1
|
Zhao J, Gong F, Yang Q, Yang R, Yan Z, Xi Z, Li K, Lai W, Shi Y, Lin B, Yan J, Liu X. Exercise in ozone-polluted air evokes pathological cardiac hypertrophy via up-regulation of nuclear lncRNA EYA4-au1 and recruiting Med11 to activating EYA4/p27kip1/CK2α/HDAC2 cascade. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117264. [PMID: 39471666 DOI: 10.1016/j.ecoenv.2024.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Engaging in exercise in an ozone (O3)-polluted environment can lead to lung damage, respiratory inflammation, and deterioration in performance, however, the effects on the heart are undefined. Herein, we report that rats performing moderate-intensity exercise under O3-polluted air evoked pathological myocardial hypertrophy (MH). O3 exposure increased serum levels of MH-promoting factors (angiotensin II [AngII], endothelin-1 [ET-1], and cyclophilin A [CyPA]), and decreased expression of MH-inhibiting factors (adiponectin [ADPN], follistatin-like protein 1 [FSTL1], and apelin). O3 exposure also increased the expression levels of cardiac hypertrophy markers (ANP, BNP, and β-MHC) in the heart, elicited myocardial hypertrophy and cardiac inflammation. Mechanistically, we identified lncRNA EYA4-au1 overexpression in the above myocardial tissues with pathological hypertrophy. In an AngII-elicited in vitro model, EYA4-au1 was shown to mediate cardiomyocyte hypertrophy. AngII induces nuclear translocation of SP1, leading to high expression of EYA4-au1; And inhibits the expression of ELAVL1, resulting in nuclear retention of EYA4-au1. Nuclear EYA4-au1 recruits Med11 to EYA4 promoter for transcriptional activation, subsequently unleashing the EYA4/p27kip1/CK2α/HDAC2 cascade that signals cardiomyocyte hypertrophy. In summary, O3 exposure is an important factor in pathological MH, mediated by EYA4-au1 that motivates the MH-driving EYA4 pathway. Our findings define the effects of exercise on the heart in an O3-polluted environment and offer a novel mechanistic route for the onset of MH.
Collapse
Affiliation(s)
- Jiao Zhao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Fuxu Gong
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Qingcheng Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Renxin Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Zhangong Yan
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Zhuge Xi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Jun Yan
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| | - Xiaohua Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China.
| |
Collapse
|
2
|
Sharma S, Xiao L, Chung HK, Chen T, Mallard CG, Warner B, Yu TX, Kwon MS, Chae S, Raufman JP, Kozar R, Wang JY. Noncoding Vault RNA1-1 Impairs Intestinal Epithelial Renewal and Barrier Function by Interacting With CUG-binding Protein 1. Cell Mol Gastroenterol Hepatol 2024:101410. [PMID: 39349247 DOI: 10.1016/j.jcmgh.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Small noncoding vault RNAs (vtRNAs) are involved in many cell processes important for health and disease, but their pathobiological functions in the intestinal epithelium are underexplored. Here, we investigated the role of human vtRNA1-1 in regulating intestinal epithelial renewal and barrier function. METHODS Studies were conducted in vtRNA1-1 transgenic (vtRNA1-1Tg) mice, primary enterocytes, and Caco-2 cells. Extracellular vesicles (EVs) were isolated from the serum of shock patients and septic mice. Intestinal organoids (enteroids) were prepared from vtRNA1-1Tg and littermate mice. Mucosal growth was measured by Ki67 immunostaining or BrdU incorporation, and gut permeability was assessed using the FITC-dextran assay. RESULTS Intestinal tissues recovered from shock patients and septic mice evidenced mucosal injury and gut barrier dysfunction; vtRNA levels were elevated in EVs isolated from their sera. In mice, intestinal epithelial-specific transgenic expression of vtRNA1-1 inhibited mucosal growth, reduced Paneth cell numbers and intercellular junction (IJ) protein expression, and increased gut barrier vulnerability to lipopolysaccharide exposure. Conversely, in vitro silencing of vtRNA1-1 increased IJ protein levels and enhanced epithelial barrier function. Exposing enteroids to vtRNA1-1-rich EVs augmented paracellular permeability. Mechanistically, vtRNA1-1 interacted with CUG-binding protein 1 (CUGBP1) and increased CUGBP1 association with claudin-1 and occludin mRNAs, thereby inhibiting their expression. CONCLUSIONS These findings indicate that elevated levels of vtRNA1-1 in EVs and mucosal tissues repress intestinal epithelial renewal and barrier function. Notably, this work reveals a novel role for dysregulation of the vtRNA1-1/CUGBP1 axis in the pathogenesis of gut mucosal disruption in critical illness.
Collapse
Affiliation(s)
- Shweta Sharma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ting Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bridgette Warner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Songah Chae
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jean-Pierre Raufman
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
3
|
Kwon MS, Chung HK, Xiao L, Yu TX, Sharma S, Cairns CM, Chen T, Chae S, Turner DJ, Wang JY. Interaction between microRNA-195 and HuR regulates Paneth cell function in the intestinal epithelium by altering SOX9 translation. Am J Physiol Cell Physiol 2024; 327:C817-C829. [PMID: 39099425 PMCID: PMC11427006 DOI: 10.1152/ajpcell.00325.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Paneth cells at the bottom of small intestinal crypts secrete antimicrobial peptides, enzymes, and growth factors and contribute to pathogen clearance and maintenance of the stem cell niche. Loss of Paneth cells and their dysfunction occur commonly in various pathologies, but the mechanism underlying the control of Paneth cell function remains largely unknown. Here, we identified microRNA-195 (miR-195) as a repressor of Paneth cell development and activity by altering SOX9 translation via interaction with RNA-binding protein HuR. Tissue-specific transgenic expression of miR-195 (miR195-Tg) in the intestinal epithelium decreased the levels of mucosal SOX9 and reduced the numbers of lysozyme-positive (Paneth) cells in mice. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restored Paneth cell development ex vivo. miR-195 did not bind to Sox9 mRNA but it directly interacted with HuR and prevented HuR binding to Sox9 mRNA, thus inhibiting SOX9 translation. Intestinal mucosa from mice that harbored both Sox9 transgene and ablation of the HuR locus exhibited lower levels of SOX9 protein and Paneth cell numbers than those observed in miR-195-Tg mice. Inhibition of miR-195 activity by its specific antagomir improved Paneth cell function in HuR-deficient intestinal organoids. These results indicate that interaction of miR-195 with HuR regulates Paneth cell function by altering SOX9 translation in the small intestinal epithelium.NEW & NOTEWORTHY Our results indicate that intestinal epithelial tissue-specific transgenic miR-195 expression decreases the levels of SOX9 expression, along with reduced numbers of Paneth cells. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restores Paneth cell development ex vivo. miR-195 inhibits SOX9 translation by preventing binding of HuR to Sox9 mRNA. These findings suggest that interaction between miR-195 and HuR controls Paneth cell function via SOX9 in the intestinal epithelium.
Collapse
Affiliation(s)
- Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Shweta Sharma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Cassandra M Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Ting Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Songah Chae
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Luo X, Gong HB, Li ZC, Li DD, Li ZX, Sun J, Yan CY, Huang RT, Feng Y, Chen SR, Cao YF, Liu M, Wang R, Huang F, Sun WY, Kurihara H, Duan WJ, Liang L, Jin W, Wu YP, He RR, Li YF. Phospholipid peroxidation in macrophage confers tumor resistance by suppressing phagocytic capability towards ferroptotic cells. Cell Death Differ 2024; 31:1184-1201. [PMID: 39103535 PMCID: PMC11369141 DOI: 10.1038/s41418-024-01351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Ferroptosis holds significant potential for application in cancer therapy. However, ferroptosis inducers are not cell-specific and can cause phospholipid peroxidation in both tumor and non-tumor cells. This limitation greatly restricts the use of ferroptosis therapy as a safe and effective anticancer strategy. Our previous study demonstrated that macrophages can engulf ferroptotic cells through Toll-like receptor 2 (TLR2). Despite this advancement, the precise mechanism by which phospholipid peroxidation in macrophages affects their phagocytotic capability during treatment of tumors with ferroptotic agents is still unknown. Here, we utilized flow sorting combined with redox phospholipidomics to determine that phospholipid peroxidation in tumor microenvironment (TME) macrophages impaired the macrophages ability to eliminate ferroptotic tumor cells by phagocytosis, ultimately fostering tumor resistance to ferroptosis therapy. Mechanistically, the accumulation of phospholipid peroxidation in the macrophage endoplasmic reticulum (ER) repressed TLR2 trafficking to the plasma membrane and caused its retention in the ER by disrupting the interaction between TLR2 and its chaperone CNPY3. Subsequently, this ER-retained TLR2 recruited E3 ligase MARCH6 and initiated the proteasome-dependent degradation. Using redox phospholipidomics, we identified 1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine (SAPE-OOH) as the crucial mediator of these effects. Conclusively, our discovery elucidates a novel molecular mechanism underlying macrophage phospholipid peroxidation-induced tumor resistance to ferroptosis therapy and highlights the TLR2-MARCH6 axis as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Xiang Luo
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Hai-Biao Gong
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Zi-Chun Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Dong-Dong Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Zi-Xuan Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Jie Sun
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Chang-Yu Yan
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Rui-Ting Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Shu-Rui Chen
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yun-Feng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, National Health Commission Key Laboratory of Reproduction Regulation, Shanghai, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, China
| | - Rong Wang
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Wan-Yang Sun
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Lei Liang
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Wen Jin
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yan-Ping Wu
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Yi-Fang Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Rac M. Synthesis and Regulation of miRNA, Its Role in Oncogenesis, and Its Association with Colorectal Cancer Progression, Diagnosis, and Prognosis. Diagnostics (Basel) 2024; 14:1450. [PMID: 39001340 PMCID: PMC11241650 DOI: 10.3390/diagnostics14131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The dysfunction of several types of regulators, including miRNAs, has recently attracted scientific attention for their role in cancer-associated changes in gene expression. MiRNAs are small RNAs of ~22 nt in length that do not encode protein information but play an important role in post-transcriptional mRNA regulation. Studies have shown that miRNAs are involved in tumour progression, including cell proliferation, cell cycle, apoptosis, and tumour angiogenesis and invasion, and play a complex and important role in the regulation of tumourigenesis. The detection of selected miRNAs may help in the early detection of cancer cells, and monitoring changes in their expression profile may serve as a prognostic factor in the course of the disease or its treatment. MiRNAs may serve as diagnostic and prognostic biomarkers, as well as potential therapeutic targets for colorectal cancer. In recent years, there has been increasing evidence for an epigenetic interaction between DNA methylation and miRNA expression in tumours. This article provides an overview of selected miRNAs, which are more frequently expressed in colorectal cancer cells, suggesting an oncogenic nature.