first described >20 yr ago, the SPOC domain (Spen paralog and ortholog C-terminal domain) has been identified in many proteins all across eukaryotic species. SPOC-containing proteins regulate gene expression on various levels ranging from transcription to RNA processing, modification, export, and stability, as well as X-chromosome inactivation. Their manifold roles in controlling transcriptional output implicate them in a plethora of developmental processes, and their misregulation is often associated with cancer. Here, we provide an overview of the biophysical properties of the SPOC domain and its interaction with phosphorylated binding partners, the phylogenetic origin of SPOC domain proteins, the diverse functions of mammalian SPOC proteins and their homologs, the mechanisms by which they regulate differentiation and development, and their roles in cancer.
Collapse
Affiliation(s)
- Lisa-Marie Appel
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Johannes Benedum
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Sebastian Platzer
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Xué Strobl
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria;
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Laboratories, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
17
|
Chen Y, Yan W, Yang K, Qian Y, Chen Y, Wang R, Zhu J, He Y, Wu H, Zhang G, Shi T, Chen W. Integrated multi-dimensional analysis highlights DHCR7 mutations involving in cholesterol biosynthesis and contributing therapy of gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:36. [PMID: 36710342 PMCID: PMC9885627 DOI: 10.1186/s13046-023-02611-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Genetic background plays an important role in the occurrence and development of gastric cancer (GC). With the application of genome-wide association study (GWAS), an increasing number of tumor susceptibility genes in gastric cancer have been discovered. While little of them can be further applicated in clinical diagnosis and treatment due to the lack of in-depth analysis. METHODS A GWAS of peripheral blood leukocytes from GC patients was performed to identify and obtain genetic background data. In combination with a clinical investigation, key SNP mutations and mutated genes were screened. Via in vitro and in vivo experiments, the function of the mutated gene was verified in GC. Via a combination of molecular function studies and amino acid network analysis, co-mutations were discovered and further identified as potential therapeutic targets. RESULTS At the genetic level, the G allele of rs104886038 in DHCR7 was a protective factor identified by the GWAS. Clinical investigation showed that patients with the rs104886038 A/G genotype, age ≥ 60, smoking ≥ 10 cigarettes/day, heavy drinking and H. pylori infection were independent risk factors for GC, with odds ratios of 12.33 (95% CI, 2.10 ~ 72.54), 20.42 (95% CI, 2.46 ~ 169.83), and 11.39 (95% CI, 1.82 ~ 71.21), respectively. Then molecular function studies indicated that DHCR7 regulated cell proliferation, migration, and invasion as well as apoptosis resistance via cellular cholesterol biosynthesis pathway. Further amino acid network analysis based on the predicted structure of DHCR7 and experimental verification indicated that rs104886035 and rs104886038 co-mutation reduced the stability of DHCR7 and induced its degradation. DHCR7 mutation suppressed the malignant behaviour of GC cells and induced apoptosis via inhibition on cell cholesterol biosynthesis. CONCLUSION In this work, we provided a comprehensive multi-dimensional analysis strategy which can be applied to in-depth exploration of GWAS data. DHCR7 and its mutation sites identified by this strategy are potential theratic targets of GC via inhibition of cholesterol biosynthesis.
Collapse
Affiliation(s)
- Yuqi Chen
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Wenying Yan
- grid.263761.70000 0001 0198 0694Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Kexi Yang
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Yiting Qian
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Yanjun Chen
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Ruoqin Wang
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Jinghan Zhu
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Yuxin He
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China
| | - Hongya Wu
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangbo Zhang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China ,grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weichang Chen
- grid.429222.d0000 0004 1798 0228Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 China ,grid.429222.d0000 0004 1798 0228Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215021 China ,grid.263761.70000 0001 0198 0694Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China ,grid.429222.d0000 0004 1798 0228Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Gan L, Yang C, Zhao L, Wang S, Gao Z, Ye Y. Prognostic Biomarker SPOCD1 and Its Correlation with Immune Infiltrates in Colorectal Cancer. Biomolecules 2023; 13:biom13020209. [PMID: 36830578 PMCID: PMC9953389 DOI: 10.3390/biom13020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
The biological role of the spen paralogue and orthologue C-terminal domain containing 1 (SPOCD1) has been investigated in human malignancies, but its function in colorectal cancer (CRC) is unclear. This study investigated the association between SPOCD1 expression and clinicopathological features of CRC cases, as well as its prognostic value and biological function based on large-scale databases and clinical samples. The results showed that the expression level of SPOCD1 was elevated in CRC, which was generally associated with shortened survival time and poor clinical indexes, including advanced T, N, and pathologic stages. Multivariate Cox regression analysis showed that elevated SPOCD1 expression was an independent factor for poor prognosis in CRC patients. Functional enrichment analysis of SPOCD1 and its co-expressed genes revealed that SPOCD1 could act as an oncogene by regulating gene expression in essential functions and pathways of tumorigenesis, such as extracellular matrix organization, chemokine signaling pathways, and calcium signaling pathways. In addition, immune cell infiltration results showed that SPOCD1 expression was associated with various immune cells, especially macrophages. Furthermore, our findings suggested a possible function for SPOCD1 in the polarization of macrophages from M1 to M2 in CRC. In conclusion, SPOCD1 is a promising diagnostic and prognostic marker for CRC, opening new avenues for research and treatment.
Collapse
Affiliation(s)
- Lin Gan
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Long Zhao
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
- Correspondence: (Z.G.); (Y.Y.)
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing 100044, China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing 100044, China
- Correspondence: (Z.G.); (Y.Y.)
| |
Collapse
|
19
|
Zhou D, Zhu F, Huang ZH, Zhang H, Fan LQ, Fan JY. SPOC domain-containing protein 1 regulates the proliferation and apoptosis of human spermatogonial stem cells through adenylate kinase 4. World J Stem Cells 2022; 14:822-838. [PMID: 36619695 PMCID: PMC9813840 DOI: 10.4252/wjsc.v14.i12.822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are the origin of male spermatogenesis, which can reconstruct germ cell lineage in mice. However, the application of SSCs for male fertility restoration is hindered due to the unclear mechanisms of proliferation and self-renewal in humans.
AIM To investigate the role and mechanism of SPOC domain-containing protein 1 (SPOCD1) in human SSC proliferation.
METHODS We analyzed publicly available human testis single-cell RNA sequencing (RNA-seq) data and found that SPOCD1 is predominantly expressed in SSCs in the early developmental stages. Small interfering RNA was applied to suppress SPOCD1 expression to detect the impacts of SPOCD1 inhibition on SSC proliferation and apoptosis. Subsequently, we explored the target genes of SPOCD1 using RNA-seq and confirmed their role by restoring the expression of the target genes. In addition, we examined SPOCD1 expression in some non-obstructive azoospermia (NOA) patients to explore the correlation between SPOCD1 and NOA.
RESULTS The uniform manifold approximation and projection clustering and pseudotime analysis showed that SPOCD1 was highly expressed in the early stages of SSC, and immunohistological results showed that SPOCD1 was mainly localized in glial cell line-derived neurotrophic factor family receptor alpha-1 positive SSCs. SPOCD1 knockdown significantly inhibited cell proliferation and promoted apoptosis. RNA-seq results showed that SPOCD1 knockdown significantly downregulated genes such as adenylate kinase 4 (AK4). Overexpression of AK4 in SPOCD1 knockdown cells partially reversed the phenotypic changes, indicating that AK4 is a functional target gene of SPOCD1. In addition, we found a significant downregulation of SPOCD1 expression in some NOA patients, suggesting that the downregulation of SPOCD1 may be relevant for NOA.
CONCLUSION Our study broadens the understanding of human SSC fate determination and may offer new theories on the etiology of male infertility.