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ran Z, Yang J, Liu L, Wu S, An Y, Hou W, Cheng T, Zhang Y, Zhang Y, Huang Y, Zhang Q, Wan J, Li X, Xing B, Ye Y, Xu P, Chen Z, Zhao J, Li R. Chronic PM 2.5 exposure disrupts intestinal barrier integrity via microbial dysbiosis-triggered TLR2/5-MyD88-NLRP3 inflammasome activation. ENVIRONMENTAL RESEARCH 2024; 258:119415. [PMID: 38906446 DOI: 10.1016/j.envres.2024.119415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND PM2.5, a known public health risk, is increasingly linked to intestinal disorders, however, the mechanisms of its impact are not fully understood. PURPOSE This study aimed to explore the impact of chronic PM2.5 exposure on intestinal barrier integrity and to uncover the underlying molecular mechanisms. METHODS C57BL/6 J mice were exposed to either concentrated ambient PM2.5 (CPM) or filtered air (FA) for six months to simulate urban pollution conditions. We evaluated intestinal barrier damage, microbial shifts, and metabolic changes through histopathology, metagenomics, and metabolomics. Analysis of the TLR signaling pathway was also conducted. RESULTS The mean concentration of PM2.5 in the CPM exposure chamber was consistently measured at 70.9 ± 26.8 μg/m³ throughout the study period. Our findings show that chronic CPM exposure significantly compromises intestinal barrier integrity, as indicated by reduced expression of the key tight junction proteins Occludin and Tjp1/Zo-1. Metagenomic sequencing revealed significant shifts in the microbial landscape, identifying 35 differentially abundant species. Notably, there was an increase in pro-inflammatory nongastric Helicobacter species and a decrease in beneficial bacteria, such as Lactobacillus intestinalis, Lactobacillus sp. ASF360, and Eubacterium rectale. Metabolomic analysis further identified 26 significantly altered metabolites commonly associated with intestinal diseases. A strong correlation between altered bacterial species and metabolites was also observed. For example, 4 Helicobacter species all showed positive correlations with 13 metabolites, including Lactate, Bile acids, Pyruvate and Glutamate. Additionally, increased expression levels of TLR2, TLR5, Myd88, and NLRP3 proteins were noted, and their expression patterns showed a strong correlation, suggesting a possible involvement of the TLR2/5-MyD88-NLRP3 signaling pathway. CONCLUSIONS Chronic CPM exposure induces intestinal barrier dysfunction, microbial dysbiosis, metabolic imbalance, and activation of the TLR2/5-MyD88-NLRP3 inflammasome. These findings highlight the urgent need for intervention strategies to mitigate the detrimental effects of air pollution on intestinal health and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Zihan Ran
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China; Greater Bay Area Institute of Precision Medicine, 115 Jiaoxi Road, Guangzhou 511458, China
| | - Liang Liu
- Clinical Research Unit, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaobo Wu
- Department of Laboratory Medicine, Tinglin Hospital of Jinshan District, No. 80 Siping North Road, Shanghai 201505, China
| | - YanPeng An
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tianyuan Cheng
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Youyi Zhang
- School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yiqing Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yechao Huang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qianyue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Jiaping Wan
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Xuemei Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Baoling Xing
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Yuchen Ye
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Penghao Xu
- School of Biological Sciences, Georgia Insitute of Technology, Atlanta, GA, USA
| | - Zhenghu Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Department of Pathology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China.
| | - Jinzhuo Zhao
- School of Public Health and the Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Rui Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China.
| |
Collapse
|
8
|
Wang S, Yang Y, Jiang X, Zheng X, Wei Q, Dai W, Zhang X. Nurturing gut health: role of m6A RNA methylation in upholding the intestinal barrier. Cell Death Discov 2024; 10:271. [PMID: 38830900 PMCID: PMC11148167 DOI: 10.1038/s41420-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.
Collapse
Affiliation(s)
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaohan Jiang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiufang Wei
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wenbin Dai
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| |
Collapse
|
9
|
Chung HK, Xiao L, Han N, Chen J, Yao V, Cairns CM, Raufman B, Rao JN, Turner DJ, Kozar R, Gorospe M, Wang JY. Circular RNA Cdr1as inhibits proliferation and delays injury-induced regeneration of the intestinal epithelium. JCI Insight 2024; 9:e169716. [PMID: 38227372 PMCID: PMC11143936 DOI: 10.1172/jci.insight.169716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the mammalian intestinal epithelium, but their functions remain largely unknown. Here, we identified the circRNA Cdr1as as a repressor of intestinal epithelial regeneration and defense. Cdr1as levels increased in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from patients with inflammatory bowel disease and sepsis. Ablation of the Cdr1as locus from the mouse genome enhanced renewal of the intestinal mucosa, promoted injury-induced epithelial regeneration, and protected the mucosa against colitis. We found approximately 40 microRNAs, including miR-195, differentially expressed between intestinal mucosa of Cdr1as-knockout (Cdr1as-/-) versus littermate mice. Increasing the levels of Cdr1as inhibited intestinal epithelial repair after wounding in cultured cells and repressed growth of intestinal organoids cultured ex vivo, but this inhibition was abolished by miR-195 silencing. The reduction in miR-195 levels in the Cdr1as-/- intestinal epithelium was the result of reduced stability and processing of the precursor miR-195. These findings indicate that Cdr1as reduces proliferation and repair of the intestinal epithelium at least in part via interaction with miR-195 and highlight a role for induced Cdr1as in the pathogenesis of unhealed wounds and disrupted renewal of the intestinal mucosa.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Naomi Han
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jason Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivian Yao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cassandra M. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin Raufman
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Douglas J. Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Wang SR, Mallard CG, Cairns CA, Chung HK, Yoo D, Jaladanki SK, Xiao L, Wang JY. Stabilization of Cx43 mRNA via RNA-binding protein HuR regulated by polyamines enhances intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2023; 325:G518-G527. [PMID: 37788332 PMCID: PMC10894663 DOI: 10.1152/ajpgi.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Gut barrier dysfunction occurs commonly in patients with critical disorders, leading to the translocation of luminal toxic substances and bacteria to the bloodstream. Connexin 43 (Cx43) acts as a gap junction protein and is crucial for intercellular communication and the diffusion of nutrients. The levels of cellular Cx43 are tightly regulated by multiple factors, including polyamines, but the exact mechanism underlying the control of Cx43 expression remains largely unknown. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of intestinal epithelial pathobiology. Here we show that HuR directly bound to Cx43 mRNA via its 3'-untranslated region in intestinal epithelial cells (IECs) and this interaction enhanced Cx43 expression by stabilizing Cx43 mRNA. Depletion of cellular polyamines inhibited the [HuR/Cx43 mRNA] complex and decreased the level of Cx43 protein by destabilizing its mRNA, but these changes were prevented by ectopic overexpression of HuR. Polyamine depletion caused intestinal epithelial barrier dysfunction, which was reversed by ectopic Cx43 overexpression. Moreover, overexpression of checkpoint kinase 2 in polyamine-deficient cells increased the [HuR/Cx43 mRNA] complex, elevated Cx43 levels, and promoted barrier function. These findings indicate that Cx43 mRNA is a novel target of HuR in IECs and that polyamines regulate Cx43 mRNA stability via HuR, thus playing a critical role in the maintenance of intestinal epithelial barrier function.NEW & NOTEWORTHY The current study shows that polyamines stabilize the Cx43 mRNA via HuR, thus enhancing the function of the Cx43-mediated gap junction. These findings suggest that induced Cx43 by HuR plays a critical role in the process by which polyamines regulate intestinal epithelial barrier.
Collapse
Affiliation(s)
- Shelley R Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Caroline G Mallard
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Cassandra A Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Dongyoon Yoo
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Suraj K Jaladanki
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| |
Collapse
|
11
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
12
|
Xiao L, Warner B, Mallard CG, Chung HK, Shetty A, Brantner CA, Rao JN, Yochum GS, Koltun WA, To KB, Turner DJ, Gorospe M, Wang JY. Control of Paneth cell function by HuR regulates gut mucosal growth by altering stem cell activity. Life Sci Alliance 2023; 6:e202302152. [PMID: 37696579 PMCID: PMC10494932 DOI: 10.26508/lsa.202302152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Rapid self-renewal of the intestinal epithelium requires the activity of intestinal stem cells (ISCs) that are intermingled with Paneth cells (PCs) at the crypt base. PCs provide multiple secreted and surface-bound niche signals and play an important role in the regulation of ISC proliferation. Here, we show that control of PC function by RNA-binding protein HuR via mitochondria affects intestinal mucosal growth by altering ISC activity. Targeted deletion of HuR in mice disrupted PC gene expression profiles, reduced PC-derived niche factors, and impaired ISC function, leading to inhibited renewal of the intestinal epithelium. Human intestinal mucosa from patients with critical surgical disorders exhibited decreased levels of tissue HuR and PC/ISC niche dysfunction, along with disrupted mucosal growth. HuR deletion led to mitochondrial impairment by decreasing the levels of several mitochondrial-associated proteins including prohibitin 1 (PHB1) in the intestinal epithelium, whereas HuR enhanced PHB1 expression by preventing microRNA-195 binding to the Phb1 mRNA. These results indicate that HuR is essential for maintaining the integrity of the PC/ISC niche and highlight a novel role for a defective PC/ISC niche in the pathogenesis of intestinal mucosa atrophy.
Collapse
Affiliation(s)
- Lan Xiao
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bridgette Warner
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline G Mallard
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hee K Chung
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amol Shetty
- https://ror.org/04rq5mt64 Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christine A Brantner
- https://ror.org/04rq5mt64 Electron Microscopy Core Imaging Facility, University of Maryland Baltimore, Baltimore, MD, USA
| | - Jaladanki N Rao
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Gregory S Yochum
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Walter A Koltun
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kathleen B To
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Douglas J Turner
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, MD, USA
| | - Jian-Ying Wang
- https://ror.org/04rq5mt64 Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
- https://ror.org/04rq5mt64 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
14
|
Hu C, Ma L, Gao S, Yang MY, Mu MD, Chang L, Huang P, Ye X, Wang W, Tao X, Zhou BH, Chen W, Tang KL. PPP1R3A inhibits osteogenesis and negatively regulates intracellular calcium levels in calcific tendinopathy. iScience 2023; 26:107784. [PMID: 37876608 PMCID: PMC10590817 DOI: 10.1016/j.isci.2023.107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Calcific tendinopathy (CT) is defined by the progressive accumulation of calcium crystals in tendonic regions that results in severe pain in patients. The etiology of CT is not fully elucidated. In this study, we elucidate the role of PPP1R3A in CT. A significant decrease in PPP1R3A expression was observed in CT patient tissues, which was further confirmed in tissues from a CT-induced rat model. Overexpression of PPP1R3A ex vivo reduced the expression of osteo/chondrogenic markers OCN and Sox9, improved tendon tissue architecture, and reduced intracellular Ca2+ levels. Overexpression of SERCA2 and knockdown of Piezo1 decreased expression of osteo/chondrogenic markers and intracellular calcium in PPP1R3A-knockdown tendon cells. Lastly, PPP1R3A expression was regulated at the posttranscriptional level by binding of HuR. Collectively, the present study indicates that PPP1R3A plays an important role in regulating calcium homeostasis in tendon cells via Piezo1/SERCA2, rendering it a promising target for therapeutic interventions of CT.
Collapse
Affiliation(s)
- Chao Hu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
- Department of Orthopedics, 904 Hospital of PLA, Wuxi 214000 Jiangsu, China
| | - Lin Ma
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Shang Gao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Ming-Yu Yang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Mi-Duo Mu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Le Chang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Pan Huang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xiao Ye
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wei Wang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Xu Tao
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Bing-Hua Zhou
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Wan Chen
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| | - Kang-Lai Tang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400000, China
| |
Collapse
|
15
|
Zhu S, Yu Y, Qu M, Qiu Z, Zhang H, Miao C, Guo K. Neutrophil extracellular traps contribute to immunothrombosis formation via the STING pathway in sepsis-associated lung injury. Cell Death Discov 2023; 9:315. [PMID: 37626060 PMCID: PMC10457383 DOI: 10.1038/s41420-023-01614-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are involved in the activation and dysfunction of multiple overlapping and interacting pathways, including the immune response to injury, inflammation, and coagulation, which contribute to the pathogenesis of sepsis-induced acute lung injury (SI-ALI). However, how NETs mediate the relationship between inflammation and coagulation has not been fully clarified. Here, we found that NETs, through stimulator of interferon genes (STING) activation, induced endothelial cell damage with abundant production of tissue factor (TF), which magnified the dysregulation between inflammatory and coagulant responses and resulted in poor prognosis of SI-ALI model mice. Disruption of NETs and inhibition of STING improved the outcomes of septic mice and reduced the inflammatory response and coagulation. Furthermore, Toll-like receptor 2 (TLR2) on the surface of endothelial cells was involved in the interaction between NETs and the STING pathway. Collectively, these findings demonstrate that NETs activate the coagulant cascade in endothelial cells in a STING-dependent manner in the development of SI-ALI.
Collapse
Affiliation(s)
- Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiyun Qiu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
16
|
Mo Y, Wang S, Chang Y, Sun X, Liu Z, Sun P, Xu Y, Zhong X, Peng L. A novel rare variant of CNPY3 from familial NMOSD impairs the TLR-mediated immune response. J Neuroimmunol 2023; 377:578065. [PMID: 36931208 DOI: 10.1016/j.jneuroim.2023.578065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Toll-like receptors (TLRs) are a class of proteins that play essential roles in innate and adaptive immune responses. Recently, accumulating evidence has demonstrated that impairments in the TLR signalling pathway contribute to the development and progression of neuroimmune diseases, such as neuromyelitis optica spectrum disorder (NMOSD). However, the cellular and molecular mechanisms are still largely unknown. In this study, we report a novel variant, C52Y, of canopy FGF signalling regulator 3 (CNPY3) from patients with familial NMOSD and demonstrate that this variant shows a stronger interaction with GP96 and TLRs than with wild-type CNPY3. We find that C52Y has dominant negative effects on TLR4 surface expression. Importantly, the TLR4 surface expression level is decreased in RAW264.7 cells infected with the C52Y virus upon LPS stimulation. We further demonstrate that bone marrow-derived macrophages (BMDMs) from CNPY3C52Y/+ transgenic mice secrete less tumour necrosis factor (TNF) and interleukin (IL)-6 than BMDMs from wild-type mice upon stimulation with LPS. These data suggest that impairment of TLR trafficking may contribute to the development of neuroimmune disorders.
Collapse
Affiliation(s)
- Yongxin Mo
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shisi Wang
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yanyu Chang
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaobo Sun
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zheng Liu
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ping Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaofen Zhong
- Biotherapy Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Lisheng Peng
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
17
|
m6A modification in inflammatory bowel disease provides new insights into clinical applications. Biomed Pharmacother 2023; 159:114298. [PMID: 36706633 DOI: 10.1016/j.biopha.2023.114298] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex interplay between genetic predisposition, environmental factors, and gut microbes. The role of N6-methyladenosine (m6A) methylation in the pathogenesis of IBD has attracted increasing attention. m6A modification not only regulates intestinal mucosal immunity and intestinal barrier function, but also affects apoptosis and autophagy in intestinal epithelial cells. Additionally, m6A modification participated in the interaction between gut microbes and the host, providing a novel direction to explore the molecular mechanisms of IBD and the theoretical basis for specific microorganism-oriented prevention and treatment measures. m6A regulators are expected to be biomarkers for predicting the prognosis of IBD patients. m6A methylation may be utilized as a novel target in the management of IBD. This review focused on the recent advances in how m6A modification causes the initiation and development of IBD, and provided new insights into optimal prevention and treatment measures for IBD.
Collapse
|
18
|
Ma X, Xiao L, Wen SJ, Yu T, Sharma S, Chung HK, Warner B, Mallard CG, Rao JN, Gorospe M, Wang J. Small noncoding vault RNA2-1 disrupts gut epithelial barrier function via interaction with HuR. EMBO Rep 2023; 24:e54925. [PMID: 36440604 PMCID: PMC9900329 DOI: 10.15252/embr.202254925] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Vault RNAs (vtRNAs) are small noncoding RNAs and highly expressed in many eukaryotes. Here, we identified vtRNA2-1 as a novel regulator of the intestinal barrier via interaction with RNA-binding protein HuR. Intestinal mucosal tissues from patients with inflammatory bowel diseases and from mice with colitis or sepsis express increased levels of vtRNAs relative to controls. Ectopically expressed vtRNA2-1 decreases the levels of intercellular junction (IJ) proteins claudin 1, occludin, and E-cadherin and causes intestinal epithelial barrier dysfunction in vitro, whereas vtRNA2-1 silencing promotes barrier function. Increased vtRNA2-1 also decreases IJs in intestinal organoid, inhibits epithelial renewal, and causes Paneth cell defects ex vivo. Elevating the levels of tissue vtRNA2-1 in the intestinal mucosa increases the vulnerability of the gut barrier to septic stress in mice. vtRNA2-1 interacts with HuR and prevents HuR binding to claudin 1 and occludin mRNAs, thus decreasing their translation. These results indicate that vtRNA2-1 impairs intestinal barrier function by repressing HuR-facilitated translation of claudin 1 and occludin.
Collapse
Affiliation(s)
- Xiang‐Xue Ma
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
- Present address:
Department of Gastroenterology, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Lan Xiao
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Susan J Wen
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Ting‐Xi Yu
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Shweta Sharma
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Hee K Chung
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Bridgette Warner
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Caroline G Mallard
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Jaladanki N Rao
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
- Baltimore Veterans Affairs Medical CenterBaltimoreMDUSA
| | - Myriam Gorospe
- Laboratory of Genetics and GenomicsNational Institute on Aging‐IRP, NIHBaltimoreMDUSA
| | - Jian‐Ying Wang
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
- Laboratory of Genetics and GenomicsNational Institute on Aging‐IRP, NIHBaltimoreMDUSA
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
19
|
Tian C, Zhao J, Liu D, Sun J, Ji C, Jiang Q, Li H, Wang X, Sun Y. Identification of metabolism-related genes for predicting peritoneal metastasis in patients with gastric cancer. BMC Genom Data 2022; 23:84. [PMID: 36503378 PMCID: PMC9743729 DOI: 10.1186/s12863-022-01096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The reprogramming of metabolism is an important factor in the metastatic process of cancer. In our study, we intended to investigate the predictive value of metabolism-related genes (MRGs) in recurrent gastric cancer (GC) patients with peritoneal metastasis. METHODS The sequencing data of mRNA of GC patients were obtained from Asian Cancer Research Group (ACRG) and the GEO databases (GSE53276). The differentially expressed MRGs (DE-MRGs) between a cell line without peritoneal metastasis (HSC60) and one with peritoneal metastasis (60As6) were analyzed with the Limma package. According to the LASSO regression, eight MRGs were identified as crucially related to peritoneal seeding recurrence in patients. Then, disease free survival related genes were screened using Cox regression, and a promising prognostic model was constructed based on 8 MRGs. We trained and verified it in two independent cohort. RESULTS We confirmed 713 DE-MRGs and the enriched pathways. Pathway analysis found that the MRG-related pathways were related to tumor metabolism development. With the help of Kaplan-Meier analysis, we found that the group with higher risk scores had worse rates of peritoneal seeding recurrence than the group with lower scores in the cohorts. CONCLUSIONS This study developed an eight-gene signature correlated with metabolism that could predict peritoneal seeding recurrence for GC patients. This signature could be a promising prognostic model, providing better strategy in treatment.