Collapse
Affiliation(s)
- Dai Zhou
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha 410000, Hunan Province, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, Hunan Province, China
- College of Life Sciences, Hunan Normal University, Changsha 410000, Hunan Province, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410000, Hunan Province, China
| | - Fang Zhu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha 410000, Hunan Province, China
| | - Zeng-Hui Huang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha 410000, Hunan Province, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, Hunan Province, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410000, Hunan Province, China
| | - Huan Zhang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha 410000, Hunan Province, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, Hunan Province, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410000, Hunan Province, China
| | - Li-Qing Fan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha 410000, Hunan Province, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410000, Hunan Province, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410000, Hunan Province, China
| | - Jing-Yu Fan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha 410000, Hunan Province, China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
20
|
Almeida RS, Wisnieski F, Takao Real Karia B, Smith MAC. CRISPR/Cas9 Genome-Editing Technology and Potential Clinical Application in Gastric Cancer. Genes (Basel) 2022; 13:2029. [PMID: 36360266 PMCID: PMC9690943 DOI: 10.3390/genes13112029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 10/09/2023] Open
Abstract
Gastric cancer is the subject of clinical and basic studies due to its high incidence and mortality rates worldwide. Due to the diagnosis occurring in advanced stages and the classic treatment methodologies such as gastrectomy and chemotherapy, they are extremely aggressive and limit the quality of life of these patients. CRISPR/Cas9 is a tool that allows gene editing and has been used to explore the functions of genes related to gastric cancer, in addition to being used in the treatment of this neoplasm, greatly increasing our understanding of cancer genomics. In this mini-review, we seek the current status of the CRISPR/Cas9 gene-editing technology in gastric cancer research and clinical research.
Collapse
Affiliation(s)
- Renata Sanches Almeida
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| | - Fernanda Wisnieski
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
- Discipline of Gastroenterology, Department of Medicine, Federal University of São Paulo, Rua Loefgreen, 1726, São Paulo 04040002, Brazil
| | - Bruno Takao Real Karia
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| | - Marilia Arruda Cardoso Smith
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| |
Collapse
|
21
|
Kone AS, Ait Ssi S, Sahraoui S, Badou A. BTN3A: A Promising Immune Checkpoint for Cancer Prognosis and Treatment. Int J Mol Sci 2022; 23:13424. [PMID: 36362212 PMCID: PMC9653866 DOI: 10.3390/ijms232113424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 08/15/2023] Open
Abstract
Butyrophilin-3A (BTN3A) subfamily members are a group of immunoglobulins present on the surface of different cell types, including innate and cancer cells. Due to their high similarity with the B7 family members, different studies have been conducted and revealed the involvement of BTN3A molecules in modulating T cell activity within the tumor microenvironment (TME). However, a great part of this research focused on γδ T cells and how BTN3A contributes to their functions. In this review, we will depict the roles and various aspects of BTN3A molecules in distinct tumor microenvironments and review how BTN3A receptors modulate diverse immune effector functions including those of CD4+ (Th1), cytotoxic CD8+ T cells, and NK cells. We will also highlight the potential of BTN3A molecules as therapeutic targets for effective immunotherapy and successful cancer control, which could represent a bright future for patient treatment.
Collapse
Affiliation(s)
- Abdou-samad Kone
- Laboratory of Immuno-Genetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20000, Morocco
| | - Saadia Ait Ssi
- Laboratory of Immuno-Genetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20000, Morocco
| | - Souha Sahraoui
- Mohammed VI Center of Oncology, CHU Ibn Rochd, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20000, Morocco
| | - Abdallah Badou
- Laboratory of Immuno-Genetics and Human Pathologies, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20000, Morocco
| |
Collapse
|
22
|
Wang C, Dai J, Qin N, Fan J, Ma H, Chen C, An M, Zhang J, Yan C, Gu Y, Xie Y, He Y, Jiang Y, Zhu M, Song C, Jiang T, Liu J, Zhou J, Wang N, Hua T, Liang S, Wang L, Xu J, Yin R, Chen L, Xu L, Jin G, Lin D, Hu Z, Shen H. Analyses of rare predisposing variants of lung cancer in 6,004 whole genomes in Chinese. Cancer Cell 2022; 40:1223-1239.e6. [PMID: 36113475 DOI: 10.1016/j.ccell.2022.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
We present the largest whole-genome sequencing (WGS) study of non-small cell lung cancer (NSCLC) to date among 6,004 individuals of Chinese ancestry, coupled with 23,049 individuals genotyped by SNP array. We construct a high-quality haplotype reference panel for imputation and identify 20 common and low-frequency loci (minor allele frequency [MAF] ≥ 0.5%), including five loci that have never been reported before. For rare loss-of-function (LoF) variants (MAF < 0.5%), we identify BRCA2 and 18 other cancer predisposition genes that affect 5.29% of individuals with NSCLC, and 98.91% (181 of 183) of LoF variants have not been linked previously to NSCLC risk. Promoter variants of BRCA2 also have a substantial effect on NSCLC risk, and their prevalence is comparable with BRCA2 LoF variants. The associations are validated in an independent case-control study including 4,410 individuals and a prospective cohort study including 23,826 individuals. Our findings not only provide a high-quality reference panel for future array-based association studies but depict the whole picture of rare pathogenic variants for NSCLC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Juncheng Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Na Qin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jingyi Fan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Congcong Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingxing An
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiwang Yan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yayun Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanlin He
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meng Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ci Song
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jia Liu
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jun Zhou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Nanxi Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Hua
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuang Liang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lu Wang
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jing Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Guangfu Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
23
|
Zhao Z, Wang C, Chu P, Lu X. Key Genes Associated with Tumor-Infiltrating Non-regulatory CD4- and CD8-Positive T Cells in Microenvironment of Hepatocellular Carcinoma. Biochem Genet 2022; 60:1762-1780. [PMID: 35092558 PMCID: PMC9470630 DOI: 10.1007/s10528-021-10175-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The immune microenvironment in hepatocellular carcinoma (HCC), especially T-cell infiltration, plays a key role in the prognosis and drug sensitivity of HCC. Our study aimed to analyze genes related to non-regulatory CD4+ and CD8+ T cell in HCC. Data of HCC samples were downloaded from The Cancer Genome Atlas (TCGA) database. According to stromal and immune score retrieved by Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, differentiated expressed genes (DEGs) between high and low stromal/immune scoring groups were collected. Using Cibersort algorithm, abundance of immune cells was calculated and genes related with CD4+ and CD8+ T cells were selected. Protein-protein interaction (PPI) networks and networks of microRNA (miRNA)-target gene interactions were illustrated, in which CD4+ and CD8+ T cell-related core genes were selected. Finally, Cox regression test and Kaplan-Meier (K-M) survival analysis were conducted. Totally, 1579 DEGs were identified, where 103 genes and 407 genes related with CD4+ and CD8+ T cell were selected, respectively. Each of 30 core genes related to CD4+ T cells and CD8+ T cells were selected by PPI network. Four genes each related with the two types of T cells had a significant impact on prognosis of HCC patients. Amongst, KLRB1 and IL18RAP were final two genes related to both two kinds of T cells and associated with overall survival of the HCC patients.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Chaonan Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peishan Chu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
24
|
Lin Y, Zhou H, Li S. BTN3A2 Expression Is Connected With Favorable Prognosis and High Infiltrating Immune in Lung Adenocarcinoma. Front Genet 2022; 13:848476. [PMID: 35873496 PMCID: PMC9298880 DOI: 10.3389/fgene.2022.848476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Butyrophilin subfamily 3 member A2 (BTN3A2) is an important mediator in immune activation, and it is reported to be linked to many cancer progresses. However, the relation with infiltrating immune and prognosis of BTN3A2 in lung adenocarcinoma are not clear. Methods: In our study, we checked the mRNA expression and protein expression profile of BTN3A2 in lung adenocarcinoma (LUAD) and its relation to clinical outcomes using TIMER and UALCAN databases. In addition, we analyzed the survival of BTN3A2 in LUAD using the Kaplan–Meier Plotter database and PrognoScan database. Moreover, we analyzed gene set enrichment analysis (GSEA) of the BTN3A2. Next, we explored the relation of BTN3A2 expression with the immune infiltration by TIMER. At last, in order to enrich the regulatory mechanism of BTN3A2, we used miRarbase, starbase, and miRDB databases to look for miRNA targets of BTN3A2. Results: The mRNA along with the protein expression of BTN3A2 in the LUAD group was lower than that in the normal group. In addition, high BTN3A2 expression was connected with good first progression (FP) and overall survival (OS) in LUAD. Then, the GSEA analysis demonstrated that T-cell receptor signaling cascade, B-cell receptor signaling cascade, natural killer cell–mediated cytotoxicity, immune receptor activity, immunological synapse, and T-cell activation were enriched differentially in the BTN3A2 high expression phenotype of LUAD. Moreover, BTN3A2 expression is a remarkable positive correlation with invading levels of tumor purity, B cells, neutrophils, CD4+ T cells, dendritic cells, macrophages, and CD8+ T cells in LUAD, and B cells and dendritic cells were linked with a good prognosis of LUAD. To further enrich the possible regulatory mechanisms of BTN3A2, we analyzed the miRNA targets. The results showed that hsa-miR-17-5p may be miRNA targets of BTN3A2. Conclusion: Taking together, we provide evidence of BTN3A2 as possible prognosis biomarkers of LUAD. In addition, high BTN3A2 expression in LUAD may influence the prognosis because of immune invasion. Moreover, our findings provide a potential mechanism that hsa-miR-17-5p may be miRNA targets of BTN3A2.