Collapse
Affiliation(s)
- Chenyu Tian
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junjie Zhao
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Liu
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Sun
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chengbo Ji
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan Jiang
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haojie Li
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuefei Wang
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihong Sun
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Zhu Q, Wang J, Ji Y, Luan J, Yue D, Liu W, Li H, Zhang J, Qu G, Lv C, Song X. Danshensu methyl ester enhances autophagy to attenuate pulmonary fibrosis by targeting lncIAPF-HuR complex. Front Pharmacol 2022; 13:1013098. [PMID: 36386240 PMCID: PMC9664248 DOI: 10.3389/fphar.2022.1013098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 01/19/2024] Open
Abstract
Pulmonary fibrosis is an irreversible fibrotic process that has a high mortality rate and limited treatment options; thus, developing a novel therapeutic drug is critical. In this study, we synthesized danshensu methyl ester (DME) and explored its anti-pulmonary fibrotic ability on TGF-β1-stimulated lung fibroblast in vitro and on bleomycin-induced pulmonary fibrosis in vivo. Results showed that DME decreased the expression of differentiation-related proteins, including fibroblast activation protein 1 (FAP1) and S100 calcium-binding protein A4 (S100A4), and fibrotic markers, such as a-SMA, vimentin, and collagen in vivo and in vitro. In addition, DME markedly repressed myofibroblast proliferation and migration. Mechanistically, chromatin immunoprecipitation-PCR, RNA immunoprecipitation, half-life, and other experiments revealed that DME inhibited activating transcription factor 3 expression via TGF-β1 signal transduction leading to a decrease in lncIAPF transcription and stability. Moreover, DME blocked human antigen R (HuR) nucleocytoplasmic translocation and promoted its degradation via downregulating lncIAPF, which markedly decreased the expression of HuR target genes such as negative autophagic regulators (EZH2, STAT1, and FOXK1). Collectively, our results demonstrated that DME enhanced autophagy to attenuate pulmonary fibrosis via downregulating the lncIAPF-HuR-mediated autophagic axis and the lncIAPF-HuR complex can be the target for drug action.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jing Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yunxia Ji
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Jianlin Luan
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Dayong Yue
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Jinjin Zhang
- Medical Research Center, Binzhou Medical University, Yantai, China
| | - Guiwu Qu
- School of Gerontology, Binzhou Medical University, Yantai, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
21
|
Yu TX, Kalakonda S, Liu X, Han N, Chung HK, Xiao L, Rao JN, He TC, Raufman JP, Wang JY. Long noncoding RNA uc.230/CUG-binding protein 1 axis sustains intestinal epithelial homeostasis and response to tissue injury. JCI Insight 2022; 7:156612. [PMID: 36214222 PMCID: PMC9675575 DOI: 10.1172/jci.insight.156612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/31/2022] [Indexed: 01/16/2023] Open
Abstract
Intestinal epithelial integrity is commonly disrupted in patients with critical disorders, but the exact underlying mechanisms are unclear. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions and are involved in pathologies. Here, we investigated the role of T-UCRs in intestinal epithelial homeostasis and identified T-UCR uc.230 as a major regulator of epithelial renewal, apoptosis, and barrier function. Compared with controls, intestinal mucosal tissues from patients with ulcerative colitis and from mice with colitis or fasted for 48 hours had increased levels of uc.230. Silencing uc.230 inhibited the growth of intestinal epithelial cells (IECs) and organoids and caused epithelial barrier dysfunction. Silencing uc.230 also increased IEC vulnerability to apoptosis, whereas increasing uc.230 levels protected IECs against cell death. In mice with colitis, reduced uc.230 levels enhanced mucosal inflammatory injury and delayed recovery. Mechanistic studies revealed that uc.230 increased CUG-binding protein 1 (CUGBP1) by acting as a natural decoy RNA for miR-503, which interacts with Cugbp1 mRNA and represses its translation. These findings indicate that uc.230 sustains intestinal mucosal homeostasis by promoting epithelial renewal and barrier function and that it protects IECs against apoptosis by serving as a natural sponge for miR-503, thereby preserving CUGBP1 expression.
Collapse
Affiliation(s)
- Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sudhakar Kalakonda
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiangzheng Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Naomi Han
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hee K. Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Tong-Chuan He
- Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Jean-Pierre Raufman
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA.,Department of Medicine and
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Li X, Liu J, Zhou Y, Wang L, Wen Y, Ding K, Zou L, Liu X, Li A, Wang Y, Fu H, Huang M, Ding G, Zhou J. Jwa participates the maintenance of intestinal epithelial homeostasis via ERK/FBXW7-mediated NOTCH1/PPARγ/STAT5 axis and acts as a novel putative aging related gene. Int J Biol Sci 2022; 18:5503-5521. [PMID: 36147468 PMCID: PMC9461671 DOI: 10.7150/ijbs.72751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
The intestinal epithelium is a rapid self-renewal and regenerated tissue of which the structural integrity is beneficial for maintaining health. The integrity of intestinal epithelium depends on the balance of cell proliferation, differentiation, migration, and the function of intestinal stem cells, which declines due to genetic defect or aging. Jwa participates in multiple cellular processes; it also responds to oxidative stress and repairs DNA damage. However, whether Jwa plays a role in maintaining the homeostasis of intestinal renewal and regeneration is not clear. In the present study, we firstly described that the deletion of Jwa disturbed the homeostasis of intestinal epithelial renewal and regeneration. Jwa deficiency promoted NOTCH1 degradation in the ERK/FBXW7-mediated ubiquitin-proteasome pathway, thus disturbing the PPARγ/STAT5 axis. These mechanisms might partially contribute to the reduction of intestinal stem cell function and alteration of intestinal epithelial cell lineage distribution, finally suppressing the renewal and regeneration of intestinal epithelium. Moreover, our results also revealed that Jwa was a novel putative aging related gene.
Collapse
Affiliation(s)
- Xiong Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jingwen Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yan Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Luman Wang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Wen
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lu Zou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xia Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yun Wang
- Animal Core Facility of Nanjing Medical University, Jiangsu Animal Experimental Center of Medical and Pharmaceutical Research, Nanjing 211166, China
| | - Heling Fu
- Animal Core Facility of Nanjing Medical University, Jiangsu Animal Experimental Center of Medical and Pharmaceutical Research, Nanjing 211166, China
| | - Min Huang
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guoxian Ding
- Department of Geriatrics, Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
23
|
Duan XH, Chen R, Li DS, Luo AH, Guo LL. HuR affects chemoresistance of small cell lung cancer by regulating FGFRL1 expression. Exp Ther Med 2022; 24:638. [PMID: 36160905 PMCID: PMC9468853 DOI: 10.3892/etm.2022.11575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
Human antigen R (HuR), an RNA-binding protein, has been demonstrated to serve an oncogenic role in various types of cancer. Fibroblast growth factor receptor-like 1 (FGFRL1) has been shown to regulate small cell lung cancer (SCLC) chemoresistance. In the present study, the role of HuR in chemoresistance of SCLC, as well as its possible molecular mechanism involving FGFRL1, was explored by reverse transcription-quantitative PCR, western blotting, Cell Counting Kit-8 assay, flow cytometry and RNA immunoprecipitation. The results revealed that HuR expression levels were markedly upregulated in drug-resistant SCLC cell lines (H69AR and H446DDP) compared with in the parental cell lines (H69 and H446). Knockdown of HuR in drug-resistant SCLC cells enhanced drug sensitivity, cell apoptosis and cell cycle arrest. Furthermore, molecular mechanism studies indicated that HuR could bind and regulate FGFRL1 expression levels to increase FGFRL1 mRNA stability. Taken together, the present study suggested that HuR may mediate chemoresistance of SCLC by regulating FGFRL1 expression. HuR may represent a prognostic predictor and a potential target for overcoming chemoresistance in SCLC.
Collapse
Affiliation(s)
- Xun-Huang Duan
- Department of Oncology, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Rui Chen
- Department of Oncology, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Dao-Sheng Li
- Department of Oncology, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Ai-Hua Luo
- Department of Pathology, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, P.R. China
| | - Lin-Lang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
24
|
Integrated Analysis and Identification of Critical RNA-Binding Proteins in Bladder Cancer. Cancers (Basel) 2022; 14:cancers14153739. [PMID: 35954405 PMCID: PMC9367304 DOI: 10.3390/cancers14153739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The role of RNA-binding proteins (RBPs) in bladder cancer (BC) remains unclear. Therefore, we analyzed the clinical information and RNA sequencing data from patients with BC and identified RBPs that may be promising predictors of BC. Abstract RBPs in the development and progression of BC remains unclear. Here, we elucidated the role of RBPs in predicting the survival of patients with BC. Clinical information and RNA sequencing data of the training and validation cohorts were downloaded from the Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. Survival-related differentially expressed RBPs were identified using Cox regression analyses. A total of 113 upregulated and 54 downregulated RBPs were observed, with six showing prognostic values (AHNAK, MAP1B, LAMA2, P4HB, FASN, and GSDMB). In both the GSE32548 and GSE31684 datasets, patients with low-risk scores in survival-related six RBPs-based prognostic model showed longer overall survival than those with high-risk scores. AHNAK, MAP1B, P4HB, and FASN expression were significantly upregulated in both BC tissues and cell lines. BC tissues from high-risk group showed higher proportions of naive CD4+ T cells, M0 and M2 macrophages, and neutrophils and lower proportions of plasma cells, CD8+ T cells, and T-cell follicular helper compared to low-risk group. AHNAK knockdown significantly inhibited the proliferation, invasion, and migration of BC cells in vitro and inhibited the growth of subcutaneous tumors in vivo. We thus developed and functionally validated a novel six RBPs-based prognostic model for BC.
Collapse
|
25
|
Lin Z, Song J, Gao Y, Huang S, Dou R, Zhong P, Huang G, Han L, Zheng J, Zhang X, Wang S, Xiong B. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol 2022; 52:102312. [PMID: 35447413 PMCID: PMC9043498 DOI: 10.1016/j.redox.2022.102312] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Peritoneal metastasis (PM) is the main site of gastric cancer (GC) distant metastasis and indicates an extremely poor prognosis and survival. Hypoxia is a common feature of peritoneal metastases and up-regulation of hypoxia inducible factor 1 alpha (HIF-1α) may be a potential driver in the occurrence of PM. Ferroptosis is a recently discovered form of regulated cell death and closely related to the occurrence and development of tumors. However, the underlying mechanism link HIF-1α to ferroptosis in PM of GC remains unknown. Here, lncRNA-microarrays and RNA library construction/lncRNA-seq results shown that lncRNA-PMAN was highly expressed in PM and significantly modulated by HIF-1α. Upregulation of PMAN is associated with poor prognosis and PM in patients with GC. PMAN was up-regulated by HIF-1α and improved the stability of SLC7A11 mRNA by promoting the cytoplasmic distribution of ELAVL1, which was identified in RNA-pulldown/mass spectrometry results. Accumulation of SLC7A11 increases the level of l-Glutathione (GSH) and inhibits the accumulation of reactive oxygen species (ROS) and irons in the GC cells. Finally protect GC cells against ferroptosis induced by Erastin and RSL3. Our findings have elucidated the effect of HIF-1α/PMAN/ELAVL1 in GC cells ferroptosis and provides theoretical support for the potential diagnostic biomarkers and therapeutic targets for PM in GC. HIF-1⍺ mediates abnormally high expression of PMAN in PM from GC under hypoxia. GC cells suppress ferroptosis by relieving ROS and irons accumulation through HIF-1⍺/PMAN under hypoxia. Inhibition of ferroptosis may contributes to the development of PM from GC. Increased cytoplasmic translocation of ELAVL1 is a key intermediate factor in PMAN inhibition of ferroptosis.
Collapse
Affiliation(s)
- Zaihuan Lin
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jialin Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuke Gao
- Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Sihao Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Panyi Zhong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Guoquan Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Lei Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jinsen Zheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xinyao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Wuhan Peritoneal Cancer Clinical Medical Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China; Wuhan Peritoneal Cancer Clinical Medical Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
26
|
Xu Y, Tian Y, Li F, Wang Y, Yang J, Gong H, Wan X, Ouyang M. Circular RNA HECTD1 Mitigates Ulcerative Colitis by Promoting Enterocyte Autophagy Via miR-182-5p/HuR Axis. Inflamm Bowel Dis 2022; 28:273-288. [PMID: 34427642 DOI: 10.1093/ibd/izab188] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic colitis with unknown etiology. Circular RNA (circRNA) has shown regulatory effect in many diseases, but the role of circRNA in UC is barely known. This study uncovers the function and regulatory mechanism of circRNA HECTD1 (circHECTD1) in UC. METHODS Colonic mucosal tissues of 60 patients with active UC and 30 healthy controls were collected for H&E staining. Lipopolysaccharide (LPS) and dextran sulfate sodium (DSS) were used to induce inflammation and UC in Caco-2 cells and C57BL/6 mice where modification of circHECTD1, miR-182-5p and/or human antigen R (HuR) took place. The Caco-2 cells and the colon tissues of DSS-treated mice were collected for analysis of the expression levels of inflammatory cytokines, NLRP3 inflammasome, and autophagy-related proteins. The interactions among circHECTD1, miR-182-5p, and HuR were verified. RESULTS The colonic mucosal tissues of UC patients showed impaired autophagy and decreased expressions of circHECTD1 and HuR. Overexpression of circHECTD1 or HuR or inhibition of miR-182-5p suppressed inflammation and promoted autophagy of LPS-induced Caco-2 cells. The expression of HuR was promoted by circHECTD1 via miR-182-5p in Caco-2 cells. Overexpression of circHECTD1 reduced colonic injuries and inflammation by promoting autophagy in DSS-treated mice. CONCLUSION Overexpression of circHECTD1 alleviates UC by promoting HuR-dependent autophagy via miR-182-5p. This study highlights the therapeutic potential of circHECTD1 for UC and adds to the knowledge of circRNA in the pathogenesis of UC.
Collapse
Affiliation(s)
- Yan Xu
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuxi Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fujun Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Junwen Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hui Gong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaoping Wan
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Miao Ouyang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
27
|
Assoni G, La Pietra V, Digilio R, Ciani C, Licata NV, Micaelli M, Facen E, Tomaszewska W, Cerofolini L, Pérez-Ràfols A, Varela Rey M, Fragai M, Woodhoo A, Marinelli L, Arosio D, Bonomo I, Provenzani A, Seneci P. HuR-targeted agents: An insight into medicinal chemistry, biophysical, computational studies and pharmacological effects on cancer models. Adv Drug Deliv Rev 2022; 181:114088. [PMID: 34942276 DOI: 10.1016/j.addr.2021.114088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The Human antigen R (HuR) protein is an RNA-binding protein, ubiquitously expressed in human tissues, that orchestrates target RNA maturation and processing both in the nucleus and in the cytoplasm. A survey of known modulators of the RNA-HuR interactions is followed by a description of its structure and molecular mechanism of action - RRM domains, interactions with RNA, dimerization, binding modes with naturally occurring and synthetic HuR inhibitors. Then, the review focuses on HuR as a validated molecular target in oncology and briefly describes its role in inflammation. Namely, we show ample evidence for the involvement of HuR in the hallmarks and enabling characteristics of cancer, reporting findings from in vitro and in vivo studies; and we provide abundant experimental proofs of a beneficial role for the inhibition of HuR-mRNA interactions through silencing (CRISPR, siRNA) or pharmacological inhibition (small molecule HuR inhibitors).
Collapse
Affiliation(s)
- Giulia Assoni
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Rosangela Digilio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Caterina Ciani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Nausicaa Valentina Licata
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Mariachiara Micaelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elisa Facen
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Weronika Tomaszewska
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Pérez-Ràfols
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Marta Varela Rey
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain; Department of Functional Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain; Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Luciana Marinelli
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), National Research Council (CNR), Via C. Golgi 19, I-20133 Milan, Italy
| | - Isabelle Bonomo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| | - Pierfausto Seneci
- Chemistry Department, University of Milan, Via Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
28
|
Nie K, Yi J, Yang Y, Deng M, Yang Y, Wang T, Chen X, Zhang Z, Wang X. A Broad m6A Modification Landscape in Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 9:782636. [PMID: 35127705 PMCID: PMC8809481 DOI: 10.3389/fcell.2021.782636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aims: N6-Methyladenosine (m6A) is the most common post-transcriptional modification on eukaryotic mRNA, affecting the mRNA’s fate. The role of m6A regulation in inflammatory bowel disease is unclear. Here, we investigated the m6A landscape in inflammatory bowel diseases (IBD). Methods: Eleven human IBD microarray datasets were recruited from the Gene Expression Omnibus database and four were selected as discovery cohorts. An RNA-seq dataset from the Inflammatory Bowel Disease Multi’omics Database was used as a validation cohort. m6A regulators were measured in volunteers’ colonic samples. Consensus clustering and immune scoring were used to estimate the characteristics of m6A regulation in IBD. m6A-related characteristics of different sub-phenotypes, sample sources, and biological therapeutic responses were determined using seven independent datasets. Results: m6A modification involves methyltransferases (writers), demethylases (erasers), and methylation-reading proteins (readers). A wide interaction exists between m6A regulators and IBD risk genes. The IBD risk loci can also be modified by m6A modifications in the public m6A sequencing data. Furthermore, m6A regulators displayed extensive differential expression in four independent discovery cohorts that share common differential genes (IGF2BP2, HNRNPA2B1, ZCCHC4, and EIF3I). In the validated cohort and enrolled volunteers’ colonic biopsy samples, the differential m6A regulators were reconfirmed. Two clusters of consensus clustering exhibit different immune phenotypes. m6A-modified positions exist in the core IBD immune cytokines. Another set of IBD datasets revealed m6A-related differences across clinical phenotypes, biological samples, and therapeutic response subgroups in IBD patients. Conclusion: Regulation of m6A methylation is widely involved in IBD occurrence and development. m6A modifications in risk variants, core cytokines, immune cells, and other proteins may deeply influence the pathophysiology and clinical phenotypes. Further studies are needed to determine its role in IBD.
Collapse
Affiliation(s)
- Kai Nie
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Jun Yi
- Department of Gastroenterology, The Xiangya Hospital of Central South University, Changsha, China
| | - Yuanyuan Yang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yan Yang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Tianyu Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoyu Zhang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- *Correspondence: Zhaoyu Zhang, ; Xiaoyan Wang,
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
- *Correspondence: Zhaoyu Zhang, ; Xiaoyan Wang,
| |
Collapse
|
29
|
Feng Y, Li Y, Zhou D, Li B, Chen G, Li N. Glycyrrhetinic acid reverses antibiotic-induced intestinal epithelial injury through RNA-binding protein human antigen R (HuR). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153836. [PMID: 34775357 DOI: 10.1016/j.phymed.2021.153836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/02/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The application/abuse of antibiotics can cause antibiotic-induced intestinal injury (AIJ), a typical clinical issue that disturbs intestinal homeostasis. However, the underlying post-transcriptional mechanism of AIJ remains unknown. Glycyrrhetinic acid (GA) is one of the main components of Glycyrrhiza uralensis Fisch. and Glycyrrhiza inflata Batalin (Fabaceae), and findings of our previous study showed that GA can maintain intestinal homeostasis post-transcriptionally through the RNA-binding protein human antigen R (HuR). PURPOSE This study aimed to elucidate the role of HuR in AIJ and the protective effects of GA on AIJ. STUDY DESIGN AND METHODS Clindamycin hydrochloride was used to clarify the effect of the antibiotic on the intestinal epithelium. Intestinal epithelium cell-6 (IEC-6) and Caco2 cells were used to demonstrate the in vitro effects of the antibiotic and GA on intestinal cells. HuR plasmid and siRNA were used to overexpress or silence HuR in vitro. SD rats were induced by using clindamycin hydrochloride capsules (250 mg/kg i.g.) for 7 consecutive days to construct the in vivo AIJ model. Rats of the AIJ model group were administrated GA (10 and 20 mg/kg i.g.) for 7 days, and subsequently, the protective effect of GA on the intestinal epithelium was evaluated. RESULTS In vitro results showed that the antibiotic (150-500 μM) suppressed proliferation, induced a delay in restitution after wounding, and caused cell cycle arrest at the G0/G1 phase in IEC-6 and Caco-2 cells. Moreover, the expression levels of HuR and its downstream gene, occludin and cyclin D1, decreased after treatment with the antibiotic (500 μM). Overexpression of HuR and GA (10 and 20 μM) reversed the antibiotic-induced inhibition of proliferation and G0/G1 phase arrest, and the antibiotic-induced decrease in HuR, occludin, and cyclin D1 expression was reversed after GA treatment (10 and 20 μM) in IEC-6 cells. In vivo results revealed the antibiotic-induced epithelial injury of both the small intestines (shortened and spared mucosa) and the large intestines (injured/deformed glands, reduced number of cup cells, and evident inflammatory cell infiltration), all of which were ameliorated after GA treatment (10 and 20 μM). CONCLUSION Antibiotics induce intestinal epithelial injury through HuR, and GA can exert a protective effect on AIJ by restoring HuR levels.