Collapse
Affiliation(s)
- Yuansheng Lin
- Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hao Zhou
- Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shengjun Li
- Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
25
|
Lin Z, Chen L, Wu T, Zhang Y, Huang X, Chen Y, Chen J, Xu Y. Prognostic Value of SPOCD1 in Esophageal Squamous Cell Carcinoma: A Comprehensive Study Based on Bioinformatics and Validation. Front Genet 2022; 13:872026. [PMID: 35646092 PMCID: PMC9130929 DOI: 10.3389/fgene.2022.872026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
In the study, we aimed to explore and analyze the potential function of SPOC Domain Containing 1 (SPOCD1) in esophageal squamous cell carcinoma (ESCC). We performed a comprehensive analysis of gene expression of SPOCD1 and its corresponding clinicopathological features in ESCC. In particular, the correlation between SPOCD1 and ESCC was evaluated using a wide range of analysis tools and databases, including TCGA, GTEx, GenePattern, CellMiner, GDSC, and STRING datasets. Different bioinformatics analyses, including differential expression analysis, mutation analysis, drug sensitivity analysis, function analysis, pathway analysis, co-expression network analysis, immune cell infiltration analysis, and survival analysis, were carried out to comprehensively explore the potential molecular mechanisms and functional effects of SPOCD1 on the initiation and progression of ESCC. The expression of SPOCD1 was upregulated in ESCC tissues compared to those in normal tissues. In the high SPOCD1 expression group, we found apparent mutations in TP53, TTN, and MUC16 genes, which were 92, 36, and 18%, respectively. GO and KEGG enrichment analysis of SPOCD1 and its co-expressed genes demonstrated that it may serve as an ESCC oncogene by regulating the genes expression in the essential functions and pathways of tumorigenesis, such as glycosaminoglycan binding, Cytokine-cytokine receptor interaction, and Ras signaling pathway. Besides, the immune cell infiltration results revealed that SPOCD1 expression was positively correlated with Macrophages M0 and Mast cells activated cells, and negatively correlated with plasma cells and T cells follicular helper cell infiltration. Finally, ESCC patients with high expression of SPOCD1 indicated poor overall survival. qRT-PCR demonstrated that the SPOCD1 expression in ESCC tissues was significantly higher than adjacent tissues (p < 0.001). Our study indicated that SPOCD1 was increased in ESCC tissues. The current data support the oncogenic role of SPOCD1 in the occurrence and development of ESCC. Most importantly, SPOCD1 might be an independent prognostic factor for ESCC patients.
Collapse
Affiliation(s)
- Zhizhong Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Lin Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Tingting Wu
- The School of Nusing, Fujian Medical University, Fuzhou, China.,Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yiping Zhang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Xinyi Huang
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Junqiang Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
26
|
Ni P, Wang G, Wang Y, Liu K, Chen W, Xiao J, Fan H, Ma X, Li Z, Shen K, Xu Z, Yang L. Correlation of MIF-AS1 polymorphisms with the risk and prognosis of gastric cancer. Pathol Res Pract 2022; 233:153850. [DOI: 10.1016/j.prp.2022.153850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
|
27
|
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. Pioneering genomic studies, focusing largely on primary GCs, revealed driver alterations in genes such as ERBB2, FGFR2, TP53 and ARID1A as well as multiple molecular subtypes. However, clinical efforts targeting these alterations have produced variable results, hampered by complex co-alteration patterns in molecular profiles and intra-patient genomic heterogeneity. In this Review, we highlight foundational and translational advances in dissecting the genomic cartography of GC, including non-coding variants, epigenomic aberrations and transcriptomic alterations, and describe how these alterations interplay with environmental influences, germline factors and the tumour microenvironment. Mapping of these alterations over the GC life cycle in normal gastric tissues, metaplasia, primary carcinoma and distant metastasis will improve our understanding of biological mechanisms driving GC development and promoting cancer hallmarks. On the translational front, integrative genomic approaches are identifying diverse mechanisms of GC therapy resistance and emerging preclinical targets, enabled by technologies such as single-cell sequencing and liquid biopsies. Validating these insights will require specifically designed GC cohorts, converging multi-modal genomic data with longitudinal data on therapeutic challenges and patient outcomes. Genomic findings from these studies will facilitate 'next-generation' clinical initiatives in GC precision oncology and prevention.
Collapse
Affiliation(s)
- Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
28
|
Zheng Y, Lei T, Jin G, Guo H, Zhang N, Chai J, Xie M, Xu Y, Wang T, Liu J, Shen Y, Song Y, Wang B, Yu J, Yang M. LncPSCA in the 8q24.3 risk locus drives gastric cancer through destabilizing DDX5. EMBO Rep 2021; 22:e52707. [PMID: 34472665 DOI: 10.15252/embr.202152707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple gastric cancer risk loci and several protein-coding susceptibility genes. However, the role of long-noncoding RNAs (lncRNAs) transcribed from these risk loci in gastric cancer development and progression remains to be explored. Here, we functionally characterize a lncRNA, lncPSCA, as a novel tumor suppressor whose expression is fine-regulated by a gastric cancer risk-associated genetic variant. The rs2978980 T > G change in an intronic enhancer of lncPSCA interrupts binding of transcription factor RORA, which down-regulates lncPSCA expression in an allele-specific manner. LncPSCA interacts with DDX5 and promotes DDX5 degradation through ubiquitination. Increased expression of lncPSCA results in low levels of DDX5, less RNA polymerase II (Pol II) binding with DDX5 in the nucleus, thus activating transcription of multiple p53 signaling genes by Pol II. These findings highlight the importance of functionally annotating lncRNAs in GWAS risk loci and the great potential of modulating lncRNAs as innovative cancer therapy.