Collapse
Affiliation(s)
- Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanwu Li
- Pi-Wei Institute, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 510405, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingxin Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
30
|
Xiao L, Ma XX, Luo J, Chung HK, Kwon MS, Yu TX, Rao JN, Kozar R, Gorospe M, Wang JY. Circular RNA CircHIPK3 Promotes Homeostasis of the Intestinal Epithelium by Reducing MicroRNA 29b Function. Gastroenterology 2021; 161:1303-1317.e3. [PMID: 34116030 PMCID: PMC8463477 DOI: 10.1053/j.gastro.2021.05.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed circles. Although circRNAs influence many biological processes, little is known about their role in intestinal epithelium homeostasis. We surveyed circRNAs required to maintain intestinal epithelial integrity and identified circular homeodomain-interacting protein kinase 3 (circHIPK3) as a major regulator of intestinal epithelial repair after acute injury. METHODS Intestinal mucosal tissues were collected from mice exposed to cecal ligation and puncture for 48 hours and patients with inflammatory bowel diseases and sepsis. We isolated primary enterocytes from the small intestine of mice and derived intestinal organoids. The levels of circHIPK3 were silenced in intestinal epithelial cells (IECs) by transfection with small interfering RNAs targeting the circularization junction of circHIPK3 or elevated using a plasmid vector that overexpressed circHIPK3. Intestinal epithelial repair was examined in an in vitro injury model by removing part of the monolayer. The association of circHIPK3 with microRNA 29b (miR-29b) was determined by biotinylated RNA pull-down assays. RESULTS Genome-wide profile analyses identified ∼300 circRNAs, including circHIPK3, differentially expressed in the intestinal mucosa of mice after cecal ligation and puncture relative to sham mice. Intestinal mucosa from patients with inflammatory bowel diseases and sepsis had reduced levels of circHIPK3. Increasing the levels of circHIPK3 enhanced intestinal epithelium repair after wounding, whereas circHIPK3 silencing repressed epithelial recovery. CircHIPK3 silencing also inhibited growth of IECs and intestinal organoids, and circHIPK3 overexpression promoted intestinal epithelium renewal in mice. Mechanistic studies revealed that circHIPK3 directly bound to miR-29b and inhibited miR-29 activity, thus increasing expression of Rac1, Cdc42, and cyclin B1 in IECs after wounding. CONCLUSIONS In studies of mice, IECs, and human tissues, our results indicate that circHIPK3 improves repair of the intestinal epithelium at least in part by reducing miR-29b availability.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Xiang-Xue Ma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jason Luo
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
31
|
Wang H, Brown PC, Chow EC, Ewart L, Ferguson SS, Fitzpatrick S, Freedman BS, Guo GL, Hedrich W, Heyward S, Hickman J, Isoherranen N, Li AP, Liu Q, Mumenthaler SM, Polli J, Proctor WR, Ribeiro A, Wang J, Wange RL, Huang S. 3D cell culture models: Drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci 2021; 14:1659-1680. [PMID: 33982436 PMCID: PMC8504835 DOI: 10.1111/cts.13066] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nonclinical testing has served as a foundation for evaluating potential risks and effectiveness of investigational new drugs in humans. However, the current two-dimensional (2D) in vitro cell culture systems cannot accurately depict and simulate the rich environment and complex processes observed in vivo, whereas animal studies present significant drawbacks with inherited species-specific differences and low throughput for increased demands. To improve the nonclinical prediction of drug safety and efficacy, researchers continue to develop novel models to evaluate and promote the use of improved cell- and organ-based assays for more accurate representation of human susceptibility to drug response. Among others, the three-dimensional (3D) cell culture models present physiologically relevant cellular microenvironment and offer great promise for assessing drug disposition and pharmacokinetics (PKs) that influence drug safety and efficacy from an early stage of drug development. Currently, there are numerous different types of 3D culture systems, from simple spheroids to more complicated organoids and organs-on-chips, and from single-cell type static 3D models to cell co-culture 3D models equipped with microfluidic flow control as well as hybrid 3D systems that combine 2D culture with biomedical microelectromechanical systems. This article reviews the current application and challenges of 3D culture systems in drug PKs, safety, and efficacy assessment, and provides a focused discussion and regulatory perspectives on the liver-, intestine-, kidney-, and neuron-based 3D cellular models.
Collapse
Affiliation(s)
- Hongbing Wang
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Paul C. Brown
- Center for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Edwin C.Y. Chow
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | | | - Stephen S. Ferguson
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth CarolinaUSA
| | - Suzanne Fitzpatrick
- Office of the Center DirectorCenter for Food Safety and Applied NutritionUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Benjamin S. Freedman
- Division of NephrologyDepartment of PathologyKidney Research Institute, and Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Grace L. Guo
- Department of Pharmacology and ToxicologyErnest Mario School of PharmacyRutgers UniversityPiscatawayNew JerseyUSA
| | - William Hedrich
- Pharmaceutical Candidate Optimization, Metabolism and PharmacokineticsBristol‐Myers Squibb CompanyPrincetonNew JerseyUSA
| | | | - James Hickman
- NanoScience Technology CenterUniversity of Central FloridaOrlandoFloridaUSA
| | - Nina Isoherranen
- Department of PharmaceuticsSchool of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Albert P. Li
- In Vitro ADMET LaboratoriesColumbiaMarylandUSA
- In Vitro ADMET LaboratoriesMaldenMassachusettsUSA
| | - Qi Liu
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Shannon M. Mumenthaler
- Lawrence J. Ellison Institute for Transformative MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - James Polli
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - William R. Proctor
- Predictive Toxicology, Safety AssessmentGenentech, IncSouth San FranciscoCaliforniaUSA
| | - Alexandre Ribeiro
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Jian‐Ying Wang
- Department of SurgeryCell Biology GroupUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Ronald L. Wange
- Center for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Shiew‐Mei Huang
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchUS Food and Drug Administration (FDA)Silver SpringMarylandUSA
| |
Collapse
|
32
|
Shi J, Guo C, Ma J. CCAT2 enhances autophagy-related invasion and metastasis via regulating miR-4496 and ELAVL1 in hepatocellular carcinoma. J Cell Mol Med 2021; 25:8985-8996. [PMID: 34409736 PMCID: PMC8435435 DOI: 10.1111/jcmm.16859] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 07/07/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy is thought to contribute to the pathogenesis of many diseases, including cancer. Long non‐coding RNA (lncRNA) CCAT2 functions as an oncogene in a variety of tumours. However, it is still unknown whether CCAT2 is involved in autophagy and metastasis of hepatocellular carcinoma (HCC). In our study, we found that lncRNA CCAT2 expression was significantly increased in HCC tissue and was correlated with advanced stage and venous invasion. Further experiments revealed that CCAT2 induced autophagy and promoted migration and invasion in vitro and in vivo. Mechanistic investigations found that CCAT2 involved in HCC by regulating miR‐4496/Atg5 in cytoplasm. In nucleus, CCAT2 bound with ELAVL1/HuR to facilitate HCC progression. Our findings suggest that CCAT2 is an oncogenic factor in the progression of HCC with different regulatory mechanisms and may serve as a target for HCC therapy.
Collapse
Affiliation(s)
- Jing Shi
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Cao Guo
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Junli Ma
- Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
33
|
Regulation of Paneth Cell Function by RNA-Binding Proteins and Noncoding RNAs. Cells 2021; 10:cells10082107. [PMID: 34440876 PMCID: PMC8392049 DOI: 10.3390/cells10082107] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
Paneth cells are specialized intestinal epithelial cells that are located at the base of small intestinal crypts and play a vital role in preserving the gut epithelium homeostasis. Paneth cells act as a safeguard from bacterial translocation across the epithelium and constitute the niche for intestinal stem cells in the small intestine by providing multiple niche signals. Recently, Paneth cells have become the focal point of investigations defining the mechanisms underlying the epithelium-microbiome interactions and pathogenesis of chronic gut mucosal inflammation and bacterial infection. Function of Paneth cells is tightly regulated by numerous factors at different levels, while Paneth cell defects have been widely documented in various gut mucosal diseases in humans. The post-transcription events, specific change in mRNA stability and translation by RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) are implicated in many aspects of gut mucosal physiology by modulating Paneth cell function. Deregulation of RBPs and ncRNAs and subsequent Paneth cell defects are identified as crucial elements of gut mucosal pathologies. Here, we overview the posttranscriptional regulation of Paneth cells by RBPs and ncRNAs, with a particular focus on the increasing evidence of RBP HuR and long ncRNA H19 in this process. We also discuss the involvement of Paneth cell dysfunction in altered susceptibility of the intestinal epithelium to chronic inflammation and bacterial infection following disrupted expression of HuR and H19.
Collapse
|
34
|
Rao JN, Xiao L, Wang JY. Polyamines in Gut Epithelial Renewal and Barrier Function. Physiology (Bethesda) 2021; 35:328-337. [PMID: 32783609 DOI: 10.1152/physiol.00011.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polyamines regulate a variety of physiological functions and are involved in pathogenesis of diverse human diseases. The epithelium of the mammalian gut mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through well-controlled mechanisms. Here, we highlight the roles of cellular polyamines in maintaining the integrity of the gut epithelium, focusing on the emerging evidence of polyamines in the regulation of gut epithelial renewal and barrier function. Gut mucosal growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines are also essential for normal gut epithelial barrier function. Polyamines modulate expression of various genes encoding growth-associated proteins and intercellular junctions via distinct mechanisms involving RNA-binding proteins and noncoding RNAs. With the rapid advance of polyamine biology, polyamine metabolism and transport are promising therapeutic targets in our efforts to protect the gut epithelium and barrier function in patients with critical illnesses.
Collapse
Affiliation(s)
- Jaladanki N Rao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Department of Surgery,Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
The RNA-binding protein HuR regulates intestinal epithelial restitution by modulating Caveolin-1 gene expression. Biochem J 2021; 478:247-260. [PMID: 33346337 DOI: 10.1042/bcj20200372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
The integrity of the intestinal mucosal barrier protects hosts against pathological conditions. Early mucosal restitution after wounding refers to epithelial cell migration into a defect. The RNA-binding protein HuR plays an important role in the posttranscriptional regulation of gene expression and is involved in many aspects of cellular physiology. In the present study, we investigated the role of HuR in the regulation of cell migration through the posttranscriptional regulation of Caveolin-1 (Cav-1). Online software was used to identify Cav-1 mRNA as a potential target of HuR. The interaction of HuR with Cav-1 mRNA was investigated via ribonucleoprotein immunoprecipitation (RNP IP) assays and biotin pulldown analysis. HuR was found to bind specifically to the Cav-1 3'-UTR rather than the coding region or 5'-UTR. Transfection of cells with siHuR decreased both HuR protein levels and Cav-1 protein levels; conversely, ectopic overexpression of HuR via infection of cells with an adenoviral vector containing HuR cDNA (AdHuR) increased Cav-1 protein levels without disturbing Cav-1 mRNA levels. Thus, HuR enhanced Cav-1 expression in vitro by stimulating Cav-1 translation. Intestinal epithelium-specific HuR knockout in mice decreased Cav-1 protein levels without changing Cav-1 mRNA levels, consistent with the in vitro results. Decreasing the levels of HuR via siHuR transfection inhibited early epithelial repair, but this effect was reversed by ectopic overexpression of GFP-tagged Cav-1. These results indicate that posttranscriptional regulation of Cav-1 gene expression by HuR plays a critical role in the regulation of rapid epithelial repair after wounding.
Collapse
|
36
|
Kwon MS, Chung HK, Xiao L, Yu TX, Wang SR, Piao JJ, Rao JN, Gorospe M, Wang JY. MicroRNA-195 regulates Tuft cell function in the intestinal epithelium by altering translation of DCLK1. Am J Physiol Cell Physiol 2021; 320:C1042-C1054. [PMID: 33788631 DOI: 10.1152/ajpcell.00597.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intestinal Tuft cells sense luminal contents to influence the mucosal immune response against eukaryotic infection. Paneth cells secrete antimicrobial proteins as part of the mucosal protective barrier. Defects in Tuft and Paneth cells occur commonly in various gut mucosal disorders. MicroRNA-195 (miR-195) regulates the stability and translation of target mRNAs and is involved in many aspects of cell processes and pathologies. Here, we reported the posttranscriptional mechanisms by which miR-195 regulates Tuft and Paneth cell function in the small intestinal epithelium. Mucosal tissues from intestinal epithelial tissue-specific miR-195 transgenic (miR195-Tg) mice had reduced numbers of double cortin-like kinase 1 (DCLK1)-positive (Tuft) and lysozyme-positive (Paneth) cells, compared with tissues from control mice, but there were no effects on Goblet cells and enterocytes. Intestinal organoids expressing higher miR-195 levels from miR195-Tg mice also exhibited fewer Tuft and Paneth cells. Transgenic expression of miR-195 in mice failed to alter growth of the small intestinal mucosa but increased vulnerability of the gut barrier in response to lipopolysaccharide (LPS). Studies aimed at investigating the mechanism underlying regulation of Tuft cells revealed that miR-195 directly interacted with the Dclk1 mRNA via its 3'-untranslated region and inhibited DCLK1 translation. Interestingly, the RNA-binding protein HuR competed with miR-195 for binding Dclk1 mRNA and increased DCLK1 expression. These results indicate that miR-195 suppresses the function of Tuft and Paneth cells in the small intestinal epithelium and further demonstrate that increased miR-195 disrupts Tuft cell function by inhibiting DCLK1 translation via interaction with HuR.