Collapse
Affiliation(s)
- Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianshui Lei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyang Guo
- Clinical Laboratory, Tumor Marker Detection Engineering Laboratory of Shandong Province, The Second Hospital of Shandong University, Jinan, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
29
|
De Gassart A, Le KS, Brune P, Agaugué S, Sims J, Goubard A, Castellano R, Joalland N, Scotet E, Collette Y, Valentin E, Ghigo C, Pasero C, Colazet M, Guillén J, Cano CE, Marabelle A, De Bonno J, Hoet R, Truneh A, Olive D, Frohna P. Development of ICT01, a first-in-class, anti-BTN3A antibody for activating Vγ9Vδ2 T cell-mediated antitumor immune response. Sci Transl Med 2021; 13:eabj0835. [PMID: 34669444 DOI: 10.1126/scitranslmed.abj0835] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | | | | | | | | | - Armelle Goubard
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, TrGET preclinical platform, 13009 Marseille, France
| | - Rémy Castellano
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, TrGET preclinical platform, 13009 Marseille, France
| | - Noémie Joalland
- Université de Nantes, INSERM, CNRS, CRCINA, F-44000 Nantes, France.,LabEx IGO "Immunotherapy, Graft, and Oncology," Nantes F-44000, France
| | - Emmanuel Scotet
- Université de Nantes, INSERM, CNRS, CRCINA, F-44000 Nantes, France.,LabEx IGO "Immunotherapy, Graft, and Oncology," Nantes F-44000, France
| | - Yves Collette
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, TrGET preclinical platform, 13009 Marseille, France
| | | | | | | | | | | | | | - Aurélien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Johann De Bonno
- Division of Cancer Therapeutics, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton SM2 5PT, UK
| | - René Hoet
- ImCheck Therapeutics, 13009 Marseille, France.,Biopharmaceutics, Dept. Pathology, University of Maastricht, 6200 MD Netherlands
| | | | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
| | - Paul Frohna
- ImCheck Therapeutics, 13009 Marseille, France
| |
Collapse
|
30
|
Yang S, Wang YL, Lyu Y, Jiang Y, Xiang J, Ji S, Kang S, Lyu X, He C, Li P, Liu B, Wu C. mGWAS identification of six novel single nucleotide polymorphism loci with strong correlation to gastric cancer. Cancer Metab 2021; 9:34. [PMID: 34565479 PMCID: PMC8474935 DOI: 10.1186/s40170-021-00269-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metabolite genome-wide association studies (mGWAS) are key for understanding the genetic regulation of metabolites in complex diseases including cancers. Although mGWAS has revealed hundreds of metabolomics quantitative trait loci (mQTLs) in the general population, data relating to gastric cancer (GC) are still incomplete. METHODS We identified mQTLs associated with GC by analyzing genome-wide and metabolome-wide datasets generated from 233 GC patients and 233 healthy controls. RESULTS Twenty-two metabolites were statistically different between GC cases and healthy controls, and all of them were associated with the risk of gastric cancer. mGWAS analyses further revealed that 9 single nucleotide polymorphisms (SNPs) were significantly associated with 3 metabolites. Of these 9 SNPs, 6 loci were never reported in the previous mGWAS studies. Surprisingly, 4 of 9 SNPs were significantly enriched in genes involved in the T cell receptor signaling pathway. CONCLUSIONS Our study unveiled several novel GC metabolite and genetic biomarkers, which may be implicated in the prevention and diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Shuangfeng Yang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Yuan-Liang Wang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Yanping Lyu
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Yu Jiang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Jianjun Xiang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Shumi Ji
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Shuling Kang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Xuejie Lyu
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Chenzhou He
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Peixin Li
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Baoying Liu
- School of Public Health, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China.
| | - Chuancheng Wu
- School of Public Health, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China.
| |
Collapse
|
31
|
Targeting butyrophilins for cancer immunotherapy. Trends Immunol 2021; 42:670-680. [PMID: 34253468 DOI: 10.1016/j.it.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023]
Abstract
Vγ9Vδ2+ T cells form part of the innate immune repertoire and are activated by phosphorylated antigens produced by many bacteria and tumors. They have long been suggested as promising targets for anti-tumor therapies, but clinical trials so far have not shown major successes. Several recent discoveries could help to overcome these shortfalls, such as those leading to an improved understanding of the role of butyrophilin molecules BTN2A1 and BTN3A1, in Vγ9Vδ2+ T cell activation. Moreover, we propose that studies suggesting the presence of live bacteria in a variety of tumors (tumor microbiome), indicate that the latter might be harnessed as a source of high affinity bacterial phosphoantigen to trigger or enhance anti-tumor immune responses.
Collapse
|
32
|
Chen S, Li Z, Huang W, Wang Y, Fan S. Prognostic and Therapeutic Significance of BTN3A Proteins in Tumors. J Cancer 2021; 12:4505-4512. [PMID: 34149914 PMCID: PMC8210570 DOI: 10.7150/jca.57831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The Butyrophilin 3A (BTN3A) family is a type I transmembrane protein belonging to the immunoglobulin (Ig) superfamily. The family contains three members: BTN3A1, BTN3A2 and BTN3A3, which share 95% homology in the extracellular domain. The expression of BTN3A family members is different in different types of tumors, which plays an important role in tumor prognosis. Among them, there are many studies on tumor immunity of BTN3A1, which shows that it is essential for the activation of Vγ9Vδ2 T cells, while BTN3A3 is expected to become a potential therapeutic target for breast cancer. Recent studies have shown that the BTN3A family is closely related to the occurrence and development of tumors. Now the BTN3A family has become one of the research hotspots and is expected to become new tumor prediction and treatment targets.
Collapse
Affiliation(s)
- Sihan Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wenyi Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, Xuzhou First People's Hospital, Jiangsu, China
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
33
|
Zheng R, Du M, Ge Y, Gao F, Xin J, Lv Q, Qin C, Zhu Y, Gu C, Wang M, Zhu Q, Guo Z, Ben S, Chu H, Ye D, Zhang Z, Wang M. Identification of low-frequency variants of UGT1A3 associated with bladder cancer risk by next-generation sequencing. Oncogene 2021; 40:2382-2394. [PMID: 33658628 DOI: 10.1038/s41388-021-01672-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Although genome-wide association studies (GWASs) have successfully revealed many common risk variants for bladder cancer, the heritability is still largely unexplained. We hypothesized that low-frequency variants involved in bladder cancer risk could reveal the unexplained heritability. Next-generation sequencing of 113 patients and 118 controls was conducted on 81 genes/regions of known bladder cancer GWAS loci. A two-stage validation comprising 3,350 cases and 4,005 controls was performed to evaluate the effects of low-frequency variants on bladder cancer risk. Biological experiments and techniques, including electrophoretic mobility shift assays, CRISPR/Cas9, RNA-Seq, and bioinformatics approaches, were performed to assess the potential functions of low-frequency variants. The low-frequency variant rs28898617 was located in the first exon of UGT1A3 and was significantly associated with increased bladder cancer risk (odds ratio = 1.50, P = 3.10 × 10-6). Intriguingly, rs28898617 was only observed in the Asian population, but monomorphism was observed in the European population. The risk-associated G allele of rs28898617 increased UGT1A3 expression, facilitated UGT1A3 transcriptional activity, and enhanced the binding activity. In addition, UGT1A3 deletion significantly inhibited the proliferation, invasion, and migration of bladder cancer cells and xenograft tumor growth. Mechanistically, UGT1A3 induced LAMC2 expression by binding CBP and promoting histone acetylation, which remarkably promoted the progression of bladder cancer. This is the first targeted sequencing study to reveal that the novel low-frequency variant rs28898617 and its associated gene UGT1A3 are involved in bladder cancer development, providing new insights into the genetic architecture of bladder cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Gao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chengyuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengyun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiuyuan Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Guo
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China. .,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Cheng X, Ma T, Yi L, Su C, Wang X, Wen T, Wang B, Wang Y, Zhang H, Liu Z. Low expression of BTN3A3 indicates poor prognosis and promotes cell proliferation, migration and invasion in non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:478. [PMID: 33850875 PMCID: PMC8039694 DOI: 10.21037/atm-21-163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The butyrophilin (BTN) family has many members with diverse functions related to immunomodulation, initiation and progression of tumors. BTN3A3 belongs to the BTN family, and exploring its expression and correlation with the prognosis of non-small cell lung cancer (NSCLC) patients has great clinical significance. Methods Clinical specimens were used to detect BTN3A3 expression. Small interfering RNA (siRNA) was used to knock down BTN3A3 and analyze the proliferative, migratory and invading ability of the transfected NSCLC cells. Multiplex immunofluorescence staining was used to detect the expression of BTN3A3 protein in the tumor microenvironment (TME). We analyzed the relationship between the expression of BTN3A3 and the clinicopathological features and prognosis of NSCLC patients. Results The expression of BTN3A3 in NSCLC tissues was significantly lower than in adjacent tissues, and patients with low expression of BTN3A3 had late clinical stages and lower degree of tumor differentiation. Knocking down BTN3A3 promoted the proliferation, migration and invasion of NSCLC. In the TME, the density of BTN3A3+ tumor cells positively correlated with the density of CD8+ T cells, and the patients with low expression of BTN3A3 had poor overall survival (OS). Conclusions Changes in the BTN3A3 expression level may play a potential key role in the carcinogenesis and development of NSCLC. Patients with low expression of BTN3A3 showed a more aggressive and invasive phenotype and a lower level of CD8+ T-cell infiltration, which may be an important factor affecting the OS of NSCLC patients.
Collapse
Affiliation(s)
- Xu Cheng
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tianyu Ma
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chongyu Su
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tao Wen
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bing Wang
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yuxuan Wang
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhidong Liu
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Kulasekaran G, Chaineau M, Piscopo VEC, Verginelli F, Fotouhi M, Girard M, Tang Y, Dali R, Lo R, Stifani S, McPherson PS. An Arf/Rab cascade controls the growth and invasiveness of glioblastoma. J Cell Biol 2021; 220:e202004229. [PMID: 33443570 PMCID: PMC7812876 DOI: 10.1083/jcb.202004229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is the most common and deadly malignant brain cancer. We now demonstrate that loss of function of the endosomal GTPase Rab35 in human brain tumor initiating cells (BTICs) increases glioblastoma growth and decreases animal survival following BTIC implantation in mouse brains. Mechanistically, we identify that the GTPase Arf5 interacts with the guanine nucleotide exchange factor (GEF) for Rab35, DENND1/connecdenn, and allosterically enhances its GEF activity toward Rab35. Knockdown of either Rab35 or Arf5 increases cell migration, invasiveness, and self-renewal in culture and enhances the growth and invasiveness of BTIC-initiated brain tumors in mice. RNAseq of the tumors reveals up-regulation of the tumor-promoting transcription factor SPOCD1, and disruption of the Arf5/Rab35 axis in glioblastoma cells leads to strong activation of the epidermal growth factor receptor, with resulting enhancement of SPOCD1 levels. These discoveries reveal an unexpected cascade between an Arf and a Rab and indicate a role for the cascade, and thus endosomal trafficking, in brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Wang X, Guan D, Wang D, Liu H, Wu Y, Gong W, Du M, Chu H, Qian J, Zhang Z. Genetic variants in m 6A regulators are associated with gastric cancer risk. Arch Toxicol 2021; 95:1081-1088. [PMID: 33398416 DOI: 10.1007/s00204-020-02958-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
N6-methyladenosine (m6A) modification plays a vital regulatory role in tumorigenesis and development. In this study, we determined that the mRNA expression of IGF2BP1, IGF2BP2 and IGF2BP3, as the m6A modification genes, was significantly increased in gastric cancer (GC) tissues. Using a logistic regression model, we found that novel single-nucleotide polymorphism (SNP) rs9906944 C > T in IGF2BP1 was remarkably associated with a decreased risk of GC in discovery stage (odds ratio (OR) = 0.75, 95% confidence interval (95% CI): 0.60-0.93, P = 8.51 × 10-3). This finding was repeated in an independent Nanjing population (OR = 0.76, 95% CI: 0.59-0.98, P = 3.45 × 10-2). The combined analysis including 2900 GC cases and 3,536 controls confirmed the association between rs9906944 C > T and GC risk (OR = 0.75, 95% CI: 0.64-0.88, P = 5.76 × 10-4). Furthermore, we found that GC patients with higher IGF2BP1 mRNA expression level had prominent poorer overall survival (hazard ratio (HR) = 1.49, 95% CI: 1.16-1.91, logrank P = 1.50 × 10-3). For the first time, our findings suggested the importance of genetic variants in m6A regulators in GC and indicated that IGF2BP1 plays a crucial role in GC. Genetic variants in m6A modification genes may be used for GC risk prediction.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dan Guan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dafei Wang
- Department of Radiotherapy, Yixing Cancer Hospital, Yixing, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanling Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weida Gong
- Department of General Surgery, Yixing People's Hospital, Yixing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jing Qian
- Department of General Surgery, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
37
|
Lu H, Dai W, Guo J, Wang D, Wen S, Yang L, Lin D, Xie W, Wen L, Fang J, Wang Z. High Abundance of Intratumoral γδ T Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis. Front Immunol 2020; 11:573920. [PMID: 33101298 PMCID: PMC7555127 DOI: 10.3389/fimmu.2020.573920] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
γδ T cells are a small subset of unconventional T cells that are enriched in the mucosal areas, and are responsible for pathogen clearance and maintaining integrity. However, the role of γδ T cells in head and neck squamous cell carcinoma (HNSCC) is largely unknown. Here, by using RNA-seq data from The Cancer Genome Atlas (TCGA), we discovered that HNSCC patients with higher levels of γδ T cells were positively associated with lower clinical stages and better overall survival, and high abundance of γδ T cells was positively correlated with CD8+/CD4+ T cell infiltration. Gene ontology and pathway analyses showed that genes associated with T cell activation, proliferation, effector functions, cytotoxicity, and chemokine production were enriched in the group with a higher γδ T cell abundance. Furthermore, we found that the abundance of γδ T cells was positively associated with the expression of the butyrophilin (BTN) family proteins BTN3A1/BTN3A2/BTN3A3 and BTN2A1, but only MICB, one of the ligands of NKG2D, was involved in the activation of γδ T cells, indicating that the BTN family proteins might be involved in the activation and proliferation of γδ T cells in the tumor microenvironment of HNSCC. Our results indicated that γδ T cells, along with their ligands, are promising targets in HNSCC with great prognostic values and treatment potentials.
Collapse
Affiliation(s)
- Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenxiao Dai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junyi Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dikan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuqiong Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lisa Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongjia Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenqiang Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Liling Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Ni J, Deng B, Zhu M, Wang Y, Yan C, Wang T, Liu Y, Li G, Ding Y, Jin G. Integration of GWAS and eQTL Analysis to Identify Risk Loci and Susceptibility Genes for Gastric Cancer. Front Genet 2020; 11:679. [PMID: 32754194 PMCID: PMC7366424 DOI: 10.3389/fgene.2020.00679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified several susceptibility loci for gastric cancer (GC), but the majority of identified single-nucleotide polymorphisms (SNPs) fall within the non-coding region and are likely to exert their biological function by modulating gene expression. To systematically estimate expression-associated SNPs (eSNPs) that confer genetic predisposition to GC, we evaluated the associations of 314,203 stomach tissue-specific eSNPs with GC risk in three GWAS datasets (2,631 cases and 4,373 controls). Subsequently, we conducted a gene-based analysis to calculate the cumulative effect of eSNPs through sequence kernel association combined test and Sherlock integrative analysis. At the SNP-level, we identified two novel variants (rs836545 at 7p22.1 and rs1892252 at 6p22.2) associated with GC risk. The risk allele carriers of rs836545-T and rs1892252-G exhibited higher expression levels of DAGLB (P = 3.70 × 10–18) and BTN3A2 (P = 3.20 × 10–5), respectively. Gene-based analyses identified DAGLB and FBXO43 as novel susceptibility genes for GC. DAGLB and FBXO43 were significantly overexpressed in GC tissues than in their adjacent tissues (P = 5.59 × 10–7 and P = 3.90 × 10–6, respectively), and high expression level of these two genes was associated with an unfavorable prognosis of GC patients (P = 1.30 × 10–7 and P = 7.60 × 10–3, respectively). Co-expression genes with these two novel genes in normal stomach tissues were significantly enriched in several cancer-related pathways, including P53, MAPK and TGF-beta pathways. In summary, our findings confirm the importance of eSNPs in dissecting the genetic basis of GC, and the identified eSNPs and relevant genes will provide new insight into the genetic and biological basis for the mechanism of GC development.