Collapse
Affiliation(s)
- Min S Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shelley R Wang
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jun-Jie Piao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
37
|
Xiao L, Rao JN, Wang JY. RNA-binding proteins and long noncoding RNAs in intestinal epithelial autophagy and barrier function. Tissue Barriers 2021; 9:1895648. [PMID: 33709880 DOI: 10.1080/21688370.2021.1895648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intestinal autophagy and barrier function are crucial for maintaining the epithelium homeostasis and tightly regulated through well-controlled mechanisms. RNA-binding proteins (RBPs) and long noncoding RNAs (lncRNAs) modulate gene expression at the posttranscription level and are intimately involved in different physiological processes and diverse human diseases. In this review, we first highlight the roles of several RBPs and lncRNAs in the regulation of intestinal epithelial autophagy and barrier function, particularly focusing on the emerging evidence of RBPs and lncRNAs in the control of mRNA stability and translation. We additionally discuss recent findings that the interactions between RBPs and lncRNAs alter the fate of their target transcripts and thus influence gut epithelium host defense in response to stressful environments. These exciting advances in understanding the posttranscriptional control of the epithelial autophagy and barrier function by RBPs and lncRNAs provide a strong rationale for developing new effective therapeutics based on targeting RBPs and/or lncRNAs to preserve the intestinal epithelial integrity in patients with critical illnesses.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA.,Department of Pathology, Department of Veterans Affairs, USA
| |
Collapse
|
38
|
Mei F, Meng K, Gu Z, Yun Y, Zhang W, Zhang C, Zhong Q, Pan F, Shen X, Xia G, Chen H. Arecanut ( Areca catechu L.) Seed Polyphenol-Ameliorated Osteoporosis by Altering Gut Microbiome via LYZ and the Immune System in Estrogen-Deficient Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:246-258. [PMID: 33382620 DOI: 10.1021/acs.jafc.0c06671] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyphenol can improve osteoporosis and is closely associated with gut microbiota, while the mechanism and the relationship among polyphenol, osteoporosis, and gut microbiota colonization remain unclear. Here, an osteoporosis rat model established by ovariectomy was employed to investigate the improving mechanism of arecanut (Areca catechu L.) seed polyphenol (ACP) on osteoporosis by regulating gut microbiota. We analyzed the bone microstructure, Paneth cells, regulating microbial protein (lysozyme (LYZ)), proinflammatory cytokines, macrophage infiltration levels, and gut microbial communities in a rat. ACP improved the trabecular microstructure compared to OVX, including the increased trabecular number (Tb.N) (P < 0.01) and trabecular thickness (Tb.Th) (P < 0.001) and decreased trabecular separation (Tb.Sp) (P < 0.01). At the phylum level, Bacteroidetes was increased after ovariectomy (P < 0.001) and Firmicutes and Proteobacteria were increased in ACP (P < 0.001). Antiosteoporosis groups with lower LYZ and Paneth cells (P < 0.001) showed that the microbiota Alistipes, which have a negative effect on bone metabolism were decreased in ACP (P < 0.001). Altogether, these studies showed that the estrogen deficiency could induce the shedding of Paneth cells, which leads to the decrease of LYZ, while ACP could increase the LYZ expression by maintaining the population of Paneth cells in an estrogen-deficient host, which were implicated in gut microbiota regulation and improved osteoporosis by controlling the inflammatory reaction.
Collapse
Affiliation(s)
- Fengfeng Mei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Keke Meng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Zhipeng Gu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yonghuan Yun
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Chenghui Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Qiuping Zhong
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Feibing Pan
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan 570228, China
| | - Haiming Chen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan 570228, China
| |
Collapse
|
39
|
Xiao M, Liu J, Xiang L, Zhao K, He D, Zeng Q, Zhang Q, Xie D, Deng M, Zhu Y, Zhang Y, Liu Y, Bo H, Liu X, Chen X, Gong L, Bao Y, Hu Y, Cheng Y, Deng L, Zhu R, Xing X, Zhou M, Xiong W, Zhou Y, Zhou J, Li X, Cao K. MAFG-AS1 promotes tumor progression via regulation of the HuR/PTBP1 axis in bladder urothelial carcinoma. Clin Transl Med 2020; 10:e241. [PMID: 33377647 PMCID: PMC7744027 DOI: 10.1002/ctm2.241] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play a crucial role in progression of bladder urothelial carcinoma (BUC). However, the molecular mechanisms behind this role have not been elucidated yet. Here, we found that the lncRNA MAFG-AS1, which is highly expressed in BUC, is correlated with aggressive characteristics and poor prognosis of BUC. We demonstrate that MAFG-AS1 can promote BUC proliferation, invasion, metastasis, and epithelial-mesenchymal transition in vitro and in vivo. Mechanistically, MAFG-AS1 direct binding to Hu antigen R (HuR) could recruit ubiquitin-specific proteinase 5 (USP5) to prevent HuR from degrading by ubiquitination. We further demonstrate that overexpression of MAFG-AS1 can upregulate the expression of polypyrimidine tract-binding protein 1 (PTBP1) through promoting its stability mediated by bound HuR. In conclusion, these findings indicate that MAFG-AS1 promotes the progression of BUC via regulation of the HUR/PTBP1 axis. Targeting MAFG-AS1 may provide a novel strategy for individualized therapy and a potential biomarker for prognosis of BUC.
Collapse
Affiliation(s)
- Mengqing Xiao
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Jianye Liu
- Department of UrologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Liang Xiang
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Kai Zhao
- Department of HematologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Dong He
- Department of RespiratoryThe Second People's Hospital of Hunan ProvinceChangshaChina
| | - Qinghai Zeng
- Department of DermatologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Qun Zhang
- Department of RadiotherapyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Dan Xie
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Minhua Deng
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuxing Zhu
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Yeyu Zhang
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Yan Liu
- Department of Plastic SurgeryThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Hao Bo
- Institute of Reproductive and Stem Cell EngineeringCentral South UniversityChangshaChina
| | - Xiaoming Liu
- Department of GastroenterologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Xingyu Chen
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Lian Gong
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Ying Bao
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Yi Hu
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Yaxin Cheng
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Liping Deng
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Rongrong Zhu
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiaowei Xing
- Center for Medical ExperimentsThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Ming Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese, Ministry of HealthCentral South UniversityChangshaChina
| | - Wei Xiong
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese, Ministry of HealthCentral South UniversityChangshaChina
| | - Yanhong Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese, Ministry of HealthCentral South UniversityChangshaChina
| | - Jianda Zhou
- Department of Plastic SurgeryThird Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiaohui Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix SamplesChangshaChina
- Department of Pharmaceutical Chemistry, School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| | - Ke Cao
- Department of OncologyThird Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
40
|
circRNAome Profiling in Oral Carcinoma Unveils a Novel circFLNB that Mediates Tumour Growth-Regulating Transcriptional Response. Cells 2020; 9:cells9081868. [PMID: 32785098 PMCID: PMC7464896 DOI: 10.3390/cells9081868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022] Open
Abstract
Deep sequencing technologies have revealed the once uncharted non-coding transcriptome of circular RNAs (circRNAs). Despite the lack of protein-coding potential, these unorthodox yet highly stable RNA species are known to act as critical gene regulatory hubs, particularly in malignancies. However, their mechanistic implications in tumor outcome and translational potential have not been fully resolved. Using RNA-seq data, we profiled the circRNAomes of tumor specimens derived from oral squamous cell carcinoma (OSCC), which is a prevalently diagnosed cancer with a persistently low survival rate. We further catalogued dysregulated circRNAs in connection with tumorigenic progression. Using comprehensive bioinformatics analyses focused on co-expression maps and miRNA-interaction networks, we delineated the regulatory networks that are centered on circRNAs. Interestingly, we identified a tumor-associated, pro-tumorigenic circRNA, named circFLNB, that was implicated in maintaining several tumor-associated phenotypes in vitro and in vivo. Correspondingly, transcriptome profiling of circFLNB-knockdown cells showed alterations in tumor-related genes. Integrated in silico analyses further deciphered the circFLNB-targeted gene network. Together, our current study demarcates the OSCC-associated circRNAome, and unveils a novel circRNA circuit with functional implication in OSCC progression. These systems-based findings broaden mechanistic understanding of oral malignancies and raise new prospects for translational medicine.
Collapse
|
41
|
Zhang Y, Cai JZ, Xiao L, Chung HK, Ma XX, Chen LL, Rao JN, Wang JY. RNA-binding protein HuR regulates translation of vitamin D receptor modulating rapid epithelial restitution after wounding. Am J Physiol Cell Physiol 2020; 319:C208-C217. [PMID: 32432928 DOI: 10.1152/ajpcell.00009.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Homeostasis of the intestinal epithelium is tightly regulated by numerous extracellular and intracellular factors including vitamin D and the vitamin D receptor (VDR). VDR is highly expressed in the intestinal epithelium and is implicated in many aspects of gut mucosal pathophysiology, but the exact mechanism that controls VDR expression remains largely unknown. The RNA-binding protein human antigen R (HuR) regulates the stability and translation of target mRNAs and thus modulates various cellular processes and functions. Here we report a novel role of HuR in the posttranscriptional control of VDR expression in the intestinal epithelium. The levels of VDR in the intestinal mucosa decreased significantly in mice with ablated HuR, compared with control mice. HuR silencing in cultured intestinal epithelial cells (IECs) also reduced VDR levels, whereas HuR overexpression increased VDR abundance; neither intervention changed cellular Vdr mRNA content. Mechanistically, HuR bound to Vdr mRNA via its 3'-untranslated region (UTR) and enhanced VDR translation in IECs. Moreover, VDR silencing not only inhibited IEC migration over the wounded area in control cells but also prevented the increased migration in cells overexpressing HuR, although it did not alter IEC proliferation in vitro and growth of intestinal organoids ex vivo. The human intestinal mucosa from patients with inflammatory bowel diseases exhibited decreased levels of both HuR and VDR. These results indicate that HuR enhances VDR translation by directly interacting with its mRNA via 3'-UTR and that induced VDR by HuR is crucial for rapid intestinal epithelial restitution after wounding.
Collapse
Affiliation(s)
- Yunzhan Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jia-Zhong Cai
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Xiang-Xue Ma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lin-Lin Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Li XX, Xiao L, Chung HK, Ma XX, Liu X, Song JL, Jin CZ, Rao JN, Gorospe M, Wang JY. Interaction between HuR and circPABPN1 Modulates Autophagy in the Intestinal Epithelium by Altering ATG16L1 Translation. Mol Cell Biol 2020; 40:e00492-19. [PMID: 31932481 PMCID: PMC7048268 DOI: 10.1128/mcb.00492-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial autophagy is crucial for host defense against invasive pathogens, and defects in this process occur frequently in patients with inflammatory bowel disease (IBD) and other mucosal disorders, but the exact mechanism that activates autophagy is poorly defined. Here, we investigated the role of RNA-binding protein HuR (human antigen R) in the posttranscriptional control of autophagy-related genes (ATGs) in the intestinal epithelium. We found that targeted deletion of HuR in intestinal epithelial cells (IECs) specifically decreased the levels of ATG16L1 in the intestinal mucosa. Intestinal mucosa from patients with IBD exhibited reduced levels of both HuR and ATG16L1. HuR directly interacted with Atg16l1 mRNA via its 3' untranslated region and enhanced ATG16L1 translation, without affecting Atg16l1 mRNA stability. Circular RNA circPABPN1 blocked HuR binding to Atg16l1 mRNA and lowered ATG16L1 production. HuR silencing in cultured IECs also prevented rapamycin-induced autophagy, which was abolished by overexpressing ATG16L1. These findings indicate that HuR regulates autophagy by modulating ATG16L1 translation via interaction with circPABPN1 in the intestinal epithelium.
Collapse
Affiliation(s)
- Xiao-Xue Li
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Xiang-Xue Ma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Xiangzheng Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Jia-Le Song
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Cindy Z Jin
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
43
|
Zhao Q, Li C, Yu M, Sun Y, Wang J, Ma L, Sun X, Lu B. HuR stabilizes HTT mRNA via interacting with its exon 11 in a mutant HTT-dependent manner. RNA Biol 2020; 17:500-516. [PMID: 31928144 PMCID: PMC7237150 DOI: 10.1080/15476286.2020.1712894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington’s Disease (HD) is a monogenetic neurodegenerative disorder mainly caused by the cytotoxicity of the mutant HTT protein (mHTT) encoded by the mutant HTT gene. Lowering HTT mRNA has been extensively studied as a potential therapeutic strategy, but how its level is regulated endogenously has been unclear. Here we report that the RNA-binding protein (RBP) HuR interacts with and stabilizes HTT mRNA in an mHTT-dependent manner. In HD cells but not wild-type cells, siRNA knockdown or CRISPR-induced heterozygous knockout of HuR decreased HTT mRNA stability. HuR interacted with HTT mRNA at a conserved site in exon 11 rather than the 3ʹ-UTR region of the mRNA. Interestingly, this interaction was dependent on the presence of mHTT, likely via the activation of MAPK11, which enhanced cytosolic localization of the HuR protein. Thus, mHTT, MAPK11 and HuR may form a positive feedback loop that stabilizes HTT mRNA and enhances mHTT accumulation, which may contribute to HD progression. Our data reveal a novel regulatory mechanism of HTT mRNA via non-canonical binding of HuR.
Collapse
Affiliation(s)
- Quan Zhao
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Li
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Meng Yu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Yimin Sun
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Wang
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Lixiang Ma
- Department of Anatomy, Histology and Embryology, Shanghai Basic Medical College, Fudan University, Shanghai, China
| | - Xiaoli Sun
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Xuhui District Central Hospital, Zhongshan Xuhui Hospital, Fudan University, Shanghai, China
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Yu TX, Chung HK, Xiao L, Piao JJ, Lan S, Jaladanki SK, Turner DJ, Raufman JP, Gorospe M, Wang JY. Long Noncoding RNA H19 Impairs the Intestinal Barrier by Suppressing Autophagy and Lowering Paneth and Goblet Cell Function. Cell Mol Gastroenterol Hepatol 2019; 9:611-625. [PMID: 31862317 PMCID: PMC7078540 DOI: 10.1016/j.jcmgh.2019.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The protective intestinal mucosal barrier consists of multiple elements including mucus and epithelial layers and immune defense; nonetheless, barrier dysfunction is common in various disorders. The imprinted and developmentally regulated long noncoding RNA H19 is involved in many cell processes and diseases. Here, we investigated the role of H19 in regulating Paneth and goblet cells and autophagy, and its impact on intestinal barrier dysfunction induced by septic stress. METHODS Studies were conducted in H19-deficient (H19-/-) mice, mucosal tissues from patients with sepsis, primary enterocytes, and Caco-2 cells. Septic stress was induced by cecal ligation and puncture (CLP), and gut permeability was detected by tracer fluorescein isothiocyanate-dextran assays. The function of Paneth and goblet cells was examined by immunostaining for lysozyme and mucin 2, respectively, and autophagy was examined by microtubule-associated proteins 1A/1B light chain 3 II immunostaining and Western blot analysis. Intestinal organoids were isolated from H19-/- and control littermate mice and treated with lipopolysaccharide (LPS). RESULTS Intestinal mucosal tissues in mice 24 hours after exposure to CLP and in patients with sepsis showed high H19 levels, associated with intestinal barrier dysfunction. Targeted deletion of the H19 gene in mice enhanced the function of Paneth and goblet cells and promoted autophagy in the small intestinal mucosa. Knockout of H19 protected Paneth and goblet cells against septic stress, preserved autophagy activation, and promoted gut barrier function after exposure to CLP. Compared with organoids from control littermate mice, intestinal organoids isolated from H19-/- mice had increased numbers of lysozyme- and mucin 2-positive cells and showed increased tolerance to LPS. Conversely, ectopic overexpression of H19 in cultured intestinal epithelial cells prevented rapamycin-induced autophagy and abolished the rapamycin-induced protection of the epithelial barrier against LPS. CONCLUSIONS In investigations of mice, human tissues, primary organoids, and intestinal epithelial cells, we found that increased H19 inhibited the function of Paneth and goblet cells and suppressed autophagy, thus potentially contributing to barrier dysfunction in intestinal pathologies.
Collapse
Affiliation(s)
- Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jun-Jie Piao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shaoyang Lan
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Suraj K Jaladanki
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jean-Pierre Raufman
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
45
|
Pan R, Cai W, Sun J, Yu C, Li P, Zheng M. Inhibition of KHSRP sensitizes colorectal cancer to 5-fluoruracil through miR-501-5p-mediated ERRFI1 mRNA degradation. J Cell Physiol 2019; 235:1576-1587. [PMID: 31313286 DOI: 10.1002/jcp.29076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022]
Abstract
K-homology (KH)-type splicing regulatory protein (KHSRP) is an RNA binding protein that participates in RNA variable splicing and stability, and facilitates the biogenesis of miRNAs that target mRNA. However, to date, the role of KHSRP in colorectal cancer (CRC) progression has not been reported. In this study, the function of KHSRP in CRC proliferation and 5-fluoruracil (5-FU) resistance was investigated. The upregulation of KHSRP expression was confirmed in CRC patient tissues and two CRC cell lines. Manipulating KHSRP expression altered cell proliferation and 5-FU resistance in CRC cells. ERRFI1, a downstream effector of KHSRP in CRC cells, reduced CRC cell proliferation. Sensitivity to 5-FU mediated by KHSRP knockdown was reversed by ERRFI1 knockdown. We found that KHSRP decreased ERRFI1 mRNA expression indirectly. By screening KHSRP-regulated miRNAs, we further found that miR-501-5p directly combines with KHSRP in CRC cells. Mechanistically, the results of a luciferase assay suggested that miR-501-5p directly binds to the ERRFI1 3'-untranslated region. Taken together, our data indicated that modification of ERRFI1 by KHSRP occurs through miR-501-5p, an essential mechanism driving CRC proliferation and 5-FU resistance. Insight into this mechanism may provide novel targets for overcoming drug resistance in CRC.
Collapse
Affiliation(s)
- Ruijun Pan
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Cai
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Chaoran Yu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Minhua Zheng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
46
|
Liu L, Xiao L, Chung HK, Kwon MS, Li XX, Wu N, Rao JN, Wang JY. RNA-Binding Protein HuR Regulates Rac1 Nucleocytoplasmic Shuttling Through Nucleophosmin in the Intestinal Epithelium. Cell Mol Gastroenterol Hepatol 2019; 8:475-486. [PMID: 31195150 PMCID: PMC6718926 DOI: 10.1016/j.jcmgh.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body, and its homeostasis is tightly regulated via well-controlled mechanisms. The RNA-binding protein HuR is essential for maintaining gut epithelial integrity, and targeted deletion of HuR in intestinal epithelial cells (IECs) disrupts mucosal regeneration and delays repair after injury. Here, we defined the role of HuR in regulating subcellular distribution of small guanosine triphosphatase Rac1 and investigated the implication of nucleophosmin (NPM) as a molecular chaperone in this process. METHODS Studies were conducted in intestinal epithelial tissue-specific HuR knockout (IE-HuR-/-) mice and cultured IEC-6 cells, derived from rat small intestinal crypts. Functions of HuR and NPM in vitro were investigated via their gene silencing and overexpression. RESULTS The abundance of cytoplasmic Rac1 in the small intestinal mucosa increased significantly in IE-HuR-/- mice, although HuR deletion did not alter total Rac1 levels. HuR silencing in cultured IECs also increased the cytoplasmic Rac1 levels, without an effect on whole-cell Rac1 content. In addition, HuR deficiency in the intestinal epithelium decreased the levels of NPM in IE-HuR-/- mice and cultured IECs. NPM physically interacted with Rac1 and formed the NPM/Rac1 complex. NPM silencing decreased the NPM/Rac1 association and inhibited nuclear accumulation of Rac1, along with an increase in cytoplasmic abundances of Rac1. In contrast, ectopically expressed NPM enhanced Rac1 nuclear translocation and restored Rac1 subcellular localization to near normal in HuR-deficient cells. CONCLUSIONS These results indicate that HuR regulates Rac1 nucleocytoplasmic shuttling in the intestinal epithelium by altering NPM expression.
Collapse
Affiliation(s)
- Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland,Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland,Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee K. Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland,Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Min S. Kwon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland,Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Xiao-Xue Li
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland,Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Na Wu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland,Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland,Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland,Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland,Correspondence Address correspondence to: Jian-Ying Wang, MD, PhD, Baltimore Veterans Affairs Medical Center (112), 10 North Greene Street, Baltimore, Maryland 21201. fax: (410) 706-1049.
| |
Collapse
|