Collapse
Affiliation(s)
- Jing Ni
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yuzhuo Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yaqian Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Gang Li
- Department of General Surgery, Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Functional genetic variants in centrosome-related genes CEP72 and YWHAG confer susceptibility to gastric cancer. Arch Toxicol 2020; 94:2861-2872. [PMID: 32535685 DOI: 10.1007/s00204-020-02782-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
Structural and numeric centrosome aberrations can induce chromosome segregation errors and promote tumor development and progression. We systematically evaluated associations of 19,603 single nucleotide polymorphisms (SNPs) across 136 centrosome-related genes with gastric cancer (GC) risk using four GWAS datasets with a total of 3771 cases and 5426 controls. We identified two loci at 15p13.3 and 7q11.23 significantly associated with GC risk, whose risk alleles were correlated with increased mRNA expression of CEP72 (P = 7.30 × 10-4) and YWHAG (P = 1.60 × 10-3), respectively. Dual-luciferase reporter assays confirmed that the risk T allele of rs924607 at 15p13.3 significantly increased a promoter activity of the reporter gene, leading to a higher CEP72 expression level. At 7q11.23, the risk haplotype of rs2961037 [G]-rs2961038 [G] significantly elevated an enhancer activity and the expression of YWHAG. Both the mRNA and protein levels of CEP72 and YWHAG were overexpressed in GC tumor tissues compared with peritumor tissues and overexpression of either gene showed an unfavorable prognosis of GC patients. Moreover, knockdown of either CEP72 or YWHAG inhibited GC cell proliferation, migration and invasion and promoted GC cell apoptosis. The genes coexpressed with CEP72 or YWHAG in GC tumor tissues were enriched in the Ras signaling pathway, which was confirmed that knockdown of either one decreased the expression of cyclin D1 but increased the expression of p21 and p27. In conclusion, genetic variants at 15p13.3 and 7q11.23 may confer GC risk via modulating the biological functions of CEP72 and YWHAG, respectively, suggesting the importance of centrosome-regulated genes in GC development.
Collapse
|
40
|
Yan C, Zhu M, Ding Y, Yang M, Wang M, Li G, Ren C, Huang T, Yang W, He B, Wang M, Yu F, Wang J, Zhang R, Wang T, Ni J, Chen J, Jiang Y, Dai J, Zhang E, Ma H, Wang Y, Xu D, Wang S, Chen Y, Xu Z, Zhou J, Ji G, Wang Z, Zhang Z, Hu Z, Wei Q, Shen H, Jin G. Meta-analysis of genome-wide association studies and functional assays decipher susceptibility genes for gastric cancer in Chinese populations. Gut 2020; 69:641-651. [PMID: 31383772 DOI: 10.1136/gutjnl-2019-318760] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Although a subset of genetic loci have been associated with gastric cancer (GC) risk, the underlying mechanisms are largely unknown. We aimed to identify new susceptibility genes and elucidate their mechanisms in GC development. DESIGN We conducted a meta-analysis of four genome-wide association studies (GWASs) encompassing 3771 cases and 5426 controls. After targeted sequencing and functional annotation, we performed in vitro and in vivo experiments to confirm the functions of genetic variants and candidate genes. Moreover, we selected 33 promising variants for two-stage replication in 7035 cases and 8323 controls from other five studies. RESULTS The meta-analysis of GWASs identified three loci at 1q22, 5p13.1 and 10q23.33 associated with GC risk at p<5×10-8 and replicated seven known loci at p<0.05. At 5p13.1, the risk rs59133000[C] allele enhanced the binding affinity of NF-κB1 (nuclear factor kappa B subunit 1) to the promoter of PRKAA1, resulting in a reduced promoter activity and lower expression. The knockout of PRKAA1 promoted both GC cell proliferation and xenograft tumour growth in nude mice. At 10q23.33, the rs3781266[C] and rs3740365[T] risk alleles in complete linkage disequilibrium disrupted and created, respectively, the binding motifs of POU2F1 and PAX3, resulting in an increased enhancer activity and expression of NOC3L, while the NOC3L knockdown suppressed GC cell growth. Moreover, two new loci at 3q11.2 (OR=1.21, p=4.56×10-9) and 4q28.1 (OR=1.14, p=3.33×10-11) were associated with GC risk. CONCLUSION We identified 12 loci to be associated with GC risk in Chinese populations and deciphered the mechanisms of PRKAA1 at 5p13.1 and NOC3L at 10q23.33 in gastric tumourigenesis.
Collapse
Affiliation(s)
- Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Tongtong Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenjun Yang
- Key Laboratory of Fertility Preservation and Maintenance, The General Hospital, Ningxia Medical University, Yinchuan, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nangjing, China
| | - Meilin Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinchen Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruoxin Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Ni
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiaping Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yanong Wang
- Department of Gastric Cancer and Soft Tissue Sarcomas, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Cancer and Soft Tissue Sarcomas, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shukui Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nangjing, China
| | - Yun Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Zekuan Xu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianwei Zhou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guozhong Ji
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhengdong Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Dual biomarkers long non-coding RNA GAS5 and its target, NR3C1, contribute to acute myeloid leukemia. Exp Mol Pathol 2020; 114:104399. [PMID: 32032633 DOI: 10.1016/j.yexmp.2020.104399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is a complex hematological neoplasm with poor prognosis. At present, overwhelming evidence indicates that different genetic abnormalities are relevant to the pathogenesis of AML. Nevertheless, its exact molecular mechanism is still unknown. Recently, it was reported that lncRNAs play crucial roles in tumorigenesis. But, their role in the molecular pathogenesis of AML has not been extensively explored. GAS5, one of the earliest known lncRNAs, has an essential role in the formation and progression of multiple human cancers. It was recently demonstrated that GAS5 acts as a riborepressor of the Glucocorticoid receptor) GR) and abnormal levels of GAS5 may alter response of hematopoietic cells to glucocorticoids. GAS5 can have interaction with the GR that encoded by NR3C1 gene and inhibit its transcriptional activity. To test whether the genetic variants can be associated with AML risk, we genotyped rs55829688 (T > C) polymorphism in GAS5 and three NR3C1 SNPs namely rs6195, rs41423247 and rs6189/rs6190 in a population of 100 Iranian AML patients and 100 healthy subjects. The analysis of the data showed the frequency of alleles and genotypes of rs55829688 and rs6189/rs6190 polymorphisms did not differ between patients and healthy subjects. But, rs41423247 and rs6195 demonstrated a significant correlation with AML risk. The rs6195 was associated with higher AML susceptibility in the co-dominant (OR = 4.58, 95% CI = 2.11-9.981, P < .0001), dominant (OR = 4.55, 95% CI = 2.155-9.613, P < .0001), and over-dominant (OR = 4.43, 95% CI = 2.042-9.621, P < .0001) models. Also, the rs41423247 polymorphism was associated with higher risk of AML in co-dominant (OR = 2.07, 95% CI = 1.171-4.242, P = .012) and dominant (OR = 2.47, 95% CI = 1.192-5.142, P = .010) models. Furthermore, haplotype analysis (rs41423247, rs6189.rs6190, rs6195, and rs55829688 respectively) demonstrated that GGAT, CGGT, and GGGT haplotypes were associated with higher risk of AML in the studied population (p-values = .007, 0.042 and 0.044, respectively). The present study reveals a possible role for NR3C1 in the pathogenesis of AML.
Collapse
|
42
|
Liu D, Yang Y, Yan A, Yang Y. SPOCD1 accelerates ovarian cancer progression and inhibits cell apoptosis via the PI3K/AKT pathway. Onco Targets Ther 2020; 13:351-359. [PMID: 32021280 PMCID: PMC6974139 DOI: 10.2147/ott.s200317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer (OC) is the most common type of gynecological malignant tumors with poor prognosis. The spen paralogue and orthologue C-terminal domain containing 1 (SPOCD1) is a newly identified molecule that has been indicated to discriminate progressive in human solid tumors. However, the role of SPOCD1 in OC remains unknown. Methods The expression of SPOCD1 in OC and non-cancerous tissue was detected by Realtime polymerase chain reaction and immunohistochemical staining. The expression of SPOCD1 in OC cells (SKOV3 and CAOV3) was also detected by immunohistochemical staining. The effect of SPOCD1 on cell proliferation was analyzed by Cell Counting Kit 8 and colony formation assay, and cell migration was analyzed by transwell assay. Apoptosis was analyzed by flow cytometry. The protein expression of SPOCD1, PTEN, PI3K, p-AKT, and mTOR in OC cells was measured by Western blot. Results SPOCD1 expression was significantly upregulated in OC tissues compared with non-cancerous tissues (P<0.01), and was positively correlated to FIGO stage and tumor grade of OC. Also, SPOCD1 was significantly expressed in nucleus and cytoplasm of SKOV3 and CAOV3 cells. Kaplan–Meier analysis indicated that patients with high SPOCD1 expression had shorter overall survival (HR =1.512, 95%CI: 1.321–2.793, P=0.031) and progression-free survival (HR =1.875, 95%CI: 1.435–3.157, P=0.028). SPOCD1 was upregulated in OC SKOV3 and CAOV3 cells. Further investigation revealed that downregulation of SPOCD1 inhibited the SKOV3 and CAOV3 cells proliferation and migration. In addition, the deficit of SPOCD1 increased the apoptosis in SKOV3 and CAOV3 cells. PI3K/AKT pathway was inhibited by knockdown of SPOCD1 in SKOV3 and CAOV3 cells. Conclusions Our data suggest that SPOCD1 may act as a carcinogenesis factor by activating the PI3K/AKT pathway to restrained cell apoptosis in OC.
Collapse
Affiliation(s)
- Dajiang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lan Zhou University, Lanzhou, China
| | - Yuan Yang
- The Reproductive Medicine Special Hospital, The First Hospital of Lanzhou University, Lanzhou, China
| | - Aiqin Yan
- Department of Obstetrics and Gynecology, Zhang ye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lan Zhou University, Lanzhou, China
| |
Collapse
|
43
|
Jiang C, Meng L, Yang B, Luo X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet 2019; 97:73-88. [PMID: 31231788 DOI: 10.1111/cge.13589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
In recent years, gene editing, especially that using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9, has made great progress in the field of gene function. Rapid development of gene editing techniques has contributed to their significance in the field of medicine. Because the CRISPR/Cas9 gene editing tool is not only powerful but also has features such as strong specificity and high efficiency, it can accurately and rapidly screen the whole genome, facilitating the administration of gene therapy for specific diseases. In the field of tumor research, CRISPR/Cas9 can be used to edit genomes to explore the mechanisms of tumor occurrence, development, and metastasis. In these years, this system has been increasingly applied in tumor treatment research. CRISPR/Cas9 can be used to treat tumors by repairing mutations or knocking out specific genes. To date, numerous preliminary studies have been conducted on tumor treatment in related fields. CRISPR/Cas9 holds great promise for gene-level tumor treatment. Personalized and targeted therapy based on CRISPR/Cas9 will possibly shape the development of tumor therapy in the future. In this study, we review the findings of CRISPR/Cas9 for tumor treatment research to provide references for related future studies on the pathogenesis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Lingxiang Meng
- Department of Anorectal Surgery, Anorectal Surgery Center, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xin Luo
- Department of Radiotherapy, The Second Hospital of PingLiang City, Second Affiliated Hospital of Gansu Medical College, PingLiang, People's Republic of China
| |
Collapse
|
44
|
LSECtin on tumor-associated macrophages enhances breast cancer stemness via interaction with its receptor BTN3A3. Cell Res 2019; 29:365-378. [PMID: 30858559 DOI: 10.1038/s41422-019-0155-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages have been suggested to contribute to constructing a cancer stem cell (CSC) niche. However, whether and how macrophages regulate the activity of CSCs through juxtacrine signaling are poorly understood. Here we report LSECtin, a transmembrane protein highly expressed on tumor-associated macrophages (TAMs), enhances stemness of breast cancer cells (BCCs). We identified BTN3A3, a B7 family member with previously unknown functions as the receptor for LSECtin on BCCs responsible for stemness-promoting effect of LSECtin. In mice bearing human tumor xenografts, either macrophage-specific ablation of LSECtin or silencing of BTN3A3 in BCCs decreased CSC frequency and tumor growth. Admixture of LSECtin-positive macrophages increased the tumorigenic activity of BCCs dependent on BTN3A3. Disruption of the LSECtin-BTN3A3 axis with BTN3A3-Fc or anti-BTN3A3 mAb has a therapeutic effect on breast cancer. These findings define a juxtacrine signaling mechanism by which TAMs promote cancer stemness. Targeting this axis in the CSC niche may provide potential therapies to breast cancer.
Collapse
|
45
|
Huang XY, Sun WY, Yan ZQ, Shi HR, Yang QL, Wang PF, Li SG, Liu LX, Zhao SG, Gun SB. Novel Insights reveal Anti-microbial Gene Regulation of Piglet Intestine Immune in response to Clostridium perfringens Infection. Sci Rep 2019; 9:1963. [PMID: 30760749 PMCID: PMC6374412 DOI: 10.1038/s41598-018-37898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
LncRNA play important roles in regulation of host immune and inflammation responses in defending bacterial infection. Clostridium perfringens (C. perfringens) type C is one of primary bacteria leading to piglet diarrhea and other intestinal inflammatory diseases. For the differences of host immune capacity, individuals usually show resistance and susceptibility to bacterial infection. However, whether and how lncRNAs involved in modulating host immune resistance have not been reported. We have investigated the expression patterns of ileum lncRNAs of 7-day-old piglets infected by C. perfringens type C through RNA sequencing. A total of 16 lncRNAs and 126 mRNAs were significantly differentially expressed in resistance (IR) and susceptibility (IS) groups. Many lncRNAs and mRNAs were identified to regulate resistance and susceptibility of piglets through immune related pathways. Five lncRNAs may have potential function on regulating the expressions of cytokines, these lncRNAs and cytokines work together to co-regulated piglet immune response to C. perfringens, affecting host resistance and susceptibility. These results provide valuable information for understanding the functions of lncRNA and mRNA in affecting piglet diarrhea resistance of defensing to C. perfringens type C, these lncRNAs and mRNAs may be used as the important biomarkers for decreasing C. perfringens spread and diseases in human and piglets.
Collapse
Affiliation(s)
- Xiao Yu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen Yang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zun Qiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hai Ren Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiao Li Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peng Fei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sheng Gui Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li Xia Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Sheng Guo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shuang Bao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, 730070, China.
| |
Collapse
|
46
|
Yu F, Tian T, Deng B, Wang T, Qi Q, Zhu M, Yan C, Ding H, Wang J, Dai J, Ma H, Ding Y, Jin G. Multi-marker analysis of genomic annotation on gastric cancer GWAS data from Chinese populations. Gastric Cancer 2019; 22:60-68. [PMID: 29859005 DOI: 10.1007/s10120-018-0841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the high-incidence and high-mortality cancers all over the world. Though genome-wide association studies (GWASs) have found some genetic loci related to GC, they could only explain a small fraction of the potential pathogenesis for GC. METHODS We used multi-marker analysis of genomic annotation (MAGMA) to analyze pathways from four public pathway databases based on Chinese GWAS data including 2631 GC cases and 4373 controls. The differential expressions of selected genes in certain pathways were assessed on the basis of The Cancer Genome Atlas database. Immunohistochemistry was also conducted on 55 GC and paired normal tissues of Chinese patients to localize the expression of genes and further validate the differential expression. RESULTS We identified three pathways including chemokine signaling pathway, potassium ion import pathway, and interleukin-7 (IL7) pathway, all of which were associated with GC risk. NMI in IL7 pathway and RAC1 in chemokine signaling pathway might be two new candidate genes involved in GC pathogenesis. Additionally, NMI and RAC1 were overexpressed in GC tissues than normal tissues. CONCLUSION Immune and inflammatory associated processes and potassium transporting might participate in the development of GC. Besides, NMI and RAC1 might represent two new key genes related to GC. Our findings might give new insight into the biological mechanism and immunotherapy for GC.
Collapse
Affiliation(s)
- Fei Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre For Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Nantong University, Nantong, 226019, China
| | - Bin Deng
- Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Tianpei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jinchen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre For Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre For Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yanbing Ding
- Department of Gastroenterology, the Affiliated Hospital of Yangzhou University, Yangzhou, 225001, China.
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre For Cancer Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
47
|
Zhang X, Wang Y, Tian T, Zhou G, Jin G. Germline genetic variants were interactively associated with somatic alterations in gastric cancer. Cancer Med 2018; 7:3912-3920. [PMID: 29923336 PMCID: PMC6089170 DOI: 10.1002/cam4.1612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies have identified several germline variants in gastric cancer. Meanwhile, sequencing studies have characterized extensive somatic alterations that arise during gastric carcinogenesis. However, the relationship between the germline variants and somatic alterations is still unclear in gastric cancer. A total of 11 susceptibility loci and 276 driver genes of gastric cancer were determined based on previous studies and publicly available database. An enrichment analysis was made to detect whether driver genes were enriched in susceptibility regions. Besides, we performed a pathway enrichment analysis to find common-enrich pathways of cancer driver genes and susceptibility genes. Finally, on the basis of the gastric cancer samples and data from TCGA STAD project, we evaluated the associations between susceptibility loci and somatic alterations. Enrichment analysis showed that gastric cancer susceptibility genes were more likely to be enriched in driver genes than in all the genes (P = .05). The susceptibility genes and driver genes were commonly enriched in 8 biological pathways. Gastric cancer susceptibility locus of rs2285947 was associated with truncation mutation within Signaling by PDGF pathway (OR = 0.26, 95%CI: 0.12-0.55, P = 3.93 × 10-4 ). The rs1679709 was connected with COSMIC Signature15 (P = .026). Moreover, rs1679709 was also associated with copy number values of RFC4 which is related to Signature15. These results provide evidence for the relationship between germline variants and somatic alterations, which facilitate understanding the interactive mechanism of germline variations with somatic alterations in gastric cancer development.
Collapse
Affiliation(s)
- Xu Zhang
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Yuzhuo Wang
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Tian Tian
- Department of Epidemiology and BiostatisticsSchool of Public HealthNantong UniversityNantongChina
| | - Gangqiao Zhou
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of Radiation MedicineBeijingChina
- National Engineering Research Center for Protein DrugsBeijingChina
- National Center for Protein Sciences at BeijingBeijingChina
| | - Guangfu Jin
- Department of EpidemiologySchool of Public HealthNanjing Medical UniversityNanjingChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center of Cancer MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
48
|
Blazquez JL, Benyamine A, Pasero C, Olive D. New Insights Into the Regulation of γδ T Cells by BTN3A and Other BTN/BTNL in Tumor Immunity. Front Immunol 2018; 9:1601. [PMID: 30050536 PMCID: PMC6050389 DOI: 10.3389/fimmu.2018.01601] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Recent findings in the immunology field have pointed out the emergent role of butyrophilins/butyrophilin-like molecules (BTN/BTNL in human, Btn/Btnl in mouse) in the modulation of γδ T cells. As long as the field develops exponentially, new relationships between certain γδ T cell subsets, on one hand, and their BTN/BTNL counterparts mainly present on epithelial and tumor cells, on the other, are described in the scientific literature. Btnl1/Btnl6 in mice and BTNL3/BTNL8 in humans regulate the homing and maturation of Vγ7+ and Vγ4+ T cells to the gut epithelium. Similarly, Skint-1 has shown to shape the dendritic epidermal T cells repertoire and their activation levels in mice. We and others have identified BTN3A proteins are the key mediators of phosphoantigen sensing by human Vγ9Vδ2 T cells. Here, we first synthesize the modulation of specific γδ T cell subsets by related BTN/BTNL molecules, in human and mice. Then, we focus on the role of BTN3A in the activation of Vγ9Vδ2 T cells, and we highlight the recent advances in the understanding of the expression, regulation, and function of BTN3A in tumor immunity. Hence, recent studies demonstrated that several signals induced by cancer cells or their microenvironment can regulate the expression of BTN3A. Moreover, antibodies targeting BTN3A have shown in vitro and in vivo efficacy in human tumors such as acute myeloid leukemia or pancreatic cancer. We thus finally discuss how these findings could help develop novel γδ T cell-based immunotherapeutical approaches.
Collapse
Affiliation(s)
- Juan-Luis Blazquez
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM105, CNRS UMR 7258, Marseille, France
| | - Audrey Benyamine
- Aix-Marseille Université (AMU), Médecine Interne Hôpital Nord, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Daniel Olive
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity & Cancer, Institut Paoli-Calmettes; Aix-Marseille Université UM105, CNRS UMR 7258, Marseille, France.,Immunomonitoring platform, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
49
|
Sakaguchi T, Yoshino H, Sugita S, Miyamoto K, Yonemori M, Osako Y, Meguro-Horike M, Horike SI, Nakagawa M, Enokida H. Bromodomain protein BRD4 inhibitor JQ1 regulates potential prognostic molecules in advanced renal cell carcinoma. Oncotarget 2018; 9:23003-23017. [PMID: 29796168 PMCID: PMC5955408 DOI: 10.18632/oncotarget.25190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
Sunitinib is a standard molecular-targeted drug used as a first-line treatment for metastatic clear cell renal cell carcinoma (ccRCC); however, resistance to sunitinib has become a major problem in medical practice. Recently, bromodomain containing 4 (BRD4), a member of the bromodomain family proteins, was identified as a promising therapeutic target, and its inhibitor JQ1 has been shown to have inhibitory effects in various human cancers. However, the anti-cancer effects of JQ1 in ccRCC, particularly sunitinib-resistant ccRCC, are still unclear. Here, we aimed to elucidate the anti-cancer effects of JQ1 and the mechanisms underlying BRD4 inhibition in sunitinib-sensitive and -resistant ccRCCs. Analysis of The Cancer Genome Atlas (TCGA) ccRCC cohort showed that patients with high BRD4 expression had shorter overall survival than those with low expression. JQ1 treatment significantly inhibited tumor growth of sunitinib-sensitive and -resistant ccRCC cells in part through MYC regulation. Based on RNA sequencing analyses of ccRCC cells treated with JQ1 to elucidate the mechanisms other than MYC regulation, we identified several oncogenes that may be potential therapeutic targets or prognostic markers; patients with high expression of SCG5, SPOCD1, RGS19, and ARHGAP22 had poorer overall survival than those with low expression in TCGA ccRCC cohort. Chromatin immunoprecipitation assays revealed that these oncogenes may be promising BRD4 targets, particularly in sunitinib-resistant ccRCC cells. These results identified SCG5, SPOCD1, RGS19, and ARHGAP22 as potential prognostic markers and showed that BRD4 inhibition may have applications as a potential therapeutic approach in sunitinib-sensitive and -resistant ccRCC.
Collapse
Affiliation(s)
- Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazutaka Miyamoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaya Yonemori
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makiko Meguro-Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shin-Ichi Horike
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
50
|
Yan C, Ji Y, Huang T, Yu F, Gao Y, Gu Y, Qi Q, Du J, Dai J, Ma H, Jin G. An esophageal adenocarcinoma susceptibility locus at 9q22 also confers risk to esophageal squamous cell carcinoma by regulating the function of BARX1. Cancer Lett 2018; 421:103-111. [PMID: 29454095 DOI: 10.1016/j.canlet.2018.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/04/2018] [Accepted: 02/11/2018] [Indexed: 02/02/2023]
Abstract
Genome wide association studies (GWAS) have identified a series of genetic variants associated with the risk of esophageal adenocarcinoma (EAC)/Barrett's esophagus (BE), which was different from those loci for esophageal squamous cell carcinoma (ESCC). It is important to evaluate whether these susceptibility loci for EAC/BE are also implicated in ESCC development. In the current study, we analyzed genetic variants at 3p13, 9q22, 16q24 and 19p13 in a case-control study including 2139 ESCC patients and 2463 cancer-free controls in a Chinese population, and further characterized the biological relevance of genetic variants by functional assays. We found that the G allele of rs11789015 at 9q22, as compared with the A allele, was significantly associated with a decreased risk of ESCC with a per-allele odds ratio of 0.77 (95%CI, 0.65-0.90; P = 1.38 × 10-3), whereas the other three loci were not associated with ESCC risk. We further found that rs11789015-G allele correlated with decreased mRNA and protein levels of BARX1. Dual-luciferase reporter gene assay revealed that the A > G change at rs11789015 significantly decreased the promoter activity of BARX1. Both the mRNA and protein levels of BARX1 were significantly higher in ESCC tumor tissues compared with the corresponding normal tissues. Moreover, the deletion of BARX1 substantially reduced ESCC cells growth, migration and invasion. In conclusion, these results suggest that genetic variants at 9q22 are associated with the risk of both EAC/BE and ESCC, possibly by regulating the function of BARX1.
Collapse
Affiliation(s)
- Caiwang Yan
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Tongtong Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yong Gao
- Department of Medical Oncology, The Affiliated Huaian First People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yayun Gu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Qi
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|